from model_inference import * from config import result_parsers, dataset_files, max_tokens, icl_files from tqdm import tqdm import json import os models = [gemma2b, llama2_7b] tasks = ["poi_identification", "trajectory_region", "trajectory_trajectory", "direction_determination", "trajectory_anomaly_detection", "trajectory_prediction"] if not os.path.exists("./logs"): os.mkdir("./logs") for fun in models: model = fun() for task in tasks: error_writer = open("./logs/icl_{}.log".format(task), 'a') error_writer.write(model.model_path+'\n') result_parser = result_parsers[task] context_samples = open(icl_files[task]) prompt = "" for _i, sample in enumerate(context_samples.readlines()): sample = json.loads(sample) prompt += "{}{}\n".format(sample['Question'], sample['Answer']) for dataset_path in dataset_files[task]: dataset = open(dataset_path, 'r') dataset = dataset.readlines() correct = 0 total = 0 exception = 0 for i, item in tqdm(enumerate(dataset), total=len(dataset)): item = json.loads(item) response = model.generate(prompt+item["Question"], max_tokens[task]) score = result_parser(response, item["Answer"], error_writer) if task!='trajectory_prediction' or score is not None: total +=1 if score is None: exception += 1 else: correct += score if i%100==0: print("Dataset: {}\nTotal: {}, correct:{}, exception:{}, accuracy:{}\n\n".format(dataset_path, total, correct, exception, correct/total)) error_writer.write("Dataset: {}\nTotal: {}, correct:{}, exception:{}, accuracy:{}\n\n".format(dataset_path, total, correct, exception, correct/total)) error_writer.flush() error_writer.write("\n") error_writer.close()