|
from modelscope import AutoTokenizer, AutoModelForCausalLM, GenerationConfig |
|
import torch |
|
import pdb |
|
|
|
class deepseek7b(object): |
|
|
|
def __init__(self, model_path='~/.cache/modelscope/hub/deepseek-ai/deepseek-llm-7b-base', torch_dtype=torch.float32, device='cuda', max_new_tokens=5): |
|
print("Loading model from", model_path) |
|
self.model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch_dtype, device_map=device) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
self.model.generation_config = GenerationConfig.from_pretrained(model_path) |
|
self.model.generation_config.pad_token_id = self.model.generation_config.eos_token_id |
|
self.model_path = model_path |
|
self.max_new_tokens = max_new_tokens |
|
|
|
def generate(self, input_text, max_new_tokens=None): |
|
if max_new_tokens is None: |
|
max_new_tokens = self.max_new_tokens |
|
inputs = self.tokenizer(input_text, return_tensors="pt").input_ids.to(self.model.device) |
|
outputs = self.model.generate(inputs, max_length=len(inputs[0])+max_new_tokens) |
|
return self.tokenizer.batch_decode(outputs)[0][len(input_text)+21:] |
|
|
|
if __name__=='__main__': |
|
model = deepseek7b() |
|
print(model.generate("Yesterday was Thursday, today is Friday, so tomorrow is ", 10)) |
|
print(model.generate("Yesterday was 2022-01-01, today is 2022-01-02, so tomorrow is ", 10)) |