|
from modelscope import AutoTokenizer, AutoModel |
|
import torch |
|
import pdb |
|
|
|
class chatglm2(object): |
|
|
|
def __init__(self, model_path='~/.cache/modelscope/hub/ZhipuAI/chatglm2-6b', torch_dtype=torch.float32, device='cuda', max_new_tokens=5): |
|
print("Loading model from", model_path) |
|
self.model = AutoModel.from_pretrained(model_path, torch_dtype=torch_dtype, device_map=device, trust_remote_code=True) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) |
|
self.model_path = model_path |
|
self.max_new_tokens = max_new_tokens |
|
|
|
def generate(self, input_text, max_new_tokens=None): |
|
if max_new_tokens is None: |
|
max_new_tokens = self.max_new_tokens |
|
inputs = self.tokenizer(input_text, return_tensors="pt").input_ids.to(self.model.device) |
|
outputs = self.model.generate(inputs, max_length=len(inputs[0])+max_new_tokens) |
|
return self.tokenizer.batch_decode(outputs)[0][len(input_text):] |
|
|
|
if __name__=='__main__': |
|
model = chatglm2() |
|
print(model.generate("Yesterday was Thursday, today is Friday, so tomorrow is ", 10)) |
|
print(model.generate("Yesterday was 2022-01-01, today is 2022-01-02, so tomorrow is ", 10)) |