Upload README_V5.md
Browse files- README_V5.md +42 -0
README_V5.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Second Stage Test by Monash — Submission V3
|
2 |
+
|
3 |
+
## 1. Download the Docker Image
|
4 |
+
|
5 |
+
You can download the latest Docker image from [huggingface](https://huggingface.co/datasets/JianghaoWu/MBH-Seg_monash/blob/main/monash_v5_latest.tar.gz) as `monash_v5_latest.tar.gz`.
|
6 |
+
|
7 |
+
## 2. Load the Docker Image
|
8 |
+
|
9 |
+
To load the Docker image, use the following command:
|
10 |
+
|
11 |
+
`docker load -i monash_v5_latest.tar.gz`
|
12 |
+
|
13 |
+
After loading, you will see the message: `Loaded image: monash_v5:latest`, where `monash_v5:latest` is the name of the Docker image.
|
14 |
+
|
15 |
+
|
16 |
+
## 3. Test the Docker Image
|
17 |
+
|
18 |
+
To test the Docker container, run:
|
19 |
+
|
20 |
+
`docker container run --gpus "device=0" --name monash_v5 --rm --shm-size=24g -v $PWD/relative_path/test/fold/:/workspace/inputs/ -v $PWD/relative_path/outputs/fold/:/workspace/outputs/ monash_v5:latest /bin/bash -c "sh predict.sh"`
|
21 |
+
|
22 |
+
|
23 |
+
If you encounter any permission issues, you may need to run it with `sudo`:
|
24 |
+
|
25 |
+
`sudo docker container run --gpus "device=0" --name monash_v5 --rm --shm-size=24g -v $PWD/relative_path/test/fold/:/workspace/inputs/ -v $PWD/relative_path/outputs/fold/:/workspace/outputs/ monash_v5:latest /bin/bash -c "sh predict.sh"`
|
26 |
+
|
27 |
+
|
28 |
+
### Parameters:
|
29 |
+
- `--gpus "device=0"`: Select the appropriate GPU ID.
|
30 |
+
- Replace `relative_path/test/fold` with the **relative path** to your test folder, which should contain Nifti files (`.nii.gz`). This path is relative to your **current working directory**.
|
31 |
+
- Replace `relative_path/outputs/fold` with the **relative path** to your desired output folder, which will store the results. This path is also relative to your **current working directory**.
|
32 |
+
- `monash_v5:latest`: This is the Docker image name, which will be displayed after loading the image in step 2.
|
33 |
+
- `--shm-size=24g`: If you encounter memory issues, please increase the shared memory space, for example, --shm-size=32g.
|
34 |
+
|
35 |
+
or using absolute path:
|
36 |
+
|
37 |
+
`docker container run --gpus "device=0" --name monash_v5 --rm --shm-size=24g -v /absolute/path/to/your/test/fold/:/workspace/inputs/ -v /absolute/path/to/my/team/outputs/fold/:/workspace/outputs/ monash_v5:latest /bin/bash -c "sh predict.sh"`
|
38 |
+
|
39 |
+
- Replace `/absolute/path/to/your/test/fold/` with the **absolute path** to your test folder, which should contain Nifti files (`.nii.gz`).
|
40 |
+
- Replace `/absolute/path/to/my/team/outputs/fold/` with the **absolute path** to your desired output folder, where the output results will be stored.
|
41 |
+
|
42 |
+
|