JianghaoWu commited on
Commit
2f16d6f
·
verified ·
1 Parent(s): 11fcfc9

Upload README_V5.md

Browse files
Files changed (1) hide show
  1. README_V5.md +42 -0
README_V5.md ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Second Stage Test by Monash — Submission V3
2
+
3
+ ## 1. Download the Docker Image
4
+
5
+ You can download the latest Docker image from [huggingface](https://huggingface.co/datasets/JianghaoWu/MBH-Seg_monash/blob/main/monash_v5_latest.tar.gz) as `monash_v5_latest.tar.gz`.
6
+
7
+ ## 2. Load the Docker Image
8
+
9
+ To load the Docker image, use the following command:
10
+
11
+ `docker load -i monash_v5_latest.tar.gz`
12
+
13
+ After loading, you will see the message: `Loaded image: monash_v5:latest`, where `monash_v5:latest` is the name of the Docker image.
14
+
15
+
16
+ ## 3. Test the Docker Image
17
+
18
+ To test the Docker container, run:
19
+
20
+ `docker container run --gpus "device=0" --name monash_v5 --rm --shm-size=24g -v $PWD/relative_path/test/fold/:/workspace/inputs/ -v $PWD/relative_path/outputs/fold/:/workspace/outputs/ monash_v5:latest /bin/bash -c "sh predict.sh"`
21
+
22
+
23
+ If you encounter any permission issues, you may need to run it with `sudo`:
24
+
25
+ `sudo docker container run --gpus "device=0" --name monash_v5 --rm --shm-size=24g -v $PWD/relative_path/test/fold/:/workspace/inputs/ -v $PWD/relative_path/outputs/fold/:/workspace/outputs/ monash_v5:latest /bin/bash -c "sh predict.sh"`
26
+
27
+
28
+ ### Parameters:
29
+ - `--gpus "device=0"`: Select the appropriate GPU ID.
30
+ - Replace `relative_path/test/fold` with the **relative path** to your test folder, which should contain Nifti files (`.nii.gz`). This path is relative to your **current working directory**.
31
+ - Replace `relative_path/outputs/fold` with the **relative path** to your desired output folder, which will store the results. This path is also relative to your **current working directory**.
32
+ - `monash_v5:latest`: This is the Docker image name, which will be displayed after loading the image in step 2.
33
+ - `--shm-size=24g`: If you encounter memory issues, please increase the shared memory space, for example, --shm-size=32g.
34
+
35
+ or using absolute path:
36
+
37
+ `docker container run --gpus "device=0" --name monash_v5 --rm --shm-size=24g -v /absolute/path/to/your/test/fold/:/workspace/inputs/ -v /absolute/path/to/my/team/outputs/fold/:/workspace/outputs/ monash_v5:latest /bin/bash -c "sh predict.sh"`
38
+
39
+ - Replace `/absolute/path/to/your/test/fold/` with the **absolute path** to your test folder, which should contain Nifti files (`.nii.gz`).
40
+ - Replace `/absolute/path/to/my/team/outputs/fold/` with the **absolute path** to your desired output folder, where the output results will be stored.
41
+
42
+