|
from model_finetuning import formatting_func_without_space, formatting_func_space, trajectory_region_formatting, sft |
|
from model_inference import gemma2b |
|
from config import ScriptArguments, sft_files, dataset_files, max_tokens, result_parsers |
|
from tqdm import tqdm |
|
import json |
|
import os |
|
|
|
models_path = '~/.cache/modelscope/hub/AI-ModelScope/gemma-2b' |
|
tasks2formatting = {"administrative_region_determination": formatting_func_without_space, "direction_determination": formatting_func_without_space, "trajectory_anomaly_detection": formatting_func_space, "trajectory_prediction": formatting_func_space, "trajectory_region": trajectory_region_formatting, "trajectory_trajectory": formatting_func_without_space} |
|
|
|
if not os.path.exists("./save"): |
|
os.mkdir("./save") |
|
|
|
if not os.path.exists("./logs"): |
|
os.mkdir("./logs") |
|
|
|
for task, formatting_func in tasks2formatting.items(): |
|
save_path = "/save/{}/".format(task) |
|
|
|
if not os.path.exists(save_path): |
|
os.mkdir(save_path) |
|
|
|
sft(ScriptArguments, models_path, formatting_func, sft_files[task], save_path) |
|
|
|
model = gemma2b(save_path) |
|
|
|
error_writer = open("./logs/{}.log".format(task), 'a') |
|
error_writer.write(save_path+'\n') |
|
result_parser = result_parsers[task] |
|
for dataset_path in dataset_files[task]: |
|
dataset = open(dataset_path, 'r') |
|
dataset = dataset.readlines() |
|
|
|
correct = 0 |
|
total = 0 |
|
exception = 0 |
|
|
|
for i, item in tqdm(enumerate(dataset), total=len(dataset)): |
|
item = json.loads(item) |
|
response = model.generate(item["Question"], max_tokens[task]) |
|
score = result_parser(response, item["Answer"], error_writer) |
|
|
|
if task!='trajectory_prediction' or score is not None: |
|
total +=1 |
|
if score is None: |
|
exception += 1 |
|
else: |
|
correct += score |
|
|
|
if i%100==0: |
|
print("Dataset: {}\nTotal: {}, correct:{}, exception:{}, accuracy:{}\n\n".format(dataset_path, total, correct, exception, correct/total)) |
|
|
|
error_writer.write("Dataset: {}\nTotal: {}, correct:{}, exception:{}, accuracy:{}\n\n".format(dataset_path, total, correct, exception, correct/total)) |
|
error_writer.flush() |
|
error_writer.write("\n") |
|
error_writer.close() |
|
|