File size: 1,206 Bytes
b754bbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import pdb

class gemma7b(object):

    def __init__(self, model_path='~/.cache/modelscope/hub/AI-ModelScope/gemma-7b', torch_dtype=torch.float32, device='cuda', max_new_tokens=5):
        print("Loading model from", model_path)
        self.model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch_dtype, device_map=device)
        self.tokenizer = AutoTokenizer.from_pretrained(model_path)
        self.model_path = model_path
        self.max_new_tokens = max_new_tokens
    
    def generate(self, input_text, max_new_tokens=None):
        if max_new_tokens is None:
            max_new_tokens = self.max_new_tokens
        inputs = self.tokenizer(input_text, return_tensors="pt").input_ids.to(self.model.device)
        outputs = self.model.generate(inputs, max_length=len(inputs[0])+max_new_tokens)
        return self.tokenizer.batch_decode(outputs)[0][len(input_text)+5:]


if __name__=='__main__':
    model = gemma7b()
    print(model.generate("Yesterday was Thursday, today is Friday, so tomorrow is ", 10))
    print(model.generate("Yesterday was 2022-01-01, today is 2022-01-02, so tomorrow is ", 10))