from modelscope import AutoModelForCausalLM, AutoTokenizer import torch import pdb from fastchat.model import load_model, add_model_args class vicuna7b(object): def __init__(self, model_path='~/.cache/modelscope/hub/AI-ModelScope/vicuna-7b-v1___5', torch_dtype=torch.float32, device='cuda', max_new_tokens=5): print("Loading model from", model_path) self.model, self.tokenizer = load_model(model_path, device=device, load_8bit=False, dtype=torch_dtype) self.model_path = model_path self.max_new_tokens = max_new_tokens def generate(self, input_text, max_new_tokens=None): if max_new_tokens is None: max_new_tokens = self.max_new_tokens inputs = self.tokenizer(input_text, return_tensors="pt").to(self.model.device) outputs = self.model.generate(**inputs, max_new_tokens=max_new_tokens) if self.model.config.is_encoder_decoder: outputs = outputs[0] else: outputs = outputs[0][len(inputs["input_ids"][0]) :] return self.tokenizer.decode(outputs, skip_special_tokens=True, spaces_between_special_tokens=False) if __name__=='__main__': model = vicuna7b() print(model.generate("Yesterday was Thursday, today is Friday, so tomorrow is ", 10)) print(model.generate("Yesterday was 2022-01-01, today is 2022-01-02, so tomorrow is ", 10))