paperID
stringlengths
36
36
pwc_id
stringlengths
8
47
arxiv_id
stringlengths
6
16
nips_id
float64
url_abs
stringlengths
18
329
url_pdf
stringlengths
18
742
title
stringlengths
8
325
abstract
stringlengths
1
7.27k
authors
stringlengths
2
7.06k
published
stringlengths
10
10
conference
stringlengths
12
47
conference_url_abs
stringlengths
16
198
conference_url_pdf
stringlengths
27
199
proceeding
stringlengths
6
47
taskID
stringlengths
7
1.44k
areaID
stringclasses
688 values
embedding
stringlengths
9.26k
12.5k
umap_embedding
stringlengths
29
44
3853be1b-3804-4afd-8ff7-bf1e44f7c5bd
unsupervised-person-re-identification-a
2109.06057
null
https://arxiv.org/abs/2109.06057v2
https://arxiv.org/pdf/2109.06057v2.pdf
Unsupervised Person Re-Identification: A Systematic Survey of Challenges and Solutions
Person re-identification (Re-ID) has been a significant research topic in the past decade due to its real-world applications and research significance. While supervised person Re-ID methods achieve superior performance over unsupervised counterparts, they can not scale to large unlabelled datasets and new domains due to the prohibitive labelling cost. Therefore, unsupervised person Re-ID has drawn increasing attention for its potential to address the scalability issue in person Re-ID. Unsupervised person Re-ID is challenging primarily due to lacking identity labels to supervise person feature learning. The corresponding solutions are diverse and complex, with various merits and limitations. Therefore, comprehensive surveys on this topic are essential to summarise challenges and solutions to foster future research. Existing person Re-ID surveys have focused on supervised methods from classifications and applications but lack detailed discussion on how the person Re-ID solutions address the underlying challenges. This survey review recent works on unsupervised person Re-ID from the perspective of challenges and solutions. Specifically, we provide an in-depth analysis of highly influential methods considering the four significant challenges in unsupervised person Re-ID: 1) lacking ground-truth identity labels to supervise person feature learning; 2) learning discriminative person features with pseudo-supervision; 3) learning cross-camera invariant person feature, and 4) the domain shift between datasets. We summarise and analyse evaluation results and provide insights on the effectiveness of the solutions. Finally, we discuss open issues and suggest some promising future research directions.
['Xiaojun Chang', 'Andy Song', 'Lina Yao', 'Chung-Hsing Yeh', 'Pengzhen Ren', 'Xiangtan Lin']
2021-09-01
null
null
null
null
['unsupervised-person-re-identification']
['computer-vision']
[ 2.90606201e-01 -1.20141976e-01 -9.76853669e-02 -5.97979426e-01 -3.48629147e-01 -5.14674723e-01 8.48926663e-01 -7.66419023e-02 -7.22916961e-01 7.38388002e-01 3.50447893e-01 6.71743631e-01 -2.50932395e-01 -4.01916295e-01 -6.44825473e-02 -6.56830370e-01 1.57767043e-01 8.68242383e-01 -2.30738476e-01 9.14646238e-02 1.59772426e-01 4.84069318e-01 -1.99934459e+00 -2.99084395e-01 8.43529463e-01 3.30022693e-01 -2.81931192e-01 4.14124429e-01 3.00959527e-01 2.79730171e-01 -8.84527564e-01 -6.94672644e-01 3.75327021e-01 -5.73631763e-01 -9.14155900e-01 4.79257047e-01 7.66981900e-01 -3.19889635e-01 -3.47410530e-01 1.12345600e+00 1.05196822e+00 4.87091273e-01 9.03470516e-01 -1.64620399e+00 -8.31050396e-01 1.07224584e-01 -5.11605918e-01 2.62209088e-01 7.52760887e-01 -1.55180648e-01 4.82245922e-01 -7.35130906e-01 3.58851373e-01 1.30345058e+00 1.01617157e+00 1.16058946e+00 -1.15931821e+00 -6.73157275e-01 2.12520808e-01 4.88259971e-01 -1.76863134e+00 -5.92562973e-01 4.77735460e-01 -6.60760403e-01 8.90667558e-01 2.44183213e-01 5.63990891e-01 1.19027901e+00 -7.14241803e-01 7.11757362e-01 1.11782587e+00 -6.60320640e-01 -1.13501243e-01 4.44154054e-01 5.12262523e-01 3.42126727e-01 5.04072487e-01 2.63802886e-01 -6.27970517e-01 -1.70440957e-01 6.35162234e-01 1.78695992e-01 7.17400834e-02 -3.97445619e-01 -1.24196863e+00 6.15050733e-01 8.96504521e-02 1.65151060e-01 -1.16676483e-02 -2.39446878e-01 6.15422547e-01 2.06188530e-01 3.05771083e-01 3.63130599e-01 -1.11024724e-02 -7.81341940e-02 -9.40659046e-01 6.83502018e-01 5.34301937e-01 1.17262638e+00 7.02681422e-01 -1.66576400e-01 -8.82803053e-02 1.10754406e+00 2.49885600e-02 6.94943726e-01 6.58174992e-01 -7.24924147e-01 1.45748869e-01 5.72524071e-01 2.78073400e-01 -8.78936470e-01 -5.71377158e-01 -2.09569275e-01 -9.67372596e-01 -4.22572121e-02 6.82861388e-01 -7.63930082e-02 -6.45838678e-01 1.54518616e+00 3.08590621e-01 1.77355811e-01 2.15079024e-01 1.02709448e+00 1.11865008e+00 3.59191187e-02 2.89735854e-01 7.03985691e-02 1.74527705e+00 -9.91051972e-01 -6.88143909e-01 -4.24817204e-01 3.85258943e-01 -4.50474709e-01 5.58556855e-01 -4.30973731e-02 -7.32338667e-01 -9.69220519e-01 -8.53231013e-01 2.99725775e-02 -6.63886368e-01 3.83782715e-01 3.88161153e-01 1.28659809e+00 -8.25221837e-01 3.80181760e-01 -3.16249430e-01 -1.23342097e+00 3.27753544e-01 7.05293357e-01 -7.21106350e-01 -1.55799583e-01 -1.22575521e+00 8.67033780e-01 3.55072558e-01 3.09501607e-02 -4.06838417e-01 -4.74378914e-01 -9.33138251e-01 -3.57220739e-01 2.21465647e-01 -9.28168833e-01 9.63439524e-01 -1.06974113e+00 -1.30434334e+00 1.54502451e+00 -4.26586896e-01 -4.02889013e-01 6.25715673e-01 -1.43862203e-01 -9.18100297e-01 2.91373543e-02 6.28495514e-01 5.14392912e-01 7.05526352e-01 -1.18468499e+00 -1.05283988e+00 -6.97380066e-01 -2.32088923e-01 4.86884475e-01 -4.48450267e-01 4.90061969e-01 -5.70473850e-01 -8.16850364e-01 -2.38762081e-01 -1.15916967e+00 -6.74647316e-02 -5.26418149e-01 -2.72379726e-01 -6.03894711e-01 6.43864155e-01 -5.45145690e-01 9.84611154e-01 -2.07533908e+00 -6.37699440e-02 6.29706308e-02 2.43553981e-01 3.67278248e-01 2.30166450e-01 3.55121851e-01 -1.59389853e-01 -1.20449506e-01 -7.41908625e-02 -6.49745822e-01 1.17588349e-01 2.34913658e-02 6.83488473e-02 7.95243204e-01 -2.71294922e-01 9.34200406e-01 -9.08585966e-01 -4.71585065e-01 5.40825009e-01 3.94923866e-01 -4.80701514e-02 2.36030191e-01 8.31112504e-01 6.80148125e-01 -7.46482983e-02 8.07366788e-01 5.73768973e-01 3.94123085e-02 -3.18929739e-02 -3.29139620e-01 -9.16803032e-02 -2.75240213e-01 -1.44639468e+00 1.22437906e+00 1.76784933e-01 5.03642917e-01 -2.29078144e-01 -1.17443228e+00 9.57062185e-01 3.04822236e-01 6.88841462e-01 -4.31523293e-01 -2.43328530e-02 1.13576114e-01 -3.30273718e-01 -4.27377313e-01 6.27127409e-01 -2.13836476e-01 -4.62244093e-01 5.33052206e-01 1.11960262e-01 5.80599904e-01 2.07070589e-01 -5.22021390e-03 4.42345619e-01 7.99525231e-02 6.15449488e-01 -3.67571950e-01 1.07766724e+00 -6.21189140e-02 5.50352693e-01 9.71879244e-01 -1.00913250e+00 7.46679127e-01 -3.92166793e-01 -6.46083355e-01 -8.77168000e-01 -9.27269101e-01 -8.49362537e-02 1.20243764e+00 5.39605975e-01 -2.97085553e-01 -9.23146904e-01 -8.61545444e-01 1.56124070e-01 2.37317786e-01 -6.95508242e-01 1.46925533e-02 -6.06135428e-01 -1.06419516e+00 8.37896883e-01 6.84898734e-01 9.45957601e-01 -8.73605967e-01 -1.49816826e-01 -5.81753999e-02 -5.67483425e-01 -1.28924167e+00 -5.35317600e-01 -3.30504537e-01 -4.67130065e-01 -1.16292989e+00 -1.39497018e+00 -1.10898912e+00 9.92766917e-01 6.83740139e-01 8.72054696e-01 -6.98285028e-02 -3.17916900e-01 1.12318957e+00 -3.63200098e-01 -5.31084120e-01 -2.93979608e-02 8.15055519e-02 8.99590611e-01 1.02557853e-01 1.41755569e+00 -1.36479184e-01 -5.73150754e-01 8.54421675e-01 -2.84707278e-01 -3.59412611e-01 6.69596344e-02 8.22982848e-01 4.40871328e-01 3.93567443e-01 8.48815620e-01 -8.69316339e-01 5.70643365e-01 -1.84077039e-01 -1.42676264e-01 3.71246338e-01 -7.15803385e-01 -4.50381607e-01 2.80230373e-01 -2.83446431e-01 -1.18576515e+00 1.32284254e-01 5.47927879e-02 1.83581471e-01 -6.31608605e-01 -3.21475416e-01 -4.38923836e-01 -2.02457324e-01 7.26581991e-01 3.05314094e-01 5.69803007e-02 -5.28252780e-01 1.50165796e-01 1.09600747e+00 9.91480887e-01 -6.47448123e-01 9.76332545e-01 8.74613225e-01 -3.72038215e-01 -7.88245022e-01 -8.74555707e-01 -1.15660274e+00 -1.25034034e+00 -4.24756110e-01 9.74264145e-01 -1.23845112e+00 -6.65419638e-01 8.86924744e-01 -7.12308466e-01 1.21524684e-01 -4.05323029e-01 4.82291073e-01 -5.67940891e-01 8.10425222e-01 -3.25741351e-01 -8.17840874e-01 -4.42917854e-01 -8.38250697e-01 9.48958695e-01 7.35505462e-01 -5.40263295e-01 -1.06509554e+00 -6.91230148e-02 7.60693789e-01 7.95520917e-02 1.88846454e-01 1.52605340e-01 -7.23679781e-01 1.52296796e-01 -5.54505348e-01 -3.20783496e-01 1.70381293e-01 5.10712683e-01 -7.19907105e-01 -1.23788404e+00 -6.65069759e-01 -3.57282907e-01 -8.06245953e-02 5.80594659e-01 2.29202628e-01 6.68873489e-01 3.20507735e-02 -7.74685323e-01 6.39126539e-01 1.06800663e+00 -7.36238360e-02 4.21734184e-01 7.97374189e-01 9.01986361e-01 1.17478597e+00 6.94354594e-01 3.97723407e-01 7.58548737e-01 8.68597984e-01 -3.14343274e-01 -2.00700104e-01 -3.43164474e-01 -2.89138496e-01 2.83101439e-01 3.13856333e-01 -8.22261930e-01 -4.91476841e-02 -7.10812747e-01 6.43310666e-01 -1.98297822e+00 -1.24002576e+00 -2.32782125e-01 2.25633407e+00 2.24521518e-01 -4.69206423e-01 1.02410746e+00 3.69925380e-01 1.45809209e+00 -3.04819226e-01 -5.20923316e-01 1.87812373e-01 -3.91571343e-01 -3.51647973e-01 6.37485981e-01 1.72856361e-01 -1.54548538e+00 9.27104712e-01 6.77067947e+00 5.40173650e-01 -4.28790122e-01 1.87559411e-01 1.16717428e-01 2.23763540e-01 5.89941978e-01 -2.32489690e-01 -1.51980603e+00 4.97838020e-01 4.73582119e-01 -4.28488076e-01 3.38829935e-01 8.87555361e-01 -1.62162140e-01 -6.47436827e-02 -1.30485463e+00 1.84172416e+00 7.52531469e-01 -6.86472893e-01 -9.69521552e-02 1.48407906e-01 8.06475401e-01 -4.16817188e-01 -1.31217584e-01 3.82024199e-01 1.89161509e-01 -9.29978490e-01 5.46100914e-01 3.61604005e-01 1.11958265e+00 -8.91843855e-01 9.73123968e-01 1.87749505e-01 -1.37735879e+00 -2.50470102e-01 -5.67778289e-01 -2.03716218e-01 3.97845656e-01 1.30776212e-01 -4.82634842e-01 6.30680680e-01 1.12325215e+00 1.01708221e+00 -7.56360114e-01 9.49167967e-01 -9.00746062e-02 1.85054451e-01 -1.46371469e-01 4.10478115e-01 -3.34078401e-01 -7.54858926e-02 4.28771645e-01 1.45050037e+00 1.51709750e-01 6.13971725e-02 3.01531255e-01 4.74356920e-01 3.76694590e-01 -1.02424480e-01 -4.13398981e-01 3.05169106e-01 4.21835333e-01 1.06576324e+00 -7.00813651e-01 -3.45639169e-01 -7.20662117e-01 1.49687457e+00 2.02410668e-01 4.05135065e-01 -5.27552962e-01 -2.50696242e-01 9.43009794e-01 3.65787864e-01 -1.17368676e-01 -1.19791612e-01 -3.82755734e-02 -1.14970195e+00 -2.78095752e-01 -7.44024098e-01 1.07397926e+00 -2.07432315e-01 -1.97029173e+00 3.25193018e-01 3.09419841e-01 -1.34956563e+00 -4.67745125e-01 -5.55610299e-01 -1.32453099e-01 9.73031521e-01 -1.45812106e+00 -1.51976895e+00 -7.42949724e-01 8.38067174e-01 4.14162666e-01 -8.22176099e-01 9.83968496e-01 5.11031687e-01 -8.22709799e-01 1.21809173e+00 9.41654071e-02 4.89957958e-01 1.18462348e+00 -1.16539931e+00 6.00225985e-01 8.46052945e-01 -2.02961877e-01 8.92793179e-01 5.16884744e-01 -7.32077539e-01 -9.22346413e-01 -1.02301562e+00 1.15319920e+00 -8.92628253e-01 -7.00164866e-03 -5.33553183e-01 -4.90472257e-01 8.36435914e-01 -2.56307483e-01 -1.27492830e-01 1.25634873e+00 3.14552486e-01 -2.36452147e-01 -8.27996507e-02 -1.55368495e+00 4.28788066e-01 1.47245860e+00 -5.20453453e-01 -5.82163095e-01 1.24094918e-01 -1.61196083e-01 -4.24080975e-02 -9.38937724e-01 3.09526026e-01 6.81174815e-01 -1.02028430e+00 1.42872405e+00 -2.43019521e-01 -5.39399028e-01 -5.36970019e-01 1.90633416e-01 -9.47753906e-01 -8.47997189e-01 -4.79804903e-01 4.43238690e-02 1.75104952e+00 -4.25150871e-01 -9.22618508e-01 8.96373391e-01 1.02209353e+00 5.13199747e-01 6.13067709e-02 -7.50024557e-01 -1.13807893e+00 -1.48952305e-01 -5.63674197e-02 8.30190659e-01 1.05457628e+00 -2.34856992e-03 2.88432956e-01 -8.15746784e-01 2.08454832e-01 1.13394368e+00 -1.24576710e-01 1.23277640e+00 -1.44255996e+00 4.61962167e-03 -2.18657464e-01 -9.03392851e-01 -1.09163177e+00 3.80116850e-01 -8.78218532e-01 -2.40686029e-01 -1.43483710e+00 7.64188707e-01 -5.28710306e-01 -9.12536457e-02 2.67019033e-01 -5.05512714e-01 6.24204159e-01 2.09142089e-01 7.56850123e-01 -6.28278792e-01 2.27009729e-01 7.06342399e-01 -2.32272834e-01 -8.51593390e-02 1.93931863e-01 -9.72742379e-01 7.32070267e-01 6.89011216e-01 -2.51303762e-01 -3.05581629e-01 -2.36386597e-01 -1.79988354e-01 -7.48025477e-01 6.59602106e-01 -1.24448824e+00 4.50887769e-01 7.17453361e-02 7.85098493e-01 -4.96089220e-01 2.14703992e-01 -7.74574220e-01 1.22667052e-01 1.47498012e-01 -4.98676561e-02 -4.39386927e-02 -2.16641054e-01 6.14944220e-01 -1.45019576e-01 -3.97528768e-01 8.26050818e-01 -3.62340033e-01 -1.30892456e+00 3.71185273e-01 -4.02715832e-01 1.34482915e-02 1.26887894e+00 -9.50907826e-01 -2.93147340e-02 -2.82699049e-01 -7.72822797e-01 2.90730983e-01 7.82247722e-01 5.84484458e-01 2.62264371e-01 -1.36717749e+00 -8.33249509e-01 3.66557717e-01 5.76154351e-01 -3.58474523e-01 4.27838415e-01 3.66599321e-01 -5.51370671e-03 4.35558796e-01 -3.03535134e-01 -5.57635188e-01 -1.64879370e+00 7.03207791e-01 4.83534127e-01 -2.30581686e-02 -7.85145044e-01 7.20321000e-01 3.97705346e-01 -7.67746091e-01 2.79462814e-01 7.81916738e-01 -6.67450547e-01 8.93596932e-02 9.88655865e-01 9.79072750e-01 -2.35733852e-01 -1.45374334e+00 -7.45996356e-01 9.49450791e-01 -1.58567473e-01 5.93146235e-02 9.78658020e-01 -7.10442960e-01 5.94996065e-02 1.45708555e-02 8.63754332e-01 -2.30534434e-01 -1.02211940e+00 -4.72995579e-01 1.90510780e-01 -5.26983559e-01 -6.00790739e-01 -6.56595170e-01 -5.63171089e-01 3.79291773e-01 9.38246787e-01 -9.87551957e-02 9.39258277e-01 1.40239522e-01 7.75903583e-01 1.57600954e-01 5.85197449e-01 -1.64320600e+00 -2.91670077e-02 3.82601023e-01 4.70104575e-01 -1.54016006e+00 3.47018003e-01 -6.52045548e-01 -7.32843161e-01 8.25555563e-01 7.54209995e-01 6.57525510e-02 5.56498230e-01 -6.56398907e-02 1.92744732e-01 -2.90118810e-02 5.59889078e-01 -6.34169698e-01 2.66712368e-01 1.54888856e+00 2.33675197e-01 1.60964727e-01 -1.19111776e-01 9.63056266e-01 -4.61253971e-01 2.85524945e-03 3.96960080e-02 7.15025425e-01 -4.42131096e-03 -1.33763075e+00 -9.17736351e-01 3.43881637e-01 -3.17597210e-01 3.90143484e-01 -5.53475440e-01 6.33708417e-01 5.79189956e-01 1.22474456e+00 4.79327552e-02 -3.26537609e-01 6.29977942e-01 -3.87091264e-02 7.25327194e-01 -5.77618122e-01 -6.26363039e-01 -4.15159464e-01 8.91217440e-02 -8.13442469e-02 -1.00018787e+00 -1.08509409e+00 -9.09901738e-01 -5.48512340e-01 -2.47480631e-01 2.92758048e-02 3.07063907e-01 1.00066054e+00 1.93917528e-01 -4.73432280e-02 3.18110675e-01 -1.03391063e+00 -2.48780429e-01 -7.18382299e-01 -6.99691236e-01 9.22317445e-01 4.87735830e-02 -8.96363974e-01 -3.38445991e-01 4.37104911e-01]
[14.66651439666748, 1.0248562097549438]
daa4fdab-5767-44c9-a903-ded0f3f3204a
pressim-an-end-to-end-framework-for-dynamic
2302.00391
null
https://arxiv.org/abs/2302.00391v1
https://arxiv.org/pdf/2302.00391v1.pdf
PresSim: An End-to-end Framework for Dynamic Ground Pressure Profile Generation from Monocular Videos Using Physics-based 3D Simulation
Ground pressure exerted by the human body is a valuable source of information for human activity recognition (HAR) in unobtrusive pervasive sensing. While data collection from pressure sensors to develop HAR solutions requires significant resources and effort, we present a novel end-to-end framework, PresSim, to synthesize sensor data from videos of human activities to reduce such effort significantly. PresSim adopts a 3-stage process: first, extract the 3D activity information from videos with computer vision architectures; then simulate the floor mesh deformation profiles based on the 3D activity information and gravity-included physics simulation; lastly, generate the simulated pressure sensor data with deep learning models. We explored two approaches for the 3D activity information: inverse kinematics with mesh re-targeting, and volumetric pose and shape estimation. We validated PresSim with an experimental setup with a monocular camera to provide input and a pressure-sensing fitness mat (80x28 spatial resolution) to provide the sensor ground truth, where nine participants performed a set of predefined yoga sequences.
['Paul Lukowicz', 'Sungho Suh', 'Bo Zhou', 'Lala Shakti Swarup Ray']
2023-02-01
null
null
null
null
['human-activity-recognition', 'pgtask', 'human-activity-recognition']
['computer-vision', 'natural-language-processing', 'time-series']
[ 4.55082297e-01 4.66688238e-02 1.45210803e-01 -9.35362875e-02 -5.24931431e-01 -1.89357981e-01 -9.08379704e-02 -2.16223925e-01 -2.95250565e-01 5.76705158e-01 4.04807091e-01 3.87306809e-01 9.16657373e-02 -8.38275313e-01 -1.05742621e+00 -2.86395967e-01 -2.77344733e-01 4.80681300e-01 -2.84160636e-02 -1.10306427e-01 1.43517759e-02 2.54588306e-01 -1.72544777e+00 -3.61139663e-02 7.74064422e-01 1.32249188e+00 2.06441656e-01 1.01554513e+00 6.77152932e-01 6.09975755e-01 -3.10957611e-01 8.34365562e-02 5.90691447e-01 -4.92380202e-01 -3.23039234e-01 4.46405470e-01 4.84920561e-01 -5.12520671e-01 -1.07893139e-01 5.39840758e-01 7.10861266e-01 3.30081493e-01 4.12282288e-01 -1.13950205e+00 -1.30384818e-01 1.45910054e-01 -4.87299979e-01 -1.89893574e-01 1.23110557e+00 4.03331608e-01 3.42286646e-01 -7.30156541e-01 6.12103164e-01 9.93337631e-01 1.18055367e+00 5.17221689e-01 -9.49744761e-01 -3.65082711e-01 -4.13681775e-01 -2.78979260e-02 -1.41901791e+00 -1.15097061e-01 1.01181972e+00 -8.13572347e-01 6.59847260e-01 5.10738313e-01 1.62391984e+00 1.42306972e+00 5.19572139e-01 4.38669264e-01 1.00010610e+00 -6.69078901e-02 4.84762609e-01 -4.43748355e-01 -4.04066563e-01 9.82393861e-01 2.88470030e-01 3.47008333e-02 -8.69154990e-01 -2.05339119e-01 1.29869843e+00 2.54079998e-01 -3.93636554e-01 -4.88108277e-01 -1.30511451e+00 2.14652210e-01 4.58172798e-01 -2.60097504e-01 -7.75441706e-01 4.50395584e-01 -2.95605697e-02 -1.54728204e-01 1.13171428e-01 4.07691896e-01 -5.20968497e-01 -6.11431956e-01 -7.85592675e-01 7.54187524e-01 8.59278738e-01 8.40296686e-01 6.04894042e-01 8.33170339e-02 -6.33833706e-02 3.23250771e-01 5.34786463e-01 1.06801081e+00 3.99212807e-01 -1.21934175e+00 5.97294569e-01 7.99520075e-01 3.57521981e-01 -1.51031256e+00 -7.58427858e-01 7.99338147e-02 -6.52574658e-01 -9.26869288e-02 2.77579993e-01 -4.64114934e-01 -7.93533921e-01 1.29075384e+00 7.01807916e-01 2.29445592e-01 -3.94607037e-01 1.56280220e+00 6.63461387e-01 4.20085222e-01 -5.10089770e-02 -9.59131792e-02 1.36468911e+00 -6.88056052e-01 -6.06730044e-01 -4.12821323e-01 3.91635090e-01 -1.54049531e-01 1.36757195e+00 5.70438445e-01 -1.20404041e+00 -8.24454188e-01 -1.24411333e+00 -3.80565450e-02 2.86006760e-02 8.00169036e-02 4.35124725e-01 4.35928196e-01 -3.18608791e-01 9.67086732e-01 -1.55807924e+00 -2.65435487e-01 1.60993099e-01 1.68226138e-01 -1.83412567e-01 3.62082303e-01 -9.77113307e-01 6.79566741e-01 3.24393623e-02 3.54535908e-01 -9.52683568e-01 -8.91297102e-01 -1.21319366e+00 -2.91762799e-01 5.91985762e-01 -1.09172893e+00 1.18816268e+00 -4.75110561e-01 -1.90967178e+00 5.86235106e-01 3.45536530e-01 -3.17751676e-01 8.63713622e-01 -9.61106837e-01 5.02077565e-02 3.02795768e-01 -9.70082209e-02 1.95148364e-01 7.94208169e-01 -8.64988565e-01 1.13418341e-01 -6.98380232e-01 -3.38112384e-01 5.80161691e-01 1.11765236e-01 -4.46233928e-01 -2.08240002e-01 -4.93102103e-01 3.89778972e-01 -1.21650171e+00 -2.88221836e-01 3.03218067e-01 -2.61803031e-01 5.95006168e-01 3.60023767e-01 -1.12267292e+00 1.01582742e+00 -1.64930046e+00 4.64257896e-01 3.98541957e-01 1.14615560e-01 -1.75461024e-01 6.05958998e-01 5.14443070e-02 5.26504397e-01 -4.21074927e-01 -4.92416829e-01 -3.52482438e-01 -5.87171130e-02 1.63849488e-01 1.21555954e-01 5.69152653e-01 -2.60221809e-01 8.44387889e-01 -9.54501688e-01 -5.96195459e-01 5.68088770e-01 4.84959245e-01 -7.28892744e-01 4.45857853e-01 -4.30345684e-01 8.35050881e-01 -5.42431116e-01 1.12804258e+00 2.87848175e-01 -1.07310265e-01 2.03555360e-01 -3.01098555e-01 1.89559355e-01 4.16060910e-02 -1.57256389e+00 2.18245292e+00 -1.89769268e-01 -5.32761738e-02 4.36967999e-01 -6.01736903e-01 9.71079290e-01 1.32541418e-01 1.02033782e+00 -6.38404787e-01 5.30315220e-01 8.90090466e-02 -4.02004361e-01 -1.04843724e+00 4.18948919e-01 1.07815318e-01 -6.12952590e-01 2.14999422e-01 -2.88716108e-01 -4.38198298e-01 -5.19375563e-01 -4.83481348e-01 1.05114293e+00 8.30958962e-01 2.82484561e-01 -5.28799854e-02 2.52833158e-01 2.00322866e-01 5.11973500e-01 4.50573146e-01 -1.61886066e-01 8.04127038e-01 -1.97566509e-01 -5.43627441e-01 -1.04695618e+00 -1.31497371e+00 3.65357667e-01 8.28392327e-01 2.75953978e-01 -4.37998772e-01 -1.12998950e+00 -7.56583083e-03 1.27578631e-01 1.22614384e-01 -6.12035513e-01 3.67225090e-04 -8.04635048e-01 -3.83576721e-01 3.10012698e-01 9.47567523e-01 9.15041864e-01 -1.08624446e+00 -1.55133760e+00 3.14065307e-01 -3.22911799e-01 -1.08512270e+00 -3.68129224e-01 -2.46134058e-01 -6.96793973e-01 -1.34279263e+00 -5.63659728e-01 -2.54991353e-01 5.02630055e-01 -2.24200428e-01 8.33594680e-01 -2.31949583e-01 -5.57154953e-01 7.41756558e-01 -2.91950256e-01 -4.75541055e-01 9.87551063e-02 -2.25305051e-01 4.19858515e-01 -3.41052935e-02 -9.59063508e-03 -8.81858110e-01 -9.67165887e-01 4.19366091e-01 -3.23717713e-01 4.23914462e-01 1.84908241e-01 1.54132098e-01 1.06309152e+00 -5.46082139e-01 -2.84013569e-01 -9.67456475e-02 5.55106759e-01 -1.12248167e-01 -5.40797353e-01 -3.02434891e-01 7.21526295e-02 -5.21094024e-01 2.10584164e-01 -5.86395025e-01 -7.97205567e-01 5.64857662e-01 -2.39036813e-01 -6.56762779e-01 2.31054109e-02 6.05277061e-01 -2.49960601e-01 1.61414877e-01 9.72189784e-01 1.65949419e-01 2.36840948e-01 -4.78829741e-01 4.48707342e-02 5.63696742e-01 8.08081686e-01 -7.96296716e-01 5.13433337e-01 5.05477548e-01 2.10424989e-01 -1.07241142e+00 -6.67149007e-01 -1.42710805e-01 -8.79910529e-01 -6.01031959e-01 1.19903350e+00 -9.63452876e-01 -1.16942763e+00 8.06171954e-01 -8.20144236e-01 -6.90120101e-01 -3.11679989e-01 7.59453654e-01 -1.01498485e+00 1.89901263e-01 -6.48295939e-01 -8.29764366e-01 -7.34333158e-01 -8.73471797e-01 1.51468134e+00 2.81552523e-01 -6.74955130e-01 -4.25863922e-01 2.75396109e-01 7.51097918e-01 1.32932797e-01 1.19810236e+00 -5.76300584e-02 2.81957120e-01 -3.92914563e-01 -2.33300000e-01 5.77459455e-01 2.28485037e-02 -2.47965176e-02 -3.86051178e-01 -7.20291257e-01 -1.29874408e-01 1.58482149e-01 -4.15966392e-01 -1.83605745e-01 6.22920096e-01 1.24618518e+00 -3.67644995e-01 -3.28292102e-01 8.70215297e-01 1.15362608e+00 -1.27410993e-01 7.04459727e-01 2.10780248e-01 1.25496590e+00 3.72242630e-01 8.23295891e-01 8.21241379e-01 5.26603878e-01 1.00819254e+00 3.89055312e-01 1.35896593e-01 6.67157322e-02 -7.23180056e-01 4.42308068e-01 8.82095754e-01 -7.40507960e-01 4.49013412e-01 -1.06456482e+00 7.82443583e-02 -1.79289865e+00 -6.86704218e-01 -4.67067361e-02 2.14994431e+00 6.44942522e-01 -3.35065275e-02 3.67513061e-01 2.74400741e-01 2.85306633e-01 -1.59907594e-01 -7.19529390e-01 -1.23357736e-01 5.54281712e-01 1.80838108e-01 4.89739388e-01 3.27783138e-01 -9.24021184e-01 4.39617991e-01 5.87140608e+00 -1.02271795e-01 -1.08699906e+00 -7.17496499e-02 -2.13338453e-02 -4.53220665e-01 2.30493888e-01 -5.06591201e-01 -5.11187017e-01 6.71650887e-01 9.45819795e-01 3.33413668e-02 4.55904603e-01 1.30287671e+00 3.92403662e-01 -4.00720596e-01 -1.06438386e+00 1.29609513e+00 2.75640547e-01 -1.15450585e+00 -5.21755815e-01 1.56525105e-01 5.42564988e-01 -7.88700283e-02 -5.18610537e-01 1.01870701e-01 -8.23990181e-02 -8.21583867e-01 8.90555143e-01 1.00103521e+00 7.58998156e-01 -2.87346780e-01 1.63184434e-01 7.68643916e-01 -1.35021472e+00 7.31951445e-02 -9.29271989e-03 -7.33644903e-01 4.20615047e-01 3.55505258e-01 -8.35035026e-01 4.91453826e-01 8.73429656e-01 5.74214458e-01 -3.98271412e-01 7.99917638e-01 -6.54297546e-02 3.61977249e-01 -7.50391543e-01 -2.09615484e-01 -4.29168165e-01 -2.95363039e-01 6.16706192e-01 7.83349335e-01 5.70975661e-01 2.17128575e-01 6.15314543e-01 1.03329396e+00 2.48447120e-01 -1.59903377e-01 -5.80066621e-01 2.09839642e-01 2.70642281e-01 1.00902927e+00 -5.09910703e-01 -1.53377384e-01 1.19014755e-01 1.00771630e+00 -1.81465372e-01 -9.00434330e-02 -1.12526846e+00 -1.05755240e-01 5.22330225e-01 9.55896020e-01 -1.20366268e-01 -6.56129003e-01 -4.80325073e-01 -1.23207796e+00 5.04579246e-01 -6.02240741e-01 1.76348075e-01 -1.25121701e+00 -7.61716962e-01 3.21818143e-02 3.82268548e-01 -1.30712509e+00 -4.64118451e-01 -4.48733836e-01 -1.71219453e-01 5.69631219e-01 -5.42721093e-01 -9.84616876e-01 -1.22380662e+00 6.24499857e-01 4.71789569e-01 6.25032961e-01 8.01545978e-01 2.52623022e-01 -2.42948949e-01 2.53240615e-01 -7.24249482e-01 1.55668959e-01 2.76092254e-02 -9.31715965e-01 3.80144268e-01 6.01118028e-01 -2.66486496e-01 2.73421228e-01 8.33285213e-01 -1.16760635e+00 -2.16144896e+00 -1.09080589e+00 1.89382330e-01 -8.03604841e-01 2.59419620e-01 -6.91150904e-01 -6.58814430e-01 8.77571762e-01 -6.90107942e-01 3.13316017e-01 3.48834038e-01 -4.48873013e-01 4.18663830e-01 -1.12469057e-02 -1.25731146e+00 5.91898859e-01 1.53771830e+00 -1.55238211e-01 -8.59262764e-01 6.13265000e-02 4.30000901e-01 -1.47292304e+00 -1.11458778e+00 6.97234750e-01 1.03950667e+00 -5.02416670e-01 1.04490578e+00 -1.80682000e-02 5.71064234e-01 -4.90233153e-01 -2.49032393e-01 -1.16319478e+00 -5.01326509e-02 -7.45325387e-01 -7.66839027e-01 4.87972409e-01 -1.57666340e-01 -9.91887525e-02 1.25352347e+00 8.49423349e-01 -3.04674268e-01 -8.93051028e-01 -8.20660055e-01 -4.60147798e-01 -6.31634176e-01 -7.62884498e-01 6.52638674e-01 5.23401678e-01 1.94285065e-01 8.81120265e-02 -5.24660468e-01 2.32473478e-01 6.36360109e-01 -1.06946483e-01 1.43233800e+00 -1.18762636e+00 -4.84571159e-01 2.89041817e-01 -6.09484613e-01 -1.00838482e+00 -5.47108531e-01 -2.52918303e-01 2.47041300e-01 -1.68384933e+00 -1.96892813e-01 5.12640970e-03 3.47842038e-01 2.89605856e-01 1.12821870e-01 2.90656835e-01 1.17038324e-01 1.04529172e-01 -4.33672011e-01 5.56109011e-01 1.55285406e+00 2.24461451e-01 -6.58588469e-01 3.93326916e-02 -2.27671519e-01 1.06056201e+00 4.08011794e-01 -1.56852245e-01 -5.10987222e-01 -2.26284951e-01 4.15915310e-01 5.94565153e-01 7.43928194e-01 -1.79683280e+00 -1.28258049e-01 -3.85307759e-01 8.87076914e-01 -7.03198791e-01 7.03944147e-01 -9.93066132e-01 7.79276609e-01 7.47679472e-01 -5.66058904e-02 9.62670520e-03 1.84866533e-01 3.76870632e-01 5.08056402e-01 3.85230422e-01 3.63831073e-01 -4.95289147e-01 -3.28569561e-01 3.25547367e-01 -2.56671488e-01 -1.71491370e-01 1.13018155e+00 -7.85031378e-01 2.82037437e-01 -1.80153131e-01 -1.10509133e+00 1.19378448e-01 6.34185672e-01 3.77240628e-01 8.54729116e-01 -1.44593918e+00 -3.29603314e-01 6.22804105e-01 -7.28056356e-02 6.01897478e-01 3.06984842e-01 7.78851628e-01 -9.73640025e-01 -1.07081562e-01 -4.53003377e-01 -9.67043221e-01 -1.18339026e+00 1.86493635e-01 6.17048383e-01 -2.27684639e-02 -1.15315127e+00 4.18238282e-01 -5.27610898e-01 -5.23058116e-01 1.61379397e-01 -8.01133215e-01 1.83719233e-01 -3.11372101e-01 5.11251390e-01 7.18358874e-01 1.12234488e-01 -5.38678288e-01 -4.08499688e-01 9.20346916e-01 7.80703604e-01 -2.53384888e-01 1.22588134e+00 -4.11032438e-02 5.39328456e-01 5.09818673e-01 7.04334140e-01 -4.20319773e-02 -1.75669920e+00 1.85694769e-01 -4.09548432e-01 -6.19319856e-01 -2.72168279e-01 -6.47065282e-01 -7.19289362e-01 5.03475189e-01 5.32756746e-01 -2.58872718e-01 9.11842108e-01 -2.10721090e-01 1.04661393e+00 3.77813309e-01 8.91737401e-01 -1.38930964e+00 3.46808434e-01 1.85001135e-01 1.15757942e+00 -8.04721415e-01 3.45956653e-01 -6.37368858e-01 -5.72824597e-01 6.31092429e-01 8.68983507e-01 -4.49221164e-01 6.08125985e-01 3.45389009e-01 -2.07469285e-01 -4.67914522e-01 -3.46407816e-02 1.67649746e-01 3.53153288e-01 8.76288414e-01 9.56826136e-02 3.20676684e-01 -1.46349683e-01 8.09950531e-01 -7.71328986e-01 6.21890426e-01 3.12108934e-01 1.42855477e+00 -3.90116721e-01 -2.41224140e-01 -7.79711843e-01 4.17027324e-01 -2.04633132e-01 5.96919775e-01 -1.63289130e-01 6.69253111e-01 2.95739442e-01 4.37796056e-01 1.84089109e-01 -7.78848886e-01 8.07456672e-01 -8.52079391e-02 9.48804975e-01 -6.55110896e-01 -5.08381486e-01 4.58258949e-02 1.23398185e-01 -1.04581189e+00 -1.91419035e-01 -7.14433372e-01 -1.40888739e+00 -2.17960685e-01 2.21314326e-01 -3.31560433e-01 8.92152667e-01 8.47954392e-01 5.59285283e-01 5.36066949e-01 2.01837763e-01 -1.64632916e+00 -2.86662608e-01 -1.23414779e+00 -5.84233880e-01 8.11028719e-01 1.11912210e-02 -1.01919436e+00 -6.40699938e-02 3.82192671e-01]
[7.043891429901123, -1.0702954530715942]
e907d6b2-eea4-4d86-bc0a-310e28ec592d
a-generalized-framework-for-edge-preserving-1
2107.07058
null
https://arxiv.org/abs/2107.07058v4
https://arxiv.org/pdf/2107.07058v4.pdf
A Generalized Framework for Edge-preserving and Structure-preserving Image Smoothing
Image smoothing is a fundamental procedure in applications of both computer vision and graphics. The required smoothing properties can be different or even contradictive among different tasks. Nevertheless, the inherent smoothing nature of one smoothing operator is usually fixed and thus cannot meet the various requirements of different applications. In this paper, we first introduce the truncated Huber penalty function which shows strong flexibility under different parameter settings. A generalized framework is then proposed with the introduced truncated Huber penalty function. When combined with its strong flexibility, our framework is able to achieve diverse smoothing natures where contradictive smoothing behaviors can even be achieved. It can also yield the smoothing behavior that can seldom be achieved by previous methods, and superior performance is thus achieved in challenging cases. These together enable our framework capable of a range of applications and able to outperform the state-of-the-art approaches in several tasks, such as image detail enhancement, clip-art compression artifacts removal, guided depth map restoration, image texture removal, etc. In addition, an efficient numerical solution is provided and its convergence is theoretically guaranteed even the optimization framework is non-convex and non-smooth. A simple yet effective approach is further proposed to reduce the computational cost of our method while maintaining its performance. The effectiveness and superior performance of our approach are validated through comprehensive experiments in a range of applications. Our code is available at https://github.com/wliusjtu/Generalized-Smoothing-Framework.
['Michael Ng', 'Jie Yang', 'Xiaolin Huang', 'Yinjie Lei', 'Pingping Zhang', 'Wei Liu']
2021-07-15
null
null
null
null
['image-smoothing']
['computer-vision']
[ 2.75314689e-01 -1.15001872e-01 2.67855395e-02 -7.56918490e-02 -5.50384939e-01 -1.71241552e-01 5.64484000e-01 -3.40318717e-02 -2.49961197e-01 6.80361807e-01 -1.05944857e-01 -7.23438784e-02 -2.64798582e-01 -6.12362444e-01 -4.21073347e-01 -9.13525105e-01 1.40797213e-01 -2.26723239e-01 5.87080657e-01 -2.88193643e-01 4.49629575e-01 5.93915224e-01 -1.81145358e+00 -2.09679976e-01 1.28365064e+00 9.55565989e-01 7.46079326e-01 4.20846075e-01 -1.60798028e-01 3.25839967e-01 -1.05887860e-01 -1.35363623e-01 3.20300072e-01 -2.84541965e-01 -4.87369806e-01 4.81300235e-01 4.37279969e-01 -1.43468514e-01 5.92758358e-02 1.36757874e+00 4.45406049e-01 2.86352217e-01 6.01535976e-01 -8.35559905e-01 -5.08912325e-01 5.44259958e-02 -7.73438036e-01 -9.25466511e-03 2.90727735e-01 3.02022118e-02 6.50917590e-01 -8.62605870e-01 4.68895078e-01 1.00973451e+00 5.35560846e-01 5.28646410e-01 -1.31567669e+00 -2.95275033e-01 1.90329388e-01 7.97906816e-02 -1.32399154e+00 -5.21033406e-01 9.02726293e-01 -4.02942657e-01 2.94071525e-01 5.25978863e-01 5.00839472e-01 6.73757374e-01 1.78558320e-01 6.67890251e-01 1.27158451e+00 -3.19269776e-01 2.43927032e-01 7.51160756e-02 6.49645701e-02 6.62904203e-01 1.40870035e-01 -8.94217640e-02 -2.66059130e-01 -6.13777488e-02 9.64395702e-01 7.02245086e-02 -7.43763745e-01 -3.71689588e-01 -1.30134726e+00 6.03662252e-01 3.07543546e-01 4.88631666e-01 -2.41845503e-01 -1.19972646e-01 2.59246945e-01 1.64382964e-01 5.59701562e-01 1.47243768e-01 -2.00814918e-01 9.82149988e-02 -1.04075396e+00 3.12827170e-01 5.26171863e-01 8.54399979e-01 6.92405343e-01 2.18842074e-01 -2.30066478e-01 9.15151536e-01 7.41986781e-02 3.54953825e-01 4.20032620e-01 -9.83494282e-01 1.61512107e-01 3.48477930e-01 3.31671506e-01 -1.18348515e+00 -4.43764150e-01 -3.23042661e-01 -1.33277512e+00 6.86212778e-01 4.99238312e-01 1.84977353e-01 -7.25843191e-01 1.47238457e+00 5.23643732e-01 2.37382755e-01 -1.44805327e-01 9.47796345e-01 8.26272726e-01 5.43688893e-01 -1.35982662e-01 -5.11405706e-01 1.34219146e+00 -8.68034601e-01 -1.01276886e+00 -1.44097850e-01 2.95535654e-01 -1.06004095e+00 1.21229255e+00 6.08643293e-01 -1.30470216e+00 -5.08413017e-01 -9.40359652e-01 -7.15775788e-02 -9.73738432e-02 1.80576384e-01 5.61630487e-01 6.06986105e-01 -1.17419410e+00 7.39415526e-01 -8.25866282e-01 -2.57798254e-01 2.50588179e-01 1.62173167e-01 -2.77242959e-01 -5.94250001e-02 -7.43808091e-01 8.03173304e-01 2.94121832e-01 2.55728066e-01 -2.56121963e-01 -7.23123431e-01 -7.94575274e-01 8.46508518e-02 4.81708676e-01 -8.01097691e-01 9.36274827e-01 -8.61308038e-01 -1.70420277e+00 7.44717717e-01 -3.37690741e-01 -1.35460198e-01 1.01569128e+00 -1.32267207e-01 -2.16002896e-01 5.18521816e-02 -8.24327245e-02 1.89814836e-01 9.97562170e-01 -1.29018068e+00 -5.39824963e-01 -2.63810992e-01 -1.48253709e-01 2.17577204e-01 -3.66773993e-01 -2.52484810e-02 -5.73949516e-01 -8.64837825e-01 3.65488470e-01 -7.84503281e-01 -4.30520058e-01 3.34003985e-01 -3.30454677e-01 9.25544575e-02 6.74700737e-01 -5.94466090e-01 1.37841880e+00 -2.35992837e+00 2.85507530e-01 8.43192711e-02 1.13962360e-01 2.96814293e-01 8.03895295e-02 3.92047167e-01 5.43901622e-02 -1.07260272e-02 -6.30383253e-01 -4.32375252e-01 -8.46715793e-02 -3.92929316e-02 -1.26782820e-01 7.30455279e-01 3.15632634e-02 5.03804088e-01 -7.18075216e-01 -4.37758416e-01 6.07287288e-01 8.50074053e-01 -4.12401885e-01 6.18529506e-02 2.86307894e-02 7.13710189e-01 -4.08052772e-01 6.06997967e-01 1.13138807e+00 -1.88667536e-01 1.08014137e-01 -2.84544349e-01 -3.97813767e-01 -2.77156770e-01 -1.64020920e+00 1.51137340e+00 -5.51921606e-01 3.48089188e-01 5.93622327e-01 -1.10043800e+00 9.92746830e-01 2.12082222e-01 4.33950543e-01 -4.72564816e-01 -1.12071065e-02 4.68990177e-01 -2.12919652e-01 -4.40699011e-01 5.50913334e-01 -1.33690864e-01 4.63063687e-01 -6.53342530e-02 -4.18615431e-01 -2.08226323e-01 2.87401944e-01 -4.03417982e-02 8.24500382e-01 -6.51329085e-02 4.76375461e-01 -7.77382433e-01 1.11661994e+00 -3.76539975e-01 6.21726036e-01 5.61752319e-01 -1.92008600e-01 7.81182289e-01 2.57595181e-01 -2.61646390e-01 -9.77895677e-01 -8.87966633e-01 -6.09226525e-01 7.14112163e-01 5.18382311e-01 -1.80861846e-01 -6.41456425e-01 -2.09019408e-01 -1.31952912e-01 3.12548220e-01 -4.97340173e-01 3.09475452e-01 -5.00158548e-01 -7.74905145e-01 3.05403974e-02 5.51395938e-02 6.90571964e-01 -8.99868071e-01 -5.88379741e-01 1.84633911e-01 -9.34378356e-02 -1.32416391e+00 -4.94665265e-01 -2.97460675e-01 -1.07184553e+00 -9.99957800e-01 -1.08013582e+00 -8.29060316e-01 7.47189224e-01 5.68348646e-01 9.62243676e-01 4.97118711e-01 -1.55575395e-01 2.17661962e-01 -3.20399135e-01 9.55857150e-03 -2.65821695e-01 -2.68756628e-01 -1.00284442e-01 3.20480287e-01 -2.78284609e-01 -6.82144284e-01 -9.44085419e-01 4.30724263e-01 -1.32158530e+00 1.67925328e-01 4.09599245e-01 9.84996021e-01 6.41537786e-01 2.65748680e-01 4.95689064e-01 -8.63636374e-01 5.72097242e-01 -1.50444582e-01 -7.88252950e-01 5.89677468e-02 -4.73819375e-01 -1.04575314e-01 8.54745924e-01 -4.56965208e-01 -1.22156572e+00 1.65844876e-02 -2.69493997e-01 -1.68096721e-01 -1.06662013e-01 2.31998175e-01 -1.70924410e-01 -4.79153574e-01 4.49594826e-01 3.66228193e-01 1.64981395e-01 -5.89324772e-01 1.69872835e-01 2.29191527e-01 4.45382357e-01 -4.61435288e-01 7.48112917e-01 8.25606644e-01 3.10514331e-01 -1.16758013e+00 -5.65616548e-01 -4.17557240e-01 -4.30904925e-01 -2.67423064e-01 6.94983602e-01 -5.80926538e-01 -7.05211282e-01 6.41829789e-01 -1.07739389e+00 -2.84885734e-01 1.28715992e-01 2.96428114e-01 -6.42754734e-01 9.36586559e-01 -5.76504230e-01 -9.44419980e-01 -2.96175182e-01 -1.37112784e+00 8.98435295e-01 3.47898483e-01 2.11646780e-01 -1.29382801e+00 -3.04816455e-01 1.31389737e-01 6.13081217e-01 4.05303478e-01 6.26410723e-01 2.83337198e-02 -6.05130136e-01 9.56155658e-02 -2.77621865e-01 3.61295938e-01 3.01959842e-01 1.71624959e-01 -7.91176260e-01 -4.67903346e-01 1.87010825e-01 1.11340538e-01 8.45147431e-01 7.54103541e-01 1.31979930e+00 -1.24013118e-01 -1.90006673e-01 8.48839283e-01 1.80443621e+00 -1.12551153e-01 9.10661042e-01 4.52505410e-01 4.30062592e-01 7.40959227e-01 7.34150112e-01 4.42437381e-01 7.93791860e-02 9.21149671e-01 5.61875045e-01 -3.21031421e-01 -1.09182283e-01 3.58772606e-01 2.03038543e-01 6.44794822e-01 -4.08059835e-01 -2.05969550e-02 -6.09604299e-01 4.36101466e-01 -1.97834420e+00 -9.59525347e-01 -5.23698390e-01 2.49883008e+00 6.34993017e-01 -1.34399300e-02 -6.10642359e-02 3.94133359e-01 6.59495950e-01 2.71033585e-01 -2.12789550e-01 -4.69623297e-01 -1.77411169e-01 3.15935202e-02 4.50857073e-01 7.27872968e-01 -1.14064288e+00 6.87340498e-01 5.68002224e+00 1.12030482e+00 -1.06850815e+00 6.63859472e-02 4.19086665e-01 2.26873845e-01 -3.07855457e-01 -1.84021473e-01 -6.07122540e-01 6.61014378e-01 2.57903874e-01 -2.22281411e-01 3.89469862e-01 6.89307868e-01 4.67488855e-01 -3.74174863e-01 -6.19662046e-01 1.16212189e+00 -1.68794796e-01 -1.30033374e+00 -3.69541287e-01 8.96986276e-02 7.43863285e-01 -3.31049412e-01 2.08186671e-01 -1.98113695e-01 -2.85236508e-01 -9.12799597e-01 4.68784273e-01 5.35607815e-01 6.97640419e-01 -6.51453435e-01 6.80825114e-01 5.30011654e-01 -1.19107699e+00 7.40222111e-02 -3.70826125e-01 3.99982631e-02 3.70722532e-01 1.07901645e+00 -2.20525503e-01 9.41113591e-01 6.22653365e-01 6.53250813e-01 -3.75845343e-01 1.33154190e+00 -3.87855656e-02 1.20999478e-01 -1.95365325e-01 9.44386572e-02 7.27400556e-02 -6.58489704e-01 7.56386697e-01 1.26145005e+00 5.43383718e-01 2.33709335e-01 2.05068633e-01 6.78868413e-01 4.60669845e-01 5.05046248e-01 -6.56452119e-01 6.28551006e-01 1.01558082e-01 1.40403831e+00 -8.93285990e-01 -3.55064899e-01 -5.24574280e-01 9.95420277e-01 1.89897910e-01 4.93174881e-01 -7.33642817e-01 -1.62651345e-01 6.63917303e-01 3.32911462e-01 2.70976692e-01 -2.54081935e-01 -5.23196936e-01 -1.41927898e+00 2.57870317e-01 -6.93714321e-01 1.68012068e-01 -5.28475940e-01 -1.27388060e+00 7.69809783e-01 -1.69648454e-01 -1.51447368e+00 1.56881347e-01 -5.64965427e-01 -6.75211728e-01 8.83807063e-01 -1.88177681e+00 -8.37533414e-01 -6.02317095e-01 7.24852920e-01 7.34991133e-01 5.48987202e-02 5.55649042e-01 4.63823557e-01 -5.29670298e-01 3.72163117e-01 2.85929561e-01 -5.15061557e-01 7.54906058e-01 -1.14070177e+00 -7.03640059e-02 1.06807089e+00 -4.20365483e-01 5.43760300e-01 9.97051299e-01 -5.54178476e-01 -1.31351542e+00 -8.45632613e-01 5.46409667e-01 7.43480027e-02 7.06958532e-01 -9.93613452e-02 -1.37627661e+00 1.95065454e-01 1.44768670e-01 9.65993926e-02 3.01718593e-01 -1.77706376e-01 8.62058625e-03 -9.59090963e-02 -1.13603985e+00 7.91052997e-01 7.81296790e-01 1.84624791e-02 -1.80883527e-01 3.31094384e-01 2.97493935e-01 -5.80273747e-01 -8.56755733e-01 6.39382899e-01 3.65856081e-01 -1.45960188e+00 1.10966885e+00 2.46099979e-02 4.64128822e-01 -5.45492768e-01 -1.05694756e-01 -9.74498093e-01 -3.90820086e-01 -8.23337257e-01 -1.58562586e-01 1.18911326e+00 1.22766390e-01 -8.76804292e-01 5.81263602e-01 6.46983504e-01 -1.59535497e-01 -8.70222390e-01 -9.55176771e-01 -9.08892572e-01 -1.00978985e-01 -2.77929723e-01 2.35271290e-01 9.57952440e-01 -1.95232481e-01 -1.40856743e-01 -5.74658871e-01 2.54598171e-01 9.88748312e-01 1.29609481e-01 7.41531193e-01 -1.17017961e+00 -1.56075314e-01 -7.28523016e-01 -3.95893365e-01 -1.10806143e+00 -7.86682963e-02 -6.76322699e-01 -2.66848076e-02 -1.51639211e+00 -5.88475727e-02 -5.26277721e-01 -1.14241518e-01 1.48345754e-01 -3.25668126e-01 3.26114237e-01 3.56160998e-01 2.06107393e-01 -8.01758170e-02 5.97482085e-01 1.59999967e+00 1.24927953e-01 -3.59986663e-01 2.89852858e-01 -4.58467156e-01 9.37249184e-01 8.33957016e-01 9.87623702e-04 -3.80376995e-01 -2.88283706e-01 -4.88990285e-02 9.48482975e-02 4.78619099e-01 -9.05969501e-01 1.91107780e-01 -1.86586767e-01 9.68439430e-02 -3.35036695e-01 3.92815620e-01 -9.71516013e-01 3.05331200e-01 3.75066191e-01 8.60474482e-02 -2.83866316e-01 1.10776298e-01 5.33336043e-01 -3.14495772e-01 -3.01273197e-01 1.22448683e+00 -9.43187624e-02 -6.89281702e-01 2.57886022e-01 -5.43711782e-02 -3.03764194e-01 1.02537155e+00 -4.69804853e-01 -1.37425065e-01 -2.88117111e-01 -7.85839617e-01 6.52792454e-02 7.79459774e-01 1.30404830e-01 6.63070142e-01 -1.29803574e+00 -7.54124165e-01 1.36829764e-01 -1.96379021e-01 -1.13651723e-01 7.41366327e-01 1.34052730e+00 -6.10612094e-01 4.33564708e-02 -1.66815281e-01 -6.80216670e-01 -1.32528734e+00 6.42070293e-01 1.36036009e-01 -2.11406544e-01 -1.08225703e+00 3.42862368e-01 5.88072121e-01 -3.51839922e-02 1.04993269e-01 -2.84072906e-01 -1.93996623e-01 -2.42470264e-01 7.79122949e-01 4.62959975e-01 1.04303323e-01 -5.62385619e-01 -2.59039849e-01 9.99112904e-01 2.25863263e-01 1.54844120e-01 1.34728503e+00 -3.99116307e-01 -2.18588352e-01 1.68373182e-01 9.18619633e-01 2.51617551e-01 -1.38240600e+00 -6.40509874e-02 -2.75582075e-01 -8.79386485e-01 1.49569348e-01 -3.32719356e-01 -1.22684765e+00 7.24418879e-01 5.67963600e-01 5.74941278e-01 1.59862578e+00 -3.22525501e-01 7.52535284e-01 -2.21832797e-01 3.45893532e-01 -9.25367177e-01 -1.97476834e-01 1.11879796e-01 1.09012496e+00 -1.44903803e+00 1.96865842e-01 -9.78387475e-01 -5.50711632e-01 1.09833705e+00 3.63171875e-01 -2.28760526e-01 5.91369510e-01 2.37686574e-01 -3.02770827e-02 6.53813854e-02 -3.46948475e-01 -3.49841654e-01 5.04425287e-01 4.45747167e-01 5.42096257e-01 -1.37884587e-01 -1.03965569e+00 2.03885138e-01 1.54748023e-01 -4.12854739e-02 6.32974148e-01 6.61984086e-01 -4.48400408e-01 -1.10632348e+00 -5.85801065e-01 1.60059243e-01 -5.82464457e-01 -6.77756220e-02 2.46985704e-01 8.52960050e-01 -1.62262172e-01 9.13671613e-01 -3.86471331e-01 3.47255766e-02 3.47665906e-01 -3.77713442e-01 2.95476109e-01 -1.40972927e-01 -3.56906146e-01 4.86127138e-01 -1.27285451e-01 -5.92704117e-01 -7.53074169e-01 -5.62336862e-01 -1.04975581e+00 -4.80365694e-01 -2.96793669e-01 -1.14358395e-01 5.46276391e-01 6.37543082e-01 2.20200375e-01 4.05132622e-01 5.81733406e-01 -1.08781111e+00 -2.90129721e-01 -6.46555066e-01 -8.13236833e-01 4.49745059e-01 4.68152761e-01 -8.80787134e-01 -5.53890467e-01 1.74074754e-01]
[11.220465660095215, -2.5587985515594482]
0bda4210-e1ee-46c9-94d1-e56c2ef2fba6
low-rank-and-sparse-nmf-for-joint-endmembers
1703.05785
null
http://arxiv.org/abs/1703.05785v1
http://arxiv.org/pdf/1703.05785v1.pdf
Low-rank and Sparse NMF for Joint Endmembers' Number Estimation and Blind Unmixing of Hyperspectral Images
Estimation of the number of endmembers existing in a scene constitutes a critical task in the hyperspectral unmixing process. The accuracy of this estimate plays a crucial role in subsequent unsupervised unmixing steps i.e., the derivation of the spectral signatures of the endmembers (endmembers' extraction) and the estimation of the abundance fractions of the pixels. A common practice amply followed in literature is to treat endmembers' number estimation and unmixing, independently as two separate tasks, providing the outcome of the former as input to the latter. In this paper, we go beyond this computationally demanding strategy. More precisely, we set forth a multiple constrained optimization framework, which encapsulates endmembers' number estimation and unsupervised unmixing in a single task. This is attained by suitably formulating the problem via a low-rank and sparse nonnegative matrix factorization rationale, where low-rankness is promoted with the use of a sophisticated $\ell_2/\ell_1$ norm penalty term. An alternating proximal algorithm is then proposed for minimizing the emerging cost function. The results obtained by simulated and real data experiments verify the effectiveness of the proposed approach.
['Konstantinos D. Koutroumbas', 'Paris V. Giampouras', 'Athanasios A. Rontogiannis']
2017-03-16
null
null
null
null
['hyperspectral-unmixing']
['computer-vision']
[ 6.84445322e-01 -3.44409049e-01 1.21845961e-01 1.61924493e-02 -5.77609479e-01 -5.03734350e-01 5.01936197e-01 8.80872086e-02 -4.31032002e-01 9.43738282e-01 1.43649966e-01 -3.01204503e-01 -5.28051257e-01 -5.36629677e-01 -3.77090305e-01 -1.38292241e+00 2.76502222e-01 2.60096908e-01 -5.52368343e-01 1.20473139e-01 7.85358846e-02 5.69578409e-01 -1.61351287e+00 -2.68514514e-01 1.25192392e+00 8.06562662e-01 2.78475612e-01 4.88491178e-01 -9.24180821e-02 7.55509555e-01 -2.22757429e-01 4.40659933e-03 3.11511308e-01 -4.90512818e-01 -3.73287261e-01 7.27507770e-01 1.68315753e-01 -1.07684679e-01 2.19559520e-01 1.30366158e+00 3.12209457e-01 5.17082930e-01 8.24028373e-01 -8.37096810e-01 1.20493330e-01 4.23161447e-01 -8.41296256e-01 -1.99126184e-01 -9.26676020e-02 -1.08573832e-01 9.11735892e-01 -9.11045790e-01 5.93209527e-02 8.01923454e-01 4.84813690e-01 -2.34936178e-01 -1.27323532e+00 -5.55600762e-01 -1.48061588e-01 -1.32328495e-01 -1.65122604e+00 -7.11368322e-01 9.09400165e-01 -8.08028281e-01 2.15738580e-01 4.95200574e-01 5.61414421e-01 1.01725534e-01 -3.01329523e-01 3.24532121e-01 1.27506661e+00 -6.01779819e-01 2.85041124e-01 5.63510768e-02 2.73486674e-01 3.32280368e-01 6.44160092e-01 1.70251410e-02 -9.40288305e-02 -1.95191219e-01 5.27829707e-01 2.05234244e-01 -5.07632494e-01 -3.84571671e-01 -1.04817057e+00 7.02905715e-01 2.22553700e-01 3.62686217e-01 -7.60487676e-01 -2.13955387e-01 2.62270141e-02 -2.35243160e-02 6.87488198e-01 1.33309990e-01 1.78788230e-01 4.45206076e-01 -1.37918091e+00 1.14912905e-01 5.93724310e-01 5.15556753e-01 1.06826389e+00 1.43137157e-01 4.45254296e-02 7.96573997e-01 5.51324606e-01 6.00121558e-01 2.22169727e-01 -6.96846366e-01 3.65631551e-01 6.83892071e-01 6.06601894e-01 -1.02713060e+00 -4.54014875e-02 -7.24862158e-01 -9.94199097e-01 2.65034705e-01 4.89420325e-01 -4.15266663e-01 -7.56512702e-01 1.50314867e+00 6.31697297e-01 3.27264845e-01 1.52590081e-01 1.01184928e+00 2.57010967e-01 8.96974027e-01 3.41265112e-01 -7.98125923e-01 1.15535045e+00 -6.45492375e-01 -8.41668010e-01 -1.19836785e-01 1.31783664e-01 -1.01903570e+00 4.71681446e-01 3.97283852e-01 -8.46166551e-01 -4.05582726e-01 -1.15883529e+00 2.39372402e-01 -7.04364479e-02 7.33779073e-01 5.41042268e-01 5.97027183e-01 -5.60367227e-01 4.14409518e-01 -5.75301886e-01 -4.28029485e-02 5.12727723e-02 4.13479060e-01 -2.73526132e-01 -4.88413572e-02 -6.86081707e-01 7.10324228e-01 5.78672945e-01 7.33197033e-01 -6.33837819e-01 -3.57204109e-01 -6.78223670e-01 1.66174397e-02 3.32141817e-01 -6.03080809e-01 6.69993937e-01 -1.30650890e+00 -1.26841402e+00 6.34258807e-01 -3.58380824e-01 -1.18935488e-01 4.78972912e-01 -2.54076779e-01 -3.91787887e-01 1.28961429e-01 1.06901057e-01 -6.74477145e-02 1.27324688e+00 -1.63634610e+00 -4.73382562e-01 -5.08030534e-01 -3.02762151e-01 4.80293065e-01 -3.22138846e-01 -1.49635151e-01 -4.86622304e-02 -6.84699476e-01 5.72811007e-01 -7.95502961e-01 -3.24533671e-01 -2.07874581e-01 -3.54119450e-01 2.51408398e-01 5.61020136e-01 -9.54525232e-01 1.19656861e+00 -2.33141160e+00 4.07488704e-01 5.78129888e-01 3.14647108e-01 2.96193957e-01 1.63366929e-01 4.14896071e-01 -4.73196298e-01 -4.39138472e-01 -8.27737927e-01 -3.13031584e-01 -2.67501056e-01 -1.00446396e-01 -2.09824815e-01 9.43190873e-01 1.44879773e-01 1.88984871e-01 -9.47964072e-01 -2.84424037e-01 5.42724848e-01 5.38872182e-01 -1.41628399e-01 3.40706199e-01 -3.84295955e-02 6.38832331e-01 -4.02472794e-01 4.87975150e-01 9.16595519e-01 -1.69647247e-01 4.72396284e-01 -4.65787113e-01 -6.07699335e-01 -2.03710735e-01 -1.78415763e+00 1.35022116e+00 -2.38391086e-01 1.51040494e-01 7.56580234e-01 -1.22629786e+00 6.60305619e-01 4.09020394e-01 7.27653205e-01 1.27571151e-01 2.79984415e-01 5.81226051e-01 -1.36739854e-02 -4.45954204e-01 5.45111835e-01 -6.62732303e-01 5.86851895e-01 3.25375021e-01 -2.01993436e-01 -4.68621105e-02 4.04375106e-01 -1.89448074e-01 2.89638996e-01 1.12422742e-01 8.27908516e-01 -5.38163245e-01 9.08317983e-01 1.50341824e-01 2.19635963e-01 3.27822298e-01 9.80514213e-02 2.00618580e-01 -1.49146356e-02 -3.95899303e-02 -8.83726299e-01 -8.09905946e-01 -3.39642406e-01 7.78708518e-01 -2.23712735e-02 2.31139377e-01 -5.74207842e-01 -5.43371439e-02 -9.49214250e-02 4.49308783e-01 -3.23987931e-01 2.95441449e-01 -2.95342594e-01 -1.38776469e+00 -5.18377163e-02 -4.04369757e-02 3.23588163e-01 -6.67246461e-01 -4.10055637e-01 2.86050618e-01 -2.80556977e-01 -7.02030718e-01 -1.24779068e-01 3.70583564e-01 -1.07830119e+00 -1.05409944e+00 -8.39342237e-01 -5.83981097e-01 9.91455376e-01 4.80777293e-01 6.07199490e-01 -5.90653569e-02 -1.07415847e-01 -1.03732208e-02 -3.57539952e-01 -2.56555408e-01 -2.41616905e-01 -1.88552067e-01 1.81913093e-01 6.84088647e-01 7.89250359e-02 -8.16852987e-01 -5.53936005e-01 1.22321524e-01 -1.24103439e+00 6.48394376e-02 8.53523254e-01 7.18270361e-01 5.37436903e-01 2.94284165e-01 3.66067320e-01 -8.26320410e-01 3.90291512e-01 -5.77874959e-01 -7.68270373e-01 1.91642553e-01 -3.65366876e-01 -1.26686916e-01 6.11208677e-01 -2.50941634e-01 -1.02786505e+00 4.25454646e-01 2.29477175e-02 -2.79343903e-01 -2.13450655e-01 8.38169754e-01 -5.11200488e-01 -1.43173829e-01 4.15251911e-01 5.54074109e-01 1.25825480e-01 -4.61993515e-01 4.90787774e-01 8.47329557e-01 6.41659677e-01 -4.92029130e-01 1.12181854e+00 6.79262698e-01 1.01156950e-01 -1.47672701e+00 -6.47993326e-01 -1.01673949e+00 -6.05089962e-01 -2.86080927e-01 7.05807507e-01 -1.13417435e+00 -4.51869339e-01 5.92371881e-01 -8.52836847e-01 -8.86198890e-04 -2.86333382e-01 7.16068089e-01 -2.35679850e-01 7.51880825e-01 -1.36564627e-01 -1.26824772e+00 -3.55594128e-01 -1.06562352e+00 6.50343895e-01 8.63910541e-02 3.95826660e-02 -8.87468040e-01 1.37161568e-01 5.75017571e-01 6.64496720e-02 4.33815777e-01 8.34435403e-01 -2.57544309e-01 -3.54915500e-01 -2.38647237e-01 -4.05052274e-01 5.61424792e-01 4.51251864e-01 -1.71015456e-01 -1.05528700e+00 -3.12634915e-01 4.46232110e-01 1.38841152e-01 7.99721301e-01 6.48117602e-01 5.99684119e-01 -3.45619589e-01 -7.11426660e-02 6.32798135e-01 1.74651110e+00 1.19431779e-01 5.65568686e-01 -4.55761030e-02 9.01730239e-01 7.75231004e-01 5.19298673e-01 7.26436555e-01 -1.74884886e-01 3.69132876e-01 5.19418120e-01 -2.50041246e-01 1.24275655e-01 1.91561133e-01 2.50866741e-01 1.14826167e+00 -2.86893725e-01 -2.59497046e-01 -6.54737592e-01 5.93147576e-01 -1.82692349e+00 -9.20713663e-01 -5.17063856e-01 2.37855077e+00 5.66202343e-01 -5.15484452e-01 -5.10939350e-03 6.56038940e-01 1.05762792e+00 2.62648374e-01 -3.18667710e-01 2.43023321e-01 -5.26094325e-02 1.71265714e-02 5.16945660e-01 7.45014548e-01 -1.15654862e+00 4.37814683e-01 5.03512859e+00 8.28354120e-01 -1.04456389e+00 -3.05667035e-02 4.41956967e-01 1.77117959e-01 -2.11807758e-01 1.95830733e-01 -4.04609680e-01 3.61381650e-01 5.12441754e-01 1.86054617e-01 6.36798620e-01 3.65004718e-01 5.89407325e-01 -4.78881478e-01 -4.63293582e-01 1.03803456e+00 -6.31584728e-04 -8.33598316e-01 3.70249338e-02 -3.89414057e-02 8.72467399e-01 -4.07396585e-01 -2.28135332e-01 -3.26525271e-01 -1.05696395e-01 -7.13334382e-01 8.12093914e-01 5.77766836e-01 7.60468304e-01 -6.37324631e-01 6.11414969e-01 4.37651247e-01 -1.36829829e+00 -1.18567623e-01 -2.59230882e-01 -3.17162961e-01 3.16409379e-01 1.29076433e+00 -4.24832731e-01 8.61570895e-01 -8.19226131e-02 7.16785192e-01 7.11358013e-03 1.19827569e+00 -2.85516858e-01 6.37012362e-01 -4.09219116e-01 2.33272359e-01 9.97058526e-02 -1.04411972e+00 7.85815120e-01 1.03301978e+00 4.28777486e-01 3.54806900e-01 2.12691620e-01 8.15038323e-01 9.35679302e-03 4.88626122e-01 -2.88327605e-01 -2.57863522e-01 2.56413430e-01 1.55804169e+00 -7.86389649e-01 -3.50323945e-01 -1.61766022e-01 7.84751952e-01 -9.67821032e-02 5.23118317e-01 -5.31227231e-01 -1.05777606e-01 5.53597629e-01 1.01237163e-01 1.73687309e-01 -2.99281657e-01 -3.03089648e-01 -1.31300974e+00 -3.39309052e-02 -9.01426733e-01 2.59481847e-01 -4.91231114e-01 -1.14659488e+00 2.86987334e-01 -1.32744446e-01 -1.45157552e+00 3.59306745e-02 -6.61640525e-01 -6.37037814e-01 1.34566808e+00 -1.62164104e+00 -1.06968796e+00 -4.77169186e-01 5.30685365e-01 2.12359264e-01 3.13543141e-01 6.79875910e-01 4.82521385e-01 -9.11246598e-01 -2.26774767e-01 6.28219962e-01 -8.38314220e-02 3.49763066e-01 -1.02454305e+00 -6.02617383e-01 1.46126556e+00 -1.25048459e-01 7.14886785e-01 8.65889609e-01 -7.35567212e-01 -1.20992029e+00 -1.03499913e+00 7.78120756e-01 1.32531166e-01 7.56719053e-01 8.11151117e-02 -5.48961759e-01 2.41291076e-01 -1.18658999e-02 -1.97470054e-01 9.31922019e-01 -2.32482776e-01 2.33213007e-01 -1.83891535e-01 -8.88574958e-01 3.66944641e-01 4.25981522e-01 -4.76014227e-01 -2.62104928e-01 2.71532595e-01 4.93805632e-02 -3.65944542e-02 -9.26048160e-01 3.34408551e-01 5.72761774e-01 -6.81457400e-01 1.01809943e+00 -3.58957261e-01 3.24827254e-01 -8.49355817e-01 -2.64624417e-01 -9.84925210e-01 -3.24566066e-01 -5.52192688e-01 -1.20972022e-01 1.16247022e+00 1.88382462e-01 -4.97531056e-01 5.55197120e-01 2.00903833e-01 -1.95895322e-02 -2.78609335e-01 -6.51474059e-01 -3.89795423e-01 -3.89767051e-01 -1.75770819e-01 2.17466891e-01 1.14169848e+00 -1.41364917e-01 3.06882650e-01 -6.69713020e-01 5.23786962e-01 9.58794773e-01 3.38964522e-01 5.43493986e-01 -1.35303319e+00 -4.51506704e-01 -2.00551674e-01 7.86146298e-02 -7.94715106e-01 7.17036501e-02 -7.15784669e-01 3.42261016e-01 -1.20386577e+00 2.16043189e-01 -3.65006268e-01 -2.89137155e-01 2.35276639e-01 -5.85700989e-01 3.56546432e-01 5.34904152e-02 6.95177317e-01 -3.87753807e-02 5.60059011e-01 9.64905322e-01 -2.36973509e-01 -4.41957742e-01 8.72563347e-02 -6.77335858e-01 7.14194655e-01 6.72320068e-01 -3.73185426e-01 -4.52304393e-01 -3.60194862e-01 1.80975407e-01 1.19347446e-01 4.17206764e-01 -1.17845941e+00 -6.44005910e-02 -3.11320752e-01 2.49599233e-01 -3.53538036e-01 3.07195961e-01 -1.10814893e+00 5.73472857e-01 3.11925441e-01 5.61941303e-02 -4.07006592e-01 -8.17953516e-03 4.98540908e-01 -1.45132095e-01 -5.77317595e-01 8.21861148e-01 -6.05919287e-02 -5.71139753e-01 8.65892470e-02 -3.69282156e-01 -4.36187059e-01 8.94661546e-01 -3.20946813e-01 1.24768391e-01 -7.38164112e-02 -9.14264441e-01 -1.80383176e-01 2.92904675e-01 -3.99235100e-01 3.67009997e-01 -9.82655346e-01 -8.69557679e-01 9.57694873e-02 -7.76185468e-02 -1.20767243e-02 3.55159760e-01 1.29233992e+00 -5.86917758e-01 1.71208993e-01 -2.45939735e-02 -3.82246643e-01 -1.06787670e+00 3.93968523e-01 3.29877347e-01 -3.02782387e-01 5.51709943e-02 5.27555525e-01 7.21280426e-02 -1.00103706e-01 -1.78412467e-01 -3.76678556e-02 -4.52099293e-01 5.16959131e-01 4.07648593e-01 7.95821130e-01 1.11333080e-01 -1.05833447e+00 -1.09878525e-01 5.00128329e-01 3.87833208e-01 -1.01676114e-01 1.39330804e+00 -4.06945497e-01 -8.03108394e-01 4.30958569e-01 9.50061142e-01 2.26359874e-01 -1.17725551e+00 -2.05793492e-02 -1.60435066e-01 -3.32456082e-01 3.56637359e-01 -4.21455204e-01 -6.96785629e-01 7.01785862e-01 5.72353244e-01 4.01908308e-02 1.35876131e+00 -5.82804859e-01 3.67990494e-01 1.66978136e-01 4.47202958e-02 -7.86185682e-01 -5.09138882e-01 1.05255581e-01 6.19108558e-01 -1.13504946e+00 3.66524428e-01 -6.84965014e-01 -2.95944326e-02 9.72061992e-01 -1.40850479e-02 3.45223658e-02 5.14968812e-01 -1.64734527e-01 1.02762975e-01 -1.00169353e-01 2.73338497e-01 -4.84604388e-01 4.42941338e-01 4.00520787e-02 5.52592993e-01 3.31353664e-01 -7.11322248e-01 2.75510699e-01 2.17602357e-01 -2.19723154e-02 1.99634179e-01 7.83954084e-01 -6.40692592e-01 -9.76788938e-01 -9.18360770e-01 4.43877131e-01 -2.92024404e-01 -3.04022610e-01 -8.25211853e-02 3.16002339e-01 3.86382997e-01 1.19702101e+00 -4.73035246e-01 -7.28669465e-02 -4.69882153e-02 2.86592215e-01 1.75360426e-01 -6.06513083e-01 -3.09067786e-01 4.56579328e-01 -8.40115175e-02 7.85427094e-02 -9.55582023e-01 -7.02765644e-01 -7.41585433e-01 -1.67580135e-02 -6.70267761e-01 5.18764734e-01 6.72885060e-01 1.06857169e+00 -2.96115100e-01 2.85975993e-01 7.13460505e-01 -1.11007643e+00 -7.07272828e-01 -1.03529358e+00 -1.01462615e+00 4.65804040e-01 3.81769359e-01 -4.73618895e-01 -5.87880254e-01 3.79160374e-01]
[10.106128692626953, -2.0797221660614014]
d931f791-5106-418b-96ad-fb5a97548182
unsupervised-image-representation-learning
2205.15821
null
https://arxiv.org/abs/2205.15821v2
https://arxiv.org/pdf/2205.15821v2.pdf
Unsupervised Image Representation Learning with Deep Latent Particles
We propose a new representation of visual data that disentangles object position from appearance. Our method, termed Deep Latent Particles (DLP), decomposes the visual input into low-dimensional latent ``particles'', where each particle is described by its spatial location and features of its surrounding region. To drive learning of such representations, we follow a VAE-based approach and introduce a prior for particle positions based on a spatial-softmax architecture, and a modification of the evidence lower bound loss inspired by the Chamfer distance between particles. We demonstrate that our DLP representations are useful for downstream tasks such as unsupervised keypoint (KP) detection, image manipulation, and video prediction for scenes composed of multiple dynamic objects. In addition, we show that our probabilistic interpretation of the problem naturally provides uncertainty estimates for particle locations, which can be used for model selection, among other tasks. Videos and code are available: https://taldatech.github.io/deep-latent-particles-web/
['Aviv Tamar', 'Tal Daniel']
2022-05-31
null
null
null
null
['unsupervised-facial-landmark-detection', 'image-manipulation', 'video-prediction']
['computer-vision', 'computer-vision', 'computer-vision']
[-1.64159052e-02 -1.53678458e-03 -2.78223127e-01 -4.41355318e-01 -7.77914226e-01 -6.19224429e-01 9.89280879e-01 1.60941511e-01 -2.04198718e-01 2.93128908e-01 3.53965640e-01 -4.46891710e-02 -7.11060092e-02 -6.97048962e-01 -1.25626469e+00 -8.94204855e-01 -9.68486667e-02 7.15645909e-01 3.56889725e-01 3.45613569e-01 2.83911198e-01 4.69139427e-01 -1.68366146e+00 4.79697466e-01 2.86813468e-01 1.04300046e+00 6.75019205e-01 8.29531848e-01 2.42606133e-01 7.70182073e-01 -3.56735766e-01 -1.27504200e-01 1.31249070e-01 2.52714567e-02 -5.02956331e-01 2.76869703e-02 4.22524631e-01 -2.51738667e-01 -4.38916326e-01 9.31151330e-01 1.09838799e-01 4.05153662e-01 1.01860940e+00 -1.38835895e+00 -1.06046581e+00 4.25975978e-01 -4.77820367e-01 2.04710230e-01 -1.30334627e-02 1.43048033e-01 1.31388605e+00 -9.89151359e-01 5.15241623e-01 1.55995524e+00 4.53715742e-01 3.90781432e-01 -1.42914391e+00 -2.67949939e-01 4.76041079e-01 2.29413688e-01 -1.26056862e+00 -4.29290235e-01 7.13387549e-01 -7.94330359e-01 7.51868427e-01 3.55386108e-01 5.71307838e-01 1.44307756e+00 2.55558521e-01 1.26495278e+00 4.88771290e-01 -2.98302770e-01 2.22981572e-01 -1.12886235e-01 -3.11942417e-02 9.07481015e-01 7.95643702e-02 2.71515191e-01 -6.43220067e-01 -2.95733958e-01 1.00414073e+00 1.57280937e-01 -8.80292952e-02 -8.26098204e-01 -1.28483009e+00 7.99065709e-01 5.83856821e-01 -2.44300768e-01 -3.25010389e-01 7.78068006e-01 -9.01111960e-02 -4.28118259e-01 3.70306134e-01 2.07680464e-01 -2.48530120e-01 -5.53848743e-02 -6.24223113e-01 3.05126905e-01 4.31018591e-01 8.61943305e-01 5.04291892e-01 -2.88842738e-01 -4.28605855e-01 6.56507432e-01 1.00755334e+00 6.09121978e-01 1.84887484e-01 -1.19971275e+00 3.44247818e-01 1.97472200e-01 6.10713005e-01 -1.04577553e+00 -1.29239246e-01 -6.50967658e-02 -4.42930043e-01 5.34221292e-01 2.04010814e-01 1.76577568e-01 -1.20365596e+00 1.79383290e+00 3.34555417e-01 4.65513021e-01 -2.98025638e-01 9.72396791e-01 6.90306425e-01 9.47476923e-01 1.18501224e-01 3.05771947e-01 1.25785744e+00 -1.04173267e+00 -3.81925225e-01 -2.88968056e-01 -5.44099361e-02 -4.89290386e-01 8.79291832e-01 1.45564720e-01 -1.30729711e+00 -6.68972850e-01 -8.26122642e-01 -3.63009363e-01 -4.42083001e-01 4.37493712e-01 5.65529644e-01 9.54513252e-02 -9.79674995e-01 6.14518166e-01 -1.53833473e+00 3.19737829e-02 6.07126296e-01 3.47745836e-01 -2.19187707e-01 3.17066967e-01 -7.94256270e-01 6.49264991e-01 1.54483005e-01 3.07354510e-01 -1.19863057e+00 -5.40914297e-01 -1.03133857e+00 1.44909069e-01 2.31276184e-01 -9.06940997e-01 1.16855526e+00 -5.45009732e-01 -1.36048007e+00 7.58313179e-01 -3.21664989e-01 -4.24143225e-01 3.58223677e-01 -2.98951745e-01 8.94940421e-02 4.68381494e-02 2.12646723e-01 9.31412160e-01 1.24098504e+00 -1.57712948e+00 -6.93067133e-01 -2.67006278e-01 1.05926767e-01 2.71567166e-01 1.50482535e-01 -1.89857304e-01 -9.45712924e-01 -5.96912205e-01 1.05963729e-01 -9.78226125e-01 -2.49991775e-01 4.71640408e-01 -6.53701842e-01 -2.62729228e-01 5.60879529e-01 -4.83291835e-01 7.40866721e-01 -2.14460707e+00 5.59252262e-01 2.22523928e-01 4.81217831e-01 -1.56705320e-01 -2.01122418e-01 1.91867799e-01 1.85692504e-01 1.07436039e-01 5.54760881e-02 -9.17748570e-01 4.20187145e-01 1.46669254e-01 -5.05833030e-01 6.37846887e-01 2.71863759e-01 1.11929333e+00 -9.21822131e-01 -2.77577132e-01 4.89596277e-01 7.10150778e-01 -2.77227372e-01 1.36131331e-01 -7.22308993e-01 3.11419517e-01 -5.18440962e-01 5.22212982e-01 5.01691520e-01 -8.07014048e-01 -6.10293783e-02 -4.07933712e-01 -8.21066573e-02 2.28902906e-01 -1.14830565e+00 1.55870545e+00 -2.31503725e-01 6.69518650e-01 7.89670646e-02 -5.99528313e-01 4.51321006e-01 -8.53646770e-02 4.33779508e-01 -2.96080738e-01 6.62310645e-02 -4.02848691e-01 -4.71907586e-01 -1.94542751e-01 5.54912806e-01 3.05513054e-01 5.40273823e-03 4.40487355e-01 -5.18489182e-02 2.25798264e-01 7.72143677e-02 3.80770385e-01 9.44995940e-01 5.64572275e-01 -4.08858359e-02 8.59434530e-02 -3.38609926e-02 -2.45899871e-01 3.91999096e-01 9.46513772e-01 -4.62306067e-02 8.33497286e-01 5.06819725e-01 -3.06231022e-01 -1.06071520e+00 -1.61076629e+00 -2.28830069e-01 1.12082696e+00 4.46101964e-01 -4.76836979e-01 -1.92219749e-01 -5.38522840e-01 5.38548112e-01 4.83763397e-01 -9.33109343e-01 -8.49909782e-02 -3.67592067e-01 -5.37915885e-01 1.00849895e-03 8.39456081e-01 -2.58846313e-01 -1.01347065e+00 -5.59496045e-01 2.95158457e-02 2.18301732e-02 -7.65518844e-01 -4.78343695e-01 2.56132960e-01 -4.22558784e-01 -9.91075993e-01 -6.42393470e-01 -4.63371933e-01 7.49114871e-01 7.32932910e-02 1.14857066e+00 -1.20841257e-01 -3.41586769e-01 5.59393287e-01 -2.23767161e-01 -2.89703816e-01 -2.90151864e-01 -3.35975915e-01 1.32879719e-01 3.90706956e-02 2.28597224e-01 -3.81525367e-01 -7.45182037e-01 1.48025706e-01 -5.57957470e-01 3.72521579e-01 4.80008185e-01 7.15220392e-01 9.68262434e-01 -1.64039046e-01 -1.19763330e-01 -6.52741849e-01 3.31462443e-01 -5.29723167e-01 -1.03516853e+00 3.33899140e-01 -1.12000443e-01 3.53020489e-01 1.86869979e-01 -4.41397011e-01 -8.71321559e-01 2.03419119e-01 1.03517413e-01 -8.26890588e-01 -1.33571208e-01 2.37996936e-01 -1.48167446e-01 1.32570639e-01 4.32994932e-01 9.86117050e-02 -8.33252445e-02 -5.13738036e-01 8.17486703e-01 3.24931353e-01 4.86639649e-01 -6.32852376e-01 7.28330493e-01 8.20191145e-01 -2.27574371e-02 -4.36166853e-01 -8.40354502e-01 -4.51151073e-01 -6.05720103e-01 -1.30012557e-01 1.08332932e+00 -9.63607132e-01 -1.05295038e+00 2.99492210e-01 -1.19310009e+00 -6.05991244e-01 -3.55650336e-01 5.49851775e-01 -8.12277496e-01 2.21052945e-01 -6.35276258e-01 -7.38038421e-01 1.18218511e-01 -1.19622910e+00 1.50321305e+00 1.48028538e-01 -1.18846111e-01 -1.10675645e+00 7.51448944e-02 2.04654455e-01 2.92385966e-02 1.03892677e-01 7.36636639e-01 -2.26396620e-01 -1.15222812e+00 -1.25248268e-01 -2.23473907e-01 2.24569187e-01 4.56320383e-02 3.57302517e-01 -8.20045948e-01 -2.75269538e-01 -4.35564905e-01 -2.83830613e-01 1.25719190e+00 9.14112270e-01 1.40109181e+00 -2.54311442e-01 -8.60904098e-01 7.10275829e-01 1.22002602e+00 -1.28025994e-01 1.76528350e-01 1.80261344e-01 9.93445873e-01 2.93180048e-01 4.17606264e-01 6.57515228e-01 5.41449070e-01 9.03108895e-01 7.45947599e-01 5.62059805e-02 -1.31561458e-01 -3.71236324e-01 2.21005544e-01 2.67785579e-01 -6.55975193e-02 -6.63451254e-01 -8.94133151e-01 4.96074438e-01 -2.24739504e+00 -9.83574092e-01 1.47083133e-01 2.12620735e+00 4.88862932e-01 1.50795653e-01 5.21697439e-02 -5.76608658e-01 8.01784396e-01 4.23325866e-01 -7.40273058e-01 2.27341577e-01 3.36076994e-03 -3.07957381e-01 6.00964129e-01 9.36037838e-01 -1.45563340e+00 8.79476011e-01 6.09161329e+00 5.51086545e-01 -7.73859024e-01 5.22917509e-02 4.83643442e-01 -3.36790681e-01 -4.42848235e-01 -5.64775914e-02 -1.11135459e+00 8.15143347e-01 6.38724864e-01 1.73856422e-01 2.64287680e-01 8.06543171e-01 2.40241855e-01 -7.04647973e-02 -1.28463113e+00 9.52907026e-01 2.42657084e-02 -1.72775841e+00 1.99702382e-01 2.28204757e-01 4.94296014e-01 3.93013149e-01 5.15446067e-01 3.41322310e-02 7.43613124e-01 -9.21062410e-01 1.07279015e+00 9.24739838e-01 4.54650939e-01 -4.71074432e-01 1.15347773e-01 2.51859516e-01 -1.17057824e+00 -1.24207921e-01 -5.81067741e-01 2.54795671e-01 3.86055529e-01 3.65402192e-01 -6.74117804e-01 -2.03688461e-02 8.25321496e-01 9.28414643e-01 -4.09428000e-01 1.02943861e+00 -4.10951465e-01 3.19629490e-01 -5.50672412e-01 1.72432363e-01 7.26685002e-02 -8.18154514e-02 7.10959136e-01 9.10751402e-01 1.31242380e-01 -1.78997129e-01 3.06219518e-01 1.30542374e+00 -1.00772142e-01 -5.48337281e-01 -4.64667797e-01 -8.39407966e-02 6.61921501e-01 1.13311422e+00 -7.75409341e-01 -2.87646651e-01 -2.55139023e-01 1.08073270e+00 5.87775648e-01 4.71087515e-01 -1.03722858e+00 8.36373642e-02 8.94680023e-01 8.13022330e-02 7.42563069e-01 -3.30038548e-01 7.40543529e-02 -1.18083239e+00 1.83494426e-02 -2.10305706e-01 1.56949013e-01 -1.19314241e+00 -1.46353459e+00 3.86993676e-01 1.99326828e-01 -1.19368899e+00 -3.24201405e-01 -8.99945974e-01 -4.92611378e-01 9.40434933e-01 -1.20721126e+00 -1.43894792e+00 -6.67326674e-02 3.95278722e-01 3.97192627e-01 1.27117923e-02 6.09498620e-01 -1.62222728e-01 -3.57562006e-01 2.26075739e-01 4.40376014e-01 1.00616358e-01 4.49662507e-01 -1.50381911e+00 8.41228068e-01 7.05355704e-01 5.47358453e-01 6.09591484e-01 7.40317225e-01 -7.46188641e-01 -1.22853839e+00 -1.14609146e+00 4.56900358e-01 -1.08401561e+00 6.66636407e-01 -7.14791775e-01 -6.50202692e-01 9.84319210e-01 -1.54493123e-01 3.56288403e-01 6.16574824e-01 2.93185472e-01 -2.90254086e-01 2.35875040e-01 -6.67809963e-01 6.61072850e-01 8.54629576e-01 -6.48625553e-01 -3.52143139e-01 6.03283823e-01 6.99059904e-01 -6.21022940e-01 -5.97768307e-01 1.69287592e-01 6.74921989e-01 -6.94569886e-01 1.43900335e+00 -6.37163639e-01 2.63059080e-01 -4.48575348e-01 -2.79682577e-01 -1.17583048e+00 -8.86922657e-01 -8.79856721e-02 -7.60501921e-01 8.43560159e-01 4.26683635e-01 -1.55450597e-01 1.05360389e+00 6.79259956e-01 -9.76048633e-02 -8.74940515e-01 -7.42460310e-01 -5.76241970e-01 -1.85815334e-01 -4.37396228e-01 3.30344051e-01 4.05299038e-01 -3.64156723e-01 2.78659135e-01 -4.87629682e-01 7.82897174e-01 8.14406157e-01 3.45117807e-01 4.41409498e-01 -1.21371841e+00 -6.99058115e-01 -4.38643008e-01 -5.21048844e-01 -1.56929064e+00 3.57205689e-01 -8.19856167e-01 3.55468601e-01 -1.72937846e+00 3.52066517e-01 -3.90641332e-01 -4.13531423e-01 5.47071755e-01 -1.51501328e-01 2.61168748e-01 2.93320477e-01 3.99697542e-01 -1.05761349e+00 7.35390067e-01 1.05673730e+00 -2.98105389e-01 -4.16338071e-02 1.43825039e-01 -3.44718456e-01 8.28546762e-01 6.93362057e-01 -4.47432488e-01 -3.81373465e-01 -7.52332389e-01 3.62445295e-01 -3.83321755e-02 8.28618228e-01 -8.05917919e-01 2.56079853e-01 -2.39538506e-01 7.31751084e-01 -7.84286916e-01 9.77531791e-01 -6.54199600e-01 -4.13248083e-03 -8.58071167e-03 -4.89271253e-01 -6.30649701e-02 5.66223562e-02 1.04249465e+00 1.16833616e-02 -5.38666025e-02 5.64481795e-01 -1.55309230e-01 -7.95418203e-01 5.56055665e-01 -3.58431131e-01 -2.91340381e-01 9.74396527e-01 -9.18219239e-02 -4.26016480e-01 -4.24284458e-01 -1.06503963e+00 3.72196555e-01 5.49428523e-01 6.03523374e-01 7.54348695e-01 -1.38955259e+00 -4.51738596e-01 2.72418410e-01 1.91941366e-01 8.06085318e-02 2.42401153e-01 5.26999354e-01 -3.50408316e-01 3.16908538e-01 -7.19168559e-02 -8.83617759e-01 -1.19879723e+00 5.94306171e-01 1.71049878e-01 1.24536693e-01 -7.84545362e-01 1.36331975e+00 5.87854207e-01 -2.23135844e-01 3.92536908e-01 -5.06930113e-01 5.89115778e-04 -1.74360454e-01 4.72002506e-01 1.33099720e-01 -3.91588122e-01 -7.75719464e-01 -3.68993521e-01 3.37389499e-01 -9.88826230e-02 -2.71477908e-01 1.26885927e+00 -2.34349817e-01 1.21155761e-01 6.73925638e-01 1.05762899e+00 -4.41321954e-02 -1.99337888e+00 -1.57075003e-01 -3.32552165e-01 -6.05776012e-01 1.03080682e-01 -6.96405947e-01 -7.02491939e-01 8.29093695e-01 5.87028146e-01 1.13691866e-01 4.46201086e-01 6.12269700e-01 3.40211570e-01 3.21028203e-01 1.66938782e-01 -7.10066378e-01 1.68965280e-01 4.29962486e-01 9.46890533e-01 -1.35082996e+00 -1.03150986e-01 -1.77894786e-01 -5.72412431e-01 8.51317465e-01 5.27031600e-01 -1.84102505e-01 9.12186623e-01 3.79823834e-01 -9.99551862e-02 -3.04500967e-01 -1.08040261e+00 -1.77542329e-01 5.01209795e-01 6.35910690e-01 5.91756664e-02 1.90512314e-01 5.27963161e-01 5.35518646e-01 4.38696742e-02 -2.72124529e-01 1.31373391e-01 8.10664415e-01 -5.10717034e-01 -1.05247474e+00 -2.16062203e-01 4.78543222e-01 -1.17006257e-01 -1.42842457e-01 -2.13517919e-02 4.04459387e-01 2.41500348e-01 3.97118539e-01 6.04139149e-01 -2.28100702e-01 -3.65349948e-02 -2.04906404e-01 6.91835225e-01 -8.07182670e-01 2.66567826e-01 9.40815881e-02 -2.73878813e-01 -7.08541214e-01 -3.51512998e-01 -7.33814597e-01 -1.17899466e+00 -5.45007885e-02 -1.39704123e-01 7.64190480e-02 6.10719979e-01 6.98296845e-01 4.85985726e-01 3.51142913e-01 2.05266088e-01 -1.38966203e+00 -4.65763181e-01 -7.61317909e-01 -5.82475483e-01 4.22570288e-01 6.57130480e-01 -1.01217711e+00 -2.99160719e-01 4.00735050e-01]
[10.063597679138184, -0.04620067775249481]
78395f0f-9d52-4356-9bc6-9811218cca80
fault-detection-in-ball-bearings
2209.11041
null
https://arxiv.org/abs/2209.11041v1
https://arxiv.org/pdf/2209.11041v1.pdf
Fault Detection in Ball Bearings
Ball bearing joints are a critical component in all rotating machinery, and detecting and locating faults in these joints is a significant problem in industry and research. Intelligent fault detection (IFD) is the process of applying machine learning and other statistical methods to monitor the health states of machines. This paper explores the construction of vibration images, a preprocessing technique that has been previously used to train convolutional neural networks for ball bearing joint IFD. The main results demonstrate the robustness of this technique by applying it to a larger dataset than previously used and exploring the hyperparameters used in constructing the vibration images.
['Sarah Moll', 'Joshua Pickard']
2022-09-19
null
null
null
null
['fault-detection']
['miscellaneous']
[-1.58194434e-02 -5.16916974e-04 1.65944219e-01 1.65582210e-01 -1.27619013e-01 -1.55351330e-02 3.31962109e-01 -3.60378802e-01 -6.87909573e-02 2.90456027e-01 -2.59739518e-01 -4.39750820e-01 -3.75896811e-01 -6.77048504e-01 -6.52627528e-01 -7.53701746e-01 -4.98933077e-01 5.17215431e-01 5.46618819e-01 -3.62778634e-01 4.37458664e-01 1.00605261e+00 -1.87094808e+00 1.61029100e-01 1.10132448e-01 1.12515736e+00 1.02667145e-01 7.26432860e-01 4.80567604e-01 5.76196909e-01 -1.10117722e+00 2.26794034e-01 6.86566085e-02 -1.42344415e-01 -1.05750692e+00 3.48683178e-01 -1.77929252e-01 -1.25887156e-01 -5.41486502e-01 6.98699415e-01 5.43263555e-01 1.71808913e-01 7.46488392e-01 -1.06531036e+00 -5.03189623e-01 1.29631788e-01 -1.76690936e-01 5.15036464e-01 3.40938717e-01 6.44580871e-02 4.85708624e-01 -8.11369419e-01 4.20080721e-01 1.25046039e+00 5.60932934e-01 4.77080762e-01 -6.39850557e-01 -2.96122968e-01 -6.16119623e-01 6.67544127e-01 -1.09945714e+00 6.30916432e-02 9.43236411e-01 -6.45690382e-01 1.36829126e+00 1.28088579e-01 6.45927906e-01 1.02232754e+00 8.98594379e-01 6.96584344e-01 6.53627694e-01 -6.64091051e-01 2.99973279e-01 -5.32070041e-01 1.32033780e-01 5.72085500e-01 3.71615767e-01 2.01464236e-01 -4.32480454e-01 1.93726495e-01 1.12816942e+00 -6.44986331e-02 -2.76905429e-02 -7.41280913e-02 -8.82242560e-01 6.40014112e-01 2.58141071e-01 4.27580804e-01 -4.98469234e-01 3.51975530e-01 6.86307728e-01 6.66579008e-01 5.42902946e-01 8.30923378e-01 -5.66399336e-01 -2.63834208e-01 -6.27034485e-01 2.19402701e-01 7.37277329e-01 2.63630569e-01 3.15154970e-01 1.99013993e-01 -4.90768477e-02 8.39462340e-01 2.71020561e-01 4.11999732e-01 6.52153492e-01 -6.93876565e-01 -2.43945494e-01 6.97204590e-01 -1.58333227e-01 -7.79242158e-01 -7.19579399e-01 -2.71565318e-01 -5.75013280e-01 3.27448606e-01 7.04060793e-02 -3.11852485e-01 -1.25731969e+00 7.98090875e-01 3.13832641e-01 2.01344952e-01 -2.65154719e-01 8.13723266e-01 5.97273588e-01 3.97192270e-01 -4.90878403e-01 2.77326673e-01 1.42010713e+00 -5.29809892e-01 -8.66278231e-01 -1.50826618e-01 6.01797760e-01 -7.87198305e-01 5.65069735e-01 8.77738178e-01 -6.49674356e-01 -8.19449186e-01 -1.43644023e+00 2.72647530e-01 -3.60045493e-01 2.45340124e-01 6.17070913e-01 5.06378114e-01 -9.39688683e-01 9.03116345e-01 -1.21258116e+00 2.78832973e-03 3.96827787e-01 4.14762974e-01 -5.53676307e-01 -2.38695130e-01 -1.49206328e+00 1.34712541e+00 3.43958199e-01 5.68370044e-01 -9.92117941e-01 -1.61373660e-01 -8.91753912e-01 -1.23863600e-01 3.64089668e-01 -2.65188128e-01 1.27645123e+00 -3.08295131e-01 -1.35773861e+00 5.24093091e-01 8.18377584e-02 -3.51105452e-01 2.19929948e-01 -8.49546134e-01 -4.69028890e-01 2.18243212e-01 -3.45512927e-01 3.65355797e-02 1.09633136e+00 -8.72328639e-01 -3.02831918e-01 -2.17038691e-01 -5.35267293e-01 -3.69380534e-01 -2.94711627e-02 3.86251695e-02 -3.63656014e-01 -4.57126468e-01 3.76473963e-01 -9.09052849e-01 -1.01689629e-01 -6.30464613e-01 -6.47024274e-01 -9.03751433e-01 1.28138781e+00 -8.86882305e-01 6.21272147e-01 -2.14639521e+00 2.25228481e-02 5.31290174e-01 -1.92832742e-02 2.94092327e-01 2.11017415e-01 4.89325464e-01 -3.88359308e-01 -4.39468741e-01 -4.01367769e-02 1.99196652e-01 -1.52474180e-01 3.85818899e-01 2.06200510e-01 6.30051196e-01 9.14630234e-01 7.54874349e-01 -5.89448452e-01 -1.34937942e-01 5.53095222e-01 4.35860455e-01 -7.43618831e-02 3.76942128e-01 -8.04109592e-03 1.18047141e-01 -4.33243155e-01 8.37332606e-01 2.28155643e-01 1.51124671e-01 -2.01442689e-01 -2.36963123e-01 1.67227775e-01 1.23653710e-01 -1.17521989e+00 1.19989038e+00 -2.19705909e-01 8.94700766e-01 -3.11416388e-01 -1.57548463e+00 1.21861255e+00 6.65662706e-01 6.65923774e-01 -5.91557801e-01 5.12890518e-01 1.99311048e-01 2.30333284e-01 -1.34573400e+00 4.94264737e-02 1.97204296e-02 5.52241632e-04 2.54953533e-01 2.68927395e-01 -4.32309806e-01 2.96911508e-01 -4.57291991e-01 1.43844318e+00 7.58544402e-03 -3.66721123e-01 -3.35579932e-01 3.23071927e-01 -4.70557669e-03 2.11075574e-01 5.32242000e-01 -9.50289071e-02 7.21498787e-01 7.53107846e-01 -7.42406607e-01 -9.43557978e-01 -8.51658225e-01 -3.44963461e-01 3.89223158e-01 -1.79551184e-01 3.62314343e-01 -7.83531010e-01 -4.60555434e-01 4.15332347e-01 2.66281098e-01 -8.99015784e-01 -8.42220068e-01 -5.49588323e-01 -8.05587351e-01 4.92490619e-01 7.24327862e-01 2.03758299e-01 -1.42339075e+00 -9.27792788e-01 2.19160035e-01 3.15675497e-01 -8.83311391e-01 4.26354438e-01 6.93620324e-01 -9.69833612e-01 -1.52267027e+00 -5.26067436e-01 -9.58240628e-01 5.29704332e-01 -4.23603803e-02 1.16082239e+00 5.60113132e-01 -1.14378297e+00 2.05905184e-01 -6.12420440e-01 -7.60613739e-01 -6.32562637e-01 3.52940932e-02 9.62212533e-02 -3.57061535e-01 3.57118338e-01 -7.17174495e-03 -4.57591057e-01 3.03614438e-01 -1.10754859e+00 -4.49258149e-01 1.01197493e+00 1.00784516e+00 1.69896577e-02 8.30501676e-01 7.69624174e-01 -6.96598649e-01 7.75395393e-01 -3.58035296e-01 -1.92429110e-01 -1.50542006e-01 -5.04834354e-01 -1.37306582e-02 -1.63527895e-02 -2.36939102e-01 -5.30322194e-01 3.91162839e-03 -5.53430021e-01 -5.11480093e-01 -6.14487112e-01 7.32663691e-01 -6.28805906e-02 1.77236184e-01 5.00407279e-01 -2.47453496e-01 5.17603695e-01 -6.41818941e-01 -5.87920174e-02 8.86978149e-01 6.50253057e-01 -4.28372055e-01 6.38464689e-01 1.00860424e-01 3.57144922e-01 -1.09738624e+00 -3.92002702e-01 -5.16446114e-01 -8.44753683e-01 -5.97525239e-01 7.21774757e-01 -4.83933449e-01 -5.62621593e-01 1.01158190e+00 -9.16402340e-01 -2.55521655e-01 -2.89867610e-01 7.34287858e-01 -1.89450622e-01 2.07355142e-01 -8.44864607e-01 -8.48696828e-01 -2.49819860e-01 -1.22384071e+00 1.14950705e+00 -3.92653001e-03 -2.86623955e-01 -8.47785234e-01 -6.97808638e-02 1.90340057e-01 2.20254228e-01 4.33243960e-01 9.15958881e-01 -7.00389504e-01 1.77582681e-01 -9.06393528e-01 1.36113286e-01 9.29398298e-01 4.70432371e-01 3.23005736e-01 -9.15761471e-01 -2.79304713e-01 2.83476293e-01 -2.54097253e-01 9.93967295e-01 5.01713455e-01 1.08738899e+00 4.38966334e-01 -2.37686262e-01 -1.71574757e-01 9.98491704e-01 5.35782754e-01 9.19635594e-01 5.21556377e-01 6.48184538e-01 8.19113195e-01 6.73207879e-01 1.67203784e-01 -3.78619581e-01 2.78803289e-01 7.39963949e-01 -4.08996046e-01 4.10096720e-02 5.40265083e-01 3.75106573e-01 8.14552128e-01 -3.31241161e-01 1.28643498e-01 -1.02966535e+00 6.29524648e-01 -1.40421927e+00 -7.62704730e-01 -3.35516602e-01 1.66926908e+00 6.45144343e-01 5.04474282e-01 -9.42519978e-02 1.04927170e+00 5.94422877e-01 -5.00458002e-01 -5.45553744e-01 -4.16881800e-01 1.19900338e-01 8.32283616e-01 4.10989225e-01 -1.08358473e-01 -1.30738401e+00 4.57034051e-01 7.50513840e+00 4.59668219e-01 -1.18147552e+00 -4.09956604e-01 3.59712571e-01 3.05104375e-01 4.65842307e-01 -4.59895283e-01 -8.90378058e-02 1.33304209e-01 8.81548107e-01 6.75306261e-01 1.26867846e-01 7.85818458e-01 3.29736382e-01 -4.12191868e-01 -1.09315658e+00 4.41823304e-01 3.40415947e-02 -1.07717025e+00 -4.59212542e-01 -1.72237977e-01 5.49152792e-01 -2.99349520e-03 -8.70711356e-02 -8.65079910e-02 4.63984236e-02 -1.17585111e+00 5.18947065e-01 6.13349438e-01 4.45500046e-01 -9.83764887e-01 1.59683228e+00 -2.23623946e-01 -6.58066392e-01 -1.37531802e-01 -4.01322752e-01 -1.73615053e-01 -1.56278402e-01 1.14631438e+00 -1.18949437e+00 8.07590067e-01 1.34236944e+00 6.04092836e-01 -8.06994438e-01 1.07260311e+00 -3.86412561e-01 1.06687224e+00 -1.89370707e-01 2.20280550e-02 -6.83699250e-02 9.63460952e-02 1.65038362e-01 9.67360139e-01 3.70023340e-01 -9.80646908e-01 -6.64205626e-02 5.83781421e-01 2.53395617e-01 -5.06778121e-01 -6.54683650e-01 -7.68389627e-02 2.24013090e-01 9.48034167e-01 -8.88187647e-01 -3.45196910e-02 -3.92192870e-01 5.96967757e-01 -3.59907687e-01 1.69870615e-01 -4.83513862e-01 -6.74945414e-01 6.47594154e-01 8.23322404e-03 2.61576980e-01 -5.39671540e-01 -1.99397221e-01 -3.43663335e-01 5.22370152e-02 -7.52658665e-01 3.22719604e-01 -7.46130347e-01 -1.35766184e+00 2.22912714e-01 1.33674383e-01 -1.04445148e+00 -2.27703646e-01 -1.38048649e+00 -8.30094099e-01 8.49334121e-01 -1.19718790e+00 -8.22700620e-01 -1.53052822e-01 3.15639466e-01 6.70531690e-01 -2.07839325e-01 5.71208358e-01 4.78663258e-02 -9.71900165e-01 5.52368574e-02 5.91106415e-02 4.88400102e-01 4.39415574e-01 -1.47462273e+00 7.49663353e-01 8.92918825e-01 1.74209476e-02 4.30473953e-01 1.00707531e+00 -7.13112354e-01 -1.75235713e+00 -7.53045976e-01 2.69390434e-01 -2.22798705e-01 5.64508021e-01 -1.18397258e-01 -1.24619401e+00 3.13350767e-01 2.73216486e-01 -3.51864733e-02 3.68714094e-01 -3.04388180e-02 4.04787511e-01 2.75176167e-01 -9.82855916e-01 6.91880360e-02 4.28887576e-01 -4.17487979e-01 -9.99478579e-01 3.65766793e-01 4.18277055e-01 -4.47528362e-01 -1.17204058e+00 7.04020858e-01 4.44131523e-01 -5.27684033e-01 9.45019841e-01 -5.42684495e-01 4.39501733e-01 -3.67714167e-01 5.21233082e-01 -1.55612159e+00 -2.88507849e-01 -2.71138281e-01 -4.28806603e-01 9.05255437e-01 1.60554856e-01 -7.47927606e-01 7.77466238e-01 8.35112408e-02 -7.43682683e-01 -1.01226842e+00 -1.16965806e+00 -7.99210429e-01 -2.39162445e-02 -6.73338592e-01 4.22124356e-01 6.93463445e-01 -9.34961438e-02 -2.44218290e-01 -3.13077942e-02 2.72080928e-01 8.89320895e-02 -4.69285309e-01 3.72151792e-01 -1.64657462e+00 -1.93168977e-04 -1.99628800e-01 -1.02168810e+00 -1.15738690e-01 1.78081561e-02 -6.10076487e-01 5.64898968e-01 -1.65772605e+00 -5.06153405e-01 8.05114508e-02 -5.94881892e-01 6.25650883e-01 -2.55862445e-01 3.54950160e-01 -5.43512821e-01 9.58570838e-02 1.18408918e-01 2.45805979e-01 1.54217613e+00 -1.19695745e-01 1.71366647e-01 1.13426477e-01 -3.54032777e-02 2.85980910e-01 1.02902663e+00 -2.66914904e-01 -1.00227930e-01 -6.29393309e-02 2.66037524e-01 -2.30081767e-01 5.92323005e-01 -1.33147395e+00 -1.34038851e-01 3.48878056e-01 9.35836911e-01 -7.84683883e-01 -3.05621177e-02 -6.94815874e-01 -7.63968145e-03 1.07674277e+00 1.13108933e-01 2.74208724e-01 3.56632322e-01 2.69005537e-01 -3.84884238e-01 -3.79730821e-01 5.79359412e-01 -5.30721806e-02 -8.57094288e-01 -2.86412388e-01 -1.10304642e+00 -5.01906633e-01 1.03269386e+00 -6.42624050e-02 -1.16582438e-01 2.81331837e-01 -5.68557978e-01 7.27805570e-02 3.73551473e-02 8.63992572e-01 1.01415789e+00 -1.05137134e+00 -6.08000576e-01 7.21311927e-01 -1.76770315e-01 3.55440587e-01 1.22878022e-01 8.94297481e-01 -1.10109663e+00 2.19767943e-01 -4.19843763e-01 -8.82945538e-01 -1.08056819e+00 3.73810917e-01 4.83276635e-01 5.31301014e-02 -8.53945196e-01 8.91821563e-01 -8.26334238e-01 -6.65363073e-02 9.08602700e-02 -4.73149717e-01 -5.02764344e-01 -2.03109264e-01 1.52425736e-01 6.80620492e-01 8.78819704e-01 -2.98518777e-01 -4.09732491e-01 2.38381162e-01 1.57576576e-01 2.49575779e-01 1.56525338e+00 3.68603766e-01 -3.09026837e-01 6.44037306e-01 1.01277912e+00 -8.41972947e-01 -1.08502460e+00 3.03031683e-01 6.22157574e-01 -6.34638667e-02 2.88851261e-01 -5.31712711e-01 -1.31713080e+00 9.59693909e-01 1.06601501e+00 6.85783505e-01 9.54569817e-01 2.49474555e-01 8.13862085e-01 6.51571929e-01 1.39320254e-01 -1.51052105e+00 3.04461718e-01 5.26670396e-01 8.85782480e-01 -1.04899466e+00 3.13071683e-02 -2.69225836e-01 -1.37657955e-01 1.56782126e+00 4.44734186e-01 -6.89059138e-01 8.87750208e-01 4.49603945e-01 3.27246636e-01 -8.42932701e-01 -6.00966096e-01 -9.93260145e-02 6.28444076e-01 7.80953348e-01 6.61934197e-01 -1.61929596e-02 -5.43234264e-03 1.19415693e-01 -3.32310647e-02 1.15628913e-02 3.61971676e-01 1.52257049e+00 -5.37861824e-01 -9.62166667e-01 -7.55160749e-01 9.18614864e-01 -6.96342409e-01 6.19687438e-01 -5.31843007e-01 9.78816807e-01 1.61545679e-01 1.14257073e+00 2.71342993e-01 -6.06878281e-01 6.32423222e-01 3.18121105e-01 5.39774418e-01 -5.77463806e-01 -4.28718001e-01 -1.00534581e-01 1.12448186e-02 -5.77082455e-01 -2.34599575e-01 -6.35484219e-01 -1.36144388e+00 3.71282995e-01 -7.30419397e-01 1.62488222e-01 8.26706111e-01 1.37253022e+00 3.81737575e-02 1.43530047e+00 8.53312373e-01 -1.13192761e+00 -4.48242038e-01 -1.40732479e+00 -9.35676038e-01 5.99044025e-01 3.24755520e-01 -1.29069579e+00 -3.32848221e-01 8.95894319e-02]
[6.880308151245117, 2.302938461303711]
21958354-d8f4-4098-abd8-447e94481502
skin-lesion-classification-using-ensembles-of
1910.03910
null
https://arxiv.org/abs/1910.03910v1
https://arxiv.org/pdf/1910.03910v1.pdf
Skin Lesion Classification Using Ensembles of Multi-Resolution EfficientNets with Meta Data
In this paper, we describe our method for the ISIC 2019 Skin Lesion Classification Challenge. The challenge comes with two tasks. For task 1, skin lesions have to be classified based on dermoscopic images. For task 2, dermoscopic images and additional patient meta data have to be used. A diverse dataset of 25000 images was provided for training, containing images from eight classes. The final test set contains an additional, unknown class. We address this challenging problem with a simple, data driven approach by including external data with skin lesions types that are not present in the training set. Furthermore, multi-class skin lesion classification comes with the problem of severe class imbalance. We try to overcome this problem by using loss balancing. Also, the dataset contains images with very different resolutions. We take care of this property by considering different model input resolutions and different cropping strategies. To incorporate meta data such as age, anatomical site, and sex, we use an additional dense neural network and fuse its features with the CNN. We aggregate all our models with an ensembling strategy where we search for the optimal subset of models. Our best ensemble achieves a balanced accuracy of 74.2% using five-fold cross-validation. On the official test set our method is ranked first for both tasks with a balanced accuracy of 63.6% for task 1 and 63.4% for task 2.
['René Werner', 'Mohsin Shaikh', 'Nils Gessert', 'Maximilian Nielsen', 'Alexander Schlaefer']
2019-10-09
null
null
null
null
['skin-lesion-classification']
['medical']
[ 4.53636944e-01 1.45803511e-01 -2.19484940e-01 -3.47536236e-01 -8.88077796e-01 -3.93482834e-01 4.61759657e-01 4.04430002e-01 -6.80872977e-01 7.73217976e-01 -2.06937790e-01 -8.22414737e-03 -1.05830565e-01 -7.54645586e-01 -5.14483154e-01 -7.94856787e-01 2.62810290e-01 3.10181379e-01 4.41414237e-01 5.92133999e-02 3.49256098e-02 3.75057876e-01 -1.52439642e+00 7.53014266e-01 1.07241821e+00 1.20152700e+00 1.55624247e-03 7.39033341e-01 -8.23038351e-03 5.83530903e-01 -5.75837672e-01 -7.99627006e-01 4.45244789e-01 -2.27167815e-01 -9.22929525e-01 8.38621557e-02 9.11185861e-01 -2.93754965e-01 2.15018932e-02 1.06379735e+00 6.90969050e-01 -3.17351311e-01 8.93669307e-01 -1.02495766e+00 -2.01794237e-01 2.55012691e-01 -7.20577359e-01 -6.51869476e-02 -7.66340122e-02 2.10972577e-01 6.28417611e-01 -4.98519629e-01 9.30284083e-01 7.40949631e-01 7.88718641e-01 8.54131579e-01 -1.12139058e+00 -4.12488341e-01 -1.27130002e-01 2.13842362e-01 -1.30326366e+00 -1.18686691e-01 3.01365316e-01 -5.45103014e-01 5.66059053e-01 6.54518008e-01 5.09609222e-01 1.26496744e+00 3.26435603e-02 4.37469304e-01 1.41147518e+00 -4.31283802e-01 2.05091715e-01 6.03341818e-01 5.48729040e-02 4.89212811e-01 1.96301132e-01 -1.02343574e-01 -1.69734173e-02 -1.33415788e-01 5.23189723e-01 -1.37135610e-01 -1.36691213e-01 -9.80778784e-02 -6.82247818e-01 6.44573748e-01 5.29428661e-01 2.91385323e-01 -3.17727178e-01 -1.66383475e-01 4.67505336e-01 2.67841816e-01 4.98807192e-01 3.88647437e-01 -3.66061479e-01 3.93212736e-01 -9.00644064e-01 1.95789427e-01 7.85630286e-01 3.37121755e-01 4.32882994e-01 -5.51594913e-01 -3.59146565e-01 1.30233574e+00 -2.03067362e-01 5.84458709e-02 6.14413917e-01 -6.27571404e-01 3.98194045e-01 6.58081651e-01 -2.84279704e-01 -5.83178699e-01 -5.55566788e-01 -6.06217802e-01 -1.08357310e+00 2.97379076e-01 7.01459527e-01 -1.27959788e-01 -1.50935459e+00 1.55314457e+00 3.24046224e-01 -1.93826571e-01 -2.21543774e-01 8.34602594e-01 8.90854537e-01 6.84390143e-02 2.74449289e-01 -4.63729585e-03 1.37244403e+00 -8.73629451e-01 -3.61977845e-01 -5.58773093e-02 6.40830338e-01 -6.95500076e-01 6.91643119e-01 6.56660616e-01 -1.06347179e+00 -3.18553418e-01 -8.89498830e-01 9.03100818e-02 -5.77793598e-01 5.30728877e-01 4.86770034e-01 7.27794766e-01 -1.14462006e+00 7.52441585e-01 -5.09868860e-01 -6.09423101e-01 6.32507145e-01 4.32300597e-01 -7.71900177e-01 -2.14861363e-01 -1.03195190e+00 1.08160663e+00 2.66007304e-01 -1.54673398e-01 -4.11188424e-01 -9.14989710e-01 -6.95819318e-01 -3.17881614e-01 3.07765633e-01 -6.50467336e-01 9.04112399e-01 -1.20826638e+00 -1.05475533e+00 1.39518881e+00 1.31169204e-02 -5.11563778e-01 9.04460967e-01 2.57109642e-01 -4.78469014e-01 2.82519639e-01 -9.48704332e-02 5.38316727e-01 8.29912066e-01 -1.18944049e+00 -6.20362163e-01 -4.69183147e-01 1.03569664e-02 1.08284444e-01 -4.69367892e-01 -6.54314682e-02 -5.62026620e-01 -4.62584943e-01 -2.56799817e-01 -9.63826060e-01 -4.17379022e-01 3.15438032e-01 -5.80093682e-01 1.60011292e-01 3.33947241e-01 -9.35997963e-01 1.19404101e+00 -1.85872829e+00 8.81643891e-02 3.72277141e-01 5.43356061e-01 5.60900390e-01 -2.64975905e-01 1.18110053e-01 -3.38738889e-01 4.46135372e-01 -1.88511148e-01 -5.24686098e-01 -4.44437653e-01 -2.78482258e-01 2.59868354e-01 2.60749400e-01 4.93506551e-01 6.15386903e-01 -4.16804135e-01 -6.48046672e-01 2.67828077e-01 3.98592770e-01 -3.95236880e-01 -3.61844823e-02 2.31522117e-02 1.45273298e-01 -8.17945004e-02 9.57201004e-01 1.00534105e+00 -3.87182176e-01 2.49568105e-01 -5.35810590e-01 1.91972822e-01 -1.06470473e-01 -1.05816638e+00 1.46082640e+00 -4.90585446e-01 2.54885048e-01 2.03133836e-01 -7.05550075e-01 5.50216198e-01 1.86650619e-01 5.89473486e-01 -7.10529685e-01 1.57911122e-01 4.49523300e-01 2.24690497e-01 -5.56983471e-01 1.11490645e-01 -1.91183195e-01 3.31065536e-01 -3.60962376e-02 3.47870529e-01 5.77816321e-03 3.42745990e-01 1.18373379e-01 1.24935317e+00 -2.77470648e-01 2.12614253e-01 -4.73555265e-04 4.22227979e-01 -4.19414509e-03 3.62220675e-01 5.26097417e-01 -3.31678778e-01 9.94733036e-01 7.05679953e-01 -4.31012452e-01 -1.00996459e+00 -9.87112701e-01 -6.69513285e-01 4.81771320e-01 -2.08637089e-01 -3.14866960e-01 -8.84516478e-01 -9.49089885e-01 2.03190837e-02 1.68316171e-01 -1.21211004e+00 -5.71570322e-02 -2.14676380e-01 -1.36910403e+00 4.14653152e-01 3.28908712e-01 2.82118231e-01 -6.88269258e-01 -1.50174722e-01 -1.09810054e-01 -3.47780772e-02 -9.25183177e-01 -6.54797107e-02 2.70775795e-01 -6.59488201e-01 -1.50999796e+00 -1.18671894e+00 -5.48528314e-01 9.11558032e-01 -2.26781309e-01 1.01105154e+00 2.02710196e-01 -1.09655094e+00 -5.17113097e-02 -3.10326278e-01 -3.30647111e-01 -4.60788697e-01 2.91681916e-01 -1.98543400e-01 2.52163529e-01 1.22044235e-01 -1.63757384e-01 -7.58715808e-01 2.20982045e-01 -1.06207538e+00 7.73565173e-02 7.43058920e-01 9.60634172e-01 6.31551445e-01 -8.89871828e-03 4.92817760e-01 -1.16883981e+00 3.45585585e-01 -5.11203766e-01 -2.06460252e-01 4.29087818e-01 -3.17407519e-01 -2.72829145e-01 6.32350028e-01 -4.69339788e-01 -7.34818697e-01 2.62409776e-01 -2.67165989e-01 -2.80067325e-01 -2.13910058e-01 2.60509223e-01 4.64633629e-02 -2.85283774e-01 9.98419225e-01 -1.90076858e-01 4.09374833e-01 -4.77294713e-01 -6.67111948e-02 7.50948370e-01 2.01977193e-01 -1.87552229e-01 5.53732634e-01 3.65550756e-01 7.52017274e-02 -6.28577292e-01 -8.68050635e-01 -4.96664137e-01 -6.72100961e-01 -2.01580793e-01 6.47852838e-01 -8.08492362e-01 -3.80762011e-01 9.85193491e-01 -8.50573897e-01 -4.02036488e-01 -2.90812254e-01 2.85078764e-01 -2.46362999e-01 3.43655646e-01 -6.51517808e-01 -7.05141485e-01 -4.53092724e-01 -1.12571251e+00 1.00809574e+00 3.00229669e-01 -1.52290225e-01 -1.06569767e+00 1.02124247e-03 4.42444831e-01 5.35930991e-01 6.31672859e-01 8.07945788e-01 -8.36628437e-01 -6.39179051e-02 -4.92289782e-01 -3.89150739e-01 6.25475883e-01 3.42408776e-01 2.24158138e-01 -1.25026619e+00 -4.14907575e-01 -3.32037330e-01 -6.19217634e-01 1.33194816e+00 3.39489996e-01 1.69231439e+00 -1.13683362e-02 -3.29810649e-01 6.50382638e-01 1.74997377e+00 -2.02664480e-01 6.44795299e-01 1.09272666e-01 6.00501359e-01 1.04361916e+00 4.41663712e-01 6.66792542e-02 3.05596888e-01 5.96102834e-01 6.32271707e-01 -4.73224938e-01 -4.70719635e-01 -1.35122938e-02 -1.48014709e-01 2.63917834e-01 -2.80972987e-01 -1.31889075e-01 -9.66113865e-01 6.72072113e-01 -1.52015936e+00 -7.16902673e-01 -2.10728660e-01 2.51415038e+00 9.22535419e-01 1.06332488e-01 3.37412447e-01 2.42578372e-01 7.19690382e-01 -1.11771710e-01 -5.78673303e-01 -2.45775416e-01 -2.19199613e-01 3.58775586e-01 7.86602259e-01 3.12616497e-01 -1.32955348e+00 4.43609029e-01 6.26724625e+00 1.14682519e+00 -1.54309011e+00 -5.69664165e-02 1.01761627e+00 -3.70033562e-01 -1.53181806e-01 -4.60655063e-01 -7.80781388e-01 7.24589884e-01 8.51850927e-01 2.67421991e-01 1.86403438e-01 4.20508981e-01 -2.72134990e-01 -4.70354140e-01 -8.38660181e-01 8.76492500e-01 2.40061522e-01 -1.24216866e+00 -1.02386110e-01 2.12730467e-01 7.47569561e-01 1.15851320e-01 2.99055398e-01 8.45035985e-02 -1.16353612e-02 -1.43331873e+00 1.60613492e-01 7.08150446e-01 1.40033472e+00 -4.43367958e-01 9.73500013e-01 1.60123661e-01 -7.50268221e-01 -2.50254702e-02 -1.80572152e-01 3.94931078e-01 -2.11134285e-01 8.44498575e-01 -7.93868244e-01 6.70580924e-01 7.33808279e-01 4.48194623e-01 -1.09109426e+00 1.43767834e+00 2.57497579e-01 3.83189261e-01 -4.86656547e-01 2.98755337e-02 -4.56066206e-02 2.33121887e-01 7.65956789e-02 9.88396406e-01 1.75195560e-01 -4.01288182e-01 -2.15137929e-01 6.06361091e-01 -1.28889550e-02 3.36140901e-01 -4.33757454e-01 2.21824557e-01 1.17742069e-01 1.57939541e+00 -4.68601346e-01 -1.40920922e-01 -2.07911909e-01 1.01978695e+00 3.39667320e-01 9.58635658e-02 -6.86123192e-01 -3.87481511e-01 3.43229353e-01 4.72781807e-01 -8.13013837e-02 4.55693781e-01 -2.94329941e-01 -1.08287704e+00 1.74432591e-01 -7.36270249e-01 5.84405005e-01 -4.40843105e-01 -1.62026513e+00 7.39634871e-01 -2.37758130e-01 -1.22533250e+00 -1.54655620e-01 -9.46243346e-01 -6.23137832e-01 1.17292678e+00 -1.77072608e+00 -1.29890859e+00 -5.31812668e-01 4.62623745e-01 9.51737314e-02 -1.06216237e-01 9.43688929e-01 5.84161878e-01 -6.10347688e-01 9.53394949e-01 -1.79084484e-03 1.13407604e-01 1.19540775e+00 -1.55726242e+00 2.28535868e-02 2.78210819e-01 -3.93181264e-01 3.41927946e-01 1.92302823e-01 -5.66032469e-01 -7.72914886e-01 -1.32150173e+00 7.71574378e-01 -5.10902762e-01 5.84847391e-01 -2.07230136e-01 -9.29569125e-01 1.46674052e-01 -1.17646217e-01 2.51929551e-01 1.07308733e+00 1.18735313e-01 -4.50993329e-01 -2.36277670e-01 -1.67393506e+00 3.77115905e-01 6.99903250e-01 -3.63853812e-01 2.62132548e-02 4.99104440e-01 3.32247108e-01 -5.44910729e-01 -1.05388308e+00 6.55967236e-01 5.46734869e-01 -8.44272196e-01 7.52124429e-01 -7.57094026e-01 7.92322397e-01 4.10964787e-02 -1.03853391e-02 -1.38453043e+00 -7.73281828e-02 -2.59101447e-02 2.09667623e-01 1.10822630e+00 6.29810750e-01 -5.74204326e-01 1.02262950e+00 6.06518507e-01 3.37203562e-01 -1.21499443e+00 -7.71277130e-01 -5.76914728e-01 4.82948124e-01 -2.26099230e-02 3.23802948e-01 8.23089004e-01 -3.43125880e-01 -3.93113196e-02 -2.66318887e-01 -1.76186949e-01 7.47904241e-01 -1.30645886e-01 4.56667364e-01 -1.26901746e+00 -2.10023612e-01 -4.13700223e-01 -4.40281779e-01 -8.22304636e-02 -2.60509759e-01 -9.89096463e-01 -3.60695243e-01 -1.52981508e+00 5.45509636e-01 -6.14747465e-01 -4.30923790e-01 6.03197515e-01 -2.54560709e-01 6.79719985e-01 2.38073751e-01 1.23393890e-02 -2.86837459e-01 -9.85672548e-02 1.33588827e+00 -2.60090142e-01 1.63911581e-01 1.05825923e-01 -7.46268988e-01 5.70751131e-01 1.05063939e+00 -1.15345456e-01 -9.94310006e-02 -2.01773673e-01 2.56570037e-02 -8.54771882e-02 6.72377408e-01 -1.10461628e+00 1.72696933e-01 -1.24515079e-01 6.33827329e-01 -3.89209479e-01 5.54512084e-01 -6.97857797e-01 -2.13047080e-02 6.06368661e-01 -2.44190127e-01 -5.69466233e-01 2.66340673e-01 2.50249952e-01 -2.43576601e-01 -4.25664425e-01 1.17573261e+00 -2.25084618e-01 -3.87775451e-01 5.38553298e-01 1.95243079e-02 -1.55464202e-01 1.22934031e+00 -2.55480289e-01 -5.44206977e-01 4.09422554e-02 -1.09815419e+00 2.63451785e-01 6.68089747e-01 3.86196822e-01 1.96766645e-01 -1.13020170e+00 -8.82184625e-01 5.99838458e-02 3.19032490e-01 -7.67119899e-02 7.25779176e-01 9.20265675e-01 -4.37284380e-01 6.00098632e-02 -4.46536660e-01 -5.76899946e-01 -1.49973524e+00 1.89515486e-01 7.28122413e-01 -6.36797071e-01 -4.92727272e-02 8.99267733e-01 1.96845806e-03 -5.98016322e-01 1.27121985e-01 -4.54920642e-02 -3.07712674e-01 3.58345538e-01 5.90331614e-01 1.84137568e-01 5.18407047e-01 -3.89440656e-01 -2.66888916e-01 6.70383334e-01 -4.52214122e-01 1.59817651e-01 1.16464305e+00 4.18824166e-01 -1.09366320e-01 1.92013130e-01 1.41829097e+00 -1.45405337e-01 -8.96152020e-01 4.79750306e-04 -3.84213150e-01 -4.00324106e-01 -1.24513812e-01 -1.50181794e+00 -1.17938495e+00 9.45074499e-01 9.40888643e-01 1.89493820e-01 1.30827594e+00 -1.51877642e-01 4.77104694e-01 -2.43729547e-01 2.54162163e-01 -1.27719462e+00 -1.64025888e-01 2.31768817e-01 8.72477055e-01 -1.60446501e+00 2.24146619e-03 -7.32935667e-01 -6.43562973e-01 9.07760799e-01 8.64063203e-01 -5.94279589e-03 5.25997102e-01 1.98334157e-01 1.98999196e-01 -4.71886732e-02 -7.36655295e-01 -2.77338803e-01 3.83996606e-01 7.26210833e-01 3.16632956e-01 1.98678896e-01 -6.40504718e-01 7.42711544e-01 -2.62346659e-02 8.74775350e-02 3.55508715e-01 4.68211174e-01 -7.89970979e-02 -1.46186888e+00 -1.49674863e-01 1.16154802e+00 -7.93451011e-01 1.11182116e-01 -5.79137862e-01 8.45736682e-01 4.14881349e-01 5.41812241e-01 7.82351270e-02 -4.72308189e-01 2.03001559e-01 -1.26531065e-01 6.00411534e-01 -5.71271896e-01 -8.98920834e-01 -2.33273849e-01 1.98303938e-01 -5.29165208e-01 -1.13268651e-01 -4.21090603e-01 -6.99099422e-01 -4.94851843e-02 -2.45593116e-01 -1.98623449e-01 9.65930760e-01 5.38591504e-01 1.25764489e-01 6.42695248e-01 6.34588003e-01 -3.63422185e-01 -7.50582159e-01 -8.33826900e-01 -5.47123432e-01 5.56871235e-01 3.31665754e-01 -4.92775649e-01 -3.83242548e-01 -1.68322459e-01]
[15.554583549499512, -2.8000922203063965]
c4dc890c-1899-4e0f-abfe-f88ad079cb3f
veil-vetting-extracted-image-labels-from-in
2303.09608
null
https://arxiv.org/abs/2303.09608v1
https://arxiv.org/pdf/2303.09608v1.pdf
VEIL: Vetting Extracted Image Labels from In-the-Wild Captions for Weakly-Supervised Object Detection
The use of large-scale vision-language datasets is limited for object detection due to the negative impact of label noise on localization. Prior methods have shown how such large-scale datasets can be used for pretraining, which can provide initial signal for localization, but is insufficient without clean bounding-box data for at least some categories. We propose a technique to "vet" labels extracted from noisy captions. Our method trains a classifier that predicts if an extracted label is actually present in the image or not. Our classifier generalizes across dataset boundaries and shows promise for generalizing across categories as well. We compare the classifier to eleven baselines on five datasets, and demonstrate that it can improve weakly-supervised detection without label vetting by 80% (16.0 to 29.1 mAP when evaluated on PASCAL VOC).
['Adriana Kovashka', 'Arushi Rai']
2023-03-16
null
null
null
null
['weakly-supervised-object-detection']
['computer-vision']
[ 3.91871095e-01 5.61880358e-02 -1.06673978e-01 -7.39781260e-01 -1.44846201e+00 -1.01106858e+00 5.39357185e-01 9.29654390e-02 -9.26093459e-01 8.50745857e-01 6.14489876e-02 -2.72115767e-01 5.78779101e-01 -3.39792460e-01 -1.07104611e+00 -6.30634904e-01 1.70677617e-01 2.56264240e-01 5.79070747e-01 2.64563829e-01 -1.69604328e-02 4.03340131e-01 -1.49245787e+00 5.57942986e-01 3.73598576e-01 7.36632526e-01 3.76848191e-01 5.82028508e-01 -2.41407156e-02 6.57078385e-01 -9.64464545e-01 -1.92141771e-01 2.74721265e-01 -2.31169105e-01 -7.19102859e-01 8.77184123e-02 1.34272122e+00 -4.15185988e-01 -2.17719860e-02 1.20537221e+00 3.10861200e-01 -2.62982249e-01 7.82712281e-01 -1.10436833e+00 -5.50016642e-01 2.87463397e-01 -7.33181238e-01 1.82380944e-01 1.06208973e-01 3.18562388e-01 9.78507221e-01 -9.16877151e-01 7.83749700e-01 9.62892830e-01 1.04005635e+00 7.81449258e-01 -1.63768840e+00 -8.50889623e-01 1.27654850e-01 -2.46913821e-01 -1.38345063e+00 -4.56332833e-01 2.00475037e-01 -8.47752392e-01 7.59944499e-01 1.18634112e-01 2.14042440e-01 1.20111024e+00 -2.28043750e-01 7.67075479e-01 1.57127011e+00 -4.34921026e-01 1.20774917e-01 3.67712140e-01 2.88608700e-01 7.41137505e-01 3.07471961e-01 1.94551110e-01 -4.81599629e-01 -1.15289604e-02 3.18912357e-01 -5.63263059e-01 -1.41723111e-01 -2.87786871e-01 -1.30295575e+00 7.70755589e-01 8.23717833e-01 -7.78265968e-02 8.37860163e-04 4.64919776e-01 3.05259198e-01 -1.48997735e-02 5.66826463e-01 7.49400377e-01 -5.32710552e-01 1.91856414e-01 -1.11339140e+00 8.38074833e-02 5.24197876e-01 1.08651364e+00 9.25559402e-01 -2.79975712e-01 -4.16402668e-01 8.66599441e-01 4.61456105e-02 8.78253162e-01 1.86531261e-01 -9.95654523e-01 3.14530879e-01 3.20525378e-01 5.58941960e-01 -5.08984149e-01 -6.18095040e-01 -5.33644915e-01 -7.16932043e-02 3.99230778e-01 7.43839502e-01 -4.38132912e-01 -1.44593453e+00 1.82832348e+00 1.13999486e-01 -1.22675952e-02 -1.92656368e-01 9.89756703e-01 8.37769806e-01 3.97863179e-01 4.70923960e-01 1.49384007e-01 1.18754077e+00 -8.90586436e-01 -4.29351658e-01 -7.89156139e-01 8.64346266e-01 -7.34898329e-01 1.13275194e+00 2.11407945e-01 -3.96157444e-01 -5.95411718e-01 -1.05728412e+00 7.03106821e-02 -5.46806395e-01 6.16312146e-01 5.83964825e-01 6.16888583e-01 -1.21009183e+00 1.19287848e-01 -6.07627392e-01 -6.82014227e-01 6.95734620e-01 2.58187294e-01 -4.56930935e-01 -3.42355847e-01 -6.74219668e-01 1.02243412e+00 4.08557355e-01 -1.38382912e-01 -1.30269051e+00 -3.40414077e-01 -8.16241026e-01 -3.43181580e-01 3.08115512e-01 -1.96298972e-01 1.41577244e+00 -9.89085138e-01 -5.22114813e-01 1.15262091e+00 -1.49747595e-01 -5.27927399e-01 5.85035861e-01 -1.52824476e-01 -1.45443469e-01 7.27431402e-02 5.85199416e-01 1.58682144e+00 6.98784232e-01 -1.48739254e+00 -1.04356837e+00 -1.39878899e-01 1.53019905e-01 2.18634963e-01 -1.91391364e-01 1.65931791e-01 -5.02886534e-01 -3.87010664e-01 -1.90510806e-02 -1.10177636e+00 -1.83701470e-01 1.97515607e-01 -2.55898744e-01 -1.38917670e-01 8.60159934e-01 -5.81071913e-01 4.76786226e-01 -1.92582178e+00 -5.11771202e-01 -1.68142825e-01 -1.48747832e-01 1.75590053e-01 -3.85159165e-01 -3.58656142e-03 2.43702829e-01 2.05535844e-01 -1.26320809e-01 -2.76568443e-01 -2.38371894e-01 2.26332635e-01 -4.76091772e-01 6.06304705e-01 4.92560208e-01 9.00857866e-01 -1.00097048e+00 -4.73032594e-01 1.47824675e-01 2.67744124e-01 -2.64421910e-01 6.93089068e-02 -3.66592348e-01 4.07613873e-01 -1.26091735e-02 8.41434300e-01 5.75203836e-01 -2.84311205e-01 -1.42513841e-01 -2.22798288e-01 3.03411111e-02 1.47988811e-01 -8.84887993e-01 1.42374372e+00 -3.16116482e-01 1.04476595e+00 1.62534595e-01 -5.00705481e-01 6.68235898e-01 -1.91437468e-01 -8.79734382e-02 -3.93479139e-01 3.62130292e-02 1.83582142e-01 -3.67257483e-02 -3.92903626e-01 3.00532073e-01 -1.08098425e-01 -2.29881108e-01 1.92375958e-01 2.93674201e-01 -3.98484647e-01 2.71215558e-01 1.47388682e-01 1.24451780e+00 1.97615340e-01 -1.49340987e-01 -2.75762588e-01 9.66852158e-02 6.33448124e-01 4.14984524e-01 1.28190947e+00 -4.19410974e-01 8.36035252e-01 1.04058623e-01 -2.01434106e-01 -1.07382786e+00 -8.51823151e-01 -4.36378986e-01 1.40736151e+00 1.90850213e-01 -1.06998146e-01 -8.46620202e-01 -1.22712409e+00 1.21984117e-01 6.34892046e-01 -6.46467745e-01 6.79122359e-02 -1.60743907e-01 -7.48991430e-01 7.42713988e-01 7.32213974e-01 3.14709723e-01 -9.26666975e-01 -4.72547442e-01 -5.18843606e-02 -1.35796100e-01 -1.29416931e+00 -3.84481817e-01 7.77215123e-01 -3.93470526e-01 -1.06061900e+00 -5.39898694e-01 -9.22139406e-01 8.83011878e-01 4.19868797e-01 1.04063332e+00 -1.60790771e-01 -4.40245539e-01 4.68439877e-01 -2.12947592e-01 -5.46496749e-01 -4.36818570e-01 -6.03955425e-02 9.97353047e-02 -3.41013551e-01 6.91791296e-01 2.41846353e-01 -3.22385699e-01 6.31866574e-01 -5.38751304e-01 -7.25661069e-02 7.64158309e-01 1.02111173e+00 6.76090121e-01 -2.89219826e-01 6.55454874e-01 -9.63643312e-01 3.21693510e-01 -2.78821051e-01 -8.83068323e-01 2.57658780e-01 -3.87567401e-01 -2.57506464e-02 3.00963134e-01 -4.89474535e-01 -9.26896036e-01 6.90390110e-01 -1.27912993e-02 -3.28283578e-01 -5.55920005e-01 8.39622840e-02 1.37204319e-01 -4.89281058e-01 1.19084179e+00 -8.25702697e-02 -2.59834528e-01 -3.93299431e-01 6.37377322e-01 8.58851552e-01 7.97665536e-01 -5.58794558e-01 8.58774722e-01 6.06768012e-01 -2.58269578e-01 -6.58638895e-01 -1.44891417e+00 -9.03420150e-01 -6.73249483e-01 -7.44421706e-02 9.12018716e-01 -1.34308612e+00 -1.48313582e-01 1.56987309e-01 -1.12266934e+00 -4.55208838e-01 -2.01242253e-01 5.21639764e-01 -3.11255664e-01 1.37196202e-02 -5.26581883e-01 -6.04211569e-01 6.55055940e-02 -1.10313559e+00 1.31617403e+00 2.89777666e-01 -1.46199167e-01 -5.75634241e-01 -1.97381467e-01 5.26310325e-01 2.34621152e-01 1.05859742e-01 8.42650086e-02 -6.90199435e-01 -5.04917383e-01 -4.90927130e-01 -5.92509508e-01 5.72211206e-01 -1.31727338e-01 -2.10886315e-01 -1.49357545e+00 -3.91954154e-01 -4.42575693e-01 -1.01588845e+00 1.25689149e+00 1.68149188e-01 1.04613924e+00 5.08786179e-02 -6.72836185e-01 4.07709330e-01 1.36291969e+00 -1.17591895e-01 1.23017907e-01 2.86575019e-01 6.90485418e-01 5.54629862e-01 8.76170456e-01 -1.94508374e-01 2.30378509e-02 6.04294538e-01 3.59719098e-01 -3.24909627e-01 -5.33396959e-01 -3.85637522e-01 2.92584389e-01 -1.08297460e-01 5.50279617e-01 -1.37864023e-01 -1.16722488e+00 9.01628256e-01 -1.55897033e+00 -6.18751049e-01 -1.82003438e-01 2.05471921e+00 9.34352398e-01 3.84432852e-01 -2.30515264e-02 -4.90266711e-01 9.72381771e-01 -1.53971136e-01 -6.65811419e-01 1.93321425e-02 -1.59420043e-01 -5.26964180e-02 1.23474514e+00 4.86668944e-01 -1.59120131e+00 1.23342049e+00 7.41445494e+00 7.40101397e-01 -1.03947878e+00 3.74197781e-01 6.09718382e-01 2.51849256e-02 3.24953049e-01 -3.98973236e-03 -1.31329930e+00 2.94365704e-01 8.02763820e-01 4.44297701e-01 1.94846950e-02 1.17608917e+00 -1.47037625e-01 -5.51647127e-01 -1.14630866e+00 8.93382013e-01 2.86331683e-01 -1.04124928e+00 -2.68561780e-01 -1.11395210e-01 1.01658583e+00 7.51504838e-01 -5.04575036e-02 3.94646019e-01 6.88449860e-01 -1.00674987e+00 8.48379374e-01 -1.74029600e-02 1.10976088e+00 -3.08534175e-01 9.94410336e-01 4.41091835e-01 -8.04955781e-01 -3.03413197e-02 -6.64174795e-01 -5.72560541e-02 -1.44437542e-02 3.86290580e-01 -1.52360892e+00 -2.62915820e-01 7.55799592e-01 3.41067880e-01 -1.27978885e+00 1.42835045e+00 -7.51218140e-01 9.63670075e-01 -6.24681473e-01 -1.07564867e-01 3.79589379e-01 2.87333548e-01 3.34511220e-01 1.68312430e+00 -5.78285418e-02 -1.96293533e-01 5.10240793e-01 7.96344876e-01 -2.78661638e-01 -1.61530912e-01 -8.23797107e-01 7.85893425e-02 4.71847534e-01 1.44421458e+00 -9.28684711e-01 -3.53305578e-01 -4.84577239e-01 8.98807168e-01 4.77820307e-01 4.95139897e-01 -7.60764599e-01 -2.65197396e-01 3.68309766e-01 1.37723073e-01 3.19791377e-01 -1.16366036e-01 -3.54806781e-01 -1.00642550e+00 -5.81673719e-02 -5.64227283e-01 2.88683593e-01 -1.13979936e+00 -1.41494179e+00 4.38004583e-01 -1.69213444e-01 -9.51477766e-01 -6.73625395e-02 -8.88503492e-01 -1.55189127e-01 8.08493614e-01 -1.45129776e+00 -1.55795324e+00 -4.57773805e-01 1.82837784e-01 4.11993414e-01 5.80707379e-02 7.55982935e-01 1.46197721e-01 -1.34464219e-01 6.06902897e-01 1.39673114e-01 5.36708236e-01 1.16102040e+00 -1.45176363e+00 2.89499968e-01 9.84704018e-01 5.35129547e-01 3.80258769e-01 7.88129807e-01 -6.24997437e-01 -9.05523777e-01 -1.48443782e+00 5.52869797e-01 -1.07351017e+00 6.00754261e-01 -6.56171203e-01 -7.28921115e-01 7.89746284e-01 7.84470234e-03 4.02020395e-01 2.99987316e-01 3.65940809e-01 -8.20898831e-01 -7.12311417e-02 -1.28152061e+00 3.52929235e-01 9.90949869e-01 -6.55622482e-01 -6.49785280e-01 7.29890525e-01 7.32919633e-01 -4.14487064e-01 -3.31082165e-01 4.52801198e-01 2.98527300e-01 -6.58817947e-01 8.34798396e-01 -4.30257022e-01 1.08793552e-03 -7.36006439e-01 -2.51380682e-01 -1.19909334e+00 -2.14710891e-01 -2.09431886e-03 5.29769003e-01 1.31680238e+00 6.83925450e-01 -3.04078788e-01 8.18101883e-01 4.60688055e-01 -6.34148270e-02 -1.96996763e-01 -7.84598529e-01 -9.40579236e-01 -7.13029057e-02 -5.57471156e-01 -5.22461869e-02 7.70405829e-01 -4.01711643e-01 6.12892985e-01 -1.90774158e-01 4.92280573e-01 6.72958255e-01 -1.40446901e-01 8.32749069e-01 -9.52335298e-01 -1.04906105e-01 -1.21927045e-01 -6.36253476e-01 -9.94617581e-01 3.27908397e-01 -9.55487907e-01 7.51532912e-01 -1.63096714e+00 4.41915125e-01 -5.90968728e-01 -4.00381863e-01 9.45268273e-01 -9.15981829e-02 9.89953518e-01 1.07825525e-01 2.15549558e-01 -9.23444748e-01 -7.72263482e-02 8.10845673e-01 -4.77141589e-01 1.92507401e-01 -3.22210610e-01 -6.22897267e-01 8.44349742e-01 6.43554688e-01 -7.48366058e-01 -1.80141866e-01 -4.68717366e-01 -1.43771440e-01 -6.77058697e-01 5.58539271e-01 -1.38467085e+00 1.33460939e-01 -2.03132238e-02 7.19041586e-01 -6.78765535e-01 2.55948365e-01 -7.52832890e-01 -2.77247041e-01 2.54919022e-01 -5.49040496e-01 -4.31288481e-01 5.22053182e-01 7.70842314e-01 -9.42409635e-02 -3.92636150e-01 1.06197464e+00 -6.39123842e-02 -1.08458769e+00 -1.75586581e-01 -1.50508881e-01 2.71554857e-01 1.00863552e+00 8.84594172e-02 -6.03308260e-01 -1.65617526e-01 -6.21432245e-01 4.62485731e-01 7.68154860e-01 3.82204235e-01 1.75242975e-01 -1.06470084e+00 -6.32682979e-01 -1.88216045e-02 6.22607768e-01 -2.63026264e-02 -4.13698286e-01 3.08223367e-01 -5.10498703e-01 4.38984156e-01 5.00859246e-02 -1.11871314e+00 -1.44964671e+00 6.16553962e-01 3.60861212e-01 2.44900599e-01 -3.00137311e-01 1.29899573e+00 4.04736459e-01 -4.93835896e-01 4.56960440e-01 -2.70125240e-01 1.16743751e-01 1.32151440e-01 6.22591138e-01 -1.90738454e-01 -4.75133210e-02 -6.54583275e-01 -4.69369859e-01 6.68100953e-01 -1.87369585e-01 -1.89386785e-01 1.06259799e+00 -5.56886978e-02 1.41244382e-01 4.58221018e-01 1.10852849e+00 -2.17557698e-02 -1.57381964e+00 -1.18260391e-01 2.84519851e-01 -4.95877117e-01 9.07703415e-02 -1.31683683e+00 -4.71054435e-01 8.86766553e-01 9.41817939e-01 -1.44397378e-01 6.49691463e-01 4.38921392e-01 3.26466143e-01 7.22857654e-01 6.33597195e-01 -1.12278903e+00 3.77555564e-02 4.12925094e-01 5.63942611e-01 -1.74978399e+00 -2.81643663e-02 -2.76447445e-01 -6.64999783e-01 7.03200579e-01 9.15133476e-01 -8.20455141e-03 1.93866387e-01 4.49699074e-01 3.99501950e-01 -9.74376723e-02 -4.16619122e-01 -6.68379843e-01 3.33058894e-01 9.14974451e-01 2.73991704e-01 1.41512826e-01 -1.09077811e-01 1.33070022e-01 7.32151270e-02 -1.17472120e-01 6.01689339e-01 8.22935462e-01 -8.73117387e-01 -7.54941404e-01 -6.04783177e-01 6.15783691e-01 -4.26334411e-01 -1.66507378e-01 -6.01002514e-01 7.76316464e-01 5.89000940e-01 1.13553584e+00 -6.72078356e-02 -1.59372896e-01 1.89779446e-01 3.31270605e-01 4.43295956e-01 -1.12117791e+00 -3.91036570e-01 1.48319855e-01 3.75671059e-01 -3.77180904e-01 -4.44793433e-01 -6.23400092e-01 -9.83483315e-01 5.31839073e-01 -7.61120498e-01 1.75726581e-02 9.32699323e-01 6.67448759e-01 1.13081470e-01 2.54853427e-01 6.76205605e-02 -7.56678879e-01 -5.98547995e-01 -1.15388310e+00 -2.93340087e-01 4.74216074e-01 4.41457242e-01 -7.84795702e-01 -5.51843464e-01 3.47603887e-01]
[9.416007995605469, 1.3021571636199951]
b9b4aab9-572e-4b18-a8fd-3d51f8fa169f
allenact-a-framework-for-embodied-ai-research
2008.12760
null
https://arxiv.org/abs/2008.12760v1
https://arxiv.org/pdf/2008.12760v1.pdf
AllenAct: A Framework for Embodied AI Research
The domain of Embodied AI, in which agents learn to complete tasks through interaction with their environment from egocentric observations, has experienced substantial growth with the advent of deep reinforcement learning and increased interest from the computer vision, NLP, and robotics communities. This growth has been facilitated by the creation of a large number of simulated environments (such as AI2-THOR, Habitat and CARLA), tasks (like point navigation, instruction following, and embodied question answering), and associated leaderboards. While this diversity has been beneficial and organic, it has also fragmented the community: a huge amount of effort is required to do something as simple as taking a model trained in one environment and testing it in another. This discourages good science. We introduce AllenAct, a modular and flexible learning framework designed with a focus on the unique requirements of Embodied AI research. AllenAct provides first-class support for a growing collection of embodied environments, tasks and algorithms, provides reproductions of state-of-the-art models and includes extensive documentation, tutorials, start-up code, and pre-trained models. We hope that our framework makes Embodied AI more accessible and encourages new researchers to join this exciting area. The framework can be accessed at: https://allenact.org/
['Aniruddha Kembhavi', 'Kuo-Hao Zeng', 'Luca Weihs', 'Roozbeh Mottaghi', 'Klemen Kotar', 'Jordi Salvador', 'Unnat Jain']
2020-08-28
null
null
null
null
['embodied-question-answering']
['computer-vision']
[-1.03925928e-01 2.89141864e-01 6.96985945e-02 -2.20438540e-01 -2.39437088e-01 -7.46179402e-01 8.25163007e-01 1.40727665e-02 -5.63502729e-01 7.19664335e-01 3.42850953e-01 -2.84693003e-01 -1.20858192e-01 -7.53040731e-01 -7.76751041e-01 -5.88698208e-01 -4.71735686e-01 3.82871568e-01 3.74604948e-02 -6.89568639e-01 3.12679350e-01 2.97537267e-01 -1.90088761e+00 -6.79692999e-02 7.95361757e-01 5.07704914e-01 5.81686437e-01 7.69574463e-01 5.03762625e-02 1.30470097e+00 -2.80009449e-01 -1.38016239e-01 3.01368330e-02 -4.90132660e-01 -1.00893378e+00 -2.85287917e-01 8.93471465e-02 -5.62658608e-01 -6.19308233e-01 6.33033991e-01 6.07503176e-01 4.89918202e-01 3.75238061e-01 -1.59883356e+00 -8.34369779e-01 4.65621591e-01 9.68252346e-02 -1.53268427e-01 6.63645804e-01 4.12448853e-01 8.02346230e-01 -5.95364273e-01 8.09627712e-01 1.13509583e+00 6.24352276e-01 8.85215819e-01 -7.11981118e-01 -4.08535928e-01 2.45424330e-01 3.69652331e-01 -8.65671277e-01 -7.57663190e-01 4.53850478e-01 -3.33591431e-01 1.25883615e+00 4.23301347e-02 1.13350379e+00 1.51359856e+00 2.58442283e-01 1.27841234e+00 7.81530738e-01 -5.57200730e-01 5.32568097e-01 -1.59741014e-01 -2.18323305e-01 1.08439982e+00 -6.51987493e-02 5.35863340e-01 -7.21042514e-01 1.45376757e-01 6.94599509e-01 -2.20608264e-01 -1.60377413e-01 -8.94118726e-01 -1.45388198e+00 6.55980587e-01 5.42800903e-01 3.11370671e-01 -3.28428268e-01 6.66085005e-01 3.20862591e-01 3.52066189e-01 -4.28114692e-03 7.24700391e-01 -2.27805361e-01 -8.05597723e-01 -1.45883456e-01 6.87855124e-01 1.00913811e+00 1.08232772e+00 5.41050017e-01 2.18152761e-01 5.32968044e-01 5.30096233e-01 3.49494964e-01 4.10270363e-01 4.50085908e-01 -1.52801490e+00 -7.81507418e-02 3.63651425e-01 3.30495477e-01 -8.51277173e-01 -6.43177092e-01 -2.51055002e-01 -1.34311557e-01 7.40846276e-01 3.31998408e-01 -4.64739770e-01 -8.23756039e-01 1.95114481e+00 4.92155463e-01 -1.14064209e-01 3.53443563e-01 1.02475202e+00 9.54523504e-01 5.98198950e-01 1.32689044e-01 5.15974700e-01 9.19667840e-01 -1.47040737e+00 -5.95508695e-01 -5.88982880e-01 8.87872458e-01 -3.95683408e-01 8.99821520e-01 2.37045884e-01 -1.31175292e+00 -2.88432598e-01 -1.08612835e+00 -2.96868414e-01 -7.55958676e-01 -4.84033763e-01 1.06685102e+00 2.29181081e-01 -1.38736057e+00 5.59764445e-01 -1.10141850e+00 -9.00252640e-01 2.30672866e-01 3.10619354e-01 -4.88907784e-01 -7.36768693e-02 -1.00367630e+00 1.46437562e+00 2.18680248e-01 1.08468328e-02 -1.25362277e+00 -3.90175372e-01 -1.25793910e+00 -2.20541820e-01 4.73747045e-01 -8.92250001e-01 1.67988229e+00 -9.54916596e-01 -1.76782882e+00 8.84854257e-01 1.34198219e-01 -3.73273224e-01 4.32093114e-01 -5.69402575e-01 -2.08273232e-01 5.24776988e-02 1.68020770e-01 1.05776894e+00 3.63206208e-01 -1.14621806e+00 -5.69838464e-01 -2.71611869e-01 5.70293009e-01 7.41971076e-01 -4.32989635e-02 -3.78851295e-02 -4.23170142e-02 -2.41621047e-01 -1.45158350e-01 -1.08121085e+00 -2.31847137e-01 2.85807401e-01 2.98480481e-01 -2.33851284e-01 6.78258836e-01 -2.64780402e-01 4.42552477e-01 -2.24737334e+00 4.13877636e-01 -4.70887363e-01 2.91869283e-01 -2.52124276e-02 -3.20670128e-01 9.37229097e-01 2.71968514e-01 -1.49412468e-01 2.42891815e-02 -1.99510440e-01 4.53233302e-01 1.89161822e-01 -1.75049782e-01 4.27418232e-01 -2.73138523e-01 1.04495907e+00 -1.53366196e+00 -2.86249548e-01 6.16368294e-01 4.75068450e-01 -5.63783824e-01 2.72544265e-01 -2.75143355e-01 5.20001531e-01 -4.29036498e-01 5.39690554e-01 2.36527603e-02 1.59889311e-02 -3.72411273e-02 4.27559048e-01 -4.31002617e-01 3.17350030e-01 -9.65562999e-01 2.32008147e+00 -5.03815472e-01 8.03803444e-01 3.83159548e-01 -5.92439175e-01 6.22214317e-01 5.13498187e-01 6.02093399e-01 -8.15970063e-01 1.85278460e-01 2.11560830e-01 1.07980423e-01 -8.71633291e-01 5.73044240e-01 -2.93773841e-02 -6.15832545e-02 6.82856500e-01 2.30957687e-01 -5.18136501e-01 1.49154991e-01 9.64324400e-02 1.36585271e+00 9.77283061e-01 3.11590314e-01 -2.12411970e-01 -5.29209524e-03 3.79877865e-01 9.66014788e-02 7.63451755e-01 -5.96242309e-01 6.52607381e-02 -1.95313513e-01 -6.14776611e-01 -9.53669906e-01 -1.16058779e+00 1.27639785e-01 1.56953096e+00 4.09934253e-01 -3.13697070e-01 -7.93203652e-01 -2.56826490e-01 -9.68318954e-02 8.58777761e-01 -7.64353871e-01 -2.25892991e-01 -5.20388544e-01 -9.28971544e-03 6.39284134e-01 6.83591187e-01 8.49146545e-01 -1.72586358e+00 -1.35555387e+00 3.61945406e-02 -1.48604691e-01 -7.60118484e-01 1.41651392e-01 4.52047408e-01 -6.14178777e-01 -1.07527924e+00 -5.47906935e-01 -1.20363569e+00 4.35172141e-01 3.54498357e-01 1.11857903e+00 1.81386426e-01 -5.27469628e-02 1.01124203e+00 -5.39010286e-01 -6.37512803e-01 -2.51831591e-01 -3.73182371e-02 1.38231948e-01 -7.76218712e-01 2.61404186e-01 -5.86722195e-01 -5.18773019e-01 5.79126514e-02 -6.29166663e-01 3.25719863e-01 3.29098225e-01 6.39706612e-01 -6.97197765e-02 -3.84483904e-01 5.66348016e-01 -3.53851974e-01 6.79723144e-01 -5.99513710e-01 -1.87387630e-01 2.25435644e-02 -3.14891726e-01 -2.38538355e-01 3.10633361e-01 -1.62707031e-01 -9.99466717e-01 -2.38499269e-01 -2.48968944e-01 2.83556897e-02 -5.49648583e-01 5.82111835e-01 3.64292264e-02 -2.20935732e-01 9.36154187e-01 1.79683968e-01 1.79959595e-01 -4.00528274e-02 5.86590111e-01 6.05774045e-01 6.60714924e-01 -7.56546438e-01 4.77844745e-01 2.91218907e-01 -3.50510240e-01 -8.68235826e-01 -4.60989237e-01 -8.16634148e-02 -4.03127849e-01 -5.25620997e-01 8.84742558e-01 -8.01230133e-01 -9.86009479e-01 5.14915109e-01 -8.51511002e-01 -1.14524317e+00 -3.54401112e-01 5.16119301e-01 -9.42984462e-01 -3.94686647e-02 -5.49523771e-01 -7.09691584e-01 1.70641970e-02 -1.15840483e+00 8.14491212e-01 4.75001037e-01 -6.71382189e-01 -1.20937991e+00 4.13918018e-01 3.64656568e-01 6.37428284e-01 3.68852049e-01 8.05472255e-01 -4.94241029e-01 -5.60645521e-01 -7.48617575e-02 3.47269833e-01 -1.47056878e-01 -1.76228397e-02 -5.31188212e-02 -8.25124741e-01 -1.77171484e-01 -3.89312923e-01 -9.32887375e-01 3.64312202e-01 1.17274098e-01 7.72451937e-01 2.04239674e-02 -4.73922312e-01 5.48412085e-01 1.01183069e+00 6.65674984e-01 4.06424493e-01 9.21178937e-01 4.12377208e-01 5.68020523e-01 4.28752899e-01 1.39008448e-01 8.43889892e-01 4.46464539e-01 8.24424088e-01 1.50419101e-01 3.93349640e-02 -2.76446015e-01 4.24247354e-01 6.93289995e-01 -2.28151321e-01 -3.44637722e-01 -1.08102989e+00 7.32963145e-01 -2.08208489e+00 -1.17155445e+00 3.35411519e-01 1.69877028e+00 4.95969862e-01 -2.43862793e-01 7.31274262e-02 -1.86871424e-01 2.77508646e-01 2.83334255e-01 -8.31182301e-01 -6.84379578e-01 1.20658249e-01 6.96076453e-02 -1.82350263e-01 5.84811509e-01 -9.89302337e-01 1.22420692e+00 7.22786188e+00 9.59162042e-02 -9.86685574e-01 -4.50208969e-02 -1.88086685e-02 -5.09813242e-02 -1.82889372e-01 -1.88274041e-01 -9.05795917e-02 2.56683975e-01 7.54249156e-01 -3.19315255e-01 8.69287670e-01 1.03765464e+00 4.26293015e-02 -3.20476234e-01 -1.34529960e+00 8.12758207e-01 5.27785569e-02 -1.28862429e+00 -5.19052505e-01 -1.51810171e-02 5.65113902e-01 5.01716077e-01 1.33453578e-01 6.96881056e-01 9.43902314e-01 -1.25072813e+00 1.07866824e+00 3.34703475e-01 2.39867181e-01 -5.49080014e-01 2.98475325e-01 5.37782550e-01 -8.85886073e-01 -3.72384906e-01 -9.41205174e-02 -6.71098411e-01 8.57612789e-02 -4.06724572e-01 -5.53571403e-01 1.12996086e-01 8.83067489e-01 7.93885469e-01 -6.49756864e-02 1.20688379e+00 -3.01056921e-01 1.85417965e-01 -1.10042214e-01 -4.57794428e-01 4.93286848e-01 -2.17905462e-01 5.87120473e-01 8.38188291e-01 8.25442001e-02 3.86359960e-01 9.36092213e-02 5.56215763e-01 4.45626229e-02 -6.62965775e-02 -1.05005634e+00 -1.64774984e-01 5.62724590e-01 1.24566293e+00 -5.78300893e-01 -9.41006392e-02 -3.94554794e-01 9.06218648e-01 5.97705960e-01 4.27612901e-01 -9.47409213e-01 -4.50400800e-01 8.48182499e-01 -2.37309784e-01 3.02433390e-02 -7.06057072e-01 -5.58279119e-02 -8.52243960e-01 -3.92444342e-01 -1.14500022e+00 -8.12007934e-02 -1.28960466e+00 -5.94978213e-01 5.71571708e-01 -4.39430736e-02 -8.86319995e-01 -5.44672489e-01 -5.83973527e-01 -6.21893346e-01 2.59745359e-01 -1.06992388e+00 -1.07192159e+00 -7.33524203e-01 3.90076965e-01 6.28497005e-01 -1.34514704e-01 1.22803664e+00 3.98559980e-02 -3.63507986e-01 1.29906729e-01 5.57668097e-02 1.60984069e-01 5.52615106e-01 -1.13890266e+00 5.29553175e-01 4.37858164e-01 4.97021265e-02 6.09526098e-01 9.13712204e-01 -3.65715504e-01 -1.67238045e+00 -4.93127018e-01 4.31499481e-01 -7.83617139e-01 7.47492492e-01 -1.84978202e-01 -2.99210846e-01 1.26746023e+00 7.00958371e-01 -4.12793338e-01 6.37044191e-01 1.88680187e-01 -6.37478456e-02 2.87150621e-01 -1.02894497e+00 1.15090811e+00 1.48094380e+00 -4.97945249e-01 -8.90073121e-01 2.50242084e-01 5.58619440e-01 -7.28720427e-01 -6.32767081e-01 2.18057781e-01 9.06027973e-01 -9.95078802e-01 7.76030421e-01 -5.92034996e-01 6.61331356e-01 -1.82858154e-01 -2.06362158e-01 -1.70782137e+00 -4.11032408e-01 -7.04001129e-01 -2.37257019e-01 7.12426722e-01 2.15529427e-01 -7.47915506e-01 6.56763554e-01 7.89585114e-01 -7.07569122e-01 -8.11330140e-01 -5.01572311e-01 -4.33122247e-01 9.45006981e-02 -4.25958037e-01 5.61924040e-01 9.16955888e-01 5.85267186e-01 2.35656351e-01 -7.51107857e-02 -1.38483569e-01 3.99869472e-01 -8.71775076e-02 1.06021130e+00 -9.59818840e-01 -7.24753365e-02 -5.70857227e-01 -4.02863681e-01 -1.17954230e+00 2.55751818e-01 -8.41770589e-01 3.40106845e-01 -2.00856996e+00 -1.79831192e-01 -5.43076694e-01 1.61277521e-02 7.25960374e-01 2.36241877e-01 6.21686578e-02 2.82407433e-01 3.66708525e-02 -9.42556500e-01 8.08882356e-01 1.44566178e+00 2.48733182e-02 -1.88232467e-01 -3.74628484e-01 -7.53394365e-01 1.03308952e+00 9.88994002e-01 -9.31131914e-02 -5.40282905e-01 -9.67325985e-01 4.51938868e-01 -8.27577040e-02 5.73004782e-01 -1.48585844e+00 4.88621175e-01 -2.93007880e-01 4.16081965e-01 -8.19353685e-02 7.11932540e-01 -8.09944868e-01 -1.44198351e-02 3.76860172e-01 -4.79621172e-01 3.02118838e-01 3.78559440e-01 2.77966380e-01 7.26245940e-02 -2.55438060e-01 2.90082425e-01 -5.16006231e-01 -1.31290591e+00 -6.08830675e-02 -7.71789432e-01 1.10458352e-01 1.32239175e+00 -5.32747507e-01 -5.90074241e-01 -6.70138001e-01 -6.65283859e-01 6.56915128e-01 9.15929139e-01 6.75607800e-01 5.52658319e-01 -1.10878944e+00 -3.41354907e-01 1.18819186e-02 1.00860819e-01 9.04567689e-02 3.86876650e-02 5.87475717e-01 -7.14254439e-01 2.77732581e-01 -6.25147462e-01 -2.52818167e-01 -9.43661034e-01 4.29273486e-01 6.32246912e-01 4.11626995e-01 -7.69936025e-01 9.12601471e-01 9.99628901e-02 -8.94932747e-01 4.00246680e-01 -8.92047361e-02 -1.53462768e-01 -4.09946501e-01 4.20324296e-01 5.14354229e-01 -3.92631710e-01 -5.41193664e-01 -3.90197068e-01 2.29255289e-01 1.50670797e-01 -3.30996603e-01 1.57343042e+00 -1.30213186e-01 7.32429475e-02 5.85886240e-01 7.51960337e-01 -1.31871670e-01 -1.52634919e+00 1.70984387e-01 -3.36919218e-01 -6.56760260e-02 -2.20893454e-02 -1.07383525e+00 -5.37828863e-01 7.12242782e-01 3.82185251e-01 1.34147540e-01 7.05840945e-01 7.52880936e-03 7.14101911e-01 8.57227623e-01 8.11387539e-01 -1.21479774e+00 4.61303562e-01 8.76716733e-01 1.04843009e+00 -9.96681929e-01 -1.85262114e-01 3.25192451e-01 -6.47003770e-01 8.86481464e-01 9.52489316e-01 -1.75292522e-01 4.97491956e-01 3.58140439e-01 2.58402169e-01 -3.53688329e-01 -8.03072035e-01 -3.77455264e-01 -3.34819496e-01 1.13055050e+00 5.54964066e-01 -7.42575079e-02 2.84641325e-01 1.10797323e-01 -5.74491143e-01 1.37228951e-01 4.65467840e-01 1.47701216e+00 -7.30356395e-01 -8.14582765e-01 -1.30965158e-01 -1.06424764e-01 6.89855888e-02 1.49800897e-01 -4.51346666e-01 1.06192052e+00 1.47471100e-01 1.04535639e+00 -1.87515505e-02 -3.57888252e-01 1.34399891e-01 1.49287522e-01 8.77776861e-01 -5.13437986e-01 -6.16854072e-01 -5.53873658e-01 2.77863383e-01 -8.02968740e-01 -4.51889485e-01 -5.47815681e-01 -1.71207595e+00 -7.24160314e-01 6.36799186e-02 2.17827380e-01 9.07452404e-01 9.56630886e-01 4.44233418e-01 5.59465945e-01 9.64964628e-02 -1.33510637e+00 -2.53999412e-01 -7.56958008e-01 -2.56756514e-01 -8.04021284e-02 4.19108927e-01 -9.63031828e-01 -2.13699728e-01 -1.64927542e-01]
[4.351856231689453, 0.932873547077179]
02db9e3d-9a9b-44a1-83ed-a4c9e26d454a
ide-3d-interactive-disentangled-editing-for
2205.15517
null
https://arxiv.org/abs/2205.15517v1
https://arxiv.org/pdf/2205.15517v1.pdf
IDE-3D: Interactive Disentangled Editing for High-Resolution 3D-aware Portrait Synthesis
Existing 3D-aware facial generation methods face a dilemma in quality versus editability: they either generate editable results in low resolution or high-quality ones with no editing flexibility. In this work, we propose a new approach that brings the best of both worlds together. Our system consists of three major components: (1) a 3D-semantics-aware generative model that produces view-consistent, disentangled face images and semantic masks; (2) a hybrid GAN inversion approach that initialize the latent codes from the semantic and texture encoder, and further optimized them for faithful reconstruction; and (3) a canonical editor that enables efficient manipulation of semantic masks in canonical view and product high-quality editing results. Our approach is competent for many applications, e.g. free-view face drawing, editing, and style control. Both quantitative and qualitative results show that our method reaches the state-of-the-art in terms of photorealism, faithfulness, and efficiency.
['Yebin Liu', 'Jue Wang', 'Lizhen Wang', 'Yichun Shi', 'Xuan Wang', 'Jingxiang Sun']
2022-05-31
null
null
null
null
['3d-aware-image-synthesis']
['computer-vision']
[ 2.92669475e-01 4.37583625e-01 3.36369336e-01 -2.73426563e-01 -4.32973564e-01 -5.32862723e-01 7.88858175e-01 -6.45306408e-01 2.92391121e-01 6.12647116e-01 3.29401463e-01 1.58617064e-01 8.76732171e-02 -1.01359665e+00 -5.73120713e-01 -5.26769698e-01 5.90476096e-01 5.66975176e-01 -1.28062321e-02 -4.24787760e-01 3.35669741e-02 7.93173671e-01 -1.65018475e+00 1.59019560e-01 9.14509535e-01 1.04107654e+00 -4.20804769e-02 5.63679099e-01 -1.27260357e-01 6.75124049e-01 -1.52408734e-01 -9.38701630e-01 3.55612248e-01 -7.75001824e-01 -5.02106071e-01 3.64885867e-01 4.60356414e-01 -4.02124554e-01 4.84458879e-02 9.24398363e-01 4.26366627e-01 -3.22153598e-01 5.26837707e-01 -1.09222448e+00 -1.02676690e+00 7.10471496e-02 -8.62491906e-01 -7.14759350e-01 4.15607363e-01 3.25586021e-01 6.48795366e-01 -9.21565294e-01 1.03022802e+00 1.43484318e+00 4.38809842e-01 8.27749789e-01 -1.59517550e+00 -5.31926751e-01 -6.30875155e-02 -3.81744146e-01 -1.26596785e+00 -7.94539332e-01 9.99398291e-01 -6.84625924e-01 5.70538759e-01 3.84140551e-01 9.74501967e-01 1.18499815e+00 1.97089419e-01 1.81429788e-01 1.34217870e+00 -5.06329000e-01 2.24776864e-01 2.40920395e-01 -7.24576592e-01 9.52188730e-01 6.01362959e-02 4.01352763e-01 -8.29586804e-01 4.95946109e-02 1.26868963e+00 -2.00569227e-01 -2.25596383e-01 -6.67464674e-01 -1.14428210e+00 7.59787142e-01 7.14874314e-03 1.34416297e-02 -3.92410249e-01 1.71958253e-01 -1.38645843e-01 8.74085799e-02 7.14654028e-01 5.07912934e-01 5.77728637e-03 -1.34112760e-02 -1.14850497e+00 2.42288440e-01 6.49973392e-01 1.05457926e+00 7.67477214e-01 2.97138691e-01 -1.88284382e-01 7.59163797e-01 4.20144618e-01 7.37399697e-01 1.64396297e-02 -1.18351567e+00 2.57680565e-02 5.47974169e-01 5.32455817e-02 -1.07397020e+00 4.14797291e-02 -7.66579434e-02 -7.66745150e-01 8.57049108e-01 -3.41184437e-02 9.34710279e-02 -9.79337096e-01 1.92215514e+00 3.61433387e-01 -2.67939586e-02 -1.69355333e-01 8.83088231e-01 7.68430114e-01 4.31270212e-01 -3.11825991e-01 -8.10713992e-02 1.41649806e+00 -8.82825613e-01 -1.04829562e+00 -1.24854088e-01 -2.04383507e-01 -1.02307391e+00 1.16086531e+00 2.47857928e-01 -1.69205165e+00 -4.35447097e-01 -1.05941796e+00 -3.81921530e-01 -4.50482182e-02 3.24968427e-01 5.96723974e-01 7.95722604e-01 -1.30017483e+00 4.85156715e-01 -6.60185874e-01 -1.33183405e-01 5.82983732e-01 1.62499651e-01 -6.33661449e-01 2.83081681e-02 -6.74917996e-01 8.83466721e-01 -3.04712430e-02 -1.21259736e-02 -7.62970448e-01 -8.08610320e-01 -7.85673499e-01 -5.54361120e-02 3.08059037e-01 -1.33341646e+00 9.22895670e-01 -1.16972005e+00 -2.30336332e+00 1.38934851e+00 -4.83515710e-02 2.05809548e-01 8.65924239e-01 -2.06703171e-01 -8.01807195e-02 -4.91668172e-02 -8.54650885e-02 8.82621527e-01 1.16864157e+00 -1.62557006e+00 -1.94755256e-01 -4.47062999e-01 -4.76104021e-02 1.64753258e-01 -5.18574156e-02 -1.31671265e-01 -5.91037869e-01 -7.93746054e-01 1.69721749e-02 -8.03402483e-01 1.29294038e-01 5.46348572e-01 -4.47813481e-01 4.81530875e-01 6.81884468e-01 -7.26471126e-01 8.77915800e-01 -2.11814570e+00 7.59509265e-01 1.49933085e-01 5.10511160e-01 1.60821587e-01 -6.06590062e-02 4.85652953e-01 -3.94572467e-02 1.70504004e-01 -1.16025083e-01 -8.35179567e-01 6.59375340e-02 3.53525057e-02 -3.05571973e-01 2.24133670e-01 2.30349466e-01 1.11321652e+00 -7.04924762e-01 -5.16533434e-01 3.65406722e-01 9.16902602e-01 -7.41432965e-01 4.82067466e-01 -3.03318352e-01 6.61120296e-01 -1.68460041e-01 6.35265708e-01 8.11934888e-01 -5.28253354e-02 3.16543043e-01 -4.56524014e-01 -2.64723182e-01 -2.36225128e-01 -1.22630513e+00 2.05609226e+00 -4.47409898e-01 4.26683605e-01 4.14514393e-01 -2.83215314e-01 1.05235946e+00 1.92932546e-01 2.51915276e-01 -5.63968420e-01 1.11463606e-01 2.00447202e-01 -5.29987693e-01 -3.08960021e-01 6.75101340e-01 -5.31293154e-01 2.53801405e-01 5.18984377e-01 1.69406354e-01 -7.47630894e-01 -1.11280173e-01 1.60857245e-01 5.45830905e-01 6.87589049e-01 1.21237218e-01 -2.69387811e-01 3.29872429e-01 -5.63298166e-01 3.89030069e-01 1.34093270e-01 4.82856899e-01 1.06155515e+00 7.37300396e-01 -3.85017991e-01 -1.32724178e+00 -1.29992151e+00 2.16420040e-01 4.93998766e-01 4.21445183e-02 -5.29801548e-01 -1.01906371e+00 -1.94100782e-01 -1.03632428e-01 7.16439307e-01 -8.43102813e-01 -1.71413779e-01 -3.26140314e-01 -1.55635193e-01 3.34076613e-01 3.58280629e-01 4.08796906e-01 -8.65584195e-01 -6.74275517e-01 -2.53672153e-01 -9.14063230e-02 -1.00149775e+00 -5.84251046e-01 -4.88094449e-01 -7.37783730e-01 -9.30783987e-01 -5.57444513e-01 -4.05076861e-01 8.97898734e-01 1.89428460e-02 1.19314802e+00 7.72027820e-02 -2.25471422e-01 4.05051261e-01 -1.23317093e-01 -3.54760438e-01 -6.87804461e-01 -2.39265725e-01 -2.06290901e-01 4.16953444e-01 -4.57848281e-01 -9.25985634e-01 -6.27108037e-01 2.60468274e-01 -9.81118083e-01 7.20650017e-01 3.77961755e-01 7.12077260e-01 6.16142869e-01 -4.83728677e-01 1.72896653e-01 -9.31776583e-01 5.76838911e-01 2.63394892e-01 -8.42667818e-01 3.71743321e-01 -6.14477217e-01 1.00142673e-01 5.65734625e-01 -7.94478729e-02 -1.41625750e+00 7.66438022e-02 -1.84306473e-01 -5.77632308e-01 9.84852612e-02 -1.47009566e-01 -4.40365434e-01 -2.48022035e-01 6.43995523e-01 1.20017044e-01 5.30428410e-01 -5.14242113e-01 8.41965854e-01 3.01973760e-01 5.64039588e-01 -5.80652893e-01 1.05353343e+00 8.13372016e-01 1.13366775e-01 -7.51736283e-01 -4.87077892e-01 4.99895245e-01 -7.80310988e-01 -4.16672289e-01 8.93311858e-01 -8.74975562e-01 -6.59096658e-01 6.98996305e-01 -1.09874332e+00 -3.08070958e-01 -8.20606053e-01 -2.65090708e-02 -7.88364470e-01 2.08900988e-01 -5.80081880e-01 -6.34571612e-01 -2.88046330e-01 -1.23884261e+00 1.60845518e+00 2.78708309e-01 -1.20948888e-01 -7.96468198e-01 1.26270697e-01 3.81258130e-01 6.45420969e-01 6.36368513e-01 8.25598001e-01 4.90489542e-01 -9.28167284e-01 7.80397132e-02 -2.45969966e-01 3.22204679e-01 2.38817215e-01 4.57971305e-01 -1.13054454e+00 -1.92847371e-01 -1.67242050e-01 -3.59628081e-01 5.25109231e-01 2.53857523e-01 8.56789172e-01 -2.94505358e-01 -1.51442841e-01 9.58331764e-01 1.37239063e+00 -5.93914045e-03 9.91851985e-01 -1.82519048e-01 7.65965044e-01 6.75662696e-01 2.10800424e-01 4.29797888e-01 2.66480803e-01 1.07783604e+00 4.30731595e-01 -3.60167921e-01 -5.18359900e-01 -6.53411627e-01 1.69660226e-01 8.14555049e-01 -4.81133431e-01 -1.42908081e-01 -3.79912019e-01 1.23773918e-01 -1.69101441e+00 -1.05033255e+00 2.52419442e-01 2.06319094e+00 7.68257737e-01 -2.71915793e-01 -1.59535501e-02 -1.22796439e-01 4.96213913e-01 2.32566133e-01 -3.30913991e-01 -5.26506960e-01 6.37775520e-03 4.78293568e-01 -2.72993855e-02 6.09614193e-01 -6.49456799e-01 1.00549185e+00 6.31542587e+00 6.98386669e-01 -1.20657754e+00 2.17127815e-01 6.35773778e-01 -2.68668771e-01 -9.65956867e-01 6.13477603e-02 -4.09192771e-01 3.59388083e-01 3.33029389e-01 2.29505426e-03 6.30628407e-01 6.21831119e-01 1.37093484e-01 2.80303769e-02 -9.02705669e-01 1.18745244e+00 3.95549059e-01 -1.77809966e+00 3.40854526e-01 3.15702409e-01 8.93229663e-01 -7.28334785e-01 1.76611140e-01 -4.28067118e-01 2.04986840e-01 -1.21759081e+00 1.27706265e+00 1.02184808e+00 1.55823588e+00 -6.66117013e-01 2.08419040e-01 5.45369424e-02 -8.65113616e-01 4.10518289e-01 6.24949113e-03 3.31351012e-01 4.74910498e-01 7.41123497e-01 -1.33308455e-01 8.17863941e-01 4.75251496e-01 6.51680768e-01 -3.08666438e-01 2.35208049e-01 -5.48790276e-01 -1.64706092e-02 -1.72448307e-01 3.20489436e-01 -3.26902151e-01 -7.31576443e-01 4.38635021e-01 7.29784727e-01 4.20917600e-01 1.82255402e-01 -2.58681506e-01 1.44629848e+00 -9.10208821e-02 -4.52841744e-02 -7.29292274e-01 -9.82167944e-02 4.07259911e-01 1.39320600e+00 -8.04837167e-01 2.02560946e-02 -9.02373493e-02 1.43562162e+00 3.90758127e-01 1.17625102e-01 -9.19187784e-01 3.45037458e-03 7.34490216e-01 2.41153598e-01 3.32120866e-01 -2.30488822e-01 -4.37756926e-01 -1.28376985e+00 1.15173914e-01 -8.47112298e-01 -2.53253818e-01 -1.20323312e+00 -1.05533707e+00 8.40066433e-01 -2.27487087e-01 -9.92889106e-01 -2.78938264e-01 -5.06811440e-01 -3.75384301e-01 9.01187181e-01 -1.30717731e+00 -1.70830321e+00 -5.69685042e-01 3.80451620e-01 2.10364193e-01 -1.21598870e-01 1.08258426e+00 2.74619341e-01 -3.03349733e-01 5.13650477e-01 -5.77285402e-02 -1.93730265e-01 5.86426497e-01 -1.00483477e+00 5.10489643e-01 8.09727311e-01 1.10764220e-01 4.70854610e-01 4.18569565e-01 -5.10114074e-01 -1.70999873e+00 -7.96682656e-01 7.71375477e-01 -5.62217593e-01 1.33451344e-02 -5.21754801e-01 -3.79579037e-01 5.75397074e-01 3.12468439e-01 -1.71805188e-01 4.71388787e-01 -1.34371325e-01 -3.94009769e-01 -3.01052392e-01 -1.30658937e+00 8.34574223e-01 1.39244616e+00 -5.98505616e-01 -1.92604527e-01 1.18533513e-02 5.48214138e-01 -7.07370520e-01 -7.83055127e-01 1.62776291e-01 9.92863774e-01 -1.59146821e+00 8.95331740e-01 -2.22185358e-01 8.58547926e-01 -3.33962560e-01 -5.47944978e-02 -1.43645430e+00 -3.66674274e-01 -9.87415254e-01 1.16358377e-01 1.46493256e+00 1.38214409e-01 -5.66426992e-01 5.33350170e-01 4.60856557e-01 -1.26745507e-01 -8.01519215e-01 -7.33819783e-01 -4.40025091e-01 -2.90413767e-01 -9.68724266e-02 8.88169944e-01 8.30847919e-01 -4.28258598e-01 3.77516925e-01 -6.64955437e-01 -2.76300907e-01 5.82798481e-01 4.24374729e-01 9.38272178e-01 -1.11575484e+00 -2.36485556e-01 -4.55923945e-01 -2.16416478e-01 -7.32759535e-01 1.54514192e-02 -7.68874943e-01 -1.65574297e-01 -1.38617218e+00 2.28988037e-01 -2.71582156e-01 6.93132699e-01 3.54581147e-01 2.75153399e-01 4.32830662e-01 3.36708486e-01 3.78553756e-02 -6.11551628e-02 7.94391692e-01 1.53426087e+00 3.17427993e-01 -1.30918220e-01 -5.10308444e-01 -1.05999649e+00 6.92875206e-01 3.51170033e-01 -1.52645707e-01 -5.95632911e-01 -5.61240256e-01 3.96199048e-01 1.23196065e-01 5.79703391e-01 -7.97142565e-01 -2.04273134e-01 -2.30819970e-01 4.11517918e-01 -9.78425592e-02 6.25505149e-01 -7.56135106e-01 9.10479903e-01 9.32178795e-02 -1.29655600e-01 6.58948645e-02 -2.51228921e-02 3.91946405e-01 -6.32573962e-02 1.11413114e-01 1.16729903e+00 -2.50258893e-01 -1.55712619e-01 3.89141381e-01 1.15669876e-01 -3.18577439e-02 8.97229910e-01 -5.30840516e-01 -3.43632966e-01 -5.95717490e-01 -5.68212569e-01 -3.71935427e-01 1.11588490e+00 4.89666522e-01 6.71545267e-01 -1.58957982e+00 -8.22307348e-01 8.62218022e-01 -9.84116346e-02 -8.89401212e-02 3.34334016e-01 5.44045091e-01 -7.82975554e-01 5.94951548e-02 -4.09466296e-01 -5.21847904e-01 -1.20009208e+00 1.36600897e-01 4.06804204e-01 -1.33006275e-01 -5.67941189e-01 8.05818856e-01 3.31564397e-01 -4.17375475e-01 -1.75021216e-01 3.84509563e-03 1.82457164e-01 5.36981970e-02 4.01563108e-01 2.48734698e-01 1.26222111e-02 -7.86910713e-01 -1.31141946e-01 1.05766678e+00 3.72344047e-01 -4.82239902e-01 1.40116894e+00 -7.70576671e-02 -3.68353575e-01 2.18428731e-01 8.38727951e-01 4.57965404e-01 -1.53712225e+00 2.42211640e-01 -7.24293232e-01 -9.72579479e-01 -1.20377149e-02 -8.94541323e-01 -1.41312802e+00 7.91902184e-01 4.49228823e-01 -4.95755812e-03 1.27552831e+00 -3.27948891e-02 6.56182706e-01 -4.16926354e-01 5.04430592e-01 -9.17444706e-01 2.45505676e-01 1.71014726e-01 1.25866008e+00 -6.65793657e-01 6.90450445e-02 -6.82393491e-01 -6.64348006e-01 9.93927002e-01 4.37607765e-01 -7.46581480e-02 5.57818055e-01 4.68606263e-01 -3.22692990e-02 -4.40956652e-01 -7.46556878e-01 7.20416382e-02 5.24796665e-01 6.85021996e-01 4.12320644e-01 6.11915104e-02 -2.15978608e-01 3.51340115e-01 -3.83639932e-01 1.87802434e-01 3.18654984e-01 6.06506348e-01 9.51865688e-02 -1.25765848e+00 -2.41553396e-01 1.11036152e-01 -8.76989588e-02 6.79154918e-02 -5.55404603e-01 6.91578507e-01 2.45037138e-01 6.39249206e-01 2.90888101e-02 -4.43280727e-01 6.14600539e-01 1.30833909e-01 9.49105084e-01 -4.52859700e-01 -4.06355500e-01 1.28586918e-01 7.19773537e-03 -9.73314822e-01 -4.59279627e-01 -4.54200059e-01 -6.50351048e-01 -6.81361854e-01 -2.48296827e-01 -2.07499236e-01 6.40760601e-01 6.23541474e-01 8.60710919e-01 3.66590053e-01 7.18804777e-01 -1.07698667e+00 -2.30162010e-01 -6.01999223e-01 -7.31261015e-01 5.16272426e-01 1.26285762e-01 -6.46366894e-01 -1.66457951e-01 3.61404687e-01]
[12.553464889526367, -0.4049391746520996]
25986cab-241b-4643-ba89-4e401192be67
infoseg-unsupervised-semantic-image
2110.03477
null
https://arxiv.org/abs/2110.03477v1
https://arxiv.org/pdf/2110.03477v1.pdf
InfoSeg: Unsupervised Semantic Image Segmentation with Mutual Information Maximization
We propose a novel method for unsupervised semantic image segmentation based on mutual information maximization between local and global high-level image features. The core idea of our work is to leverage recent progress in self-supervised image representation learning. Representation learning methods compute a single high-level feature capturing an entire image. In contrast, we compute multiple high-level features, each capturing image segments of one particular semantic class. To this end, we propose a novel two-step learning procedure comprising a segmentation and a mutual information maximization step. In the first step, we segment images based on local and global features. In the second step, we maximize the mutual information between local features and high-level features of their respective class. For training, we provide solely unlabeled images and start from random network initialization. For quantitative and qualitative evaluation, we use established benchmarks, and COCO-Persons, whereby we introduce the latter in this paper as a challenging novel benchmark. InfoSeg significantly outperforms the current state-of-the-art, e.g., we achieve a relative increase of 26% in the Pixel Accuracy metric on the COCO-Stuff dataset.
['Patrick Knöbelreiter', 'Robert Harb']
2021-10-07
null
null
null
null
['unsupervised-semantic-segmentation']
['computer-vision']
[ 6.83538973e-01 3.32877040e-01 -3.79499286e-01 -5.23854554e-01 -1.15531671e+00 -4.68890041e-01 5.29860079e-01 4.17036116e-01 -6.86910212e-01 4.02766138e-01 -5.84580712e-02 1.34316534e-01 -8.69110972e-03 -8.26158822e-01 -6.76129878e-01 -7.79515386e-01 1.42927289e-01 4.95894909e-01 1.60944924e-01 3.31630975e-01 2.11965546e-01 2.85393625e-01 -1.54763448e+00 3.71290714e-01 8.02149475e-01 1.24041462e+00 4.25628543e-01 3.55458766e-01 -9.00727585e-02 8.99321198e-01 -2.17107430e-01 -1.69526171e-02 7.71656027e-03 -5.45937181e-01 -1.31426334e+00 6.63089216e-01 3.16106349e-01 8.86568651e-02 -1.00586616e-01 1.16587198e+00 2.28953749e-01 1.66297793e-01 9.63582993e-01 -1.04032362e+00 -2.68236548e-01 4.63755608e-01 -7.00884640e-01 -1.22242190e-01 4.08152454e-02 3.37732993e-02 1.25217915e+00 -7.32156694e-01 7.44708478e-01 8.37329388e-01 5.22050917e-01 3.68995130e-01 -1.43548274e+00 -2.89639801e-01 1.41215488e-01 7.77258202e-02 -1.43374276e+00 -2.87875473e-01 8.90672624e-01 -6.21567726e-01 6.55817211e-01 3.58171910e-02 4.17570025e-01 4.80690390e-01 -2.63824224e-01 1.19131017e+00 1.29325950e+00 -5.18853664e-01 2.99303591e-01 5.61051071e-02 3.35877538e-01 9.44459796e-01 -1.66965351e-01 -1.00234754e-01 -2.19578132e-01 2.61861920e-01 6.57009602e-01 8.16053674e-02 1.00943935e-03 -6.69375122e-01 -1.20276678e+00 9.06784236e-01 7.64007986e-01 5.35652995e-01 -3.55112284e-01 1.58313602e-01 5.26778679e-03 4.72280644e-02 4.97071862e-01 2.10001528e-01 -3.56037647e-01 1.39792994e-01 -1.15053630e+00 -6.25192299e-02 6.77267373e-01 6.06566727e-01 1.38319516e+00 -4.54306662e-01 -1.80994809e-01 9.30952847e-01 4.36953872e-01 1.47033423e-01 4.80427027e-01 -1.04765010e+00 6.25751689e-02 7.61000931e-01 -1.77574247e-01 -8.45096469e-01 -3.65819842e-01 -6.26905918e-01 -8.36430430e-01 1.48834690e-01 3.92359912e-01 -1.15106747e-01 -1.28464174e+00 1.71205819e+00 2.38103777e-01 2.13430613e-01 1.12466179e-01 6.96233213e-01 8.93063903e-01 4.96998936e-01 1.33905545e-01 -1.69073090e-01 1.26009738e+00 -1.29584777e+00 -4.79127645e-01 -3.05582613e-01 6.08066797e-01 -7.08918393e-01 6.38431966e-01 6.21045902e-02 -1.01164389e+00 -5.40006578e-01 -9.09539998e-01 1.66781053e-01 -4.67812389e-01 2.00376928e-01 6.55821562e-01 4.10533488e-01 -1.07304013e+00 7.12862551e-01 -9.09248173e-01 -2.91704714e-01 7.46896386e-01 2.43275389e-01 -4.57780927e-01 -1.72416270e-01 -7.29812503e-01 4.42347974e-01 5.00465930e-01 -2.75437266e-01 -8.79616320e-01 -4.55915987e-01 -1.03659546e+00 -4.80044223e-02 3.12820077e-01 -5.79447567e-01 1.05712950e+00 -1.14061105e+00 -1.34451842e+00 1.42265046e+00 -1.69010803e-01 -5.08722842e-01 3.15182835e-01 -1.06336392e-01 1.90800831e-01 4.94493306e-01 2.93254226e-01 1.19283473e+00 7.66467333e-01 -1.74020672e+00 -5.77073753e-01 -3.87893349e-01 -9.19869170e-02 2.61653125e-01 -1.59126073e-01 -1.96783423e-01 -7.64866412e-01 -5.46157420e-01 3.59277874e-01 -8.04269135e-01 -5.01395345e-01 -8.09706822e-02 -5.38842142e-01 -8.68875608e-02 5.17342865e-01 -3.37975353e-01 8.11294019e-01 -2.15710759e+00 1.75010547e-01 3.14423472e-01 3.27468812e-01 1.40949385e-02 -1.15844727e-01 -3.32807153e-02 -8.94698873e-02 2.39673376e-01 -8.47543716e-01 -7.40557611e-01 -2.20130399e-01 2.60792434e-01 1.89225376e-01 5.17719090e-01 3.95292789e-01 1.01917839e+00 -1.03579521e+00 -7.69728661e-01 4.03412849e-01 4.14809078e-01 -5.81737995e-01 2.23890275e-01 -2.48503774e-01 6.02092445e-01 -4.34115201e-01 4.56737757e-01 6.30261242e-01 -6.29649997e-01 1.24524506e-02 -3.10814619e-01 -5.63643239e-02 -4.57681082e-02 -9.96343315e-01 2.06731796e+00 -4.49449897e-01 5.46456635e-01 -1.39782786e-01 -1.58749056e+00 7.49145627e-01 1.05998978e-01 9.46503162e-01 -6.32684529e-01 2.71042764e-01 7.33243972e-02 -4.42858487e-01 -2.15449616e-01 2.38573268e-01 3.90749574e-02 2.90820226e-02 4.77216184e-01 4.95716721e-01 -2.35977188e-01 2.48391122e-01 2.74091929e-01 9.76624548e-01 3.71212699e-02 3.67559522e-01 -2.97123373e-01 4.39415306e-01 -9.60332975e-02 4.43041325e-01 7.66215563e-01 -1.61751762e-01 1.17782581e+00 5.86450338e-01 -3.07995416e-02 -7.27097034e-01 -1.20885491e+00 -1.82460502e-01 8.77024651e-01 3.65066051e-01 -3.99659783e-01 -1.10877633e+00 -9.64980543e-01 -2.06411183e-01 3.80485266e-01 -8.77328813e-01 9.79814827e-02 -1.38366640e-01 -7.74697602e-01 1.18323542e-01 4.73739743e-01 8.51540625e-01 -1.17873919e+00 -5.89503407e-01 -6.21948345e-03 -3.34167957e-01 -1.20029259e+00 -4.36259001e-01 2.69245952e-01 -8.30678642e-01 -1.07650959e+00 -8.68925571e-01 -1.18567789e+00 9.95075524e-01 3.51117879e-01 1.27968121e+00 8.31536502e-02 -5.35308421e-01 4.67088908e-01 -3.46330404e-01 7.28397444e-02 1.81251727e-02 2.22082347e-01 -7.16999710e-01 3.44113827e-01 -2.46695932e-02 -4.31988448e-01 -7.73767710e-01 4.22827154e-01 -1.04025590e+00 2.05025747e-01 8.22715402e-01 8.85510802e-01 1.17088819e+00 -5.97135723e-02 4.11174685e-01 -1.03497469e+00 1.21987134e-01 -6.12792194e-01 -3.98605734e-01 2.47032791e-01 -4.21681970e-01 4.70272116e-02 1.17403522e-01 -6.39809370e-02 -9.69123125e-01 6.92713737e-01 -1.49092495e-01 -1.09729648e-01 -4.28056806e-01 6.89342320e-01 -1.95600674e-01 -2.21725013e-02 4.86253172e-01 3.37013006e-01 1.21091820e-01 -4.44284707e-01 6.54972792e-01 5.61895728e-01 6.67436063e-01 -5.67310512e-01 6.06373131e-01 5.64705491e-01 -2.28911519e-01 -8.58235359e-01 -1.31406069e+00 -8.96571219e-01 -8.93979251e-01 -2.35551447e-01 1.25966513e+00 -8.97218466e-01 -4.61576104e-01 7.37105012e-01 -8.93915176e-01 -5.75682878e-01 -5.06595433e-01 3.07608753e-01 -9.64780033e-01 3.22103590e-01 -3.79497886e-01 -4.89067048e-01 -1.28469989e-01 -1.24443769e+00 1.37397146e+00 4.42216694e-01 7.63555020e-02 -1.08752882e+00 9.15858522e-02 5.59492052e-01 2.13994682e-01 4.75505918e-01 4.18218762e-01 -5.39220333e-01 -5.67677319e-01 -3.03636435e-02 -6.53020322e-01 6.30643070e-01 2.90089160e-01 -3.08107734e-01 -9.37588513e-01 -1.66130990e-01 -1.79423317e-01 -6.19418263e-01 1.36486387e+00 4.57697421e-01 1.41290998e+00 -2.31225919e-02 -2.80236691e-01 6.81997120e-01 1.62079024e+00 -1.79994136e-01 6.44227266e-01 1.36102572e-01 7.10614502e-01 6.15793526e-01 6.16183460e-01 2.98618585e-01 4.74166453e-01 4.61771548e-01 4.32589054e-01 -4.91895169e-01 -2.47483954e-01 -1.84265032e-01 6.51816046e-03 6.39270842e-01 1.12939157e-01 6.70634955e-02 -7.92191267e-01 8.88302207e-01 -1.96521211e+00 -6.70632005e-01 2.07653686e-01 2.20557475e+00 9.19654310e-01 4.87164967e-02 1.33904025e-01 7.25301132e-02 6.67528093e-01 2.65281141e-01 -4.71379519e-01 3.27007622e-01 -1.07711576e-01 3.17323118e-01 4.72398251e-01 5.45057237e-01 -1.50429690e+00 1.20025980e+00 5.63844585e+00 9.09088135e-01 -9.41989958e-01 4.73307036e-02 1.12753081e+00 3.47346306e-01 -2.07539633e-01 -9.49973054e-03 -3.85987848e-01 2.31951535e-01 5.43187678e-01 1.11789793e-01 2.29084298e-01 7.97522068e-01 -1.97990611e-01 -2.65174150e-01 -8.89551699e-01 9.91501689e-01 1.13712877e-01 -1.41729832e+00 -9.82649177e-02 -9.84964985e-03 1.15841675e+00 3.06147933e-01 1.18709557e-01 -1.25053599e-02 3.58075291e-01 -1.10443616e+00 4.63518173e-01 5.91813862e-01 6.70867503e-01 -8.30937266e-01 6.87294781e-01 1.63651139e-01 -1.32479775e+00 3.27323586e-01 -1.03275090e-01 3.25274706e-01 8.47645327e-02 8.37867796e-01 -3.78458679e-01 5.55104375e-01 4.64952618e-01 1.02604914e+00 -5.82318246e-01 1.17526245e+00 -3.43868971e-01 7.27252603e-01 -2.93458104e-01 4.21941668e-01 4.81084883e-01 -1.59395561e-01 2.12748617e-01 1.38546729e+00 -9.03142542e-02 -9.91693959e-02 5.52650392e-01 9.55563486e-01 -4.10830736e-01 2.43178353e-01 -3.64433169e-01 -9.06243455e-03 9.10721794e-02 1.56472671e+00 -1.20980203e+00 -4.41822737e-01 -3.30263942e-01 1.19573665e+00 4.28261727e-01 3.64702582e-01 -5.57090402e-01 -3.72577637e-01 4.40738261e-01 -2.32844397e-01 3.68228555e-01 -6.87089041e-02 -4.26952004e-01 -1.11383998e+00 -1.51514634e-01 -5.37390709e-01 4.04474705e-01 -3.61210495e-01 -1.09002399e+00 5.62651634e-01 -1.45472020e-01 -1.02160800e+00 -3.54936361e-01 -4.08258379e-01 -5.19394934e-01 6.13636434e-01 -1.76064909e+00 -1.24451017e+00 -5.50891519e-01 6.01097167e-01 6.21986032e-01 1.26596093e-01 7.53923237e-01 6.02927729e-02 -5.38575947e-01 4.36503798e-01 1.99381039e-01 4.06353891e-01 3.83473933e-01 -1.50250697e+00 2.73258418e-01 6.24057293e-01 5.09061217e-01 3.80194813e-01 3.38575155e-01 -3.79445165e-01 -8.05017412e-01 -1.18717813e+00 7.50268102e-01 -4.38333564e-02 4.62322831e-01 -1.63164377e-01 -8.06996465e-01 6.00623667e-01 1.15249641e-01 5.12118638e-01 6.83982790e-01 -7.70529509e-02 -3.15356702e-01 1.35108158e-01 -1.24026239e+00 2.80254841e-01 8.64290178e-01 -5.53659081e-01 -3.93411666e-01 5.10104179e-01 5.75734138e-01 -5.88941984e-02 -1.04200411e+00 5.46180129e-01 4.35580403e-01 -8.65183294e-01 9.53163743e-01 -2.93021172e-01 5.08119941e-01 -3.46223652e-01 -2.34675005e-01 -1.22412002e+00 -9.71530452e-02 -6.01550996e-01 2.70581275e-01 1.24610448e+00 5.52449226e-01 -4.07589555e-01 1.01313496e+00 1.64824307e-01 2.94130351e-02 -9.26635265e-01 -5.74131429e-01 -6.44245684e-01 1.73807353e-01 -5.03783703e-01 9.99964997e-02 8.21302176e-01 -8.91845673e-03 3.74799311e-01 -1.18546322e-01 -3.19419764e-02 1.07030857e+00 3.99437487e-01 5.66997766e-01 -1.09783161e+00 -2.82607198e-01 -4.66322452e-01 -4.79795784e-01 -1.27541625e+00 2.93348432e-01 -1.03479254e+00 3.60028952e-01 -1.67016709e+00 6.93041086e-01 -3.38975847e-01 -6.09083354e-01 5.22673607e-01 -3.62505168e-01 5.57004452e-01 2.52723604e-01 2.15126097e-01 -1.04623604e+00 5.17635763e-01 1.13343060e+00 -3.31314355e-01 -1.94268137e-01 -7.25969113e-03 -6.68571234e-01 7.51706421e-01 9.01271164e-01 -4.97006565e-01 -2.99625635e-01 -2.51056612e-01 -1.85376570e-01 -1.74133837e-01 3.84844154e-01 -1.16126454e+00 2.04460487e-01 -2.71456894e-02 2.51978904e-01 -5.72686553e-01 1.00064665e-01 -5.72822630e-01 -3.21085453e-01 3.95159602e-01 -5.78352153e-01 -5.55069029e-01 -1.07263848e-01 5.17944157e-01 -5.01615524e-01 -3.47491056e-01 1.11742771e+00 -2.74082750e-01 -8.92805219e-01 3.33563358e-01 -1.67865738e-01 1.17812715e-01 9.87701833e-01 1.92330190e-04 -4.26127352e-02 -3.69353622e-01 -9.33400273e-01 2.41319343e-01 5.67115426e-01 1.91161200e-01 7.23605454e-01 -1.04056823e+00 -6.97233021e-01 1.05269440e-01 3.79970431e-01 2.22227216e-01 2.12293014e-01 8.34603965e-01 -3.36599022e-01 2.57244200e-01 -1.69309139e-01 -8.57198417e-01 -1.11175537e+00 3.01410258e-01 2.64592797e-01 -4.78775561e-01 -3.63367110e-01 8.57963979e-01 5.37521124e-01 -5.13715386e-01 1.06870867e-01 -1.91283152e-01 -4.95178431e-01 1.81872889e-01 3.53274733e-01 -1.24872848e-02 -1.12974741e-01 -9.76442814e-01 -2.54600942e-01 7.51778364e-01 -2.22082764e-01 -2.31780976e-01 1.30946481e+00 -1.93670481e-01 -1.50207058e-01 4.10655797e-01 1.81643808e+00 -3.98445308e-01 -1.43885231e+00 -5.26821494e-01 1.42005056e-01 -3.43384445e-01 3.27874482e-01 -6.93174660e-01 -1.56703019e+00 6.79076493e-01 8.26126218e-01 3.89705040e-02 1.21910238e+00 5.12165606e-01 5.68584919e-01 1.66261703e-01 1.58632413e-01 -1.06317413e+00 2.72547483e-01 4.07653540e-01 5.09823978e-01 -1.57283485e+00 -8.60113725e-02 -6.09877408e-01 -6.41403317e-01 8.55415702e-01 2.43817165e-01 -2.42341608e-01 7.94883013e-01 -1.31104300e-02 1.44182462e-02 -3.23577762e-01 -3.78141046e-01 -8.31203163e-01 4.94699270e-01 5.74406922e-01 5.51546216e-01 2.01869443e-01 -2.19704106e-01 2.93327063e-01 9.59587172e-02 -5.61975949e-02 3.98683967e-03 9.09746408e-01 -6.75824463e-01 -9.99284446e-01 1.07799910e-01 4.76468652e-01 -4.79474872e-01 -2.53052674e-02 -3.60087991e-01 6.11568511e-01 1.48860561e-02 1.00431025e+00 2.60101289e-01 -3.93155962e-01 -8.92863423e-02 -2.95615762e-01 5.12902141e-01 -6.60972774e-01 -2.78541744e-01 1.46626264e-01 -1.83370337e-01 -7.93884933e-01 -7.86150455e-01 -9.50413764e-01 -1.48763084e+00 4.43097323e-01 -1.97498590e-01 1.28090039e-01 8.26779723e-01 1.08492911e+00 5.70030622e-02 5.54514289e-01 7.94672430e-01 -1.03811491e+00 -1.12087369e-01 -7.47639954e-01 -4.56046283e-01 6.54093206e-01 2.07526967e-01 -5.63981771e-01 -3.56052965e-01 3.30977410e-01]
[9.616400718688965, 0.7456880211830139]
4c6aaa67-81b1-441b-a6e7-c8ba95e3ec19
neural-pitch-shifting-and-time-stretching
2110.02360
null
https://arxiv.org/abs/2110.02360v1
https://arxiv.org/pdf/2110.02360v1.pdf
Neural Pitch-Shifting and Time-Stretching with Controllable LPCNet
Modifying the pitch and timing of an audio signal are fundamental audio editing operations with applications in speech manipulation, audio-visual synchronization, and singing voice editing and synthesis. Thus far, methods for pitch-shifting and time-stretching that use digital signal processing (DSP) have been favored over deep learning approaches due to their speed and relatively higher quality. However, even existing DSP-based methods for pitch-shifting and time-stretching induce artifacts that degrade audio quality. In this paper, we propose Controllable LPCNet (CLPCNet), an improved LPCNet vocoder capable of pitch-shifting and time-stretching of speech. For objective evaluation, we show that CLPCNet performs pitch-shifting of speech on unseen datasets with high accuracy relative to prior neural methods. For subjective evaluation, we demonstrate that the quality and naturalness of pitch-shifting and time-stretching with CLPCNet on unseen datasets meets or exceeds competitive neural- or DSP-based approaches.
['Bryan Pardo', 'Juan-Pablo Caceres', 'Nicholas J. Bryan', 'Zeyu Jin', 'Max Morrison']
2021-10-05
null
null
null
null
['audio-visual-synchronization', 'audio-visual-synchronization']
['audio', 'computer-vision']
[ 2.63829499e-01 -2.31854454e-01 -4.48125824e-02 -5.15159443e-02 -7.71527946e-01 -5.90692818e-01 3.33046883e-01 1.40910484e-02 -3.14531744e-01 5.52459002e-01 2.31293753e-01 -4.11515757e-02 -3.36104222e-02 -2.04191759e-01 -5.72994292e-01 -6.77217603e-01 -2.07030937e-01 -1.83440700e-01 2.38023803e-01 -2.03668192e-01 5.85156819e-03 5.47015786e-01 -1.90986776e+00 1.60778880e-01 4.50500488e-01 9.44222331e-01 7.65729547e-02 9.85634565e-01 4.07907665e-01 2.01763764e-01 -1.12252975e+00 -1.74542800e-01 1.63448781e-01 -2.68756211e-01 -2.56764323e-01 -3.11708242e-01 7.68254161e-01 -3.71989399e-01 -5.84861040e-01 1.04888594e+00 1.11674929e+00 3.50501329e-01 3.55962574e-01 -1.19879997e+00 -3.20469379e-01 6.53976738e-01 -1.63910568e-01 3.35618377e-01 4.59845930e-01 1.23770311e-01 1.06583154e+00 -9.75296319e-01 3.66345674e-01 1.17243361e+00 1.08707261e+00 5.71864188e-01 -1.24843729e+00 -1.01440454e+00 -4.42124724e-01 2.58047402e-01 -1.38108242e+00 -7.60132849e-01 1.09171903e+00 -8.88747796e-02 1.20884073e+00 4.20352191e-01 8.49128544e-01 1.05664885e+00 2.42323298e-02 7.00014532e-01 4.63381767e-01 -5.89734256e-01 1.98513880e-01 -3.63587350e-01 -5.67379534e-01 1.04643352e-01 -3.57209861e-01 7.47180045e-01 -1.17694926e+00 1.25567421e-01 7.97651827e-01 -7.59465158e-01 -7.00609982e-01 2.32109874e-01 -1.33957946e+00 4.72441137e-01 1.43428385e-01 1.93570226e-01 -2.08787173e-01 5.16975880e-01 8.32104146e-01 4.96882737e-01 3.05953562e-01 8.38609993e-01 -4.79383677e-01 -6.03774309e-01 -1.43233478e+00 4.98694628e-01 7.35976219e-01 7.72982359e-01 4.76520583e-02 9.94280338e-01 -2.12896690e-01 9.20051575e-01 -6.47813678e-02 4.90420341e-01 8.27710211e-01 -1.22250235e+00 1.74126208e-01 -3.48498493e-01 -9.54142958e-02 -9.95878041e-01 -4.65688407e-01 -4.44401592e-01 -5.67850530e-01 3.18043113e-01 3.48164499e-01 -3.45947504e-01 -7.46493459e-01 1.89624465e+00 1.10056214e-01 3.70542109e-01 1.11773191e-02 9.74845290e-01 8.79213810e-01 1.04018533e+00 -1.26791686e-01 -4.45794165e-01 1.05149221e+00 -8.68601739e-01 -1.27051413e+00 1.65538386e-01 -1.03333563e-01 -1.02264249e+00 1.25466585e+00 8.75247002e-01 -1.35132623e+00 -9.73598659e-01 -1.30426395e+00 -2.91401207e-01 1.35260606e-02 2.59775788e-01 2.73451984e-01 8.27692926e-01 -1.16377902e+00 1.04579222e+00 -6.81605816e-01 1.72419310e-01 -9.04642567e-02 4.57845837e-01 -9.05759186e-02 8.26945782e-01 -1.44758725e+00 4.94197696e-01 3.53634059e-01 -2.07832649e-01 -7.99225092e-01 -1.32045734e+00 -7.02002943e-01 3.07947218e-01 1.40622512e-01 -2.57387251e-01 1.82667470e+00 -9.20500338e-01 -2.07792521e+00 5.69610953e-01 2.66950190e-01 -9.50886786e-01 3.10460478e-01 -3.70564342e-01 -9.56579208e-01 5.77912629e-01 -2.28944182e-01 1.21500576e+00 1.67108595e+00 -5.93364358e-01 -5.35194755e-01 2.73130566e-01 -5.31021655e-01 1.87484488e-01 -3.92355263e-01 -1.29255414e-01 -2.26371646e-01 -1.31746066e+00 1.06298797e-01 -8.42231393e-01 3.89219791e-01 3.70499879e-01 -2.95165390e-01 -7.28909075e-02 1.15528393e+00 -8.24317932e-01 1.42691875e+00 -2.64481354e+00 -7.77944177e-02 -3.00205410e-01 1.74516514e-02 7.30808735e-01 -2.47887865e-01 3.42155278e-01 -3.14909309e-01 -2.55192131e-01 2.04451978e-02 -2.98785478e-01 1.24809459e-01 -1.33306265e-01 -6.19104683e-01 3.33390206e-01 3.28859299e-01 6.10316277e-01 -7.46644437e-01 -2.73825288e-01 3.79274517e-01 9.34576571e-01 -8.86418045e-01 -2.68982679e-01 -2.94072062e-01 2.82241255e-01 6.10328496e-01 6.46047652e-01 3.24652165e-01 6.27020121e-01 -6.21356517e-02 -5.78962266e-01 -1.45512179e-01 6.05379403e-01 -1.06440246e+00 1.73099160e+00 -5.20407498e-01 1.36071682e+00 3.03526789e-01 -3.89450222e-01 9.86138642e-01 8.76602769e-01 3.97524446e-01 -6.92453265e-01 6.92954287e-02 5.26742458e-01 2.29233846e-01 -3.08714896e-01 7.45498180e-01 -4.24807012e-01 3.48612696e-01 4.43674177e-02 2.24986762e-01 -7.92202950e-01 -5.96679337e-02 -3.90218794e-01 7.14818001e-01 -2.19072610e-01 3.48511860e-02 -1.22843914e-01 2.63899922e-01 -5.83565772e-01 3.87666553e-01 1.65789634e-01 -5.27788460e-01 7.88384318e-01 2.79162407e-01 -6.45264387e-02 -1.25659060e+00 -1.27476621e+00 -1.97289065e-01 1.35865939e+00 -3.63538116e-01 -3.86470050e-01 -9.00609970e-01 2.84376651e-01 -8.24875087e-02 7.52547860e-01 8.34156126e-02 -2.61673898e-01 -7.14978218e-01 1.49947599e-01 1.18531966e+00 5.16725540e-01 2.88668901e-01 -1.24816406e+00 -5.84957838e-01 6.45777524e-01 -1.21067382e-01 -1.09294665e+00 -9.52368200e-01 3.15902203e-01 -7.39080489e-01 -4.10152078e-01 -8.53222013e-01 -9.98113990e-01 -1.79204624e-02 -8.92805588e-03 6.67532742e-01 -4.88274664e-01 -3.35909873e-01 2.45575368e-01 -1.66531324e-01 -6.94136977e-01 -3.96549970e-01 1.82376971e-04 7.01602042e-01 -2.28275448e-01 -4.50481176e-02 -1.08294773e+00 -5.46006739e-01 2.16449559e-01 -7.96150267e-01 -2.77346373e-01 2.41403326e-01 6.92483306e-01 5.47266185e-01 4.08528030e-01 1.05420613e+00 8.09733719e-02 1.05365849e+00 2.75414556e-01 -7.14635193e-01 -4.10219282e-01 -3.05443287e-01 -3.54733825e-01 7.44416773e-01 -9.80334580e-01 -7.71315575e-01 -1.75720397e-02 -4.34737384e-01 -1.03043032e+00 1.39758244e-01 3.15539837e-01 -5.54593541e-02 -6.33912235e-02 8.91346574e-01 1.26712590e-01 1.22314453e-01 -3.29148561e-01 2.67602414e-01 7.30598986e-01 1.31069326e+00 -3.25253487e-01 7.16443896e-01 2.17771009e-01 -5.19927293e-02 -1.33770716e+00 -4.55378056e-01 -2.43553504e-01 -1.93423092e-01 -2.15323865e-01 6.22106373e-01 -9.48108375e-01 -7.69495308e-01 4.74958390e-01 -1.16945899e+00 -3.21842432e-01 -4.61625725e-01 7.79344857e-01 -7.41917849e-01 2.97812939e-01 -6.78826869e-01 -6.37372434e-01 -7.25127161e-01 -1.04338896e+00 1.01105821e+00 1.51712626e-01 -6.43608689e-01 -7.23455250e-01 1.27429590e-01 8.46752599e-02 4.59330887e-01 1.95048586e-01 7.77933061e-01 -2.80012876e-01 3.24087366e-02 -2.37095952e-01 3.46707046e-01 6.92626953e-01 8.93396232e-03 3.69669437e-01 -1.49986041e+00 -4.74758267e-01 -2.69128289e-02 -2.71519393e-01 5.27997971e-01 7.51254857e-01 1.31395519e+00 -4.25922930e-01 2.18970060e-01 7.37575054e-01 7.57867515e-01 4.62155461e-01 6.10400558e-01 -5.43307886e-02 3.32991242e-01 6.17933571e-01 4.09927785e-01 4.99650717e-01 -4.38779801e-01 7.94236302e-01 1.16943337e-01 -1.28292501e-01 -6.86590791e-01 -4.86539364e-01 5.74467719e-01 1.20646977e+00 1.78936407e-01 -1.17942229e-01 -5.53173661e-01 7.03077197e-01 -1.07379782e+00 -1.08862555e+00 1.10494129e-01 2.16265488e+00 1.25574422e+00 3.35458338e-01 2.57147461e-01 9.87843812e-01 9.35449004e-01 2.54042298e-01 -7.43743837e-01 -8.46716523e-01 -2.01158039e-02 8.24595988e-01 1.96277678e-01 4.68173563e-01 -9.94657516e-01 7.64466286e-01 6.47745562e+00 1.11603856e+00 -1.78204072e+00 -1.43603250e-01 -1.29102185e-01 -6.57027602e-01 -2.95432117e-02 -6.61998272e-01 -5.79104900e-01 2.30150014e-01 1.09289432e+00 -4.01556522e-01 8.30297828e-01 8.80783260e-01 5.10126591e-01 4.66556430e-01 -1.43027377e+00 1.37857890e+00 -1.53288946e-01 -1.37625897e+00 -1.61308691e-01 -2.70555228e-01 7.27434099e-01 -2.45471299e-01 6.41080856e-01 3.28724861e-01 -6.30019903e-01 -1.10760570e+00 1.10117888e+00 -1.08106546e-01 1.35365081e+00 -9.29785848e-01 5.21699600e-02 -4.09006290e-02 -1.30063820e+00 -1.60439294e-02 -7.91848600e-02 -8.80896077e-02 8.68130103e-02 5.41312993e-01 -1.19213378e+00 -9.91451181e-03 6.30147696e-01 4.76691186e-01 1.10104375e-01 1.14261746e+00 -4.01110798e-01 9.35431302e-01 -3.28789413e-01 1.04309641e-01 1.70303434e-02 5.28764844e-01 9.40881491e-01 1.34607029e+00 4.27716345e-01 -5.58229983e-02 -2.72891670e-01 6.77541733e-01 -3.33108068e-01 -2.02605292e-01 -3.40606451e-01 -4.34077799e-01 1.03424799e+00 8.57623756e-01 -1.53709874e-01 2.23971568e-02 3.27680185e-02 6.23508334e-01 -4.56990391e-01 3.18025678e-01 -9.17510629e-01 -1.04217803e+00 8.67435396e-01 6.37840480e-03 4.54584688e-01 -3.29237789e-01 -5.14076389e-02 -5.56715548e-01 6.00611567e-02 -1.07551825e+00 -1.08373351e-01 -8.79555583e-01 -7.92628765e-01 5.12108684e-01 -2.82346576e-01 -1.61268687e+00 -4.50457513e-01 -5.42902768e-01 -6.42317712e-01 4.96329248e-01 -1.43444920e+00 -5.59460700e-01 7.62947947e-02 5.00795484e-01 9.96158123e-01 -2.37094805e-01 7.64322281e-01 4.43728507e-01 -7.94604719e-02 7.74941325e-01 -1.19145699e-01 -1.22066468e-01 8.23660254e-01 -1.09285569e+00 4.26396221e-01 6.70794249e-01 2.03619406e-01 2.62809515e-01 1.09018135e+00 -1.36951536e-01 -1.25696766e+00 -1.09116042e+00 7.94318855e-01 9.17093679e-02 5.51532269e-01 -2.93506056e-01 -1.00464308e+00 2.22845927e-01 3.75698924e-01 -3.10534388e-01 5.93935847e-01 -3.68004918e-01 -3.51918459e-01 -4.67474282e-01 -9.97578323e-01 6.53072476e-01 5.18140852e-01 -1.03353155e+00 -8.15337360e-01 6.29500970e-02 1.12636232e+00 -6.12051010e-01 -7.24473596e-01 3.73265386e-01 6.80203378e-01 -8.94166887e-01 1.09726846e+00 -2.95268148e-02 3.97588402e-01 -5.20623386e-01 -1.73905358e-01 -1.56372750e+00 -2.05725860e-02 -1.34769881e+00 -6.57359287e-02 1.02042162e+00 2.25642651e-01 -2.04344824e-01 4.51219887e-01 -5.03962822e-02 -5.46404064e-01 -1.11152224e-01 -1.17588437e+00 -1.07101905e+00 1.61035061e-02 -6.85320079e-01 4.50401425e-01 9.01476145e-01 3.37765127e-01 1.69875249e-01 -4.11103904e-01 2.56135970e-01 3.86314273e-01 -3.26523304e-01 4.77204531e-01 -9.38419282e-01 -4.38282371e-01 -6.28858626e-01 -3.40888441e-01 -8.52424979e-01 1.38010278e-01 -4.52392340e-01 3.23126853e-01 -8.31903219e-01 -9.09253955e-01 2.73557037e-01 -1.44826263e-01 2.82403767e-01 2.97225028e-01 2.60885656e-01 3.07559341e-01 -7.96498656e-02 -1.61263794e-02 6.54887497e-01 1.20915008e+00 -3.35512012e-01 -6.06523395e-01 6.00179844e-02 2.92746797e-02 7.88825691e-01 8.18452060e-01 -1.80691630e-01 -6.65472567e-01 -3.57341081e-01 4.14254852e-02 5.49410403e-01 2.16408551e-01 -1.67510426e+00 4.63824183e-01 3.43665659e-01 1.98429853e-01 -7.64850199e-01 7.88452923e-01 -5.05286098e-01 1.32874340e-01 7.13143229e-01 -6.51791811e-01 3.74671072e-02 7.06824183e-01 4.72793728e-01 -6.57571673e-01 2.48324405e-02 9.53406692e-01 2.74030328e-01 -5.70331216e-01 -3.16002383e-03 -6.53290272e-01 -2.90986598e-02 6.15728796e-01 -3.35205168e-01 -2.06561118e-01 -6.64980948e-01 -7.79386044e-01 -3.97250175e-01 -2.06261650e-01 3.27799588e-01 8.84938896e-01 -1.41363800e+00 -5.63714325e-01 3.78133208e-01 -2.55085826e-01 -1.83494553e-01 1.86870366e-01 6.54405355e-01 -7.54236102e-01 5.28798580e-01 -3.25352669e-01 -5.28205693e-01 -1.39124155e+00 3.66996914e-01 4.73080993e-01 4.64817464e-01 -5.79904437e-01 9.73626554e-01 -4.73002940e-02 -1.75882518e-01 9.04306352e-01 -7.19662309e-01 1.08480789e-01 1.48281142e-01 5.15900195e-01 5.86370230e-01 3.52054060e-01 -1.31227314e-01 -1.33677989e-01 4.22471285e-01 2.54094273e-01 -5.31052589e-01 9.98364151e-01 1.71472967e-01 2.29497865e-01 4.53866780e-01 1.20263445e+00 1.66309208e-01 -1.20583189e+00 1.60525620e-01 -3.95387143e-01 -2.77042568e-01 4.32047963e-01 -7.75879860e-01 -9.62348223e-01 1.20584691e+00 6.33163452e-01 2.33744845e-01 1.47657633e+00 -6.43730521e-01 1.10169792e+00 5.82346201e-01 8.18009302e-02 -1.38567781e+00 5.58091879e-01 5.12882590e-01 1.14144564e+00 -6.07887924e-01 -2.97061414e-01 -1.66406646e-01 -3.72653931e-01 1.34282923e+00 3.78244311e-01 3.03448662e-02 6.53623998e-01 4.38525230e-01 1.80999205e-01 3.06166768e-01 -9.34566975e-01 1.71758384e-01 2.51767874e-01 9.08237934e-01 4.29483205e-01 1.54134154e-01 -5.76123223e-02 1.69059619e-01 -1.02261579e+00 5.75678935e-03 4.33046937e-01 4.92374599e-01 -6.28413439e-01 -7.21529305e-01 -6.40284836e-01 2.65139760e-03 -4.99974877e-01 -3.09242427e-01 -2.42188886e-01 6.11893415e-01 8.54770169e-02 1.06101084e+00 2.78074741e-01 -5.10911524e-01 3.63426358e-01 -1.43686878e-02 5.19316077e-01 -2.25881249e-01 -8.74144971e-01 6.46040201e-01 2.13910654e-01 -3.77631068e-01 -3.71581949e-02 -4.74365979e-01 -1.39650702e+00 -2.51357764e-01 -3.96073788e-01 -1.16526373e-01 9.00761127e-01 4.04692024e-01 1.76804781e-01 8.85082364e-01 5.91154337e-01 -1.01609838e+00 -7.73714483e-01 -7.90950298e-01 -7.45953560e-01 1.97974503e-01 8.39067400e-01 -3.51270199e-01 -6.56773508e-01 3.25693339e-01]
[15.50790786743164, 5.973680019378662]
996308d8-a66a-461f-b6cd-7c9b6322628c
nonlinear-intensity-scale-and-rotation
2302.14239
null
https://arxiv.org/abs/2302.14239v1
https://arxiv.org/pdf/2302.14239v1.pdf
Nonlinear Intensity, Scale and Rotation Invariant Matching for Multimodal Images
We present an effective method for the matching of multimodal images. Accurate image matching is the basis of various applications, such as image registration and structure from motion. Conventional matching methods fail when handling noisy multimodal image pairs with severe scale change, rotation, and nonlinear intensity distortion (NID). Toward this need, we introduce an image pyramid strategy to tackle scale change. We put forward an accurate primary orientation estimation approach to reduce the effect of image rotation at any angle. We utilize multi-scale and multi-orientation image filtering results and a feature-to-template matching scheme to ensure effective and accurate matching under large NID. Integrating these improvements significantly increases noise, scale, rotation, and NID invariant capability. Our experimental results confirm the excellent ability to achieve high-quality matches across various multimodal images. The proposed method outperforms the mainstream multimodal image matching methods in qualitative and quantitative evaluations. Our implementation is available at https://github.com/Zhongli-Fan/NISR.
['Yuxuan Liu', 'Li Zhang', 'Zhongli Fan']
2023-02-28
null
null
null
null
['template-matching']
['computer-vision']
[ 1.28646001e-01 -5.87528050e-01 -1.14164636e-01 -4.86500144e-01 -9.33150887e-01 -5.87967336e-01 4.11709458e-01 -3.31184827e-02 -4.39659536e-01 1.28980428e-01 3.94742399e-01 2.49321684e-01 -8.44915137e-02 -5.77566385e-01 -4.00022179e-01 -6.09179676e-01 3.43629956e-01 3.29666249e-02 3.14104915e-01 -3.98612112e-01 5.45620859e-01 6.62203074e-01 -1.59960926e+00 2.32960925e-01 8.45445275e-01 7.86172926e-01 1.89396232e-01 6.04304612e-01 1.44788614e-02 1.12832993e-01 -2.90727139e-01 -4.60234523e-01 4.21716034e-01 -2.00020880e-01 -6.70411706e-01 1.42748058e-01 6.49341464e-01 -3.08115363e-01 -4.24460500e-01 1.31593335e+00 1.01145256e+00 1.76682636e-01 4.27963018e-01 -1.26400435e+00 -5.48248947e-01 -1.08208984e-01 -8.92753184e-01 3.93004157e-02 9.61532652e-01 3.27629559e-02 4.44788009e-01 -1.05379236e+00 7.99250543e-01 1.32547140e+00 7.53360331e-01 2.94908971e-01 -9.20514822e-01 -5.68822801e-01 -2.68863887e-01 2.99091905e-01 -1.47122669e+00 -5.40988684e-01 7.71164775e-01 -9.82209146e-02 4.40143496e-01 6.08441710e-01 3.82345915e-01 5.88054001e-01 1.64295584e-01 4.79279816e-01 1.13487160e+00 -5.94064951e-01 -2.14989796e-01 -4.57112640e-02 -1.72342718e-01 6.97201312e-01 3.14245410e-02 6.60291016e-02 -5.34880102e-01 -2.09474355e-01 8.07817042e-01 2.14889571e-01 -2.57451862e-01 -1.79023430e-01 -1.45038092e+00 3.89254063e-01 4.80058014e-01 3.96546036e-01 -1.98710725e-01 -4.98443395e-02 2.89372951e-01 2.38021567e-01 1.09878056e-01 5.53320814e-03 9.80802346e-03 -8.57586637e-02 -7.74986327e-01 1.20942809e-01 3.03048462e-01 9.91485655e-01 7.66949177e-01 -3.65206420e-01 -7.45400265e-02 1.07480538e+00 3.08167845e-01 9.34265733e-01 6.03356183e-01 -1.19490206e+00 3.54937673e-01 7.27787614e-01 1.76024735e-02 -1.48303235e+00 -4.52712148e-01 1.36817783e-01 -9.17488217e-01 3.97884399e-02 2.12253824e-01 2.35624477e-01 -9.04015779e-01 1.32831776e+00 5.93127251e-01 1.49991112e-02 -2.72136927e-01 1.12294197e+00 1.01616645e+00 4.10432875e-01 -4.22110371e-02 -6.29540607e-02 1.50335634e+00 -5.81325114e-01 -1.04893839e+00 -1.37465782e-02 2.46793672e-01 -1.51244068e+00 9.93279338e-01 1.16926823e-02 -1.31150448e+00 -7.49214053e-01 -8.27088654e-01 -2.17436433e-01 -3.41022700e-01 1.85605004e-01 4.07461554e-01 6.18986368e-01 -1.12920678e+00 1.73451573e-01 -5.52085936e-01 -5.01735449e-01 -3.78897935e-02 5.06079018e-01 -8.02945197e-01 -3.09583455e-01 -9.82342482e-01 8.94150138e-01 -1.07884608e-01 2.92355120e-01 -1.63844752e-03 -2.72422433e-01 -9.59657311e-01 -4.53740925e-01 -1.17580682e-01 -6.61382616e-01 9.70137775e-01 -8.06852996e-01 -1.27199638e+00 1.04239702e+00 -7.16045916e-01 2.79547989e-01 3.85113180e-01 9.88549069e-02 -3.73777211e-01 3.59658867e-01 9.52204615e-02 7.84040272e-01 7.99728334e-01 -1.30819249e+00 -3.77804786e-01 -5.20189047e-01 -3.89136076e-01 6.39305174e-01 -2.85318524e-01 3.68954837e-01 -8.10379863e-01 -6.61607325e-01 7.18078613e-01 -9.14785445e-01 -1.06668890e-01 2.07001213e-02 -2.87456554e-03 5.46794944e-02 7.60915995e-01 -9.01163995e-01 1.10455000e+00 -2.11058068e+00 4.88326373e-03 4.97265428e-01 1.62577890e-02 6.56114370e-02 -3.17065507e-01 4.19020832e-01 2.34775692e-02 -9.03918967e-02 1.23532966e-01 -3.66377532e-01 -9.93186086e-02 6.78038131e-03 1.27834335e-01 7.45256782e-01 -1.81042433e-01 9.61605012e-01 -5.66833436e-01 -8.10226262e-01 4.49646950e-01 7.11593688e-01 -2.95697987e-01 2.41086230e-01 5.36693990e-01 4.06117558e-01 -2.41209656e-01 1.13803864e+00 1.14608490e+00 3.77866030e-02 -2.38043014e-02 -8.92796576e-01 -6.35327399e-02 -4.36218739e-01 -1.49369073e+00 1.66948724e+00 -1.97526842e-01 4.87256199e-01 2.14223787e-01 -6.33890867e-01 1.05933750e+00 3.37374657e-01 6.39932454e-01 -1.02558935e+00 2.12375000e-01 3.78745258e-01 -3.39919031e-01 -6.83870435e-01 7.03172624e-01 9.95032191e-02 9.28897783e-02 1.39234035e-04 -3.05875540e-01 -2.39882603e-01 9.62700844e-02 6.43959567e-02 5.02301216e-01 -4.76127267e-02 1.78246975e-01 2.33463272e-02 8.02469313e-01 -2.19571993e-01 5.86331606e-01 4.39326882e-01 -4.29107785e-01 1.05236697e+00 -8.20842013e-02 -3.78163844e-01 -1.06856048e+00 -9.05869246e-01 -1.29511803e-01 8.20022941e-01 7.86053419e-01 -1.61122710e-01 -6.54310763e-01 -8.47370699e-02 -6.59050643e-02 -3.02160174e-01 -4.20023412e-01 1.28631681e-01 -6.23611569e-01 -6.60292745e-01 3.25467497e-01 2.62999862e-01 7.23408401e-01 -8.18641603e-01 6.11344352e-02 -1.53196398e-02 -6.10630214e-01 -1.02348459e+00 -1.03391552e+00 -6.26205564e-01 -7.74089217e-01 -1.04731905e+00 -8.83785963e-01 -1.22134376e+00 1.02083969e+00 6.62315428e-01 6.89075112e-01 3.36831152e-01 -5.24015546e-01 5.65630436e-01 -3.03797215e-01 9.56097022e-02 -2.49411285e-01 -1.38926029e-01 7.21659735e-02 6.62813634e-02 3.16388696e-01 -3.15106064e-01 -1.02572370e+00 1.00442660e+00 -1.18057656e+00 -5.58183007e-02 5.37785113e-01 7.50974476e-01 5.48423290e-01 -1.72899917e-01 2.89979547e-01 -1.75795667e-02 6.75980747e-01 1.16021097e-01 -4.84069198e-01 4.63237166e-01 -4.48255748e-01 -2.21815974e-01 -5.86952902e-02 -5.83443046e-01 -1.06491566e+00 1.89633012e-01 -1.79510415e-01 5.34839034e-02 -3.35000902e-01 2.08168268e-01 -1.02485210e-01 -8.70104313e-01 5.01873553e-01 2.18972802e-01 4.75325227e-01 -2.70266086e-01 2.86225617e-01 9.12943006e-01 6.28088415e-01 -4.31403756e-01 8.86816680e-01 7.53699064e-01 8.04408193e-02 -7.75929570e-01 -8.36541429e-02 -8.75215471e-01 -7.07725227e-01 -5.41303039e-01 6.16806626e-01 -8.71623218e-01 -9.25650895e-01 6.24951005e-01 -1.08352900e+00 3.01146686e-01 3.13184589e-01 6.01013005e-01 -2.15474203e-01 8.11464131e-01 -6.83063030e-01 -4.29825306e-01 -5.43707669e-01 -1.52026308e+00 1.22167659e+00 6.98164642e-01 -9.32219550e-02 -9.41778719e-01 1.00415319e-01 6.00895286e-01 6.68015361e-01 8.44959542e-02 2.50056356e-01 1.23466570e-02 -5.68997562e-01 -4.50286567e-01 -3.71087551e-01 5.21356065e-04 2.27801293e-01 1.20723397e-01 -5.98690152e-01 -3.08341056e-01 -2.03127980e-01 -1.51850944e-02 4.64421540e-01 4.38023359e-01 6.58858418e-01 9.82936174e-02 -2.54993796e-01 7.26761341e-01 1.39219081e+00 1.62651017e-01 8.82369161e-01 6.15958393e-01 5.20303190e-01 5.47540843e-01 8.59087229e-01 2.47502938e-01 4.30486530e-01 9.94103193e-01 1.45114198e-01 -5.48581302e-01 -3.36696863e-01 1.12294219e-01 2.20176876e-01 9.25086498e-01 -2.18598962e-01 2.52827406e-01 -7.77388990e-01 4.42102045e-01 -1.80561280e+00 -9.68287766e-01 -1.80777535e-01 2.12743974e+00 7.91518331e-01 -5.69744706e-01 -3.76210175e-02 -1.51181623e-01 9.51203763e-01 -1.54513091e-01 -7.84401745e-02 -1.97084725e-01 -4.14952666e-01 -2.32003301e-01 4.95672852e-01 7.53248215e-01 -1.02516723e+00 7.19417453e-01 6.49396706e+00 8.13450098e-01 -1.15748501e+00 -2.99897417e-02 4.20324177e-01 2.60741770e-01 -3.87376577e-01 -1.59732938e-01 -7.36228049e-01 2.67396748e-01 2.36019537e-01 9.08611491e-02 3.73591632e-01 4.07984316e-01 4.05358642e-01 -2.55480021e-01 -4.54586655e-01 1.31487668e+00 2.95488417e-01 -1.15356755e+00 -8.27830955e-02 -2.12870855e-02 7.12526560e-01 -2.44847909e-01 1.32051393e-01 -3.47171873e-01 -4.50049937e-01 -8.94611716e-01 2.63364881e-01 6.03041530e-01 7.33840108e-01 -5.59364378e-01 9.52594101e-01 -1.45200238e-01 -1.38803220e+00 3.84938776e-01 -3.09560150e-01 3.55501980e-01 1.11437000e-01 2.16014341e-01 -4.40841973e-01 7.10627079e-01 6.48915827e-01 4.47325468e-01 -7.73706555e-01 1.21687186e+00 2.32626036e-01 -1.63660586e-01 -3.72344971e-01 1.57180533e-01 -2.44717091e-01 -4.73317713e-01 4.47175860e-01 1.23004627e+00 4.29429501e-01 5.22148162e-02 2.48389542e-02 1.90976635e-01 1.29497439e-01 4.16012913e-01 -5.86380184e-01 4.77683216e-01 6.08615339e-01 1.40559292e+00 -7.50766337e-01 -1.06278867e-01 -5.69819212e-01 1.17103100e+00 -1.99989110e-01 4.77126062e-01 -7.50485003e-01 -4.81029212e-01 3.82008284e-01 5.74452393e-02 -7.00160861e-02 -3.24510574e-01 -3.61917555e-01 -1.12612450e+00 2.55023211e-01 -1.09313047e+00 3.89194161e-01 -8.13217878e-01 -1.08681893e+00 5.54990232e-01 5.76297455e-02 -1.46294451e+00 -3.10626607e-02 -4.74196523e-01 -4.89000589e-01 8.57364893e-01 -1.37496412e+00 -1.47906494e+00 -6.47032082e-01 8.59806299e-01 2.49200702e-01 -7.74542093e-02 6.57047033e-01 6.74720585e-01 -3.32054168e-01 7.38607943e-01 1.47525379e-02 9.80848745e-02 1.26737010e+00 -8.02320004e-01 3.62980515e-02 8.48772526e-01 -2.48580977e-01 8.17635000e-01 5.49702346e-01 -6.17790401e-01 -1.74398851e+00 -4.90075886e-01 8.69058073e-01 -2.38220483e-01 2.89492697e-01 1.79026276e-02 -8.07890296e-01 2.89645225e-01 3.42730522e-01 7.37707540e-02 5.37309647e-01 -3.31468910e-01 -1.32372960e-01 -4.40578878e-01 -1.37420714e+00 7.26524055e-01 7.75668085e-01 -5.22042572e-01 -4.18169677e-01 1.52591884e-01 2.42684305e-01 -6.67827308e-01 -1.19870758e+00 6.52387619e-01 8.81079733e-01 -9.49008405e-01 1.23513925e+00 1.40003160e-01 -1.39910594e-01 -6.39392972e-01 -2.40437314e-01 -8.29643905e-01 -2.14209333e-01 -7.45156765e-01 5.23789942e-01 1.22467625e+00 1.19693346e-01 -6.32772386e-01 6.01337910e-01 8.86937261e-01 1.40602976e-01 -3.88591677e-01 -8.97237241e-01 -2.91399956e-01 -4.91684437e-01 -3.26768719e-02 4.54404324e-01 8.93394530e-01 1.57765090e-01 -2.85820305e-01 -3.05848569e-01 3.39866221e-01 8.03158045e-01 2.06111461e-01 8.16012442e-01 -5.72652102e-01 2.62249291e-01 -3.73996943e-01 -7.22047746e-01 -8.38098109e-01 -2.70140827e-01 -4.96675402e-01 -1.17290884e-01 -1.46614504e+00 3.70225638e-01 -1.61824390e-01 2.77932696e-02 2.03593373e-01 -3.32883716e-01 8.27314973e-01 1.08550988e-01 4.13907349e-01 -5.25960147e-01 3.21520507e-01 1.40533352e+00 4.37032618e-02 -9.75233391e-02 -8.40742067e-02 -3.03962022e-01 5.76624215e-01 1.00886726e+00 -1.82860896e-01 2.50810664e-03 -3.05605590e-01 6.68711886e-02 -6.54526055e-02 3.25925410e-01 -6.90049350e-01 6.21367991e-01 -2.41612703e-01 5.21787524e-01 -6.60873652e-01 3.84955466e-01 -8.69769692e-01 4.09295678e-01 5.12994230e-01 -4.94665727e-02 5.42217493e-01 6.62533641e-02 1.22879356e-01 -6.59744442e-01 -2.47854628e-02 8.50224316e-01 3.81229967e-02 -8.60694587e-01 3.13789874e-01 3.91307138e-02 -4.28750038e-01 8.52478623e-01 -5.17516136e-01 -4.75264192e-01 -5.40895581e-01 -5.57242692e-01 1.15234509e-01 7.81977952e-01 5.64879775e-01 1.09542918e+00 -1.66774356e+00 -5.77888131e-01 4.64154691e-01 1.49353951e-01 -4.58943546e-01 4.44292605e-01 1.20445108e+00 -8.47045600e-01 1.18549615e-01 -2.64803648e-01 -7.14541495e-01 -1.86615646e+00 1.41679525e-01 4.52749312e-01 2.55746722e-01 -2.24504828e-01 5.13784230e-01 -1.28702238e-01 -6.08905554e-01 2.99533397e-01 -4.15374525e-02 -8.02609473e-02 -5.79992384e-02 6.03003323e-01 4.33151335e-01 1.87186867e-01 -1.07053483e+00 -4.68237936e-01 1.29338515e+00 3.53330225e-02 -2.44387612e-01 8.81407082e-01 -6.84843123e-01 -4.86853629e-01 -9.35841501e-02 1.39668608e+00 1.76994249e-01 -8.61453235e-01 -1.21633537e-01 -2.91337848e-01 -9.04624820e-01 -8.73957276e-02 -4.56468791e-01 -8.30403984e-01 5.17220497e-01 1.13355851e+00 -2.97928490e-02 1.38154328e+00 -2.25641221e-01 7.64913976e-01 -4.97897789e-02 2.01446071e-01 -1.15056515e+00 1.37798175e-01 1.57203183e-01 9.07997489e-01 -1.54038239e+00 1.25157788e-01 -5.11106312e-01 -5.26224256e-01 1.31290519e+00 4.88475829e-01 1.48263276e-01 5.35906494e-01 4.04338360e-01 5.55498064e-01 1.36510544e-02 -1.04854606e-01 -2.91641057e-01 7.64201701e-01 6.42723143e-01 6.18478477e-01 -2.15670332e-01 -5.60464978e-01 -2.03779921e-01 1.63195848e-01 -1.46067813e-01 1.19568184e-01 9.95581627e-01 -5.16688347e-01 -1.35163403e+00 -9.67023671e-01 -1.05353765e-01 -4.34410840e-01 3.18303183e-02 -1.41049027e-01 7.01296806e-01 -7.31009394e-02 9.81526077e-01 -1.23314947e-01 -4.50644165e-01 5.07502317e-01 -3.21384609e-01 6.66367948e-01 1.22611381e-01 -4.63728607e-01 5.21636665e-01 -2.20671445e-01 -7.97978342e-01 -9.29035604e-01 -5.78673720e-01 -1.09558010e+00 -5.62446356e-01 -1.96430087e-01 -8.93511102e-02 1.02563465e+00 4.42751080e-01 4.38326538e-01 -6.10819310e-02 7.36213505e-01 -9.86241400e-01 -2.95337915e-01 -7.35672355e-01 -2.65230298e-01 8.87775779e-01 3.86798501e-01 -4.38779056e-01 -3.59190077e-01 2.46857256e-01]
[10.311230659484863, -1.7898311614990234]
c8033768-bbbb-45c7-8a8a-8b8d6c03dcc2
the-brain-tumor-segmentation-brats-mets
2306.00838
null
https://arxiv.org/abs/2306.00838v1
https://arxiv.org/pdf/2306.00838v1.pdf
The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI
Clinical monitoring of metastatic disease to the brain can be a laborious and time-consuming process, especially in cases involving multiple metastases when the assessment is performed manually. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) guideline, which utilizes the unidimensional longest diameter, is commonly used in clinical and research settings to evaluate response to therapy in patients with brain metastases. However, accurate volumetric assessment of the lesion and surrounding peri-lesional edema holds significant importance in clinical decision-making and can greatly enhance outcome prediction. The unique challenge in performing segmentations of brain metastases lies in their common occurrence as small lesions. Detection and segmentation of lesions that are smaller than 10 mm in size has not demonstrated high accuracy in prior publications. The brain metastases challenge sets itself apart from previously conducted MICCAI challenges on glioma segmentation due to the significant variability in lesion size. Unlike gliomas, which tend to be larger on presentation scans, brain metastases exhibit a wide range of sizes and tend to include small lesions. We hope that the BraTS-METS dataset and challenge will advance the field of automated brain metastasis detection and segmentation.
['Mariam Aboian', 'Jeffrey Rudie', 'Spyridon Bakas', 'Gian Marco Conte', 'Fatima Memon', 'Umber Shafique', 'Ichiro Ikuta', 'Veronica Chiang', 'Sanjay Aneja', 'Evan Calabrese', 'Florian Kofler', 'Anahita Fathi Kazerooni', 'Ariana Familiar', 'Zeke Meier', 'Elaine Johanson', 'Ivan Ezhov', 'Marie Piraud', 'Koen van Leemput', 'Zhifan Jiang', 'Xinyang Liu', 'Chunhao Wang', 'Zachary Reitman', 'Walter Wiggins', 'Farouk Dako', 'Russel Takeshi Shinohara', 'Verena Chung', 'Timothy Bergquist', 'James Eddy', 'Keyvan Farahani', 'Juan Eugenio Iglesias', 'Hongwei Bran Li', 'Dominic LaBella', 'Syed Muhammad Anwar', 'Maruf Adewole', 'Benedikt Wiestler', 'Bjoern H Menze', 'Marius George Lingaru', 'Udunna Anazodo', 'Jake Albrecht', 'Group of Approvers', 'Neil Lall', 'Gloria Guzman Perez-Carrillo', 'Anthony Kam', 'Gerry Thompson', 'Tiffany So', 'Lei Wu', 'Satya N. Patro', 'Boyan Petrovic', 'Benjamin Y. M. Kwan', 'Derek R. Johnson', 'Justin Cramer', 'Group of Annotators', 'Connectome Students', 'Nicolo Gennaro', 'Yuri S. Velichko', 'Ayaman Nada', 'Ayda Youssef', 'Oleg Teytelboym', 'Strajit Chakrabarty', 'Pamela Lamontagne', 'Aristeidis Sotiras', 'Daniel Marcus', 'Nourel Hoda Tahon', 'Katherine E. Link', 'Ryan Maresca', 'Malte Westerhoff', 'MingDe Lin', 'Wolfgang Holler', 'Khaled Bousabarah', 'Jan Lost', 'Niklas Tillmans', 'Marc von Reppert', 'Sarah Merkaj', 'Mahdi Salimi', 'Nazanin Maleki', 'Gabriel Cassinelli Pedersen', 'Arman Avesta', 'Manpreet Kaur', 'Klara Wilms', 'Klara Osenberg', 'Rachit Saluja', 'Harrison Moy', 'Kiril Krantchev', 'Leon Jekel', 'Divya Ramakrishnan', 'Ujjwal Baid', 'Anastasia Janas', 'Ahmed W. Moawad']
2023-06-01
null
null
null
null
['tumor-segmentation', 'brain-tumor-segmentation']
['computer-vision', 'medical']
[ 2.13330895e-01 -1.57920256e-01 -2.38434896e-01 -4.84640487e-02 -1.09695208e+00 -5.32515705e-01 4.68533099e-01 6.23425543e-01 -7.15237379e-01 6.89618528e-01 3.78387898e-01 -7.34320223e-01 3.65983509e-02 -3.86788875e-01 8.50636959e-02 -9.20561671e-01 -5.70214763e-02 8.70652199e-01 3.90579551e-01 1.29382517e-02 3.90164442e-02 6.63283229e-01 -5.42900860e-01 -2.40764003e-02 7.68488526e-01 7.70521522e-01 8.27704549e-01 7.75350153e-01 -1.71789035e-01 5.37142873e-01 -4.35318381e-01 2.70334929e-01 1.35051664e-02 -5.50301135e-01 -8.65937769e-01 7.42990058e-03 2.13361576e-01 -1.99385479e-01 -1.52475268e-01 8.21472704e-01 6.36277795e-01 -7.47931600e-02 1.15011525e+00 -8.16332459e-01 2.24987686e-01 4.17855680e-01 -8.21225703e-01 9.01490331e-01 2.09810361e-02 1.74911946e-01 4.64416504e-01 -7.82553554e-01 4.94511366e-01 3.40055734e-01 6.36755645e-01 4.68252122e-01 -1.09842277e+00 -6.49644256e-01 -4.09465097e-02 6.34195358e-02 -1.47605419e+00 -1.35841489e-01 -1.60476610e-01 -9.24510837e-01 1.02162778e+00 3.90677929e-01 1.06619966e+00 7.39862442e-01 8.84201229e-01 3.21115106e-01 9.50015783e-01 -1.86076343e-01 3.25293362e-01 -2.77478129e-01 -2.12686844e-02 4.42461818e-01 2.44181186e-01 -2.21194729e-01 -1.26445487e-01 1.12693207e-02 6.06687844e-01 2.68740416e-01 -5.81052661e-01 -1.67338043e-01 -1.37915802e+00 8.59963179e-01 6.02667451e-01 5.10667264e-01 -3.78457785e-01 8.18440393e-02 5.09658158e-01 -1.23192549e-01 3.23177636e-01 -6.50820732e-02 -2.53754715e-03 -9.20842662e-02 -1.28146517e+00 -1.00470737e-01 2.66158551e-01 3.96993339e-01 -3.25500429e-01 -3.96472901e-01 -7.55782425e-02 8.29050481e-01 2.12027669e-01 9.32544321e-02 1.41832638e+00 -1.42602608e-01 2.69656420e-01 5.39204895e-01 -1.82522550e-01 -2.23515511e-01 -1.11956596e+00 -6.54124320e-01 -1.04123163e+00 4.97313082e-01 7.19509780e-01 -4.28332426e-02 -1.35054374e+00 1.30063689e+00 2.06211060e-01 -3.27851981e-01 -2.00963184e-01 9.56597507e-01 8.64121377e-01 -1.85684741e-01 3.18444133e-01 -1.40115350e-01 1.25028312e+00 -8.15579653e-01 -1.64531291e-01 -3.50600302e-01 1.31155872e+00 -7.01876283e-01 8.66651595e-01 -1.79458544e-01 -9.52663839e-01 4.68430042e-01 -8.47918153e-01 1.82801306e-01 -2.67343849e-01 -8.05182233e-02 5.07892549e-01 7.43687868e-01 -1.36209702e+00 8.56496990e-02 -1.08952177e+00 -8.39231312e-01 8.90468180e-01 6.72057807e-01 -7.08535850e-01 1.01863936e-01 -6.04069829e-01 1.64290440e+00 4.91299778e-01 -2.95003146e-01 -9.85409260e-01 -1.09219635e+00 -4.12586063e-01 -1.23472333e-01 3.80446643e-01 -6.38619781e-01 1.35548937e+00 -4.68598962e-01 -9.66848552e-01 1.01725531e+00 -4.60030377e-01 -6.03320360e-01 8.33433688e-01 7.06820548e-01 -2.20058843e-01 1.90224573e-01 3.41458470e-01 6.22865438e-01 5.04295528e-01 -4.18855757e-01 -8.81235898e-01 -7.22735107e-01 -5.92746377e-01 5.59187531e-01 2.03865543e-01 -1.16921235e-02 1.20625366e-02 -4.49936301e-01 3.75411183e-01 -8.00183833e-01 -7.14495301e-01 -1.56533241e-01 8.55586026e-03 9.95670035e-02 8.71091366e-01 -7.22535014e-01 8.53459537e-01 -1.58070350e+00 3.10015790e-02 3.33379298e-01 9.32322741e-01 -2.82106549e-01 4.80533779e-01 -3.65058303e-01 -1.73495650e-01 3.97457004e-01 -1.91534519e-01 2.49474019e-01 -4.03642923e-01 -2.60908574e-01 6.16543531e-01 8.60653222e-01 -1.92135736e-01 1.13382304e+00 -7.24619567e-01 -6.31772578e-01 3.55234951e-01 1.83554590e-01 -6.77585229e-02 -2.47334927e-01 2.68840194e-01 7.13559568e-01 -2.25372702e-01 5.54540992e-01 2.43320167e-01 -4.37113047e-01 -1.86320052e-01 4.25296634e-01 -7.42530152e-02 2.18368452e-02 -4.80021775e-01 1.59380579e+00 -2.99241394e-01 9.26267207e-01 2.70987540e-01 -9.01431262e-01 4.32422012e-01 5.06519794e-01 9.12742019e-01 -6.57469511e-01 3.97540897e-01 4.90179777e-01 7.90794313e-01 -2.52211541e-01 -6.47448003e-02 -7.14734554e-01 4.38032180e-01 4.65708613e-01 -4.83886868e-01 -6.79903567e-01 4.07149255e-01 2.52275497e-01 1.65139246e+00 -6.03467822e-01 6.67970896e-01 -4.62894082e-01 4.95995343e-01 3.72154474e-01 2.44833991e-01 4.30313259e-01 -5.61570704e-01 8.44066978e-01 4.47427601e-01 7.77103603e-02 -7.45733261e-01 -1.03001189e+00 -7.37148464e-01 5.48637033e-01 -1.67785883e-01 2.03012638e-02 -5.06347060e-01 -6.60848498e-01 -6.64800853e-02 4.20684010e-01 -8.20326388e-01 2.22635865e-01 -2.19039068e-01 -1.27552354e+00 3.10224801e-01 6.92105711e-01 4.77908701e-02 -6.19531274e-01 -1.02621722e+00 6.71132803e-01 -2.07904726e-01 -9.65588510e-01 -3.93532723e-01 6.33954823e-01 -9.25330937e-01 -1.40656626e+00 -1.63009667e+00 -9.37274873e-01 1.08218014e+00 1.31391913e-01 8.20272982e-01 1.59030184e-01 -8.03738892e-01 2.65764743e-01 -5.97499125e-02 -6.86724186e-01 -4.23727214e-01 1.11724935e-01 -2.21555576e-01 -5.91958523e-01 5.39434791e-01 -2.76428014e-01 -6.71223819e-01 4.81107235e-01 -6.10715330e-01 2.94283181e-01 8.03604603e-01 7.16426075e-01 8.69487047e-01 3.07549257e-02 4.63409007e-01 -5.23607194e-01 8.09327841e-01 -6.95578098e-01 -1.93155274e-01 1.23020017e-03 -2.89386183e-01 -6.29194736e-01 4.23269391e-01 -3.97548825e-01 -4.66942877e-01 -1.43204987e-01 5.14569134e-02 3.32575142e-01 -3.59718770e-01 7.17615962e-01 4.96201098e-01 -5.06424785e-01 8.32781672e-01 -1.30660245e-02 4.03590143e-01 2.63830841e-01 -4.58149523e-01 6.12315834e-01 3.12390625e-01 -7.86701366e-02 3.90101463e-01 6.61521137e-01 5.31615257e-01 -8.42451155e-01 -3.92405659e-01 -8.93037260e-01 -8.03966224e-01 -3.66317838e-01 8.29413652e-01 -5.44599116e-01 -1.63638577e-01 1.96275666e-01 -4.68549192e-01 -6.82176530e-01 -3.45768809e-01 7.03075886e-01 -5.09409547e-01 7.02553764e-02 -4.25328761e-01 -1.95180461e-01 -5.31832814e-01 -1.92396224e+00 6.50763035e-01 2.98585713e-01 -8.23645711e-01 -1.16505778e+00 -2.15409532e-01 1.67008623e-01 9.78944004e-01 5.49844563e-01 1.06289434e+00 -7.96629548e-01 -4.32347693e-02 -5.89879036e-01 -2.35994756e-01 -3.65573943e-01 2.86218256e-01 -2.09904790e-01 -3.93809199e-01 -3.05990905e-01 -1.82364523e-01 -6.05571568e-02 5.91387391e-01 9.64060187e-01 7.79302180e-01 7.41665721e-01 -7.66942263e-01 3.06922138e-01 1.26625144e+00 5.22556067e-01 4.93986346e-02 6.45671844e-01 4.44805205e-01 4.91751671e-01 -5.33098020e-02 1.00802340e-01 1.46786347e-01 5.25283515e-01 6.28437042e-01 -2.61652768e-02 -3.44621986e-01 5.15643001e-01 -1.88669294e-01 3.53187323e-01 -1.92438766e-01 -7.45159760e-02 -1.61835515e+00 5.00725985e-01 -1.21047497e+00 -6.29619420e-01 -6.06232882e-01 2.20799065e+00 5.39923251e-01 2.15684563e-01 1.14450336e-01 1.80606455e-01 6.88555121e-01 -2.65677094e-01 -5.47548473e-01 -7.12670833e-02 -1.79452039e-02 -4.39245775e-02 7.45718300e-01 4.54395831e-01 -6.40545547e-01 5.31077683e-01 7.24214315e+00 6.16274238e-01 -1.47484362e+00 4.61657792e-01 7.86168635e-01 -5.70616305e-01 2.33607829e-01 -2.21684158e-01 -7.32194662e-01 4.19724256e-01 8.44913185e-01 -4.78252351e-01 -7.71332607e-02 1.99118882e-01 4.29327369e-01 -8.97909522e-01 -1.14306664e+00 9.23423350e-01 -2.12300375e-01 -1.30291462e+00 -4.72726345e-01 5.37050128e-01 6.11383855e-01 5.55840731e-01 8.47438648e-02 1.17164806e-01 6.36667833e-02 -1.53329933e+00 4.82186198e-01 2.23825812e-01 1.14919984e+00 -5.23814142e-01 1.07224321e+00 3.29505682e-01 -9.00177956e-01 1.43125951e-01 -3.28053981e-01 2.53708541e-01 1.90974489e-01 4.03976649e-01 -1.35734618e+00 -1.38917089e-01 4.95707452e-01 4.97309864e-01 -6.52461410e-01 1.61842000e+00 1.74657285e-01 5.20845711e-01 -6.12120748e-01 -1.12019740e-01 3.02349389e-01 -6.85684383e-02 4.90185708e-01 9.88405883e-01 4.03133690e-01 2.63966978e-01 3.83164808e-02 5.36819637e-01 3.05410028e-01 4.95184362e-01 -1.50774062e-01 -6.91769496e-02 8.67898241e-02 1.26016152e+00 -1.57491541e+00 -2.40155414e-01 -5.86091876e-01 5.73189855e-01 9.05964524e-02 2.53060937e-01 -5.02957702e-01 1.93429813e-01 7.66882747e-02 5.89603662e-01 -3.01428940e-02 -2.08358429e-02 -7.12284386e-01 -7.31007218e-01 -2.15840504e-01 -4.67474759e-01 4.91948128e-01 -5.56868613e-01 -6.13834918e-01 5.74139953e-01 -2.23799229e-01 -9.06797528e-01 -1.96479023e-01 -5.01432955e-01 -1.01201713e+00 1.16043913e+00 -1.15574896e+00 -7.85883784e-01 -7.89801836e-01 4.67357486e-01 5.97117186e-01 -1.51977345e-01 9.61099982e-01 -2.59208173e-01 -4.64492053e-01 4.78268147e-01 1.91990547e-02 -1.24593616e-01 4.69060272e-01 -1.29855955e+00 -3.18598896e-01 4.78495926e-01 -6.53401196e-01 5.56501634e-02 5.14619350e-01 -6.86745882e-01 -9.20324922e-01 -9.16076541e-01 1.64918303e-01 -5.45038104e-01 1.03430569e+00 2.36771971e-01 -6.06628358e-01 7.31159151e-01 -4.57694987e-03 -1.97037049e-02 1.03355253e+00 -4.85149115e-01 3.70675832e-01 5.33068657e-01 -1.29744756e+00 7.11602151e-01 5.56809783e-01 4.53749970e-02 -2.85326540e-01 5.59691250e-01 -1.50156051e-01 -7.89173543e-01 -1.12494230e+00 4.85492826e-01 3.55898291e-01 -5.89592338e-01 7.50684321e-01 -2.23537222e-01 2.94326127e-01 4.96497527e-02 5.59690334e-02 -1.58213615e+00 -5.22417426e-01 3.55274379e-02 4.99992967e-01 3.49563003e-01 8.18126917e-01 -6.93861902e-01 1.31881011e+00 1.09479475e+00 -1.55423686e-01 -1.06001616e+00 -1.02795398e+00 -5.55720627e-01 6.44348443e-01 -2.77614146e-01 3.70817870e-01 5.51352918e-01 1.51601866e-01 -1.84311330e-01 8.58647406e-01 -2.55904913e-01 4.75438744e-01 -4.40748483e-01 1.94063157e-01 -1.33094454e+00 1.11658663e-01 -1.44286513e+00 -8.67610455e-01 -3.02982986e-01 -2.04742342e-01 -1.32689226e+00 -2.10629880e-01 -2.05426216e+00 4.58294123e-01 -3.93913537e-01 -3.25047970e-01 1.61366507e-01 -1.20849423e-01 3.40930581e-01 -2.59828985e-01 3.54225874e-01 -9.36421007e-02 4.17914502e-02 1.38091552e+00 -1.84262633e-01 -2.54596382e-01 1.12474762e-01 -5.92530787e-01 8.87434423e-01 8.89683008e-01 -4.71559823e-01 -3.53360146e-01 1.31764784e-02 -3.18313658e-01 2.46086597e-01 2.17757672e-01 -9.74851012e-01 3.85561585e-01 -3.33541691e-01 7.78438091e-01 -8.03553998e-01 1.87768146e-01 -9.08866644e-01 1.06958814e-01 7.35359132e-01 -8.67335051e-02 2.52399951e-01 2.71935761e-01 1.94985449e-01 -1.57673106e-01 -4.37159956e-01 1.03796542e+00 -4.41166788e-01 -5.45003712e-01 6.04277372e-01 -1.19767034e+00 1.73559576e-01 1.66465974e+00 -6.70372665e-01 -2.71965802e-01 -3.95591229e-01 -1.15831673e+00 2.40743473e-01 6.75766885e-01 -1.43294334e-01 5.05280972e-01 -9.86470401e-01 -9.73633409e-01 -2.99838811e-01 1.37993500e-01 4.79521155e-01 1.47645116e-01 1.99885368e+00 -1.01490521e+00 5.81590414e-01 -2.33194709e-01 -6.66648090e-01 -1.44730723e+00 -4.72879522e-02 9.29090559e-01 -3.33827555e-01 -1.14391291e+00 1.15349269e+00 3.02857190e-01 1.66023791e-01 4.12779301e-01 -2.12806910e-01 -3.74165028e-01 1.30951151e-01 6.84267282e-01 2.91572094e-01 4.11132276e-01 -8.61971736e-01 -3.44969898e-01 2.67631531e-01 -6.18684471e-01 -2.23386467e-01 1.11811543e+00 -6.32988708e-03 -1.92078322e-01 1.42721813e-02 1.02562630e+00 -2.22877085e-01 -8.22108805e-01 -5.73499538e-02 -6.49554357e-02 -1.28307268e-01 6.40521944e-01 -9.11266387e-01 -1.03569233e+00 6.13668323e-01 7.46468961e-01 -3.84934945e-03 9.74995911e-01 1.66254252e-01 6.04860485e-01 -2.62449473e-01 2.42690310e-01 -7.58277178e-01 -2.79021055e-01 2.18407676e-01 8.79679978e-01 -1.44425321e+00 -8.66942853e-02 -2.49735951e-01 -4.52834815e-01 1.18850696e+00 6.45045459e-01 1.41074374e-01 5.58461487e-01 6.08005822e-01 3.40096354e-01 -2.53156126e-01 -5.30267060e-01 -1.71991497e-01 1.90273404e-01 6.38953626e-01 6.54335678e-01 6.36986673e-01 -5.12016714e-01 3.18110257e-01 -6.50802016e-01 -1.63712040e-01 9.01743829e-01 1.04379427e+00 -7.21244991e-01 -8.87762189e-01 -4.31459069e-01 1.26154232e+00 -8.14625502e-01 -1.63762227e-01 -4.96183753e-01 1.06126487e+00 -2.52243370e-01 6.95246100e-01 -8.21764618e-02 1.33258834e-01 8.65751207e-02 1.11680076e-01 4.84824955e-01 -6.64472520e-01 -5.73275089e-01 2.45072052e-01 -2.46342495e-01 -1.51648834e-01 -8.13115761e-02 -8.65292430e-01 -1.58384037e+00 -1.06442720e-01 -3.43102276e-01 1.77791610e-01 1.04461026e+00 1.10547042e+00 -3.07181567e-01 8.05244386e-01 -8.21603090e-02 -6.23732209e-01 -2.80261159e-01 -1.05927682e+00 -8.04259121e-01 2.03851368e-02 2.61633605e-01 -7.85819113e-01 -5.72863758e-01 -3.52139473e-01]
[14.653213500976562, -2.4922115802764893]
639a0968-75f3-4d71-87d9-251a6792fa6a
data-driven-geophysics-from-dictionary
2007.06183
null
https://arxiv.org/abs/2007.06183v2
https://arxiv.org/pdf/2007.06183v2.pdf
Data-driven geophysics: from dictionary learning to deep learning
Understanding the principles of geophysical phenomena is an essential and challenging task. "Model-driven" approaches have supported the development of geophysics for a long time; however, such methods suffer from the curse of dimensionality and may inaccurately model the subsurface. "Data-driven" techniques may overcome these issues with increasingly available geophysical data. In this article, we review the basic concepts of and recent advances in data-driven approaches from dictionary learning to deep learning in a variety of geophysical scenarios. Explorational geophysics including data processing, inversion and interpretation will be mainly focused. Artificial intelligence applications on geoscience involving deep Earth, earthquake, water resource, atmospheric science, satellite remoe sensing and space sciences are also reviewed. We present a coding tutorial and a summary of tips for beginners and interested geophysical readers to rapidly explore deep learning. Some promising directions are provided for future research involving deep learning in geophysics, such as unsupervised learning, transfer learning, multimodal deep learning, federated learning, uncertainty estimation, and activate learning.
['Siwei Yu', 'Jianwei Ma']
2020-07-13
null
null
null
null
['geophysics']
['miscellaneous']
[-2.91610241e-01 -2.06120819e-01 1.49385497e-01 -6.87560320e-01 -9.41425204e-01 -1.99373722e-01 5.66837132e-01 1.88588366e-01 -2.39277616e-01 7.89203167e-01 3.28320473e-01 -8.45465541e-01 -4.38373089e-01 -1.10136235e+00 -4.88042384e-01 -9.81073320e-01 -6.58200622e-01 7.80748904e-01 -3.33764434e-01 -3.59223604e-01 6.20569587e-01 5.91740012e-01 -1.11199617e+00 -1.46616802e-01 9.59806740e-01 1.23696196e+00 1.41752943e-01 4.34086382e-01 -3.93130422e-01 7.03917503e-01 -1.29555300e-01 4.17675287e-01 -2.28489451e-02 -1.97408646e-01 -6.12691760e-01 -3.29410583e-01 3.29534858e-02 -4.98386055e-01 -2.05875620e-01 1.06810379e+00 7.86754787e-01 5.90670288e-01 9.40016806e-01 -6.39309168e-01 -5.98485947e-01 6.25398815e-01 -7.67972350e-01 2.39465505e-01 -2.55720228e-01 -4.15350616e-01 9.86230195e-01 -1.68962169e+00 3.18551064e-02 1.04848218e+00 7.36939967e-01 3.17458749e-01 -5.65794170e-01 -4.97395694e-01 -3.87319177e-02 1.83986232e-01 -1.06147826e+00 -5.23520470e-01 7.58006454e-01 -7.70780921e-01 1.04527056e+00 4.79872450e-02 4.60151702e-01 6.64481103e-01 2.38586947e-01 5.50755858e-01 1.12397730e+00 -5.77396214e-01 7.53334522e-01 -1.38940752e-01 -3.78908962e-02 5.42697847e-01 4.39390689e-01 6.40111566e-01 -6.97748184e-01 -3.81979793e-01 6.66208565e-01 -9.64611322e-02 -1.73398271e-01 -1.71712160e-01 -9.66740012e-01 1.43725777e+00 1.83099031e-01 2.36767471e-01 -2.88153499e-01 5.63722439e-02 3.12008172e-01 4.56734866e-01 8.44372571e-01 7.82098830e-01 -6.92717075e-01 -4.69071642e-02 -1.24938381e+00 4.29800719e-01 1.00387692e+00 5.86241543e-01 7.62935758e-01 1.00946128e+00 7.52480686e-01 9.68295932e-01 9.06958461e-01 1.21709144e+00 4.29589838e-01 -8.72757614e-01 1.69922829e-01 -1.92703217e-01 2.25025550e-01 -9.84132051e-01 -6.33926153e-01 -1.56338543e-01 -1.20256865e+00 2.42302865e-01 -2.24078700e-01 -6.83264017e-01 -9.76174533e-01 1.06566787e+00 2.38921389e-01 4.17170167e-01 3.90885144e-01 1.04020846e+00 1.11035252e+00 9.31789815e-01 -9.26710144e-02 1.36882246e-01 1.06676030e+00 -5.97013175e-01 -5.97308934e-01 -5.35215378e-01 5.86779654e-01 -5.18911719e-01 5.25907278e-01 4.39039201e-01 -8.15982699e-01 -2.37755299e-01 -9.31231678e-01 1.53361797e-01 -6.18394494e-01 -2.79483795e-01 1.07901227e+00 4.50031102e-01 -6.93434358e-01 7.16271281e-01 -1.51056266e+00 -1.59744263e-01 2.35856667e-01 4.30833288e-02 -1.01637214e-01 1.81791410e-01 -1.61242414e+00 9.84843791e-01 3.47070783e-01 2.46108100e-01 -1.44921577e+00 -7.00635731e-01 -1.14906383e+00 -9.68018398e-02 -2.03467146e-01 -3.48602563e-01 1.16274798e+00 1.44814909e-01 -1.32055867e+00 6.07212722e-01 3.11433692e-02 -5.24630308e-01 2.08686203e-01 -4.30281788e-01 -7.44319201e-01 -1.10964417e-01 1.11601882e-01 2.54692048e-01 6.23618484e-01 -1.24971056e+00 -6.46456540e-01 -3.57583702e-01 -4.48403358e-01 -1.25774816e-01 -2.96986341e-01 -3.60772043e-01 2.37154484e-01 -5.58826149e-01 7.35496342e-01 -5.73168337e-01 -5.77662408e-01 -5.76021932e-02 -9.69822705e-02 6.23184314e-04 8.44482541e-01 -7.00748026e-01 7.77935863e-01 -1.98801124e+00 8.91647190e-02 4.29373294e-01 -1.53063545e-02 -2.06294227e-02 7.24859759e-02 7.30644643e-01 5.14208078e-02 1.45745829e-01 -7.30155408e-01 -2.53625721e-01 -1.38776466e-01 4.76081818e-01 -7.96043158e-01 6.21622384e-01 1.33882105e-01 5.95078647e-01 -1.10292971e+00 8.88787396e-03 5.01749277e-01 2.34862208e-01 -5.27635753e-01 4.82843250e-01 -2.90419042e-01 1.06643057e+00 -7.98148096e-01 1.24660575e+00 1.08935440e+00 -2.72945881e-01 -9.97931138e-02 -6.86353296e-02 -4.06077027e-01 3.81705314e-01 -1.25232553e+00 1.84417903e+00 -7.56064653e-01 7.30236232e-01 2.06240505e-01 -1.63681519e+00 1.35121655e+00 2.78993309e-01 3.34512115e-01 -8.15494716e-01 -2.40828246e-01 9.48131740e-01 -3.70556004e-02 -1.05613256e+00 5.58952153e-01 -7.32321084e-01 2.20406689e-02 5.42095959e-01 -9.71816853e-02 -6.02792203e-01 -4.22199786e-01 -4.83238921e-02 5.05309999e-01 1.93179056e-01 9.26557705e-02 -5.41416049e-01 1.84919372e-01 1.64138019e-01 3.17043513e-01 8.66131604e-01 2.13241652e-01 5.70268512e-01 -2.52074420e-01 -8.17125857e-01 -1.11092401e+00 -8.03375542e-01 -6.93000436e-01 1.10273254e+00 -1.67703465e-01 1.55172050e-01 1.88759446e-01 1.84613019e-01 3.68117511e-01 8.02103341e-01 -5.80051422e-01 -9.73002538e-02 -3.12936038e-01 -1.36745000e+00 6.02486193e-01 7.14316189e-01 5.66052794e-01 -8.58769715e-01 -3.65911543e-01 2.59325385e-01 -1.78676426e-01 -7.77766526e-01 7.30993629e-01 4.97398049e-01 -1.30393124e+00 -5.11397600e-01 -6.69447720e-01 -4.99889404e-01 3.34755719e-01 6.28139675e-02 1.10122252e+00 -2.31911674e-01 -1.44969404e-01 2.41142333e-01 -4.76131529e-01 -7.92349994e-01 -1.59891471e-01 -3.11097980e-01 4.18530643e-01 -3.29991758e-01 3.99644345e-01 -7.95606077e-01 -5.70716441e-01 -1.93708658e-01 -8.32273185e-01 -5.84796190e-01 4.47277188e-01 1.16431546e+00 4.75967556e-01 7.62896910e-02 7.11321414e-01 -7.63068676e-01 3.34714711e-01 -1.28358603e+00 -7.37304389e-01 -1.53367948e-02 -5.44565022e-01 1.44501120e-01 8.29424262e-02 1.76330417e-01 -1.33403945e+00 -6.55155063e-01 -5.38313329e-01 -6.01023510e-02 -1.10532425e-01 1.45005167e+00 1.80598021e-01 -4.15946335e-01 9.73253667e-01 2.97498614e-01 -1.92107379e-01 -9.68498588e-01 1.36733338e-01 9.77026582e-01 3.62743765e-01 -1.07081652e+00 4.49536085e-01 8.78344655e-01 -4.97628078e-02 -1.33814454e+00 -8.58775675e-01 -4.92445648e-01 -2.50879794e-01 8.19595531e-02 3.52497816e-01 -1.20573890e+00 9.19414237e-02 5.68632603e-01 -9.57979143e-01 -2.58605599e-01 -3.58725786e-01 1.08316016e+00 -1.90651014e-01 3.71122718e-01 -3.13722312e-01 -1.04327750e+00 -4.49749231e-01 -8.52368593e-01 1.21462810e+00 3.58979970e-01 1.80403069e-01 -1.78133190e+00 5.73287785e-01 -3.57375778e-02 7.80729294e-01 4.24270958e-01 9.00054932e-01 -8.02752912e-01 -2.27277428e-01 -1.09885499e-01 -1.34861559e-01 3.81375879e-01 3.39163423e-01 -1.67689815e-01 -1.17699993e+00 -3.92746925e-01 3.73680443e-01 -7.15375364e-01 1.36277723e+00 6.07105196e-01 1.09639311e+00 1.04623750e-01 -2.14193299e-01 1.13140678e+00 1.52545249e+00 1.83164477e-01 3.65876496e-01 5.34732342e-01 6.48959398e-01 5.41135252e-01 5.92856944e-01 1.04561543e+00 2.55095094e-01 -4.45784628e-01 7.40104198e-01 -8.47115219e-02 5.10236144e-01 1.29921138e-01 -1.81075528e-01 1.18225813e+00 -3.87298733e-01 -2.52175152e-01 -1.41372359e+00 8.06526601e-01 -1.54458869e+00 -7.10276186e-01 -1.30037695e-01 1.87467253e+00 4.59508836e-01 -2.90105611e-01 -8.31253290e-01 -2.88546309e-02 1.37842029e-01 4.91190255e-01 -8.15058649e-01 -1.56507015e-01 -3.65581721e-01 3.53555590e-01 6.41424119e-01 5.11650801e-01 -1.31969452e+00 9.58610713e-01 6.74244785e+00 3.17140281e-01 -1.49522114e+00 1.12798907e-01 3.84377450e-01 5.04632950e-01 -9.35944319e-01 1.66931927e-01 -6.28558040e-01 1.17027208e-01 1.02361989e+00 1.48381755e-01 -2.88495813e-02 1.05418849e+00 4.94728804e-01 -2.64534742e-01 -7.82720029e-01 8.61390352e-01 -3.34066689e-01 -1.82215452e+00 2.21029267e-01 2.13398542e-02 1.23123801e+00 9.51453209e-01 -5.38774393e-02 1.18329138e-01 3.51625919e-01 -1.08204198e+00 2.51853347e-01 8.32590997e-01 7.69382656e-01 -5.32470405e-01 8.87163103e-01 1.41095817e-01 -8.63115311e-01 -2.27484535e-02 -8.99965107e-01 -3.46459508e-01 3.45938712e-01 1.17105818e+00 -1.69682160e-01 6.99088514e-01 1.07042551e+00 9.60598290e-01 1.53369173e-01 1.16406620e+00 -1.35011720e-02 9.14045453e-01 -4.94205147e-01 1.72754541e-01 6.29700601e-01 -3.28856677e-01 5.40449619e-01 1.33870554e+00 9.20776367e-01 4.77606505e-01 1.50234044e-01 7.02651918e-01 2.53988117e-01 -5.87470271e-02 -8.03816020e-01 -3.48361313e-01 7.45908797e-01 1.05880606e+00 -3.13345492e-01 -3.23769569e-01 -5.85010231e-01 8.36439729e-02 -2.34951898e-01 3.41148108e-01 -4.84445363e-01 -3.71413887e-01 5.82396030e-01 -1.62801057e-01 1.46911517e-01 -7.51183271e-01 -5.07348299e-01 -1.28482556e+00 -4.59117830e-01 -7.39282131e-01 2.59955049e-01 -5.83317876e-01 -1.35553837e+00 3.60936671e-01 1.60155848e-01 -1.35407817e+00 -1.92493126e-01 -1.02581012e+00 -9.12729681e-01 9.62025285e-01 -2.06031513e+00 -9.07402396e-01 -5.85222721e-01 3.60124797e-01 3.99242371e-01 -8.13255370e-01 1.13966918e+00 3.30612928e-01 -4.21598218e-02 -1.83083043e-01 1.03867733e+00 1.45543933e-01 5.93654335e-01 -1.23391020e+00 6.86667085e-01 5.48093081e-01 2.24225484e-02 3.93014610e-01 7.68828809e-01 -7.74094820e-01 -1.65957665e+00 -1.09432864e+00 6.61593854e-01 1.49541393e-01 1.07829058e+00 1.85086563e-01 -1.33374143e+00 6.42717361e-01 -8.79361033e-02 2.53820479e-01 8.97707403e-01 1.35175005e-01 -1.60838187e-01 7.68116266e-02 -8.97594035e-01 1.52831431e-03 4.15634781e-01 -5.33625245e-01 -7.17966437e-01 7.04217017e-01 2.54649878e-01 -5.98813891e-01 -1.11973166e+00 6.47783101e-01 4.85196739e-01 -7.90199459e-01 7.84228206e-01 -8.59880626e-01 5.44098258e-01 -1.75438691e-02 -5.73982775e-01 -1.48127294e+00 -2.55890548e-01 -2.50617832e-01 -3.92855614e-01 6.59312010e-01 3.32214564e-01 -6.57156587e-01 7.59151042e-01 3.59748214e-01 -5.29516041e-01 -5.29965341e-01 -9.71400440e-01 -5.80602407e-01 7.94106066e-01 -7.56959319e-01 5.32315493e-01 1.18254459e+00 2.02198196e-02 -8.93932432e-02 -7.48793066e-01 6.29711628e-01 8.68287325e-01 3.17136109e-01 2.02251658e-01 -1.61145854e+00 -1.40492275e-01 -4.91429307e-02 3.71716655e-04 -1.05384779e+00 -7.90957883e-02 -5.41452229e-01 1.89375877e-01 -1.54768217e+00 -3.23151350e-01 -8.39785933e-01 -4.30495024e-01 2.66627550e-01 2.90089369e-01 -4.07809652e-02 -6.54910922e-01 4.11761463e-01 1.23212174e-01 8.25799763e-01 1.11266315e+00 -5.15691400e-01 -7.22061004e-03 -9.49344262e-02 -5.73426723e-01 8.82094383e-01 8.73972058e-01 -4.51165706e-01 -2.27518469e-01 -1.26806450e+00 6.03168547e-01 1.24993294e-01 2.95703858e-01 -8.51299882e-01 4.04991865e-01 -4.26459402e-01 4.18258816e-01 -6.50940835e-01 1.87779769e-01 -5.68855941e-01 -2.56350964e-01 2.90777504e-01 7.21289590e-02 -1.68082833e-01 4.36406285e-01 5.48204422e-01 -7.79021800e-01 -4.55462724e-01 8.67468059e-01 -5.96020222e-01 -1.38743126e+00 3.98427904e-01 -4.47742194e-01 1.20958060e-01 4.55775499e-01 1.88217193e-01 9.14455131e-02 -4.96716768e-01 -9.87886131e-01 4.46475893e-01 -1.74727499e-01 1.63033962e-01 9.36319947e-01 -1.10564566e+00 -1.13484430e+00 4.96038824e-01 4.92214002e-02 3.99584293e-01 4.78899986e-01 6.88542366e-01 -8.31294596e-01 4.94382769e-01 -9.64053273e-02 -7.12344289e-01 -3.57068367e-02 -1.51988253e-01 7.54906416e-01 1.67061597e-01 -5.39872110e-01 1.29136729e+00 -8.77435431e-02 -9.20585454e-01 9.27104503e-02 -2.49789149e-01 -1.92399874e-01 1.51336789e-01 5.79769611e-01 6.38153672e-01 4.15136576e-01 -2.99468011e-01 -4.51930583e-01 7.72413850e-01 1.81409135e-01 -2.23988757e-01 1.76879382e+00 -9.24362540e-02 -2.56849229e-01 7.07463861e-01 1.04263771e+00 -2.06966758e-01 -9.60415602e-01 -4.45405960e-01 2.56150067e-01 -1.81947097e-01 6.29739761e-01 -5.16690731e-01 -1.31675684e+00 1.61216092e+00 5.48946261e-01 -1.16874408e-02 7.10929036e-01 -6.04281127e-02 7.54189074e-01 8.92838359e-01 3.98755640e-01 -1.16170204e+00 3.77614349e-02 9.42151010e-01 8.90940726e-01 -1.92468452e+00 1.65587857e-01 6.79674149e-01 -3.42896163e-01 1.51133692e+00 3.32500845e-01 -2.48436272e-01 1.62274873e+00 4.81357634e-01 2.57671416e-01 -5.68822920e-01 -4.25683230e-01 2.43110254e-01 2.28383467e-02 5.62140763e-01 6.94225788e-01 -4.64034639e-03 5.11836559e-02 3.12578589e-01 -9.65208262e-02 -2.51413673e-01 3.35292488e-01 1.24574161e+00 -1.01837456e+00 -9.23139334e-01 -6.61623478e-01 4.93980348e-01 -3.18111777e-01 -5.01281023e-01 3.17855269e-01 5.14213264e-01 -8.52389112e-02 8.46069634e-01 3.78042430e-01 -3.45456414e-02 -1.02419727e-01 -8.25503767e-02 -3.41982134e-02 -7.40176141e-01 4.34629828e-01 2.07299024e-01 3.21043469e-02 -1.33369351e-02 -5.98869860e-01 -6.60443962e-01 -1.49954629e+00 -2.70848453e-01 -3.93780172e-01 7.74813294e-01 1.00504720e+00 1.25959110e+00 1.11548670e-01 3.08887303e-01 5.39819121e-01 -1.28929591e+00 -8.31203163e-01 -1.29365230e+00 -1.18333960e+00 -3.60726267e-01 7.23021567e-01 -8.82730901e-01 -6.71526849e-01 -1.03908323e-01]
[6.838844299316406, 2.526124954223633]
07c2eb27-7e1c-4ee9-b880-13ec6af9300a
emora-stdm-a-versatile-framework-for
2006.06143
null
https://arxiv.org/abs/2006.06143v1
https://arxiv.org/pdf/2006.06143v1.pdf
Emora STDM: A Versatile Framework for Innovative Dialogue System Development
This demo paper presents Emora STDM (State Transition Dialogue Manager), a dialogue system development framework that provides novel workflows for rapid prototyping of chat-based dialogue managers as well as collaborative development of complex interactions. Our framework caters to a wide range of expertise levels by supporting interoperability between two popular approaches, state machine and information state, to dialogue management. Our Natural Language Expression package allows seamless integration of pattern matching, custom NLP modules, and database querying, that makes the workflows much more efficient. As a user study, we adopt this framework to an interdisciplinary undergraduate course where students with both technical and non-technical backgrounds are able to develop creative dialogue managers in a short period of time.
['Jinho D. Choi', 'James D. Finch']
2020-06-11
null
https://aclanthology.org/2020.sigdial-1.32
https://aclanthology.org/2020.sigdial-1.32.pdf
sigdial-acl-2020-7
['dialogue-management']
['natural-language-processing']
[-2.18633264e-01 5.61157465e-01 1.59933522e-01 -4.61279601e-01 -3.52616370e-01 -1.04623425e+00 8.74953032e-01 4.10747856e-01 -7.62691498e-02 6.68551862e-01 2.89483964e-01 -7.80327618e-01 -1.43077001e-01 -5.78128278e-01 5.58047831e-01 2.62728631e-01 2.69580513e-01 5.75775385e-01 5.87169528e-01 -9.78087544e-01 5.22935569e-01 6.85309112e-01 -1.44183707e+00 4.14687335e-01 8.47726345e-01 2.68148750e-01 3.07588458e-01 8.95594716e-01 -7.69843459e-01 1.14645278e+00 -9.02401209e-01 -3.06121647e-01 -3.34662646e-01 -5.39108396e-01 -1.61071634e+00 9.95997060e-03 -2.15010300e-01 -2.87002891e-01 1.19457863e-01 4.79981571e-01 4.82710272e-01 4.22810584e-01 5.16413897e-02 -1.21381474e+00 2.68119037e-01 5.31093836e-01 2.57353067e-01 -1.05588153e-01 1.19581473e+00 3.12709153e-01 5.56828260e-01 -5.36183298e-01 8.56695116e-01 1.30842113e+00 5.99012613e-01 9.02948499e-01 -1.10690725e+00 -1.91873625e-01 -1.14798501e-01 -7.63590038e-02 -7.26649344e-01 -7.09131718e-01 3.58946323e-01 -5.40250301e-01 1.31176615e+00 5.07827878e-01 7.56190777e-01 9.35334504e-01 7.74855167e-02 4.21536773e-01 1.05532074e+00 -7.28768587e-01 3.23660970e-01 1.12192345e+00 2.79530466e-01 7.62481928e-01 -4.71895307e-01 -7.11301506e-01 -7.13304341e-01 -3.65788281e-01 9.72838938e-01 -2.20243052e-01 1.84340924e-02 -7.56979212e-02 -1.13906050e+00 4.65194911e-01 -5.90521038e-01 7.24034607e-01 -5.42259440e-02 -5.09234786e-01 4.52842444e-01 8.53715360e-01 -1.18217021e-01 9.03186679e-01 -5.26772141e-01 -1.13544011e+00 -3.94830018e-01 1.56837046e-01 2.03080869e+00 9.77373660e-01 4.59121495e-01 -2.11335987e-01 -2.31781825e-01 1.02720284e+00 5.62904596e-01 -3.41446072e-01 2.88484663e-01 -1.31865299e+00 8.43130872e-02 1.09503460e+00 3.93438667e-01 -5.21164417e-01 -3.30944836e-01 3.46138537e-01 -3.13402414e-01 5.02573669e-01 5.04308760e-01 -5.63119411e-01 2.96569690e-02 1.31741107e+00 6.74562454e-01 -6.52328372e-01 4.34640855e-01 4.42391664e-01 1.06387377e+00 5.38032234e-01 2.78755855e-02 -2.67920345e-01 1.53156567e+00 -7.90660143e-01 -8.89324129e-01 2.58398820e-02 8.40253711e-01 -1.05513227e+00 1.17686188e+00 4.45384413e-01 -1.46865153e+00 -2.26998165e-01 -7.87079930e-01 -9.30245891e-02 -5.26080847e-01 -3.26345205e-01 8.81992877e-01 9.52843904e-01 -1.25378907e+00 6.69193029e-01 -7.96663284e-01 -1.01322484e+00 -1.69451833e-01 2.24899560e-01 -4.01678681e-01 3.49393755e-01 -1.03905869e+00 1.27338600e+00 1.41948774e-01 -2.92894542e-01 -2.37809464e-01 -8.17041337e-01 -8.18358839e-01 1.68731630e-01 2.69794732e-01 -6.11850262e-01 1.92440164e+00 -2.27213785e-01 -2.45522738e+00 8.47212732e-01 3.31579894e-01 1.45591661e-01 7.38718927e-01 4.68598725e-03 -1.32663220e-01 -2.13455066e-01 -1.36074036e-01 2.81579286e-01 -2.02755317e-01 -6.38886631e-01 -6.26912117e-01 -7.89512992e-02 4.67172146e-01 5.65409601e-01 -1.85315832e-01 6.81395829e-01 -3.03321511e-01 2.93123424e-01 -3.27459455e-01 -5.11019468e-01 -3.66104335e-01 -1.83101177e-01 -1.26947775e-01 -2.39599764e-01 8.48219037e-01 -4.31775361e-01 1.36672044e+00 -1.72538447e+00 -1.06514506e-01 9.97535046e-03 -9.27532744e-03 3.96127105e-01 1.62264511e-01 1.48856556e+00 6.42991066e-02 8.70201737e-02 1.99410230e-01 -2.39439651e-01 5.85059941e-01 6.17919676e-02 6.93709701e-02 -3.07531148e-01 -4.13711369e-02 2.31598958e-01 -9.30818141e-01 -5.04721582e-01 5.52923977e-01 6.48430362e-02 -2.25106448e-01 8.09737325e-01 -3.14994395e-01 7.84291565e-01 -3.87042016e-01 4.03792322e-01 2.41323590e-01 -2.78072655e-01 7.72807300e-01 6.24051988e-01 -8.64773214e-01 7.53729522e-01 -1.40732467e+00 1.97912049e+00 -9.91678357e-01 4.84971315e-01 6.81508839e-01 -4.53827947e-01 1.10290885e+00 8.06509793e-01 3.33907127e-01 -8.67933035e-03 3.94878350e-02 3.97033952e-02 -4.35272232e-02 -6.85478806e-01 6.16185129e-01 3.15252990e-01 -2.50380576e-01 1.09822905e+00 1.96848407e-01 -4.96159941e-01 4.65127081e-01 5.77847004e-01 1.22821712e+00 2.78875709e-01 6.61390185e-01 -9.44657028e-02 5.99714160e-01 1.93809226e-01 2.68146813e-01 6.56982780e-01 -4.87785079e-02 -2.22189859e-01 9.14654434e-01 -2.71238923e-01 -7.72025287e-01 -6.59062862e-01 5.48913889e-02 1.43231595e+00 -4.57123637e-01 -8.83258820e-01 -7.17636645e-01 -4.42193985e-01 -5.39693773e-01 6.72404766e-01 6.06301688e-02 1.39635280e-01 -2.26440504e-01 1.00372471e-02 5.28666914e-01 6.42383322e-02 5.77115476e-01 -1.41011655e+00 -8.62567723e-01 4.10875648e-01 2.22921118e-01 -9.89289403e-01 -4.56578359e-02 3.14612947e-02 -4.73338157e-01 -6.89904153e-01 -2.35133052e-01 -8.52032483e-01 1.71944141e-01 -2.11928576e-01 1.12307167e+00 2.63199836e-01 -5.79834580e-01 9.12171245e-01 -3.36892813e-01 -2.38442808e-01 -1.28524923e+00 2.32201859e-01 -2.47808620e-01 -6.10446632e-01 8.09977204e-02 -7.92778552e-01 -1.70085356e-01 4.51130837e-01 -7.27931261e-01 4.32282954e-01 -8.16960819e-03 6.45641744e-01 -3.49119931e-01 -3.02433014e-01 5.68294108e-01 -1.09570885e+00 1.33765996e+00 -3.33284080e-01 -7.45548248e-01 5.33558130e-01 -7.17560530e-01 -1.53227717e-01 4.65844512e-01 -1.30630955e-01 -1.48277521e+00 -3.61360870e-02 -4.41790760e-01 4.69627529e-01 -8.12491596e-01 6.10979319e-01 -2.03916788e-01 -2.51620948e-01 5.56062937e-01 -2.38653906e-02 5.11943161e-01 -5.40909648e-01 2.52318650e-01 1.01888061e+00 3.38812500e-01 -8.60707879e-01 3.07249069e-01 -4.33963716e-01 -3.78227979e-01 -1.02588928e+00 3.32406797e-02 -5.43144584e-01 -6.54969811e-01 -4.34326351e-01 5.43989718e-01 -3.39279562e-01 -1.37111175e+00 2.59848982e-01 -1.33392704e+00 -8.41176629e-01 -3.65906179e-01 2.25495696e-01 -4.06005085e-01 4.92868990e-01 -7.67028332e-01 -1.12580717e+00 -3.55105847e-01 -9.71915185e-01 3.13111424e-01 5.47867835e-01 -9.22365725e-01 -1.28799140e+00 2.85874456e-01 4.65194285e-01 6.36360645e-01 1.91570178e-01 8.29494417e-01 -1.00732231e+00 -3.15485746e-01 -2.44531378e-01 1.81847379e-01 -1.47936167e-02 3.82722542e-02 3.31891507e-01 -8.11190903e-01 3.15619484e-02 -2.94212162e-01 -5.68788946e-01 -3.49460036e-01 -5.94703019e-01 2.88808823e-01 -3.98467749e-01 -1.85349345e-01 -3.49771053e-01 7.49327421e-01 5.89982986e-01 5.67449927e-01 3.53584975e-01 1.74327120e-01 1.10970080e+00 6.58176422e-01 8.82685900e-01 5.41115165e-01 7.06629813e-01 -9.35212523e-02 -7.40198195e-02 3.13239485e-01 6.46022037e-02 4.39078778e-01 1.00395918e+00 2.30549783e-01 5.04761189e-02 -1.35437799e+00 4.04594630e-01 -2.09097981e+00 -8.17101300e-01 -1.92384332e-01 2.00655389e+00 1.22953212e+00 -1.65455431e-01 3.70754600e-01 -7.36662671e-02 5.31441629e-01 -1.36483788e-01 8.31032172e-02 -1.10469544e+00 7.57510722e-01 3.73831838e-01 -4.90247786e-01 7.91175783e-01 -4.71350878e-01 1.05686307e+00 6.13888931e+00 3.52308303e-01 -9.03749049e-01 3.29589471e-02 -2.89024748e-02 1.97475538e-01 -1.45248041e-01 3.90557617e-01 -6.69320703e-01 -1.97257083e-02 1.16766644e+00 -4.40962225e-01 5.26983500e-01 8.34677875e-01 4.66077179e-01 -2.52723485e-01 -1.15996337e+00 5.50263822e-01 -5.32876611e-01 -1.64658833e+00 -4.50335234e-01 -1.07516229e-01 1.64336711e-01 -4.63921487e-01 -5.23257315e-01 3.57297748e-01 1.00322163e+00 -8.49209130e-01 1.53964013e-01 5.85236013e-01 5.26325226e-01 -6.31187499e-01 5.87673903e-01 6.84174299e-01 -7.74328411e-01 6.07356504e-02 3.25925171e-01 -4.33406502e-01 7.88699165e-02 -7.14552701e-02 -1.42830372e+00 3.80914450e-01 5.54570675e-01 3.77637781e-02 -1.50765151e-01 8.89923930e-01 1.02833048e-01 9.91322994e-02 -2.60526180e-01 -3.73733848e-01 -1.53236002e-01 -3.68279189e-01 4.70201850e-01 1.58185124e+00 -3.18598673e-02 3.50924224e-01 4.68348742e-01 8.53299260e-01 5.67001581e-01 4.40568030e-01 -5.04208386e-01 -2.65579700e-01 8.13729107e-01 1.80946386e+00 -7.87832737e-01 -6.09850064e-02 -1.28835559e-01 7.85547853e-01 5.42559326e-02 4.70877960e-02 -9.50957984e-02 -9.77587283e-01 8.56296957e-01 -8.50192085e-03 -1.62546277e-01 -4.35078710e-01 -1.60109907e-01 -9.01895881e-01 -2.58832008e-01 -1.27588165e+00 1.58779085e-01 -5.85000157e-01 -8.65783811e-01 6.06228828e-01 1.62307322e-02 -7.01653183e-01 -6.94972932e-01 -2.68081188e-01 -1.11076689e+00 1.01680219e+00 -6.65903091e-01 -1.02074528e+00 -4.01231766e-01 3.69972974e-01 4.16880101e-01 -3.60711724e-01 1.64841056e+00 1.35239854e-01 -8.51396203e-01 2.49023050e-01 -4.81257588e-01 -2.78032832e-02 8.17122996e-01 -1.46928096e+00 3.41884643e-01 3.48936260e-01 -3.56460124e-01 1.19722736e+00 7.07535446e-01 -3.08736324e-01 -1.50230002e+00 -3.22015852e-01 1.00078607e+00 -3.33613545e-01 6.32829010e-01 -4.17262256e-01 -9.20114338e-01 2.64595181e-01 8.70070279e-01 -8.29335332e-01 1.15498042e+00 2.83272505e-01 1.12769976e-01 2.12417096e-01 -1.25733650e+00 7.39907503e-01 6.18703008e-01 -6.65836751e-01 -7.01109290e-01 4.51996595e-01 3.25757086e-01 -7.61766493e-01 -1.54964983e+00 -2.69090295e-01 5.39968371e-01 -1.24994195e+00 2.67949820e-01 -6.15759790e-01 2.01966390e-01 -3.60045545e-02 4.16074306e-01 -1.09752762e+00 2.17823237e-01 -1.77724612e+00 2.17278481e-01 1.79350460e+00 4.61837560e-01 -8.71633887e-01 5.05718648e-01 1.50358224e+00 -1.65841684e-01 -5.79461932e-01 -5.32351375e-01 -2.61842668e-01 -3.18053186e-01 -4.05247539e-01 5.22662580e-01 1.11900413e+00 1.27071536e+00 7.04241514e-01 4.62775342e-02 -3.50075513e-01 -2.07185552e-01 7.69573748e-02 1.21786761e+00 -1.58655691e+00 -4.36815143e-01 -6.23476565e-01 -7.88360909e-02 -8.83091688e-01 -7.01599792e-02 -4.85741615e-01 -6.99943528e-02 -1.86837792e+00 -4.19154346e-01 -3.05350453e-01 5.06203592e-01 8.17650855e-01 5.12076020e-01 -5.41506767e-01 5.35868891e-02 -2.27144528e-02 -6.61206245e-01 -8.92432814e-04 1.09175563e+00 5.81325650e-01 -8.57550025e-01 3.53320569e-01 -7.70744443e-01 6.52875006e-01 6.46151185e-01 -1.78933501e-01 -5.11530936e-01 1.11776747e-01 2.19546556e-01 6.86438680e-01 -1.12646297e-01 -8.99767458e-01 7.41758168e-01 -3.39996725e-01 -2.53614008e-01 -2.50095148e-02 2.78608769e-01 -6.27143383e-01 8.99584666e-02 2.25844026e-01 -6.39726281e-01 -3.94358812e-03 3.96548450e-01 -1.92463264e-01 -7.43606836e-02 -5.97529233e-01 6.28795981e-01 -5.12836576e-01 -4.85443652e-01 -3.97962689e-01 -1.26560378e+00 -8.09190213e-04 1.09623718e+00 -3.57093245e-01 -5.72019756e-01 -8.17426801e-01 -7.84072459e-01 3.05120230e-01 4.73099589e-01 3.80749315e-01 2.66305208e-01 -4.94876951e-01 -7.18376562e-02 2.40339473e-01 -1.28219202e-01 -1.76888585e-01 4.20032777e-02 7.53971100e-01 -7.51852572e-01 3.31532598e-01 -5.47550857e-01 -3.23827446e-01 -1.74801469e+00 -2.89637506e-01 2.85234362e-01 -3.41286719e-01 -4.41740274e-01 6.95759892e-01 -7.09813893e-01 -1.03602171e+00 3.06756705e-01 -7.23617300e-02 -3.69878083e-01 2.72931427e-01 6.92830026e-01 4.24455047e-01 1.88963115e-01 -2.71572042e-02 -2.65223056e-01 -1.78913429e-01 -2.21488476e-01 -6.77496314e-01 1.31216466e+00 -2.87107199e-01 -2.59837091e-01 8.87856722e-01 4.74966317e-01 1.55331627e-01 -7.67138481e-01 -7.27609918e-02 3.94844353e-01 -1.77631691e-01 -2.67454624e-01 -1.20688808e+00 -1.76252082e-01 7.13544309e-01 3.61442327e-01 7.62688339e-01 4.98342782e-01 -2.05700323e-01 3.28061879e-01 8.63830149e-01 2.28880435e-01 -1.26222682e+00 1.34660617e-01 9.90248978e-01 8.04267228e-01 -8.65493119e-01 -8.93454030e-02 -4.46587980e-01 -9.77002978e-01 1.63056743e+00 9.32903230e-01 6.18987083e-01 4.21443552e-01 7.43878305e-01 5.22360742e-01 -2.78923333e-01 -1.35089242e+00 -2.44097486e-02 -3.75307083e-01 5.96150815e-01 8.41703653e-01 -4.27010268e-01 -3.54589731e-01 5.59843898e-01 -9.20846984e-02 1.95240855e-01 8.77428472e-01 1.61316121e+00 -3.71488124e-01 -1.73492539e+00 -2.98162073e-01 -7.23686367e-02 -4.11802769e-01 3.06315292e-02 -9.31309581e-01 8.05360436e-01 -4.23584759e-01 1.21771824e+00 9.84958466e-03 -2.66350329e-01 5.71581066e-01 4.96123046e-01 3.46896797e-01 -1.10012269e+00 -1.54192209e+00 -1.76820010e-01 8.64784837e-01 -2.95971096e-01 -6.38459027e-02 -5.28976858e-01 -1.36214221e+00 -6.16783857e-01 -1.24167159e-01 6.22123361e-01 8.73962581e-01 9.32512879e-01 6.33236825e-01 3.49677593e-01 4.72590894e-01 -4.94455367e-01 -6.38714015e-01 -1.19733930e+00 -4.22234118e-01 -1.29007250e-01 -1.67367503e-01 -1.98664427e-01 1.79292202e-01 -1.02490708e-02]
[12.809829711914062, 7.992326736450195]
9484a13b-f1f2-4ba1-ad61-fd78ed690b76
transfer-learning-with-ensembles-of-deep
2103.12068
null
https://arxiv.org/abs/2103.12068v4
https://arxiv.org/pdf/2103.12068v4.pdf
Transfer Learning with Ensembles of Deep Neural Networks for Skin Cancer Detection in Imbalanced Data Sets
Several machine learning techniques for accurate detection of skin cancer from medical images have been reported. Many of these techniques are based on pre-trained convolutional neural networks (CNNs), which enable training the models based on limited amounts of training data. However, the classification accuracy of these models still tends to be severely limited by the scarcity of representative images from malignant tumours. We propose a novel ensemble-based CNN architecture where multiple CNN models, some of which are pre-trained and some are trained only on the data at hand, along with auxiliary data in the form of metadata associated with the input images, are combined using a meta-learner. The proposed approach improves the model's ability to handle limited and imbalanced data. We demonstrate the benefits of the proposed technique using a dataset with 33126 dermoscopic images from 2056 patients. We evaluate the performance of the proposed technique in terms of the F1-measure, area under the ROC curve (AUC-ROC), and area under the PR-curve (AUC-PR), and compare it with that of seven different benchmark methods, including two recent CNN-based techniques. The proposed technique compares favourably in terms of all the evaluation metrics.
['Teemu Roos', 'Aqsa Saeed Qureshi']
2021-03-22
null
null
null
null
['skin-cancer-classification']
['medical']
[ 4.44585443e-01 -7.02845678e-03 -3.20378900e-01 -3.38827968e-01 -5.54564714e-01 -1.60641059e-01 4.88425821e-01 5.82844913e-01 -9.20688450e-01 6.79610729e-01 -6.89153746e-02 -1.73290163e-01 -3.47064942e-01 -8.42756629e-01 -4.14150923e-01 -8.85539174e-01 7.42535219e-02 1.58073269e-02 1.24866389e-01 1.03496693e-01 2.00161561e-01 1.60098255e-01 -1.51005673e+00 3.93037558e-01 1.22316098e+00 1.28975737e+00 -5.50160818e-02 6.71147764e-01 -1.13916375e-01 6.51083946e-01 -5.12844980e-01 -5.22352517e-01 1.91102058e-01 -9.75293592e-02 -4.93507296e-01 -3.12172454e-02 5.21850646e-01 -1.19117856e-01 -2.09948450e-01 9.31804419e-01 4.95879292e-01 -2.44750381e-01 5.43360949e-01 -8.69850576e-01 -1.73803940e-01 -7.02560171e-02 -5.10098934e-01 2.13724449e-01 -2.88805753e-01 1.63563788e-01 6.25851095e-01 -3.55501205e-01 6.11664295e-01 4.74089414e-01 8.73086095e-01 4.56062555e-01 -6.10889792e-01 -6.43410921e-01 -2.90744990e-01 4.12373245e-02 -1.13293362e+00 -2.07862154e-01 3.42924863e-01 -3.01664293e-01 6.50510013e-01 3.28901172e-01 5.20001411e-01 7.06382036e-01 6.01834178e-01 5.70891142e-01 1.26805401e+00 -5.24969995e-01 9.17838216e-02 4.31983829e-01 7.66978636e-02 7.94486046e-01 3.12764436e-01 1.04357839e-01 -3.25504839e-01 -1.62847593e-01 4.94648218e-01 6.05394766e-02 -3.94822378e-03 -1.30613282e-01 -6.89715028e-01 7.30301380e-01 5.94421029e-01 2.23322675e-01 -4.51235682e-01 -2.51627386e-01 6.78879440e-01 7.24493759e-03 6.85645342e-01 1.11130394e-01 -3.00616384e-01 3.35286409e-01 -9.30587351e-01 4.46717590e-02 7.02138126e-01 4.27511305e-01 2.01895401e-01 -2.79918075e-01 -3.09861064e-01 8.57596099e-01 6.01399541e-02 -8.48302320e-02 7.51997650e-01 -2.54703432e-01 4.27132845e-01 9.68273699e-01 -1.65740639e-01 -7.45168447e-01 -4.51410770e-01 -8.07665348e-01 -1.25013423e+00 1.14506543e-01 3.50953162e-01 -2.39313796e-01 -1.36921859e+00 1.42409694e+00 3.23883623e-01 1.26674637e-01 1.97204918e-01 6.34609282e-01 1.10533834e+00 2.50941008e-01 4.45036262e-01 -1.77516297e-01 1.03574550e+00 -9.67406988e-01 -5.49841702e-01 2.32813314e-01 5.92027724e-01 -6.38457239e-01 4.80947226e-01 4.62483943e-01 -7.56044149e-01 -4.31683868e-01 -1.12697554e+00 2.63000071e-01 -3.75566721e-01 6.02992773e-01 5.20360410e-01 7.28161395e-01 -9.32722449e-01 4.57454771e-01 -7.02977240e-01 -4.79683310e-01 8.10478389e-01 7.59351254e-01 -6.80373847e-01 -3.33152801e-01 -8.65875244e-01 7.86843181e-01 4.94621933e-01 2.26304129e-01 -7.45384991e-01 -4.06111479e-01 -4.80620861e-01 -9.91661474e-02 2.13305697e-01 -7.05656052e-01 8.54772687e-01 -1.38447988e+00 -1.01926279e+00 7.03320265e-01 2.74921566e-01 -5.30386984e-01 5.50473988e-01 -5.71959317e-02 -3.63685548e-01 1.22346833e-01 -3.63378912e-01 5.64930677e-01 5.03052831e-01 -9.47797835e-01 -8.75972509e-01 -5.65406799e-01 8.65429565e-02 3.16781044e-01 -6.10476792e-01 -1.07003048e-01 -3.84515107e-01 -4.21278894e-01 -1.93930730e-01 -9.00132477e-01 -4.39705640e-01 1.82144642e-01 -4.25741404e-01 -1.90023258e-01 8.69148314e-01 -7.48644590e-01 1.08302867e+00 -1.96990824e+00 -1.63252935e-01 3.67496431e-01 2.57109195e-01 9.11183536e-01 -1.62073597e-01 3.13261181e-01 -1.33301601e-01 9.84283015e-02 -2.57877409e-01 -2.24873036e-01 -6.95891321e-01 9.21219736e-02 6.54594719e-01 4.24084425e-01 4.02239263e-01 4.31613326e-01 -5.98412514e-01 -6.62413776e-01 4.70838636e-01 5.93630433e-01 -6.90754652e-02 1.72902912e-01 -1.91631511e-01 3.33818555e-01 -3.04887742e-01 6.67466342e-01 7.49953568e-01 -1.59675077e-01 3.35231423e-01 -3.09814990e-01 9.92647782e-02 -1.13638729e-01 -1.00526464e+00 1.37489331e+00 -4.99963909e-01 3.71131897e-01 -1.87144607e-01 -9.62960780e-01 6.92496657e-01 5.26555300e-01 4.52530742e-01 -4.79433805e-01 3.03213388e-01 1.18161477e-01 3.76563430e-01 -7.71482229e-01 5.34363575e-02 7.50286803e-02 5.32043338e-01 2.99341381e-01 3.60811204e-01 4.18557167e-01 2.21831456e-01 -2.45885979e-02 1.15356886e+00 -9.49865580e-02 5.67157090e-01 9.06041563e-02 6.46092832e-01 3.80074382e-02 4.08967644e-01 3.40193242e-01 -1.93380401e-01 3.77671599e-01 3.58209252e-01 -6.82271838e-01 -1.09181499e+00 -4.71186042e-01 -2.99455881e-01 5.69280386e-01 -8.99836570e-02 -1.46118462e-01 -7.69252658e-01 -9.27558482e-01 -7.65276179e-02 1.77030742e-01 -1.02867067e+00 1.71942320e-02 -2.15895161e-01 -1.29647648e+00 5.29921591e-01 4.35254067e-01 7.48443365e-01 -9.56039727e-01 -6.58040941e-01 -1.50373690e-02 1.57058448e-01 -9.00009811e-01 1.11835979e-01 1.56573102e-01 -1.08659017e+00 -1.37093234e+00 -5.50793111e-01 -6.96668506e-01 8.77795696e-01 7.79809337e-03 7.48077869e-01 4.90923166e-01 -6.05604053e-01 -2.33154863e-01 -3.96624237e-01 -7.56254733e-01 -3.97929490e-01 2.90807873e-01 -4.34067339e-01 2.64672995e-01 4.40238267e-01 -2.18848288e-01 -6.77181602e-01 -4.60943580e-02 -1.05837345e+00 7.76332840e-02 1.12918067e+00 1.12704873e+00 6.20650589e-01 3.58836472e-01 4.71539021e-01 -1.27583277e+00 4.11285490e-01 -5.99926114e-01 -2.30362564e-01 4.06161904e-01 -6.02866411e-01 -2.54628152e-01 5.72522998e-01 -3.94439101e-01 -9.19565916e-01 1.96719587e-01 -3.36410594e-04 -3.37103963e-01 -1.85535282e-01 7.35970318e-01 2.37550244e-01 -3.29937756e-01 6.60489798e-01 3.81622463e-02 3.31779659e-01 -2.74389416e-01 -1.42885551e-01 1.00004244e+00 4.18523043e-01 1.81245934e-02 3.94900024e-01 3.61143351e-01 1.25512525e-01 -6.75490499e-01 -8.80118668e-01 -5.90007424e-01 -5.63062668e-01 -2.63418406e-01 6.52003765e-01 -9.14703608e-01 -3.95462722e-01 8.39399219e-01 -6.87499642e-01 5.91492690e-02 1.61319509e-01 4.67089206e-01 2.84781680e-02 1.96054444e-01 -4.00118262e-01 -1.04004884e+00 -7.83486843e-01 -1.00454640e+00 5.93987226e-01 6.60161376e-01 5.63057251e-02 -9.76855278e-01 -8.23590308e-02 4.39352542e-01 5.73423326e-01 6.93414450e-01 9.92155075e-01 -9.71145928e-01 -1.98930785e-01 -7.68678129e-01 -3.15775484e-01 6.99627936e-01 2.83268750e-01 2.96997190e-01 -1.06740093e+00 -3.90415907e-01 -2.17320591e-01 -2.77484447e-01 1.09915292e+00 5.13219059e-01 1.50700140e+00 -3.25304002e-01 -5.29769003e-01 4.63577509e-01 1.90150261e+00 1.92513332e-01 7.68216431e-01 2.21499950e-01 5.51988482e-01 5.72877526e-01 4.32080209e-01 1.82367623e-01 3.11187506e-01 2.65225649e-01 8.54946017e-01 -3.46935570e-01 -9.19465274e-02 8.78282040e-02 -2.50778824e-01 6.13010526e-01 -4.96430576e-01 -4.30962086e-01 -7.86882460e-01 7.58325577e-01 -1.62513340e+00 -6.20692194e-01 -3.56144048e-02 2.20015025e+00 5.19914031e-01 1.45813987e-01 1.31623536e-01 3.76854539e-01 8.24716389e-01 -4.05262038e-02 -5.23826659e-01 -3.89948815e-01 8.55393261e-02 6.22240484e-01 7.18510270e-01 -7.78713822e-02 -1.38980770e+00 3.06971163e-01 5.76656771e+00 8.29672039e-01 -1.38283062e+00 2.98119318e-02 9.19157445e-01 1.82164367e-02 2.18642369e-01 -3.94141465e-01 -3.23847473e-01 4.66833055e-01 9.92528796e-01 8.22479501e-02 -7.73373544e-02 6.97238743e-01 -1.14270046e-01 -5.78194976e-01 -7.57851601e-01 6.15462244e-01 2.95555234e-01 -1.24793470e+00 -3.89132015e-02 1.78899482e-01 8.64649475e-01 -9.51647311e-02 4.55954313e-01 1.32824183e-02 -5.39970845e-02 -1.37532914e+00 -4.70123813e-02 6.69604242e-01 1.04413486e+00 -8.81446660e-01 1.61471987e+00 3.58727276e-01 -5.97746134e-01 -2.16320664e-01 -1.67693838e-01 2.53758311e-01 -6.38070524e-01 5.90674877e-01 -1.24936128e+00 8.50893199e-01 6.78587973e-01 4.42833394e-01 -7.83728480e-01 1.39624929e+00 3.32185537e-01 6.33933246e-01 -2.26466656e-01 -3.04560840e-01 2.59585053e-01 2.00551316e-01 -2.41489168e-02 1.00081074e+00 2.69721955e-01 8.35599676e-02 -2.85329372e-01 2.87489206e-01 -7.38152266e-02 5.76412261e-01 -4.63761091e-01 -5.17978184e-02 1.39221102e-01 1.62445998e+00 -5.40442169e-01 -2.27218002e-01 -4.47317690e-01 3.35233390e-01 1.03838868e-01 -2.14058116e-01 -4.07125920e-01 -4.60752964e-01 1.04590505e-01 1.16149075e-01 1.82117805e-01 3.59723359e-01 -2.70982802e-01 -6.44643843e-01 5.74969798e-02 -8.83327425e-01 6.46094918e-01 -4.76381212e-01 -1.31545889e+00 7.28649855e-01 -2.10317314e-01 -1.26544785e+00 2.85085030e-02 -6.71550632e-01 -7.10439265e-01 8.75256240e-01 -1.44806385e+00 -1.42220187e+00 -8.15275311e-01 3.80886942e-01 4.27172869e-01 -4.63223457e-01 9.83083963e-01 2.44934708e-01 -6.48064494e-01 7.49791920e-01 2.08752379e-01 2.66547322e-01 7.32573569e-01 -1.19037998e+00 -1.99534237e-01 5.48172355e-01 -2.70027876e-01 3.41928035e-01 3.10082197e-01 -5.71173251e-01 -8.73268366e-01 -1.28770852e+00 5.49409270e-01 -1.33745864e-01 4.14290614e-02 1.62658170e-01 -7.68845856e-01 2.50251681e-01 1.54026702e-01 2.78353631e-01 1.07326806e+00 1.23082198e-01 -2.15110153e-01 -3.16691577e-01 -1.57514811e+00 5.10075837e-02 2.64195263e-01 -6.72731027e-02 4.04388569e-02 3.41452986e-01 2.34693512e-01 -6.15844250e-01 -1.02680731e+00 6.81904435e-01 8.54018033e-01 -1.11248612e+00 5.12878478e-01 -6.80965722e-01 7.06105471e-01 -1.62436277e-01 -5.11170253e-02 -1.24768448e+00 3.49151306e-02 1.87350467e-01 1.07034050e-01 9.04300213e-01 4.24328715e-01 -2.73527235e-01 9.42738950e-01 1.95561185e-01 3.98163721e-02 -1.39407623e+00 -8.41824353e-01 -2.66998351e-01 -2.35691741e-02 -8.10151026e-02 5.55051923e-01 7.99617171e-01 -4.26713735e-01 -6.39201701e-02 -1.78792775e-01 6.16599014e-03 5.39036751e-01 -4.72097248e-01 5.44062734e-01 -1.14710355e+00 4.99219894e-02 4.82047200e-02 -7.57954955e-01 2.89280325e-01 -3.53680819e-01 -7.37605929e-01 -2.00244486e-01 -1.46860576e+00 6.95671856e-01 -5.79139411e-01 -8.33064437e-01 5.24278283e-01 -1.91095337e-01 3.68704349e-01 -4.61030640e-02 1.34526908e-01 -4.51549321e-01 -1.87099073e-03 1.24119687e+00 -1.54493004e-01 6.86703324e-02 2.46343091e-01 -5.61080217e-01 6.64062500e-01 8.61488283e-01 -3.71930778e-01 -2.77819186e-01 -2.90286422e-01 -1.40068308e-01 5.91304749e-02 4.01809216e-01 -1.29559278e+00 4.22669232e-01 -1.74398031e-02 8.56874585e-01 -5.78902602e-01 8.40272382e-02 -6.02808654e-01 2.29121134e-01 5.73543727e-01 -4.09525841e-01 -1.06769137e-01 1.51258707e-01 5.68348765e-01 -3.50571692e-01 -2.57539511e-01 1.00085914e+00 -2.11390615e-01 -4.12750483e-01 4.16280448e-01 1.53670996e-01 -5.51760256e-01 1.30598783e+00 -2.55730391e-01 -5.10421336e-01 -8.88285488e-02 -6.21595621e-01 -6.32354915e-02 2.74140894e-01 1.95946336e-01 4.83398527e-01 -1.05231380e+00 -6.89130425e-01 -8.88456684e-03 4.18413639e-01 1.83033198e-01 6.01846516e-01 9.02980149e-01 -7.66583025e-01 4.00475502e-01 -6.11114562e-01 -5.96426010e-01 -1.51597893e+00 3.58047873e-01 5.46134949e-01 -6.09218478e-01 -1.65414378e-01 7.45936215e-01 -1.47026017e-01 -3.93684566e-01 2.71158278e-01 -1.04350328e-01 -5.61245382e-01 -2.24112302e-01 3.79022419e-01 1.39311612e-01 4.20132726e-01 -4.91983742e-01 -2.10326239e-01 3.63164753e-01 -4.20742124e-01 2.58039922e-01 1.47195101e+00 4.97489154e-01 -1.58653647e-01 1.47035457e-02 9.98847306e-01 -3.87196869e-01 -7.71455526e-01 -2.02375680e-01 -2.89129615e-01 -4.36865807e-01 2.17273712e-01 -1.32582378e+00 -1.23148084e+00 8.66317093e-01 1.19887626e+00 -1.67596325e-01 1.43322718e+00 -5.91445923e-01 6.61532581e-01 4.98454086e-02 4.45287637e-02 -1.11934412e+00 5.55591881e-02 -2.37163752e-02 3.62141639e-01 -1.42607284e+00 2.15879470e-01 -3.83305013e-01 -5.70651531e-01 1.21581078e+00 9.19917107e-01 -2.70280719e-01 7.12622523e-01 7.33613074e-02 1.94218129e-01 -1.26957253e-01 -1.05540264e+00 -1.47051111e-01 3.82352024e-01 6.93965673e-01 4.63875175e-01 2.70085596e-02 -5.57893395e-01 3.93138021e-01 1.65973127e-01 4.52523351e-01 4.53819454e-01 7.98883080e-01 -1.80283219e-01 -9.71509397e-01 -7.08614141e-02 1.14854479e+00 -9.03575182e-01 1.37150168e-01 -2.51337916e-01 1.11421239e+00 7.52286434e-01 7.42453933e-01 6.06577247e-02 -5.84060907e-01 1.09324791e-01 -1.64721057e-01 4.70136672e-01 -5.98391056e-01 -8.30216467e-01 -2.29846910e-01 1.64872646e-01 -1.40640333e-01 -7.80875325e-01 -3.77798736e-01 -4.19722617e-01 -5.10598496e-02 -7.43564665e-01 -3.88497040e-02 1.02947080e+00 1.01115239e+00 4.63477746e-02 6.39812768e-01 6.12424493e-01 -2.03919172e-01 -4.97256070e-01 -1.28979194e+00 -3.38966966e-01 1.68637216e-01 2.46727869e-01 -5.55593312e-01 -4.71953908e-03 -1.13432437e-01]
[15.602160453796387, -2.9268903732299805]
920a996c-85e1-49dc-98a0-710581471583
speecht5-unified-modal-encoder-decoder-pre
2110.07205
null
https://arxiv.org/abs/2110.07205v3
https://arxiv.org/pdf/2110.07205v3.pdf
SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing
Motivated by the success of T5 (Text-To-Text Transfer Transformer) in pre-trained natural language processing models, we propose a unified-modal SpeechT5 framework that explores the encoder-decoder pre-training for self-supervised speech/text representation learning. The SpeechT5 framework consists of a shared encoder-decoder network and six modal-specific (speech/text) pre/post-nets. After preprocessing the input speech/text through the pre-nets, the shared encoder-decoder network models the sequence-to-sequence transformation, and then the post-nets generate the output in the speech/text modality based on the output of the decoder. Leveraging large-scale unlabeled speech and text data, we pre-train SpeechT5 to learn a unified-modal representation, hoping to improve the modeling capability for both speech and text. To align the textual and speech information into this unified semantic space, we propose a cross-modal vector quantization approach that randomly mixes up speech/text states with latent units as the interface between encoder and decoder. Extensive evaluations show the superiority of the proposed SpeechT5 framework on a wide variety of spoken language processing tasks, including automatic speech recognition, speech synthesis, speech translation, voice conversion, speech enhancement, and speaker identification. We release our code and model at https://github.com/microsoft/SpeechT5.
['Furu Wei', 'Jinyu Li', 'Shujie Liu', 'Chengyi Wang', 'Yao Qian', 'Zhihua Wei', 'Yu Zhang', 'Qing Li', 'Tom Ko', 'Yu Wu', 'Shuo Ren', 'Long Zhou', 'Rui Wang', 'Junyi Ao']
2021-10-14
null
https://aclanthology.org/2022.acl-long.393
https://aclanthology.org/2022.acl-long.393.pdf
acl-2022-5
['speaker-identification']
['speech']
[ 5.59501946e-01 2.83855975e-01 -3.83074045e-01 -6.74707770e-01 -1.18463981e+00 -4.30987775e-01 6.57577217e-01 -2.79168457e-01 -1.84340805e-01 2.26746202e-01 7.41600156e-01 -6.09060287e-01 4.50426847e-01 -4.63996649e-01 -6.46142662e-01 -4.16239619e-01 5.27272642e-01 5.55564940e-01 -2.14586750e-01 -1.51794642e-01 -1.59288406e-01 -2.17390701e-01 -1.22176659e+00 7.20998287e-01 8.16940665e-01 8.95023227e-01 4.74903494e-01 7.68422902e-01 -5.38367271e-01 8.65993738e-01 -4.03287143e-01 -2.47791469e-01 -5.44838123e-02 -5.28763652e-01 -8.70727837e-01 3.74346793e-01 -2.00491697e-01 -4.07678723e-01 -6.82957649e-01 1.14078522e+00 6.11640215e-01 1.64767936e-01 6.46927893e-01 -1.16891706e+00 -1.14963341e+00 1.09614050e+00 -6.79282025e-02 -2.19098508e-01 3.85028899e-01 3.06950837e-01 9.94510710e-01 -1.19134080e+00 4.37757671e-01 1.67198384e+00 1.31688789e-01 9.13275063e-01 -9.74610865e-01 -5.00253677e-01 5.44105768e-02 3.71625237e-02 -1.39996147e+00 -1.23480248e+00 6.04558647e-01 -1.59429833e-01 1.34518766e+00 1.32002950e-01 9.52315703e-02 1.22067893e+00 1.23538874e-01 1.22866762e+00 5.99933624e-01 -5.83179176e-01 8.04788321e-02 1.94645137e-01 -1.04450323e-01 4.36956823e-01 -7.73415804e-01 7.32855126e-02 -6.67150199e-01 2.21907854e-01 6.11107945e-01 -9.76780131e-02 -1.84607342e-01 6.19252734e-02 -1.26658463e+00 8.43261361e-01 2.32778955e-02 2.65845150e-01 -2.38394424e-01 1.02664428e-02 8.85147154e-01 4.55717325e-01 4.51662809e-01 -2.51342386e-01 -4.52649713e-01 -1.44200817e-01 -9.87599492e-01 -4.12721843e-01 4.76625800e-01 1.20376313e+00 6.33847296e-01 5.33105195e-01 -4.08129334e-01 1.22598207e+00 7.78256238e-01 9.08866107e-01 1.03013551e+00 -6.94812119e-01 9.23716426e-01 5.16081572e-01 -4.28766429e-01 -2.92370319e-01 1.68407783e-01 -1.63194891e-02 -9.57898796e-01 -3.13748181e-01 -3.73175085e-01 -2.80763000e-01 -1.15245140e+00 1.72451663e+00 1.52396247e-01 -1.56144658e-02 7.75587559e-01 6.22192919e-01 9.00820553e-01 1.41887641e+00 -2.64033303e-02 -2.67017335e-01 1.31813598e+00 -1.26721239e+00 -1.12892604e+00 -5.46560466e-01 7.47723281e-01 -9.72095311e-01 1.17061365e+00 -2.44301781e-01 -1.28736281e+00 -6.57183886e-01 -7.68944323e-01 -3.04349452e-01 -3.55926216e-01 5.97218871e-01 -2.78386623e-01 3.80062580e-01 -1.12295675e+00 -8.08210596e-02 -8.70440900e-01 -4.23768252e-01 8.98821503e-02 2.73904968e-02 -2.39221394e-01 2.51298491e-02 -1.43616199e+00 7.53597617e-01 6.07311726e-01 -7.33308420e-02 -1.15641117e+00 -3.25087905e-01 -1.37515104e+00 1.58601895e-01 1.90421328e-01 -7.07429647e-01 1.65383637e+00 -1.01424658e+00 -2.16365790e+00 6.42535627e-01 -6.89297616e-01 -5.00321746e-01 1.26069346e-02 9.42388996e-02 -6.59037352e-01 -5.57050332e-02 1.75265878e-01 8.05244446e-01 1.10204303e+00 -9.57627773e-01 -7.35193670e-01 -2.19172791e-01 -5.02657831e-01 5.89425564e-01 -6.26443923e-01 3.31687599e-01 -6.62342072e-01 -8.16603243e-01 -3.51530164e-02 -8.61422122e-01 9.00971815e-02 -4.62946981e-01 -6.56716228e-01 -4.74997103e-01 9.38891172e-01 -8.80798459e-01 1.29840910e+00 -2.39406681e+00 3.45921665e-01 -1.31910801e-01 -3.27205479e-01 3.48703802e-01 -4.89231676e-01 7.31946111e-01 -1.53715461e-01 -5.45790419e-02 -3.13506812e-01 -8.87694716e-01 4.39765841e-01 4.21100259e-01 -5.95443130e-01 8.36790130e-02 1.75700530e-01 1.12789547e+00 -6.01173937e-01 -4.65056300e-01 6.00506783e-01 6.72372043e-01 -3.15729916e-01 4.13067579e-01 -2.68008918e-01 3.76180142e-01 -1.90914273e-01 3.44418973e-01 2.78790414e-01 -3.55507284e-02 1.30424514e-01 1.48586584e-02 -1.68601424e-01 1.27249181e+00 -9.27710414e-01 1.93648720e+00 -8.36800158e-01 5.82718968e-01 1.72793061e-01 -9.92306471e-01 7.52930760e-01 9.57849264e-01 1.72383979e-01 -6.51907682e-01 3.91828328e-01 2.57380605e-01 -3.27607542e-01 -4.43053961e-01 4.75195944e-01 -2.86779493e-01 -3.28050822e-01 6.54389441e-01 6.59991860e-01 -3.38346809e-01 -1.11277655e-01 1.76701933e-01 6.08031332e-01 -1.55339077e-01 1.33884653e-01 2.18768656e-01 7.05523193e-01 -2.82981038e-01 1.81073442e-01 9.35626030e-02 4.94778901e-02 5.74663043e-01 5.44913262e-02 2.50276715e-01 -1.11048460e+00 -1.11584902e+00 2.06930652e-01 1.62576520e+00 -3.17787796e-01 -6.20176733e-01 -9.69922483e-01 -3.95281345e-01 -3.35865736e-01 1.14287376e+00 -2.65842438e-01 -6.16530538e-01 -3.42627972e-01 -1.21757627e-01 9.06220317e-01 4.72551972e-01 2.74367869e-01 -1.20763648e+00 4.07183200e-01 3.89659822e-01 -4.90937203e-01 -1.29603565e+00 -1.10957277e+00 2.85302490e-01 -5.68980515e-01 -2.75675535e-01 -8.05221677e-01 -1.35340023e+00 4.32021111e-01 1.43561676e-01 5.46481431e-01 -4.15975362e-01 3.90053868e-01 2.56248295e-01 -4.37845618e-01 -1.76873710e-02 -1.19374192e+00 2.24780574e-01 2.67953813e-01 3.20639253e-01 2.00548604e-01 -2.84574896e-01 -1.83419943e-01 2.47443184e-01 -1.04990172e+00 2.66070962e-01 5.15522420e-01 8.09066415e-01 4.34106469e-01 -3.58228236e-02 6.04385018e-01 -2.83599049e-01 6.52629137e-01 -3.16591501e-01 -2.51962245e-01 2.93517232e-01 -3.24218065e-01 2.74395764e-01 7.31533945e-01 -3.27519983e-01 -1.21340525e+00 5.23326807e-02 -6.28816426e-01 -7.05315590e-01 -8.48065019e-02 6.96067810e-01 -5.68162262e-01 6.30235910e-01 2.89595604e-01 8.63552809e-01 1.73181728e-01 -4.89346087e-01 7.71252036e-01 1.41907060e+00 7.13572383e-01 -2.55609632e-01 7.25314975e-01 -1.58700019e-01 -1.05872238e+00 -1.02121484e+00 -6.05292976e-01 -3.81878346e-01 -4.73197907e-01 1.40564024e-01 1.09420812e+00 -1.09130287e+00 -2.91774154e-01 5.46382904e-01 -1.49241602e+00 -4.19224113e-01 -3.86863738e-01 5.32724977e-01 -6.11495674e-01 2.95273542e-01 -8.41277242e-01 -7.46256590e-01 -6.60409689e-01 -1.60284221e+00 1.40009201e+00 -1.88675135e-01 -2.15447098e-01 -1.14629614e+00 -7.96276033e-02 5.53286970e-01 4.51806754e-01 -8.39748383e-01 9.43876028e-01 -7.42674828e-01 -3.41963798e-01 6.67423531e-02 1.99265257e-02 7.29782164e-01 4.35768843e-01 -1.56282753e-01 -1.10761857e+00 -3.24451029e-01 -7.84795508e-02 -3.67255747e-01 6.81578159e-01 2.94492334e-01 8.54328394e-01 -6.14151120e-01 -1.61311701e-02 6.45060420e-01 8.60761106e-01 3.35362941e-01 5.43852985e-01 -6.64340630e-02 9.11039114e-01 5.62045336e-01 1.67996809e-01 2.10467681e-01 8.38776588e-01 5.55846095e-01 2.86905095e-02 8.12613443e-02 -4.13547695e-01 -6.51747286e-01 1.18769944e+00 1.79133940e+00 7.54542649e-01 -4.80020911e-01 -8.91635954e-01 5.57934225e-01 -1.56666279e+00 -7.05054522e-01 5.03289104e-01 1.79251683e+00 1.14056587e+00 2.63358802e-02 -1.63559124e-01 6.44436702e-02 9.04606342e-01 2.74468809e-01 -6.28647327e-01 -4.47346956e-01 2.96750125e-02 -3.85119137e-03 2.04109028e-01 8.35562348e-01 -9.01226878e-01 1.48790610e+00 5.43063021e+00 1.14162683e+00 -1.51336539e+00 3.52171719e-01 4.09680784e-01 1.39375985e-01 -5.19847453e-01 -2.18556702e-01 -8.18137467e-01 4.68472749e-01 1.62146795e+00 -5.34304261e-01 6.09397888e-01 6.71656847e-01 3.85261565e-01 7.20012307e-01 -1.16141891e+00 1.02022433e+00 1.59187868e-01 -1.22225559e+00 6.07403219e-01 -2.34646857e-01 4.82917964e-01 3.20910424e-01 2.82514036e-01 6.03288710e-01 3.53780329e-01 -9.62537229e-01 9.95263278e-01 -2.90694013e-02 1.34073985e+00 -5.66427112e-01 5.07977784e-01 5.52380085e-01 -1.40129697e+00 1.13822252e-01 -1.63131990e-02 3.22607458e-01 4.52496976e-01 1.43678889e-01 -1.20598173e+00 4.89819199e-01 3.51805836e-01 8.58903944e-01 6.84622228e-02 1.36527777e-01 -3.98180783e-01 7.94657350e-01 -1.90702111e-01 2.02560350e-01 3.07411551e-01 -2.35463604e-02 5.76720595e-01 1.43347037e+00 4.76982415e-01 -2.13067591e-01 1.98497429e-01 7.08067536e-01 -2.99896419e-01 2.97669441e-01 -5.22301376e-01 -5.96599460e-01 7.61695981e-01 8.32993686e-01 -2.69019902e-01 -7.33667135e-01 -4.53033864e-01 1.29423273e+00 4.91942465e-02 4.70142007e-01 -5.94104350e-01 -4.12631422e-01 7.94880629e-01 -3.04342419e-01 3.23616654e-01 -2.91478187e-01 -2.53177226e-01 -1.33648169e+00 -2.52506007e-02 -1.12312734e+00 1.27064362e-01 -9.76110041e-01 -1.13150549e+00 1.01994324e+00 -1.92884549e-01 -1.25547731e+00 -8.02021861e-01 -4.73424971e-01 -5.46949327e-01 1.04690385e+00 -1.34555256e+00 -1.24883544e+00 4.31131005e-01 7.80531406e-01 1.21924233e+00 -5.93769133e-01 9.08420444e-01 2.86710173e-01 -6.80075586e-01 7.62017429e-01 2.20028579e-01 4.58917558e-01 6.38235807e-01 -1.03894413e+00 9.38574135e-01 9.18703854e-01 4.92684618e-02 6.37667060e-01 2.68470883e-01 -5.43410122e-01 -1.51781654e+00 -1.53530943e+00 1.17484093e+00 -2.00371876e-01 8.17085862e-01 -7.17918992e-01 -9.27232921e-01 1.07149780e+00 8.28394949e-01 -3.70808423e-01 7.35192478e-01 -3.74287695e-01 -2.30783492e-01 7.40426704e-02 -6.11824572e-01 7.36565471e-01 6.96739674e-01 -1.36066794e+00 -8.60524297e-01 1.16046943e-01 1.35327721e+00 -4.43378299e-01 -7.79129624e-01 7.20752031e-02 1.62556246e-01 -2.26614848e-01 8.48052204e-01 -1.84590757e-01 4.01092470e-01 -2.05014750e-01 -5.87509751e-01 -1.68816364e+00 1.14473533e-02 -8.59022677e-01 2.09329695e-01 1.54280090e+00 7.50947654e-01 -5.15577853e-01 3.12201470e-01 1.13184415e-01 -7.84775913e-01 -3.32140088e-01 -1.24479890e+00 -6.17767692e-01 1.41961947e-01 -7.70831108e-01 6.82994187e-01 8.31478238e-01 2.85325408e-01 9.65493560e-01 -4.14164096e-01 3.01470786e-01 3.74925315e-01 -2.23180413e-01 5.06998658e-01 -5.47773719e-01 -6.07106388e-02 -2.33448744e-01 -1.89624578e-02 -1.68762743e+00 5.16260803e-01 -1.47871745e+00 4.34150308e-01 -1.66322684e+00 -1.56354100e-01 -9.05330572e-03 -2.67154463e-02 8.65646482e-01 4.70507406e-02 -2.23521277e-01 1.38233110e-01 1.23090036e-01 -4.81128931e-01 1.37691450e+00 1.11900103e+00 -3.75702530e-01 -2.96589553e-01 -2.18454793e-01 -4.63538498e-01 4.70396280e-01 7.92119324e-01 -3.24902594e-01 -5.32208025e-01 -8.42620552e-01 -3.48488569e-01 5.14425099e-01 -7.05838799e-02 -8.14966202e-01 4.03470695e-01 -9.01096165e-02 -9.86882392e-03 -6.68549061e-01 5.41833401e-01 -7.14834034e-01 -4.33975458e-01 2.15329424e-01 -7.25681722e-01 -1.81587428e-01 1.88008532e-01 6.89077228e-02 -6.08401895e-01 -6.66194409e-02 7.43986011e-01 1.55257761e-01 -5.61196208e-01 4.34351385e-01 -8.27330589e-01 -1.70585401e-02 6.11648083e-01 3.68531980e-02 -3.11957210e-01 -6.74944997e-01 -8.39277804e-01 3.91278446e-01 1.42568514e-01 9.40261006e-01 8.41029823e-01 -1.62339091e+00 -7.74392903e-01 7.19123304e-01 2.65020162e-01 -1.82040349e-01 2.83463210e-01 5.49875200e-01 1.51999563e-01 7.12035358e-01 8.47844630e-02 -7.13054240e-01 -1.15864611e+00 4.04284090e-01 4.42381591e-01 2.27377638e-01 -4.20804530e-01 6.13621891e-01 2.90816635e-01 -1.02949691e+00 4.27338511e-01 -7.01739430e-01 3.98345515e-02 -1.34951249e-01 5.65294027e-01 5.90764098e-02 1.13759667e-01 -1.13844752e+00 -2.73015857e-01 1.78160399e-01 -1.77574888e-01 -6.45700872e-01 1.12962592e+00 -7.06001401e-01 -9.98034626e-02 6.95697129e-01 1.57522869e+00 -2.58337975e-01 -9.12571013e-01 -5.66071868e-01 -1.58980265e-01 3.17202955e-01 2.11806715e-01 -4.32548940e-01 -9.53202426e-01 1.24194169e+00 3.67173105e-01 1.45111354e-02 9.84122455e-01 2.63159692e-01 1.34861398e+00 4.18504804e-01 -5.54196909e-02 -1.24678040e+00 6.87905625e-02 1.23740709e+00 9.20112729e-01 -1.17781508e+00 -8.95941317e-01 -1.56526357e-01 -9.08498824e-01 8.96469057e-01 3.68618906e-01 3.57910365e-01 6.01291180e-01 3.99314851e-01 4.78556454e-01 1.66068390e-01 -1.14767635e+00 -1.32181391e-01 3.03073645e-01 5.22174239e-01 6.07818067e-01 1.35198504e-01 3.91417623e-01 6.59217417e-01 -4.84128475e-01 -6.79804161e-02 1.46604106e-01 8.24221551e-01 -5.80723405e-01 -1.29926395e+00 -3.37019026e-01 9.86961052e-02 -7.95250982e-02 -5.01443624e-01 -2.72643924e-01 -5.33202067e-02 -2.35077575e-01 1.18417084e+00 1.22749247e-01 -6.69584990e-01 3.36405993e-01 5.93986273e-01 -1.54675089e-03 -9.96837080e-01 -3.29876781e-01 6.09849453e-01 2.16095075e-02 -3.38851213e-01 -1.00152910e-01 -5.56826413e-01 -1.61424029e+00 -8.57097059e-02 -1.08185567e-01 3.01816672e-01 8.28497589e-01 1.09820807e+00 4.35692549e-01 7.90253878e-01 8.13627958e-01 -7.67827988e-01 -7.38983452e-01 -1.29954815e+00 -3.45510870e-01 2.23807350e-01 6.39911413e-01 -1.14261478e-01 -3.55233759e-01 5.37438691e-01]
[14.522651672363281, 7.075060844421387]
4d1cbaf4-43c7-4078-b043-95e38e4ce227
hcam-hierarchical-cross-attention-model-for
2304.06910
null
https://arxiv.org/abs/2304.06910v1
https://arxiv.org/pdf/2304.06910v1.pdf
HCAM -- Hierarchical Cross Attention Model for Multi-modal Emotion Recognition
Emotion recognition in conversations is challenging due to the multi-modal nature of the emotion expression. We propose a hierarchical cross-attention model (HCAM) approach to multi-modal emotion recognition using a combination of recurrent and co-attention neural network models. The input to the model consists of two modalities, i) audio data, processed through a learnable wav2vec approach and, ii) text data represented using a bidirectional encoder representations from transformers (BERT) model. The audio and text representations are processed using a set of bi-directional recurrent neural network layers with self-attention that converts each utterance in a given conversation to a fixed dimensional embedding. In order to incorporate contextual knowledge and the information across the two modalities, the audio and text embeddings are combined using a co-attention layer that attempts to weigh the utterance level embeddings relevant to the task of emotion recognition. The neural network parameters in the audio layers, text layers as well as the multi-modal co-attention layers, are hierarchically trained for the emotion classification task. We perform experiments on three established datasets namely, IEMOCAP, MELD and CMU-MOSI, where we illustrate that the proposed model improves significantly over other benchmarks and helps achieve state-of-art results on all these datasets.
['Sriram Ganapathy', 'Soumya Dutta']
2023-04-14
null
null
null
null
['multimodal-emotion-recognition', 'emotion-classification', 'emotion-recognition-in-conversation', 'emotion-classification', 'multimodal-emotion-recognition']
['computer-vision', 'computer-vision', 'natural-language-processing', 'natural-language-processing', 'speech']
[ 1.12042472e-01 -6.39943630e-02 3.25021237e-01 -5.40122986e-01 -9.80786920e-01 -8.64197910e-02 4.98526394e-01 -1.32930055e-02 -4.57359791e-01 3.11254710e-01 8.24613452e-01 1.33279145e-01 2.77809441e-01 -4.64649618e-01 -4.45872366e-01 -7.32402802e-01 -3.81332748e-02 1.15063608e-01 -5.08847773e-01 -3.65681380e-01 -5.56068346e-02 8.82683992e-02 -1.79146898e+00 7.81277299e-01 3.60842049e-01 1.77692258e+00 -3.38816464e-01 1.23071849e+00 -3.72395635e-01 1.29654694e+00 -4.11741495e-01 -4.65778589e-01 -2.68234193e-01 -4.10444915e-01 -9.59834993e-01 1.94497667e-02 -1.13029949e-01 -2.90188044e-02 -2.07989842e-01 5.85980177e-01 6.91410124e-01 6.14309311e-01 7.52265215e-01 -1.26615000e+00 -6.90785527e-01 6.70631111e-01 -3.25093836e-01 -6.04957603e-02 3.59736860e-01 -3.94226849e-01 1.29249620e+00 -1.24316072e+00 3.16222727e-01 1.47210383e+00 5.33604801e-01 5.39531708e-01 -8.62539172e-01 -4.97868538e-01 2.37367943e-01 4.99926239e-01 -1.09899259e+00 -6.12844110e-01 1.09804177e+00 -3.37496430e-01 1.36632681e+00 2.13503554e-01 4.24939394e-01 1.43540168e+00 2.14029059e-01 9.17488635e-01 7.09598243e-01 -4.62717146e-01 4.20213789e-02 4.73053277e-01 3.19152713e-01 3.55184197e-01 -1.22096634e+00 -2.94045627e-01 -8.03280354e-01 -2.15858012e-01 6.12316430e-02 1.49010628e-01 -7.90043920e-02 -3.56963277e-02 -7.28520513e-01 1.01290190e+00 4.01048899e-01 6.12554431e-01 -7.72912562e-01 6.21238276e-02 1.16583776e+00 6.81983829e-01 7.71395326e-01 1.68541111e-02 -6.19929314e-01 -4.64662284e-01 -3.85090292e-01 -3.50985885e-01 6.84541345e-01 4.70163405e-01 5.69215477e-01 2.41237924e-01 -1.60615146e-01 1.39981771e+00 5.75585008e-01 6.45368621e-02 9.53487992e-01 -4.30302739e-01 5.99424601e-01 6.17415607e-01 -2.96482503e-01 -1.10813832e+00 -3.80129546e-01 -3.11299227e-03 -1.02618909e+00 -7.15194345e-02 -3.34577769e-01 -4.47442651e-01 -5.97157240e-01 1.79797757e+00 2.15612441e-01 2.73680687e-01 6.68618083e-01 7.19972134e-01 1.21019530e+00 1.21908641e+00 2.97174454e-01 -8.82010013e-02 1.53092384e+00 -1.40562510e+00 -1.06941164e+00 -7.79183730e-02 5.86092114e-01 -7.00495481e-01 8.51105213e-01 2.79866815e-01 -1.26402652e+00 -6.64101243e-01 -8.91322553e-01 -3.58438849e-01 -8.87047112e-01 2.28605345e-01 4.82453555e-02 2.35574514e-01 -9.51968193e-01 -7.61490688e-03 -3.46200019e-01 -2.90796459e-01 -7.02858623e-03 1.90505639e-01 -5.33410668e-01 1.82489529e-01 -1.65865552e+00 9.15963471e-01 2.93961257e-01 5.09015203e-01 -7.55692244e-01 -4.03587312e-01 -1.43131733e+00 3.51924241e-01 -1.58308268e-01 -3.30724359e-01 1.04095840e+00 -1.33841193e+00 -2.04379463e+00 5.81041932e-01 -3.14288706e-01 -2.05252886e-01 -9.02112126e-02 -3.28868210e-01 -8.98311675e-01 1.99323386e-01 -5.18600941e-01 5.61751842e-01 9.90478516e-01 -1.10456955e+00 -6.89657152e-01 -4.21688318e-01 -1.66705519e-01 4.97720033e-01 -7.98839927e-01 4.06705111e-01 -4.09539193e-01 -3.81859064e-01 -2.80630261e-01 -7.50679016e-01 -2.24757865e-02 -5.90186834e-01 -4.03283298e-01 -4.02329355e-01 1.12154162e+00 -7.41907835e-01 1.39854205e+00 -2.49171114e+00 7.52706766e-01 1.97844263e-02 -1.52389914e-01 -9.61292833e-02 -5.44944227e-01 5.51100433e-01 -4.40962017e-01 -3.39825824e-02 1.85688257e-01 -1.00107479e+00 2.60339558e-01 6.51355684e-02 -4.79916483e-01 1.25767171e-01 5.19114494e-01 7.68915772e-01 -5.01448750e-01 -2.97377080e-01 3.85574579e-01 1.08272505e+00 -4.18708622e-01 8.24507713e-01 1.29324138e-01 9.73067731e-02 -9.22517329e-02 3.73426914e-01 2.15741739e-01 1.03541672e-01 8.90433118e-02 -4.38794732e-01 -1.33770972e-01 4.16724920e-01 -1.04990363e+00 1.58892357e+00 -1.08071566e+00 5.72600961e-01 2.36263290e-01 -1.04628968e+00 9.37389910e-01 1.07207394e+00 3.45883191e-01 -5.24625301e-01 6.21221304e-01 -1.16646469e-01 -3.63799155e-01 -6.94886506e-01 7.72259593e-01 -4.02733147e-01 -6.01399183e-01 4.90463525e-01 8.05362701e-01 1.20163545e-01 -1.88124850e-01 -9.08970460e-03 7.21671700e-01 -2.94234216e-01 1.23011187e-01 3.50603551e-01 8.26247811e-01 -6.76550627e-01 3.53574276e-01 1.86538622e-01 -8.92491043e-02 4.39277828e-01 5.09583294e-01 -4.15770233e-01 -6.67461872e-01 -5.16466200e-01 1.43498152e-01 1.90250850e+00 -4.05570000e-01 -4.38432574e-01 -3.77348095e-01 -4.71888512e-01 -2.92063713e-01 5.04205048e-01 -1.22281122e+00 -4.31524038e-01 -4.79071662e-02 -5.04836440e-01 5.21362901e-01 6.82607174e-01 1.06126562e-01 -1.53351974e+00 -4.31332618e-01 3.40132803e-01 -4.40493882e-01 -1.18135321e+00 -3.60841334e-01 6.58151865e-01 -2.50941694e-01 -4.77610946e-01 -5.74070334e-01 -7.94609904e-01 2.01085567e-01 -2.06103623e-01 8.86447608e-01 -3.57646257e-01 -1.87435120e-01 6.35474205e-01 -6.81940675e-01 -4.12393272e-01 -2.15497375e-01 8.19108859e-02 -7.99368769e-02 8.89613926e-01 4.67354089e-01 -5.09917259e-01 -1.43291682e-01 1.63561068e-02 -9.44783926e-01 -2.38193661e-01 2.78008521e-01 1.16096568e+00 3.75499904e-01 -1.27148241e-01 7.67619729e-01 -4.28685993e-01 7.40658581e-01 -7.92950392e-01 1.23456329e-01 1.42289460e-01 2.04302326e-01 -1.59210175e-01 6.26455843e-01 -5.91792762e-01 -1.18875873e+00 -8.77919570e-02 -4.52349871e-01 -7.20896244e-01 -2.98756361e-01 8.32005024e-01 -3.34079146e-01 3.55325937e-01 8.70631188e-02 4.88394052e-02 -1.35280788e-01 -3.29840422e-01 6.89146101e-01 1.22674441e+00 3.75016749e-01 -3.38850439e-01 7.43845776e-02 6.98186457e-02 -7.46501327e-01 -1.05926299e+00 -8.07071447e-01 -6.47698164e-01 -5.21407127e-01 -3.83426458e-01 1.31455994e+00 -9.79343176e-01 -8.49115670e-01 4.93585169e-01 -1.23191309e+00 -1.72631204e-01 -1.42991349e-01 6.02979422e-01 -6.14101529e-01 -9.30474177e-02 -1.10135555e+00 -1.33804643e+00 -5.86357474e-01 -1.16368747e+00 1.16774631e+00 1.24551982e-01 -3.38271230e-01 -1.25872564e+00 1.54052213e-01 3.20275009e-01 5.36582828e-01 1.33087575e-01 9.94776726e-01 -9.92297113e-01 3.14767659e-01 -2.81509399e-01 -1.05393212e-02 5.95911980e-01 -4.26466838e-02 3.10603231e-02 -1.54428411e+00 2.28282623e-02 6.47925884e-02 -1.16342282e+00 8.40851963e-01 1.45137742e-01 1.19407916e+00 -1.58758730e-01 1.92332193e-01 2.85499930e-01 1.17828202e+00 2.54864514e-01 6.37450099e-01 1.51930116e-02 6.62091017e-01 7.96483934e-01 3.53418410e-01 7.22775459e-01 7.59447753e-01 5.69407582e-01 4.80745792e-01 -1.77713245e-01 4.23618078e-01 1.28068984e-01 5.71522295e-01 1.67401433e+00 1.96282029e-01 -3.13401043e-01 -6.51347399e-01 6.68943286e-01 -1.88831556e+00 -1.04727829e+00 3.67957056e-01 1.59446239e+00 7.45039582e-01 -2.25756884e-01 1.15587246e-02 3.33136678e-01 3.67411792e-01 4.00956005e-01 -4.26465094e-01 -1.22270370e+00 -9.51649472e-02 -1.63226537e-02 -5.28350055e-01 5.39760411e-01 -1.35964847e+00 7.22458839e-01 5.62609816e+00 5.36124647e-01 -1.23959017e+00 2.85790086e-01 6.56328678e-01 -2.54083812e-01 -1.38569057e-01 -7.78040946e-01 -5.13573289e-01 1.83383673e-01 1.61963439e+00 1.38903961e-01 3.66929114e-01 7.57745504e-01 -1.31214976e-01 4.01638240e-01 -1.05919385e+00 1.11093676e+00 5.29057860e-01 -8.83637547e-01 -1.18543766e-01 -4.25454527e-01 3.02529156e-01 1.30561993e-01 2.43236378e-01 1.00054753e+00 2.42566541e-01 -1.01623559e+00 6.07677221e-01 6.34705424e-01 5.81004739e-01 -1.13762689e+00 1.02478397e+00 5.06799445e-02 -1.40482569e+00 -3.87486637e-01 -1.21296369e-01 4.24464233e-02 3.08697313e-01 1.58250600e-01 -3.48333895e-01 7.05282927e-01 9.31026816e-01 8.36705089e-01 5.47227375e-02 1.97988868e-01 1.76679090e-01 3.88249785e-01 -8.46765637e-02 -1.66444145e-02 4.64063197e-01 -5.62034771e-02 8.80232230e-02 1.63886952e+00 2.31710792e-01 4.72858623e-02 -1.02980420e-01 4.40119147e-01 -2.88079739e-01 4.01160985e-01 -4.62693155e-01 -3.88163626e-01 1.39707893e-01 1.58914673e+00 8.80749226e-02 -4.45946157e-01 -6.06760621e-01 1.14197516e+00 6.73498273e-01 4.57903296e-01 -8.60640824e-01 -7.17572451e-01 1.02971566e+00 -1.03571653e+00 5.51749706e-01 2.00416639e-01 1.72609776e-01 -1.11788702e+00 -2.35797718e-01 -8.18363249e-01 6.32995844e-01 -9.08322215e-01 -1.49788380e+00 1.17855787e+00 -5.68763971e-01 -1.03380477e+00 -5.05541742e-01 -5.62478364e-01 -7.30038285e-01 1.01852012e+00 -1.66153157e+00 -1.25555396e+00 -1.89845059e-02 7.38142490e-01 7.43843138e-01 -2.20857948e-01 1.43441594e+00 5.78491330e-01 -8.21190715e-01 7.74723113e-01 -4.03610952e-02 2.14333802e-01 7.51065552e-01 -1.09322500e+00 -2.28223503e-01 2.53719479e-01 -8.03858936e-02 2.40792975e-01 2.92358458e-01 5.41246831e-02 -1.37587166e+00 -1.12013888e+00 1.08772719e+00 -1.89962983e-01 9.08923805e-01 -6.15983486e-01 -9.98428285e-01 8.01813841e-01 7.69304037e-01 1.39212813e-02 1.37714803e+00 4.69843566e-01 -5.46442151e-01 6.91417903e-02 -7.90327311e-01 3.05212379e-01 1.32078320e-01 -1.15326381e+00 -7.27480412e-01 -2.10530326e-01 9.67704296e-01 -2.78615624e-01 -1.28862143e+00 1.67345941e-01 8.50988626e-01 -6.89998209e-01 7.49870420e-01 -1.00018513e+00 8.34090233e-01 2.27837175e-01 -6.61408901e-01 -1.65347624e+00 -8.04262087e-02 -2.49219269e-01 -1.06274158e-01 1.60131359e+00 5.77815652e-01 -2.63575345e-01 2.05524322e-02 5.02412081e-01 -1.66702256e-01 -9.82402682e-01 -9.54604149e-01 3.45788300e-02 -1.83198467e-01 -7.98489690e-01 4.95681584e-01 1.11591125e+00 5.62325835e-01 9.00173485e-01 -8.25801432e-01 1.06426254e-01 -8.10708404e-02 1.12586673e-02 5.06201029e-01 -9.79441643e-01 -7.93111604e-03 -5.76724827e-01 -4.26066577e-01 -8.15485775e-01 5.95069647e-01 -6.83379531e-01 2.40694895e-01 -1.13659120e+00 -5.44061000e-03 9.51030552e-02 -7.57691026e-01 4.37002122e-01 -6.51242286e-02 3.37158471e-01 2.44993016e-01 -4.09502536e-01 -8.28301191e-01 1.21914184e+00 5.16199648e-01 -2.54408240e-01 -2.68941224e-01 -3.94147694e-01 -4.67535973e-01 7.63808668e-01 4.96936262e-01 -1.46981418e-01 -1.40569299e-01 -4.58516389e-01 1.51350528e-01 4.11464751e-01 -1.05111394e-02 -7.24512100e-01 2.93137223e-01 2.37202913e-01 3.66456032e-01 -6.35198891e-01 1.02051282e+00 -1.13401604e+00 -2.95653224e-01 -1.62931859e-01 -9.08004999e-01 4.20452580e-02 3.70433867e-01 4.42556679e-01 -7.88612008e-01 3.11309993e-02 6.49272621e-01 3.15152317e-01 -5.13877153e-01 2.34808162e-01 -6.96382403e-01 -2.65988588e-01 7.14337587e-01 1.85352385e-01 4.11171392e-02 -6.61550879e-01 -1.26066756e+00 3.98663849e-01 -3.90605927e-01 9.81767058e-01 7.22278595e-01 -1.87756872e+00 -5.30312657e-01 3.37633401e-01 3.89841110e-01 -5.42284548e-01 7.74213970e-01 8.90688300e-01 4.70718831e-01 2.72698015e-01 -2.76981115e-01 -2.75753200e-01 -1.36791790e+00 4.59277511e-01 4.75935966e-01 -4.10070211e-01 -1.29108161e-01 9.53554511e-01 1.68053061e-01 -8.72070193e-01 6.71112835e-01 -3.65017205e-01 -7.54256845e-01 6.68060064e-01 8.48324597e-01 1.74693435e-01 -2.77945772e-03 -1.24821448e+00 -2.60268152e-01 4.83791262e-01 -6.91107586e-02 -2.93428630e-01 1.51685238e+00 -5.33584893e-01 -2.27087542e-01 1.32786965e+00 1.91689539e+00 -3.86239409e-01 -7.74259269e-01 -5.60346842e-01 -2.37877339e-01 2.10683942e-01 1.80346474e-01 -6.32446229e-01 -1.03123999e+00 1.41507053e+00 5.90842426e-01 5.20116568e-01 1.28927243e+00 -2.58450657e-02 7.93817639e-01 1.97544053e-01 -3.25831831e-01 -1.37647569e+00 3.00296903e-01 9.93343413e-01 1.17312789e+00 -1.18264294e+00 -8.41723680e-01 2.74107516e-01 -1.09363294e+00 1.15156031e+00 5.27825534e-01 6.95540980e-02 9.44882870e-01 3.36518824e-01 4.60055411e-01 -1.81025118e-01 -1.36783481e+00 -1.57580301e-01 4.09539610e-01 1.13958344e-01 7.44251132e-01 -7.80669153e-02 3.01016092e-01 1.14013851e+00 -1.17759388e-02 -2.25923166e-01 1.31277040e-01 6.37246370e-01 -2.44793355e-01 -6.77578628e-01 -2.42003351e-01 1.51495010e-01 -5.67838907e-01 3.97298411e-02 -3.38973254e-01 2.34958887e-01 -1.98150113e-01 1.18429101e+00 3.49917620e-01 -7.32923865e-01 5.78463137e-01 8.02420735e-01 -1.51501000e-01 -3.08980465e-01 -9.55163121e-01 2.18883917e-01 2.11756960e-01 -5.58299005e-01 -4.89990979e-01 -3.00894380e-01 -1.12695205e+00 1.64582014e-01 -2.50638485e-01 4.67564702e-01 8.22092414e-01 1.07439709e+00 5.41582465e-01 1.09375131e+00 1.08224320e+00 -1.23143196e+00 -1.85081884e-01 -1.40253019e+00 -5.87243438e-01 5.38089037e-01 6.48272872e-01 -4.74446476e-01 -4.89462972e-01 8.72537494e-02]
[13.358830451965332, 5.525308609008789]
29f294d6-d9c4-4ff7-823b-60fac4aede98
explorable-tone-mapping-operators
2010.10000
null
https://arxiv.org/abs/2010.10000v1
https://arxiv.org/pdf/2010.10000v1.pdf
Explorable Tone Mapping Operators
Tone-mapping plays an essential role in high dynamic range (HDR) imaging. It aims to preserve visual information of HDR images in a medium with a limited dynamic range. Although many works have been proposed to provide tone-mapped results from HDR images, most of them can only perform tone-mapping in a single pre-designed way. However, the subjectivity of tone-mapping quality varies from person to person, and the preference of tone-mapping style also differs from application to application. In this paper, a learning-based multimodal tone-mapping method is proposed, which not only achieves excellent visual quality but also explores the style diversity. Based on the framework of BicycleGAN, the proposed method can provide a variety of expert-level tone-mapped results by manipulating different latent codes. Finally, we show that the proposed method performs favorably against state-of-the-art tone-mapping algorithms both quantitatively and qualitatively.
['Soo-Chang Pei', 'Yu-Lin Chang', 'Chia-Ping Chen', 'Yu-Lun Liu', 'Hung-Jin Lin', 'Ren Wang', 'Chien-Chuan Su']
2020-10-20
null
null
null
null
['tone-mapping']
['computer-vision']
[ 5.40187657e-01 -4.19787586e-01 -2.28136390e-01 -9.68534425e-02 -8.15774977e-01 -4.03521717e-01 5.05845964e-01 -6.75753951e-01 5.22555523e-02 6.88924670e-01 3.08850259e-01 6.37669414e-02 -3.09968460e-02 -9.43827212e-01 -3.31917942e-01 -9.13446486e-01 3.05878878e-01 -1.01559445e-01 3.71134788e-01 -7.14774907e-01 2.28030443e-01 2.77832866e-01 -1.61154425e+00 2.82097250e-01 8.13611388e-01 7.35012174e-01 5.58782101e-01 5.66404164e-01 4.32366915e-02 9.48436499e-01 -5.06967366e-01 -3.32631469e-01 4.07484442e-01 -1.01424599e+00 -3.99581164e-01 1.08759396e-01 3.40212792e-01 -3.05537045e-01 -7.26479590e-01 1.35855770e+00 6.52837336e-01 -8.59068334e-02 4.80532169e-01 -7.58373499e-01 -1.24863803e+00 3.59910965e-01 -7.19415486e-01 -9.54103321e-02 4.10277843e-01 3.32658691e-03 6.72548473e-01 -7.70795703e-01 5.82920015e-01 1.10137463e+00 1.78724602e-01 6.63555503e-01 -1.28571928e+00 -9.52683985e-01 -4.70390558e-01 2.21502557e-01 -1.52513039e+00 -3.18539351e-01 1.21445203e+00 -2.01401129e-01 2.71502137e-01 5.99975288e-01 6.62484109e-01 8.95772338e-01 4.40169096e-01 2.25479886e-01 1.85206866e+00 -5.18754423e-01 -1.07221514e-01 2.63976306e-01 -6.79617584e-01 5.46553254e-01 -2.83397108e-01 4.56910461e-01 -7.36426890e-01 1.59758478e-01 1.05985844e+00 -1.86911374e-01 -5.67241907e-01 -3.72481495e-01 -1.44047332e+00 6.86364353e-01 2.70148158e-01 4.32926446e-01 1.79335475e-01 -9.93235111e-02 2.36360744e-01 5.33442557e-01 3.50635618e-01 3.51703197e-01 2.59739012e-01 -9.21657607e-02 -9.57942009e-01 -1.58640251e-01 2.66771734e-01 8.55256557e-01 6.96861565e-01 3.14649820e-01 -3.40808719e-01 1.26096416e+00 4.35943790e-02 8.76224637e-01 3.91344547e-01 -9.16579664e-01 2.27368683e-01 -4.32267450e-02 5.96324448e-03 -1.19816029e+00 -2.64193453e-02 -2.84149945e-01 -1.07395196e+00 5.44973969e-01 5.99235520e-02 1.08660497e-01 -7.82601297e-01 1.59306395e+00 1.01494834e-01 -1.72251835e-01 -9.17800218e-02 1.26803887e+00 9.21389282e-01 1.08286822e+00 -2.16373324e-01 -4.28285778e-01 1.18597960e+00 -8.02860022e-01 -1.17893720e+00 1.20783798e-01 -8.40365142e-02 -1.32132459e+00 1.48533428e+00 6.23849452e-01 -1.26974857e+00 -8.51288319e-01 -1.21009624e+00 -2.16415301e-01 -1.00391395e-01 1.93377808e-02 1.11174658e-01 1.11969054e+00 -1.29492462e+00 8.03688094e-02 -1.65099499e-03 -2.42848665e-01 -1.52348801e-01 -3.97978574e-02 -2.27206901e-01 -3.14149022e-01 -1.58390927e+00 1.02329659e+00 2.93036968e-01 -9.90953967e-02 -6.71929300e-01 -7.23364711e-01 -5.82569540e-01 -5.97087704e-02 2.42269620e-01 -4.50115889e-01 7.17129230e-01 -9.20323491e-01 -2.10130692e+00 9.25160170e-01 2.21076161e-01 8.32950920e-02 7.25493670e-01 2.09001109e-01 -9.29882646e-01 3.55410457e-01 -1.94855094e-01 7.71162271e-01 9.29639399e-01 -1.52383745e+00 -4.48112696e-01 1.06579177e-01 3.79118323e-02 4.34584260e-01 -4.67826486e-01 2.04898536e-01 -7.24884808e-01 -1.02709711e+00 2.60438621e-02 -8.63868177e-01 2.64379680e-01 3.21319193e-01 -2.39862889e-01 4.81516480e-01 1.21475077e+00 -6.69987381e-01 1.48349369e+00 -2.23353839e+00 2.71961410e-02 1.08730577e-01 9.49882418e-02 1.51621327e-01 3.87852490e-02 4.71462816e-01 -1.44582182e-01 -2.05365598e-01 -3.65041971e-01 9.49580520e-02 1.75725911e-02 -2.08842695e-01 -4.97901112e-01 5.54967582e-01 -1.98815048e-01 8.10451150e-01 -6.96967661e-01 -7.07462013e-01 7.62309611e-01 6.74940526e-01 -3.05105239e-01 2.01145157e-01 7.44417831e-02 5.97321332e-01 -5.79987317e-02 7.13404059e-01 8.98630083e-01 -3.07485573e-02 2.84010559e-01 -5.74755847e-01 -3.58997881e-01 -5.06791294e-01 -1.00108933e+00 1.66448081e+00 -6.01344407e-01 9.06516969e-01 -2.74527520e-01 -4.67702150e-01 1.31616259e+00 1.82634443e-01 5.22791743e-01 -1.50529397e+00 -1.10175326e-01 2.77157336e-01 -8.91174003e-02 -3.98227066e-01 8.94430518e-01 -5.90735078e-01 -1.96686715e-01 5.34063935e-01 -3.02768052e-01 -1.77476749e-01 2.82850564e-02 -9.52667594e-02 5.21824479e-01 8.33268389e-02 2.91185141e-01 -2.89429456e-01 6.14939094e-01 -2.22520083e-01 2.09832057e-01 5.43504834e-01 -9.07524452e-02 1.15576077e+00 2.51492500e-01 -1.77374035e-01 -1.61233628e+00 -1.19127178e+00 -4.90711987e-01 1.00949955e+00 7.58411586e-01 1.66013926e-01 -4.66986805e-01 1.67463087e-02 -5.51871359e-01 4.49656099e-01 -6.29450798e-01 -3.12859982e-01 -4.95369971e-01 -6.25662744e-01 6.45864367e-01 -4.78294715e-02 1.16609788e+00 -1.16396666e+00 -4.53229308e-01 3.46274376e-02 -4.78066236e-01 -1.08112168e+00 -8.26694489e-01 -2.35925332e-01 -3.10771763e-01 -5.72295427e-01 -1.30722427e+00 -9.89645898e-01 3.52644950e-01 5.71717560e-01 1.08343923e+00 -1.59398973e-01 -2.47822940e-01 1.87281758e-01 -6.48558915e-01 1.74407646e-01 -5.85660100e-01 -1.12736247e-01 -2.71690518e-01 3.15267503e-01 -5.09829260e-02 -3.33441526e-01 -8.26874256e-01 7.42463291e-01 -1.25295520e+00 3.68459761e-01 7.02809095e-01 8.37970495e-01 7.67615139e-01 3.60650659e-01 4.92874950e-01 -8.55606794e-01 5.92550874e-01 -4.18854468e-02 -4.35573727e-01 5.70118427e-01 -4.79530305e-01 -3.38614732e-01 6.98477566e-01 -5.18517852e-01 -1.38948512e+00 -2.75526762e-01 -2.31084917e-02 -4.64505494e-01 1.21785097e-01 3.69943008e-02 -3.68738055e-01 -6.27295673e-01 6.41918063e-01 7.56447017e-01 -2.39265710e-02 -9.21952575e-02 4.88061666e-01 7.09639311e-01 8.12732339e-01 -3.86056542e-01 1.05057037e+00 5.69276810e-01 -6.91826418e-02 -7.53688633e-01 -3.99867117e-01 2.98108459e-02 -2.02059641e-01 -5.94007611e-01 1.03056598e+00 -9.27190185e-01 -4.79615986e-01 5.97059131e-01 -5.01411498e-01 -4.80634272e-01 -1.60180956e-01 2.79484212e-01 -6.85471594e-01 4.41198140e-01 -5.51033676e-01 -4.97732520e-01 -1.07947811e-01 -1.07452261e+00 9.42847610e-01 2.27613524e-01 2.15108782e-01 -8.24751139e-01 2.70778239e-01 1.83326557e-01 7.36074328e-01 1.67798325e-01 9.36312377e-01 4.92674023e-01 -6.78391218e-01 2.93608069e-01 -5.04111171e-01 5.08386493e-02 5.29243052e-01 -1.43258274e-01 -9.47904766e-01 -3.77725929e-01 7.89694674e-03 -2.68078983e-01 7.47739613e-01 4.84422773e-01 1.19407868e+00 -6.67702733e-03 6.56039119e-02 7.97376812e-01 1.69290543e+00 4.31646496e-01 1.33239949e+00 4.32403952e-01 6.77066982e-01 5.53194761e-01 1.00373077e+00 2.41276100e-01 -9.28540714e-03 1.11932135e+00 8.92404094e-02 -8.20999563e-01 -5.35390913e-01 -3.08672279e-01 3.18418682e-01 6.38052285e-01 1.84230670e-01 -2.79479265e-01 -4.19629633e-01 2.02658683e-01 -1.39296174e+00 -1.16646862e+00 2.33599037e-01 2.04118395e+00 1.05626786e+00 -1.85060091e-02 1.74627975e-01 1.52508795e-01 1.04868639e+00 4.71515715e-01 -4.38488185e-01 -2.98319101e-01 -5.87914526e-01 8.49031284e-02 5.13998866e-01 5.19113898e-01 -7.95710206e-01 8.32842588e-01 6.71408939e+00 1.34202206e+00 -1.51762068e+00 1.35456473e-01 7.47945249e-01 -2.60977373e-02 -7.02448368e-01 -3.40464473e-01 -2.16143385e-01 6.62249207e-01 4.15027201e-01 -1.84978366e-01 6.61656618e-01 3.93524498e-01 2.55877346e-01 -5.11731543e-02 -4.72380400e-01 1.43641365e+00 3.68583798e-01 -1.15408933e+00 1.30660877e-01 6.12945743e-02 1.01614630e+00 -6.32145584e-01 8.29761922e-01 -1.05021544e-01 -1.24583721e-01 -1.10606313e+00 8.51539493e-01 5.23502469e-01 1.71373332e+00 -1.06212020e+00 3.35813999e-01 -1.89696670e-01 -1.26618707e+00 2.58517023e-02 -5.15006185e-01 3.96491498e-01 1.32110685e-01 5.92370093e-01 -2.61242539e-01 5.71599543e-01 8.15305233e-01 4.52173203e-01 -5.77828705e-01 8.11325490e-01 -3.14344577e-02 2.61790246e-01 2.51334429e-01 2.59667307e-01 -1.74791366e-01 -4.34749782e-01 4.12251264e-01 1.12493038e+00 6.27386212e-01 2.75866449e-01 -7.55492598e-02 8.88034821e-01 8.28050524e-02 9.34654474e-02 -8.13088119e-01 1.96560159e-01 4.32423949e-01 1.30181551e+00 -7.89040148e-01 -1.13290347e-01 -5.46844542e-01 1.07849920e+00 -4.20843482e-01 3.27081352e-01 -1.01977336e+00 -5.59767067e-01 3.19714308e-01 2.50699878e-01 2.98483431e-01 -1.39925897e-01 -3.85361075e-01 -9.89951432e-01 -1.93661794e-01 -1.13397253e+00 1.22218646e-01 -1.32210612e+00 -1.09905779e+00 7.80451775e-01 -8.16908553e-02 -1.94730663e+00 1.37013212e-01 -2.76206046e-01 -2.94241697e-01 8.02167237e-01 -1.64611876e+00 -1.24619699e+00 -4.72853333e-01 9.03914988e-01 4.70419347e-01 -3.86911690e-01 5.71159065e-01 5.94098985e-01 2.85182856e-02 7.02513516e-01 3.16198021e-01 -1.46220535e-01 1.17840052e+00 -9.85008836e-01 2.59665735e-02 9.34916258e-01 -3.33327092e-02 3.96511465e-01 8.56232882e-01 -5.67650914e-01 -1.25110209e+00 -9.62424099e-01 2.89029181e-01 8.94403383e-02 2.22835720e-01 -2.95004815e-01 -8.27384770e-01 3.05870213e-02 4.70853865e-01 -1.09693199e-01 5.94511092e-01 -4.08503562e-01 -3.12228888e-01 -4.29043919e-01 -1.27621782e+00 7.88831472e-01 9.32394445e-01 -8.44816983e-01 -1.25560626e-01 -1.71995372e-01 7.66136587e-01 -6.10321462e-01 -9.26592946e-01 2.15092927e-01 7.74856806e-01 -1.31329596e+00 1.09494734e+00 3.79243493e-01 6.78363562e-01 -7.80937374e-01 -3.72431934e-01 -1.23716950e+00 -5.54481447e-01 -5.76428235e-01 3.29532593e-01 1.33659327e+00 1.12687096e-01 -4.79819387e-01 4.42171901e-01 1.67895094e-01 1.07813207e-02 -3.36875200e-01 -5.79463243e-01 -5.81567645e-01 -2.77512036e-02 6.95477352e-02 7.05635607e-01 1.11368048e+00 -2.98494518e-01 -1.06803611e-01 -1.22545409e+00 -7.28170276e-02 8.25859189e-01 4.17354256e-01 5.93078911e-01 -6.50714040e-01 -3.61818492e-01 -2.84210443e-01 -2.64348686e-01 -7.10928261e-01 -2.55026281e-01 -4.70743775e-01 7.92957935e-03 -1.09942269e+00 4.42124039e-01 -3.71440142e-01 -4.00795490e-01 1.68836311e-01 4.47746888e-02 1.17568231e+00 3.49105597e-01 2.83961087e-01 -3.91071826e-01 5.76692760e-01 1.85697627e+00 -1.68900043e-01 -1.17559604e-01 -5.27687252e-01 -8.43883514e-01 2.09600240e-01 7.18646765e-01 -2.35960498e-01 -6.12122953e-01 -2.38615066e-01 2.74066478e-01 3.77324998e-01 3.08733165e-01 -9.68406796e-01 1.26773238e-01 -3.56412470e-01 6.04310334e-01 -4.68530744e-01 3.54700536e-01 -8.69799733e-01 7.01076388e-01 4.00389761e-01 -4.60310280e-01 -4.63416204e-02 -1.71012357e-01 4.34457034e-01 -4.51342911e-01 2.38064587e-01 1.34166253e+00 -1.69645980e-01 -8.39271247e-01 2.36416623e-01 -1.98021933e-01 -7.00132772e-02 9.87378597e-01 -5.21677792e-01 -5.74263573e-01 -5.91073394e-01 -3.09349328e-01 -4.22393352e-01 8.52732956e-01 5.16035318e-01 7.32190847e-01 -1.88546097e+00 -6.82377100e-01 2.93784648e-01 2.93354690e-01 -7.04153717e-01 7.74623036e-01 4.94399399e-01 -6.12852871e-01 2.22354785e-01 -8.33034813e-01 -5.31891942e-01 -1.22941661e+00 5.58119595e-01 2.74420381e-01 -1.07452884e-01 -7.67771482e-01 3.14266592e-01 5.72153568e-01 -1.96653679e-01 -1.94399253e-01 2.68685251e-01 -2.62938768e-01 -1.52864188e-01 5.92890441e-01 2.44818181e-01 -1.06252044e-01 -8.02169383e-01 -5.11073768e-02 1.28049684e+00 1.43551648e-01 -5.20393431e-01 9.27056730e-01 -6.50547206e-01 1.94997713e-02 3.62488627e-01 1.20747972e+00 1.73644379e-01 -1.20996189e+00 -2.86906809e-01 -8.03628087e-01 -1.19644141e+00 1.40011027e-01 -9.03520525e-01 -1.35786068e+00 7.62697577e-01 1.08154964e+00 3.29586178e-01 1.69900835e+00 -2.53058821e-01 8.53720248e-01 -1.49965167e-01 6.22141480e-01 -1.13195348e+00 5.38653791e-01 -7.07969218e-02 8.64896953e-01 -1.08270514e+00 -5.05103879e-02 -4.28147376e-01 -8.95347238e-01 1.05132639e+00 4.78576779e-01 3.70684750e-02 3.04477751e-01 2.27120638e-01 4.33377653e-01 1.28754407e-01 -3.90981793e-01 -1.58548817e-01 3.74134034e-01 9.41857457e-01 3.28072876e-01 -5.71390539e-02 -3.11979592e-01 -1.59693763e-01 -3.72127473e-01 -3.84379178e-03 6.95024610e-01 4.35312003e-01 -4.76386428e-01 -1.17011428e+00 -7.35494912e-01 1.71770900e-02 -3.71432006e-01 -6.07249364e-02 -2.02610433e-01 7.98163295e-01 2.17731092e-02 9.41077292e-01 -2.03314394e-01 -6.66121066e-01 1.88950285e-01 -5.09019315e-01 6.60232067e-01 -1.54797733e-01 -1.39146090e-01 4.11267757e-01 -1.43278405e-01 -4.66277480e-01 -6.52279913e-01 -1.51738539e-01 -7.50720143e-01 -6.44448340e-01 -5.46912067e-02 -1.77942023e-01 2.95844227e-01 4.92262155e-01 -3.43957879e-02 6.52681172e-01 9.96602058e-01 -5.76840937e-01 6.42559305e-02 -5.01767278e-01 -1.10525429e+00 3.04230392e-01 3.94875258e-01 -5.90538144e-01 -1.63574621e-01 1.76605180e-01]
[10.960424423217773, -2.247119665145874]
f7cdbd16-61c9-468e-bd86-80ee64b74133
on-using-the-ua-speech-and-torgo-databases-to
2211.08833
null
https://arxiv.org/abs/2211.08833v1
https://arxiv.org/pdf/2211.08833v1.pdf
On using the UA-Speech and TORGO databases to validate automatic dysarthric speech classification approaches
Although the UA-Speech and TORGO databases of control and dysarthric speech are invaluable resources made available to the research community with the objective of developing robust automatic speech recognition systems, they have also been used to validate a considerable number of automatic dysarthric speech classification approaches. Such approaches typically rely on the underlying assumption that recordings from control and dysarthric speakers are collected in the same noiseless environment using the same recording setup. In this paper, we show that this assumption is violated for the UA-Speech and TORGO databases. Using voice activity detection to extract speech and non-speech segments, we show that the majority of state-of-the-art dysarthria classification approaches achieve the same or a considerably better performance when using the non-speech segments of these databases than when using the speech segments. These results demonstrate that such approaches trained and validated on the UA-Speech and TORGO databases are potentially learning characteristics of the recording environment or setup rather than dysarthric speech characteristics. We hope that these results raise awareness in the research community about the importance of the quality of recordings when developing and evaluating automatic dysarthria classification approaches.
['Ina Kodrasi', 'Parvaneh Janbakhshi', 'Guilherme Schu']
2022-11-16
null
null
null
null
['activity-detection']
['computer-vision']
[-5.21898177e-03 -5.49181625e-02 2.04795107e-01 -3.27154011e-01 -9.95803773e-01 -5.13649940e-01 6.33024216e-01 -5.22301435e-01 -4.01173025e-01 5.14005840e-01 6.63803756e-01 -6.11738637e-02 -1.50586441e-01 -2.60259926e-01 -2.11504295e-01 -7.36490905e-01 1.62365392e-01 5.08654356e-01 2.19670877e-01 -4.31509078e-01 7.15093687e-02 5.33176005e-01 -2.07993293e+00 2.02051491e-01 4.72001851e-01 5.67201674e-01 3.33106309e-01 9.27564561e-01 -7.34720901e-02 6.77436531e-01 -1.13795412e+00 5.65405712e-02 5.23349978e-02 -6.43316507e-01 -7.73541927e-01 1.97584048e-01 6.11443043e-01 -4.51957822e-01 -7.14347541e-01 1.12498093e+00 9.96923029e-01 1.25477597e-01 3.38866979e-01 -5.49145460e-01 -5.04333854e-01 3.77970099e-01 4.95558709e-01 8.32266927e-01 3.87426943e-01 2.05664888e-01 7.96928644e-01 -5.72780967e-01 5.76867819e-01 1.10865486e+00 4.19164240e-01 7.36772299e-01 -1.10153890e+00 -5.35263717e-01 -9.91749614e-02 3.47996026e-01 -1.13610005e+00 -1.25986004e+00 6.86938941e-01 -6.59116209e-01 1.11167240e+00 3.05069178e-01 8.25635254e-01 1.29278755e+00 -3.05918932e-01 5.84867418e-01 1.13790596e+00 -6.65245473e-01 2.27647826e-01 4.38573472e-02 3.10560673e-01 5.16367018e-01 -1.42417282e-01 2.02234909e-01 -8.46573234e-01 -3.10998589e-01 5.07632792e-01 -6.06277108e-01 -7.11771905e-01 2.95530166e-02 -1.00002885e+00 7.19939768e-01 -6.00165486e-01 7.77855098e-01 -3.01316947e-01 -2.17675328e-01 5.70331633e-01 8.56253624e-01 3.86605650e-01 5.52204549e-01 -1.91482678e-01 -8.94786775e-01 -8.47274065e-01 1.57939360e-01 8.49833965e-01 7.45795548e-01 -7.06129223e-02 6.24205410e-01 3.01990658e-01 1.69134521e+00 1.12328447e-01 4.65099782e-01 1.16574001e+00 -1.01171958e+00 4.05383497e-01 2.73062050e-01 -2.75430083e-01 -3.03153455e-01 -3.24541748e-01 -2.11951643e-01 1.75880939e-01 3.62109125e-01 5.91296434e-01 1.17331296e-01 -9.98047292e-01 1.65373385e+00 -2.40320023e-02 -4.52868760e-01 2.39044160e-01 6.77424550e-01 4.59962755e-01 3.14350277e-01 -1.64429665e-01 -3.39337349e-01 1.03560400e+00 -4.96197253e-01 -9.09948707e-01 -1.26400188e-01 5.82746923e-01 -9.45565343e-01 1.47744215e+00 7.26006985e-01 -1.20699716e+00 -3.61015618e-01 -1.13771307e+00 5.65418303e-02 -1.17983542e-01 1.16698079e-01 1.08547270e-01 1.15175295e+00 -1.01019049e+00 5.42499959e-01 -9.74885285e-01 -5.59234858e-01 8.92527699e-02 3.18342358e-01 -6.31196678e-01 -1.24800093e-02 -7.83870101e-01 1.02529991e+00 -7.48338997e-02 -2.78081715e-01 -7.93419540e-01 -4.01641488e-01 -5.93864560e-01 -1.23948805e-01 -2.81920191e-02 1.08935304e-01 1.52841830e+00 -7.93928564e-01 -1.71445346e+00 1.08167434e+00 3.97923067e-02 -2.07470715e-01 4.27538484e-01 -1.92063436e-01 -9.82878685e-01 4.84028608e-01 -8.82643983e-02 -4.21720713e-01 8.53147745e-01 -7.16420114e-01 -5.41417003e-01 -7.74924278e-01 -4.32817012e-01 1.51063994e-01 -2.37871811e-01 4.49827999e-01 -1.37307316e-01 -7.59863317e-01 2.59861320e-01 -8.05627704e-01 7.26371825e-01 -8.32858384e-02 -1.60026580e-01 -1.86651021e-01 9.21630740e-01 -1.19385540e+00 9.94438708e-01 -2.34120393e+00 2.06098389e-02 1.70294628e-01 -1.42457327e-02 6.51396334e-01 -5.61661758e-02 4.44650292e-01 -1.91466764e-01 -6.64690286e-02 -7.71496892e-02 -2.31612444e-01 1.85160921e-03 3.50375742e-01 -1.28934056e-01 8.55664134e-01 -1.85929924e-01 5.82371326e-03 -6.46808684e-01 -1.13628507e-01 4.91932034e-01 4.46183860e-01 -3.86755019e-01 3.91402572e-01 2.23424256e-01 3.36327314e-01 -8.45723897e-02 3.97202522e-01 1.50777614e-02 4.03637052e-01 6.21124022e-02 2.76517600e-01 -1.97234452e-01 9.15496707e-01 -9.13954020e-01 1.41425216e+00 -5.81884325e-01 9.64369357e-01 4.71674711e-01 -1.04072142e+00 8.38855147e-01 8.47195446e-01 2.52010763e-01 -8.11276257e-01 1.92781582e-01 5.52400649e-01 6.29092753e-01 -9.10517395e-01 8.70618895e-02 -4.81087148e-01 4.34492767e-01 4.02559489e-01 4.95502561e-01 -4.09023076e-01 1.71401843e-01 -2.84264326e-01 1.32888341e+00 -4.12044764e-01 1.91085294e-01 -1.97188243e-01 6.28600001e-01 -1.17874593e-01 2.25974157e-01 6.77293897e-01 -3.76006544e-01 9.85683441e-01 2.65712202e-01 1.15299411e-01 -1.16561186e+00 -1.37353408e+00 -4.33428586e-01 9.35557127e-01 -5.08710444e-01 -3.73846143e-01 -7.66322136e-01 -2.41341159e-01 -2.83375800e-01 9.01768148e-01 -2.05606565e-01 -2.96656013e-01 -7.95513153e-01 -4.85754699e-01 1.00150621e+00 2.91937560e-01 1.63293272e-01 -1.04393423e+00 -6.00631014e-02 3.56078178e-01 -1.74562499e-01 -9.57686007e-01 -3.71615052e-01 1.21007219e-01 -5.93643129e-01 -1.28174663e+00 -7.75865555e-01 -9.50900316e-01 1.35160923e-01 2.85881087e-02 6.63639665e-01 4.18222919e-02 -3.06599140e-01 9.53029513e-01 -5.55562317e-01 -3.04803550e-01 -1.19910908e+00 -2.26260275e-01 4.87567186e-01 -2.89286196e-01 5.12384892e-01 -1.00965452e+00 -4.92182635e-02 3.40352118e-01 -5.78869283e-01 -5.67029893e-01 2.50244230e-01 7.62440383e-01 4.41561759e-01 1.18591655e-02 9.03576255e-01 -4.59488809e-01 9.53713000e-01 -3.24855834e-01 -2.24533081e-01 -4.59720865e-02 -4.08047259e-01 -2.30634367e-04 6.80282772e-01 -5.81829309e-01 -8.46616924e-01 -1.93118036e-01 -8.52097273e-01 -4.01154041e-01 -5.21404147e-01 -1.14336470e-03 -3.94067943e-01 6.21778071e-02 8.35767984e-01 5.49989104e-01 4.87922668e-01 -9.12709355e-01 -9.20472220e-02 1.44047141e+00 9.53294218e-01 -3.64481866e-01 5.51015675e-01 3.21610302e-01 -8.09784114e-01 -1.76995635e+00 -2.10698351e-01 -7.82341361e-01 -3.36350471e-01 -1.85933650e-01 7.38784730e-01 -6.51841044e-01 -5.56645868e-03 9.07157958e-01 -8.85587215e-01 -1.32203549e-01 -4.53721076e-01 8.47129345e-01 -9.58812952e-01 4.58034843e-01 -2.56268710e-01 -1.01131296e+00 -2.55446821e-01 -1.44379711e+00 8.85469139e-01 -2.82619655e-01 -5.78355610e-01 -7.39068985e-01 3.31412643e-01 7.44247913e-01 3.89633238e-01 -3.62879723e-01 1.17678666e+00 -1.18400908e+00 2.09800020e-01 -4.30930287e-01 5.40759921e-01 1.07809389e+00 6.48755431e-01 -3.47132832e-01 -1.24888384e+00 -1.96032837e-01 5.32167673e-01 -3.57662082e-01 2.84740955e-01 5.81929348e-02 6.89251781e-01 -2.25238219e-01 5.34878969e-01 2.19280496e-01 7.84494817e-01 5.22266448e-01 7.02672541e-01 1.72315851e-01 1.94489434e-01 6.85233772e-01 -2.81160772e-02 -4.00358438e-02 -9.50229019e-02 9.07819986e-01 -2.54009932e-01 3.81312788e-01 -8.20889175e-01 4.29336838e-02 6.84948742e-01 1.25301242e+00 9.01613533e-02 -3.48722711e-02 -7.91656017e-01 1.05289161e+00 -1.16686642e+00 -1.23041427e+00 -3.03558838e-02 2.33252883e+00 9.49159622e-01 -5.35015017e-02 4.99910325e-01 8.51734042e-01 7.68238127e-01 2.14561403e-01 -3.29288036e-01 -4.04512018e-01 -1.61729857e-01 5.39317191e-01 1.01322994e-01 5.05843997e-01 -4.40144390e-01 5.51171422e-01 6.79557276e+00 5.15606105e-01 -1.17652023e+00 1.84694037e-01 -1.80605888e-01 -5.98870099e-01 3.04559618e-01 -5.98522246e-01 -3.83426100e-01 5.93996346e-01 1.37220263e+00 -1.37760878e-01 7.63639092e-01 9.03284252e-01 4.98710632e-01 9.31611843e-03 -1.11089110e+00 1.04161859e+00 2.98172951e-01 -8.97318780e-01 -2.58414805e-01 1.20793894e-01 1.85531780e-01 4.57597017e-01 -1.02651365e-01 5.07828258e-02 4.37543355e-02 -8.83707404e-01 8.66032064e-01 2.81795740e-01 6.61969602e-01 -5.04189372e-01 4.05586571e-01 2.27608621e-01 -7.66070902e-01 3.39518389e-04 -2.42800385e-01 9.55309272e-02 6.29474968e-02 1.89293504e-01 -8.99196982e-01 -1.01730958e-01 6.73598468e-01 1.26747847e-01 -2.95686126e-01 1.02192354e+00 -2.76079983e-01 1.14891994e+00 -3.97619009e-01 6.22227043e-02 -1.25773609e-01 3.75917070e-02 9.27744806e-01 9.38757956e-01 3.65493864e-01 5.12286238e-02 -4.18999076e-01 5.14626563e-01 2.58515507e-01 1.87573895e-01 -6.45497978e-01 -5.24263322e-01 3.85187924e-01 5.00789106e-01 -1.34144738e-01 -5.42451479e-02 -7.86957860e-01 5.95837951e-01 1.54070124e-01 1.05281234e-01 4.41045463e-02 -5.27368307e-01 1.18605757e+00 3.03657293e-01 1.65515020e-01 -3.61952096e-01 -5.54425940e-02 -9.28898215e-01 3.44349682e-01 -1.44089520e+00 2.26464510e-01 -5.43750167e-01 -1.23394585e+00 6.77434623e-01 -8.23972300e-02 -1.10564280e+00 -6.80444419e-01 -7.91668534e-01 -6.31329715e-01 9.50026989e-01 -9.82934535e-01 -4.93263930e-01 -4.72930893e-02 6.88911974e-01 8.44952047e-01 -7.08399475e-01 8.85427892e-01 2.13180527e-01 -3.62868726e-01 2.95340329e-01 3.95947516e-01 2.50390619e-01 5.16369104e-01 -1.19155669e+00 3.01251113e-01 8.32115531e-01 2.74818242e-01 6.51558876e-01 8.92337501e-01 -4.69506592e-01 -1.11368072e+00 -5.87428510e-01 6.70342267e-01 -4.64082271e-01 7.65026391e-01 -4.02794182e-01 -1.12093484e+00 4.03479099e-01 -1.76127970e-01 -3.47906679e-01 7.45840907e-01 -3.99102382e-02 -1.50777772e-01 2.18848661e-01 -1.01052153e+00 3.58677715e-01 1.18947017e+00 -1.06819439e+00 -1.38122785e+00 5.14362097e-01 4.28717077e-01 -1.85674623e-01 -1.00608039e+00 -1.96351558e-01 5.30470133e-01 -8.78234744e-01 7.56312132e-01 -5.70313692e-01 9.91605967e-02 6.11170428e-03 -5.15587628e-01 -1.61953533e+00 2.72712141e-01 -5.69851041e-01 1.15972064e-01 1.12407851e+00 2.85828769e-01 -6.56229258e-01 6.82925642e-01 4.46647942e-01 -5.26152849e-01 -1.15135603e-01 -1.35973835e+00 -1.23243856e+00 3.04247856e-01 -7.89176583e-01 2.37662032e-01 6.04430497e-01 1.72811434e-01 6.60860538e-02 -1.13544673e-01 2.14476451e-01 3.09570789e-01 -5.19349515e-01 5.69326937e-01 -1.34640360e+00 -3.00713450e-01 -3.70868802e-01 -8.31518769e-01 -3.44956875e-01 3.26446146e-01 -8.01012576e-01 1.14226885e-01 -1.28933597e+00 -6.29895389e-01 -1.64624646e-01 1.77213684e-01 2.18628421e-01 2.11931959e-01 3.81476944e-03 -1.05712064e-01 3.49912584e-01 3.19354773e-01 6.53386474e-01 8.80883813e-01 -2.62761023e-03 -4.85016525e-01 3.30944777e-01 -4.42942858e-01 7.58919716e-01 8.17568839e-01 -4.61924523e-01 -7.14073539e-01 -2.83897161e-01 -4.44821686e-01 -1.22502394e-01 1.44397140e-01 -1.34759808e+00 4.51888032e-02 2.95473963e-01 -1.21974885e-01 -7.57274553e-02 7.64360607e-01 -4.32959080e-01 -1.29883215e-01 2.78871685e-01 -2.50770718e-01 -1.10781051e-01 1.51674211e-01 3.51049453e-01 -3.37279856e-01 -5.27492106e-01 1.15848744e+00 -3.33221048e-01 -4.07751858e-01 -3.04007381e-01 -9.09426928e-01 4.42481756e-01 4.61977005e-01 -3.12572211e-01 -5.18889844e-01 -6.66842759e-01 -1.04464161e+00 -3.72372240e-01 3.69599223e-01 6.67439163e-01 4.08572882e-01 -9.57216561e-01 -6.40445411e-01 6.09277487e-01 2.11686656e-01 -5.53739488e-01 1.28012195e-01 7.41605043e-01 -3.65232557e-01 4.67122197e-01 -3.93842101e-01 -3.06475401e-01 -1.59999466e+00 -7.35000744e-02 5.75997114e-01 3.92003238e-01 -1.01249290e+00 4.89467353e-01 -1.06181435e-01 -4.66457129e-01 4.63574171e-01 -6.10823520e-02 -8.97713900e-02 -8.08815062e-02 7.81268775e-01 6.29414797e-01 6.61385357e-01 -1.01150608e+00 -7.20415339e-02 1.29913390e-02 -2.53847748e-01 -5.61349928e-01 1.49148715e+00 -4.15301940e-04 2.57517755e-01 6.73180521e-01 1.20494914e+00 3.90679419e-01 -6.25507832e-01 -1.06481493e-01 -6.42932802e-02 -4.21827406e-01 2.95120239e-01 -7.46744394e-01 -8.63173068e-01 8.29073906e-01 9.73256290e-01 3.23640615e-01 9.04392481e-01 2.78048277e-01 5.74086547e-01 4.83566254e-01 3.66162062e-01 -1.54301977e+00 -1.37556687e-01 2.99635828e-01 1.23067880e+00 -6.17459893e-01 -3.68718088e-01 -3.05243939e-01 -4.32136208e-01 1.08618116e+00 2.27219909e-01 -3.27942595e-02 4.44961071e-01 2.19656616e-01 4.03790176e-01 -2.03400373e-01 -3.26258898e-01 -4.06452656e-01 8.10290277e-02 1.12990963e+00 4.61996049e-01 -2.59425431e-01 -3.57165188e-01 5.92559755e-01 -9.94879782e-01 -3.00564378e-01 7.98452914e-01 9.84355211e-01 -6.28389776e-01 -1.24928129e+00 -6.47572815e-01 8.09308708e-01 -6.06006324e-01 3.84733267e-02 -8.19946110e-01 1.13810861e+00 -3.28577697e-01 1.17338634e+00 -1.17358848e-01 -2.56008536e-01 8.18369031e-01 7.82240808e-01 4.37291533e-01 -9.06692863e-01 -5.97044706e-01 1.33916251e-02 7.46745586e-01 -4.40656096e-01 -1.46444649e-01 -1.04519022e+00 -1.06352365e+00 1.40441610e-02 -2.91840076e-01 2.05214888e-01 8.02032292e-01 1.18607163e+00 -2.90856808e-02 5.04611433e-01 2.69679397e-01 -4.86136287e-01 -9.20642257e-01 -1.24011421e+00 -1.03120673e+00 3.83428216e-01 5.31485379e-01 -7.24175274e-01 -8.47894549e-01 -6.68430030e-02]
[14.51404857635498, 6.331265926361084]
ae88c69b-d531-4619-8b1a-c2b40b89cf27
wwfedcbmir-world-wide-federated-content-based
2305.03383
null
https://arxiv.org/abs/2305.03383v1
https://arxiv.org/pdf/2305.03383v1.pdf
WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval
The paper proposes a Federated Content-Based Medical Image Retrieval (FedCBMIR) platform that utilizes Federated Learning (FL) to address the challenges of acquiring a diverse medical data set for training CBMIR models. CBMIR assists pathologists in diagnosing breast cancer more rapidly by identifying similar medical images and relevant patches in prior cases compared to traditional cancer detection methods. However, CBMIR in histopathology necessitates a pool of Whole Slide Images (WSIs) to train to extract an optimal embedding vector that leverages search engine performance, which may not be available in all centers. The strict regulations surrounding data sharing in medical data sets also hinder research and model development, making it difficult to collect a rich data set. The proposed FedCBMIR distributes the model to collaborative centers for training without sharing the data set, resulting in shorter training times than local training. FedCBMIR was evaluated in two experiments with three scenarios on BreaKHis and Camelyon17 (CAM17). The study shows that the FedCBMIR method increases the F1-Score (F1S) of each client to 98%, 96%, 94%, and 97% in the BreaKHis experiment with a generalized model of four magnifications and does so in 6.30 hours less time than total local training. FedCBMIR also achieves 98% accuracy with CAM17 in 2.49 hours less training time than local training, demonstrating that our FedCBMIR is both fast and accurate for both pathologists and engineers. In addition, our FedCBMIR provides similar images with higher magnification for non-developed countries where participate in the worldwide FedCBMIR with developed countries to facilitate mitosis measuring in breast cancer diagnosis. We evaluate this scenario by scattering BreaKHis into four centers with different magnifications.
['Valery Naranjo', 'Zhiming Zhao', 'Javier Oliver Moll', 'Adrián Colomer', 'Yuandou Wang', 'Zahra Tabatabaei']
2023-05-05
null
null
null
null
['whole-slide-images', 'medical-image-retrieval', 'medical-image-retrieval']
['computer-vision', 'computer-vision', 'medical']
[-1.92649826e-01 -4.35262844e-02 -4.27403361e-01 4.73918319e-02 -1.49366868e+00 -5.82042575e-01 1.10703275e-01 4.20983166e-01 -5.98804593e-01 5.24417818e-01 1.08359277e-01 -6.34382427e-01 -2.59174675e-01 -7.19723582e-01 -5.11414766e-01 -1.12654173e+00 1.46672964e-01 3.57075363e-01 5.02728298e-02 7.75716901e-02 -3.09656523e-02 6.13243282e-01 -1.18508446e+00 6.98265314e-01 5.54741502e-01 7.19905734e-01 3.18858624e-01 1.22389770e+00 -2.13617831e-01 7.36100078e-01 -5.98539054e-01 -5.85975289e-01 4.66713846e-01 -5.94369806e-02 -8.93901110e-01 -4.11007345e-01 3.90984893e-01 -4.24472660e-01 -2.71361977e-01 7.91508079e-01 7.12105751e-01 -3.28892767e-01 6.06579304e-01 -1.01678872e+00 -4.41642642e-01 3.69105816e-01 -7.32235551e-01 3.44019592e-01 -9.97000858e-02 3.23295444e-01 7.30387568e-01 -4.93169874e-01 1.00736058e+00 5.93466222e-01 6.41143799e-01 5.44473827e-01 -6.92774415e-01 -8.82702172e-01 -4.97797549e-01 1.84262946e-01 -1.26249766e+00 -7.22446889e-02 2.28852943e-01 -2.37636119e-01 6.08997703e-01 7.67161965e-01 4.86349791e-01 5.29765844e-01 5.61078191e-01 5.40143132e-01 1.03900015e+00 -6.25590801e-01 1.93014726e-01 3.82363260e-01 1.79710135e-01 8.16957712e-01 4.57635134e-01 -3.16831283e-02 -4.82248396e-01 -4.43052679e-01 5.68863869e-01 4.77115571e-01 -3.05389166e-01 2.12924510e-01 -1.28204119e+00 6.24165475e-01 6.71692133e-01 7.49753475e-01 -1.85445920e-01 -1.66007906e-01 5.15110970e-01 4.04821932e-01 3.04157138e-01 2.77926326e-01 -2.55453020e-01 2.27339551e-01 -8.80158842e-01 -2.77312487e-01 6.79063320e-01 6.28942072e-01 7.03732193e-01 -6.48985028e-01 -2.74666131e-01 7.14882195e-01 -4.75813216e-03 7.72035062e-01 7.06902802e-01 -7.81495690e-01 1.61939487e-02 8.11740220e-01 -2.34517172e-01 -1.01214707e+00 -1.77426815e-01 -4.99301672e-01 -1.04304051e+00 -2.72632949e-02 3.01497906e-01 1.68224908e-02 -7.40557790e-01 1.14882088e+00 6.31890416e-01 3.37383509e-01 1.98731765e-01 9.90653634e-01 7.37034619e-01 5.11290133e-01 1.61114689e-02 -6.93766549e-02 1.71348238e+00 -9.67939317e-01 -5.73530972e-01 5.43374598e-01 1.14591908e+00 -9.57794726e-01 8.99440587e-01 3.53642136e-01 -7.56639898e-01 -1.00990320e-02 -9.40842628e-01 2.58427113e-02 -6.63376033e-01 1.97934717e-01 7.66158104e-01 7.10738480e-01 -1.27328801e+00 2.49221608e-01 -8.46261740e-01 -5.20690084e-01 5.74904978e-01 3.85790110e-01 -7.82273948e-01 -6.06040061e-01 -7.78072178e-01 5.50907731e-01 -2.80492544e-01 -3.08730751e-01 -1.05856788e+00 -1.28315806e+00 -4.24628139e-01 7.96281174e-03 -9.59319323e-02 -5.70436716e-01 1.05082977e+00 -5.95298529e-01 -9.89412785e-01 1.07776213e+00 8.91874805e-02 -3.51700306e-01 4.44748610e-01 3.70613992e-01 -4.12729025e-01 6.33229256e-01 7.33239129e-02 5.72212994e-01 8.60569552e-02 -8.46371114e-01 -7.34153390e-01 -4.15350497e-01 -1.86467066e-01 -7.77788088e-02 -8.89253914e-01 -1.37123346e-01 -6.64555371e-01 -3.19868982e-01 -1.66511938e-01 -8.02768469e-01 -2.86416203e-01 3.93068612e-01 -1.94386438e-01 5.34860231e-03 8.85155022e-01 -5.85736334e-01 9.69454825e-01 -2.15559268e+00 -6.81953669e-01 2.40848392e-01 3.80125344e-01 3.47986370e-01 -4.71214801e-01 4.75541681e-01 1.50900736e-01 3.99903953e-01 3.65217328e-01 -2.16223866e-01 -3.95928830e-01 2.14314964e-02 2.81660706e-01 7.57125616e-01 -1.98742151e-01 7.83865154e-01 -8.52688849e-01 -1.12283099e+00 -3.74796540e-02 5.44882059e-01 -5.78573465e-01 1.86951518e-01 2.36512855e-01 1.49524733e-01 -4.69370186e-01 1.15372515e+00 7.37870872e-01 -7.51745999e-01 3.68041009e-01 -3.56324673e-01 1.00044616e-01 -4.83220190e-01 -8.38647842e-01 1.58187711e+00 -5.45393288e-01 6.18321955e-01 2.26113111e-01 -7.00434446e-01 4.97901917e-01 5.58295846e-01 9.94507372e-01 -7.47951210e-01 2.37549663e-01 2.44254857e-01 -2.59631246e-01 -6.70132279e-01 7.14189410e-02 7.28707984e-02 3.39034051e-01 8.19929600e-01 6.06425107e-03 4.16983664e-01 1.14367530e-02 5.30743003e-01 1.69000137e+00 -7.87204087e-01 7.29940310e-02 -1.84310555e-01 5.30781865e-01 4.08836037e-01 4.83741075e-01 5.50745726e-01 -4.72902358e-01 2.79682279e-01 3.04464996e-02 -4.71082449e-01 -8.32621157e-01 -9.24183607e-01 -2.93186307e-01 7.92347491e-01 8.37121680e-02 -2.09861904e-01 -5.02769709e-01 -9.09844935e-01 7.22127184e-02 -7.22575784e-02 -5.99357665e-01 -5.18786684e-02 -1.95052370e-01 -5.86168826e-01 8.21855009e-01 9.68322307e-02 4.79638427e-01 -7.51437962e-01 -6.74520254e-01 -1.98197559e-01 -2.72660077e-01 -7.78452635e-01 -6.21173024e-01 -7.40066171e-02 -7.20975637e-01 -1.66440725e+00 -9.48057055e-01 -9.50269043e-01 1.00719786e+00 6.23688221e-01 8.27064812e-01 5.18763959e-01 -1.15363622e+00 2.91608810e-01 -4.87636119e-01 -6.33762300e-01 -5.97642839e-01 -1.12363487e-01 -4.14258063e-01 -2.17669860e-01 5.53439021e-01 8.57038647e-02 -1.00762618e+00 3.42179805e-01 -1.13961220e+00 2.14331783e-03 9.04762208e-01 1.15927970e+00 7.28399873e-01 -2.68845912e-02 4.95963722e-01 -1.03335285e+00 8.29994678e-02 -5.68149745e-01 -4.33569789e-01 4.90436494e-01 -6.57776535e-01 -4.56402183e-01 4.49061424e-01 -2.97700971e-01 -7.95987248e-01 -1.59080192e-01 1.30860740e-02 -4.22651678e-01 4.06554565e-02 4.30724919e-01 4.41357732e-01 -4.03652251e-01 9.18930829e-01 -1.50741162e-02 5.50117850e-01 -3.26298475e-01 -2.69576311e-01 1.23436999e+00 3.57659191e-01 -5.46735413e-02 6.08983815e-01 7.78461754e-01 -1.38747141e-01 -3.96343708e-01 -4.27848220e-01 -1.12560797e+00 1.09842837e-01 -1.88993990e-01 5.11956334e-01 -1.01180661e+00 -9.14964378e-01 1.98207393e-01 -6.32512629e-01 -9.47511569e-02 -9.38756913e-02 5.98288238e-01 9.26673934e-02 1.32031471e-01 -1.12952256e+00 -5.33825815e-01 -1.09985268e+00 -1.06141961e+00 1.13077497e+00 2.75721133e-01 7.54840598e-02 -8.61370921e-01 1.99848413e-01 6.83887303e-01 7.32404649e-01 3.25051636e-01 8.64761412e-01 -7.03389347e-01 -5.72366357e-01 -6.69284105e-01 -1.36850715e-01 2.79363971e-02 5.00988543e-01 1.14824906e-01 -1.03666317e+00 -6.40366971e-01 -2.54245579e-01 -3.17274749e-01 5.52286506e-01 2.57298291e-01 1.09783769e+00 -3.52026910e-01 -9.05824542e-01 6.00844800e-01 1.85050237e+00 1.62191037e-02 4.04087901e-01 5.50370514e-01 2.68560275e-02 4.84078974e-01 8.40548873e-01 3.46567750e-01 1.33156151e-01 6.81307912e-02 5.11421919e-01 -6.91397190e-01 -1.72263995e-01 3.52546722e-02 2.01851572e-03 7.21424460e-01 4.07178879e-01 -1.18158244e-01 -1.13277888e+00 9.02636111e-01 -1.33643675e+00 -6.72670186e-01 8.69935527e-02 1.95508873e+00 1.08895564e+00 -6.06056452e-01 -3.35148275e-01 3.64414528e-02 7.50446677e-01 -4.39882249e-01 -5.48687637e-01 -1.34122267e-01 1.62688605e-02 2.33614489e-01 7.35144258e-01 5.03940247e-02 -6.84075892e-01 3.56153160e-01 6.06141996e+00 9.00785387e-01 -1.47751176e+00 4.45178568e-01 1.12169445e+00 -3.24786305e-01 -2.35663667e-01 -2.65342295e-01 -5.80829620e-01 2.82076985e-01 1.08836293e+00 -4.50906008e-01 -1.16891637e-01 8.66408110e-01 9.76127982e-02 -9.61774886e-02 -8.61509085e-01 1.20212495e+00 -7.65139759e-02 -2.09277964e+00 1.06528983e-01 4.00926828e-01 9.73426878e-01 2.20707074e-01 -4.21988368e-02 -1.20183052e-02 4.32308376e-01 -9.37409282e-01 -2.68521965e-01 4.35408175e-01 1.18090260e+00 -7.61952579e-01 1.27460444e+00 4.05406326e-01 -8.64548326e-01 -1.96711451e-01 -3.87650400e-01 7.58106351e-01 -5.59186280e-01 7.26560652e-01 -1.40271032e+00 7.96974540e-01 9.17197824e-01 2.48548642e-01 -7.07588136e-01 1.04690063e+00 7.02686012e-01 5.73302746e-01 -1.61033273e-01 -1.28776088e-01 6.02441728e-02 4.13117170e-01 7.07731321e-02 1.27700520e+00 4.73934948e-01 7.86271393e-02 -1.22371964e-01 2.29755118e-01 -1.66351214e-01 5.59128582e-01 -3.85355353e-01 -5.68049550e-02 6.32905304e-01 1.89679062e+00 -5.39701700e-01 -1.98441356e-01 -1.89650729e-01 5.41955888e-01 4.28365078e-03 4.68389578e-02 -6.47925019e-01 -4.24153447e-01 4.87641066e-01 2.13510185e-01 -1.83376923e-01 5.50153255e-01 2.26433352e-02 -7.40765274e-01 -4.54497218e-01 -1.15374029e+00 8.80889714e-01 -4.98918295e-01 -1.47558463e+00 7.11707830e-01 -4.73213583e-01 -1.43361700e+00 1.08755268e-01 -5.84727287e-01 -5.52465856e-01 7.76520133e-01 -1.83315909e+00 -1.47243822e+00 -6.74488425e-01 9.16568518e-01 1.86918169e-01 -2.81482071e-01 1.04350722e+00 4.05047655e-01 -5.15731633e-01 1.03599679e+00 3.66794765e-01 3.64735693e-01 1.21910596e+00 -9.54748213e-01 -5.54419398e-01 5.66733062e-01 -2.05712661e-01 7.93309391e-01 2.26076961e-01 -3.07085782e-01 -1.85337603e+00 -1.25268483e+00 7.41985321e-01 -1.40475646e-01 2.76395738e-01 -3.48899923e-02 -5.76348543e-01 2.12980643e-01 3.16938341e-01 4.79318231e-01 1.53931344e+00 -1.82738423e-01 -2.26081446e-01 -5.64502656e-01 -1.65068626e+00 4.63993251e-01 3.69980663e-01 -4.37377751e-01 2.34261200e-01 8.44544113e-01 6.13067687e-01 -2.25025564e-01 -1.19863999e+00 1.20995291e-01 5.20501673e-01 -6.49384201e-01 5.49523294e-01 -3.71522963e-01 3.56052577e-01 -2.16600478e-01 -1.46136314e-01 -8.52773130e-01 -1.72180071e-01 -3.50041866e-01 2.89129883e-01 9.89590287e-01 3.56355160e-01 -9.57357407e-01 1.15554798e+00 4.41169858e-01 4.17419076e-02 -1.04005742e+00 -1.02105415e+00 -6.11195624e-01 1.87422037e-01 -6.80298954e-02 8.11171472e-01 1.07641470e+00 2.53495038e-01 -5.14534235e-01 3.60431731e-01 2.88058728e-01 5.68721056e-01 8.22358802e-02 7.78834999e-01 -9.38798130e-01 -2.57828593e-01 -4.69111688e-02 -5.01829624e-01 -2.12419748e-01 -1.73198536e-01 -1.08779442e+00 -3.00336599e-01 -1.46893311e+00 7.60941982e-01 -8.37248206e-01 -7.10341752e-01 9.35122371e-01 -5.92604512e-03 5.08349597e-01 -5.86888343e-02 4.60208058e-01 -4.35199410e-01 -3.30451876e-01 1.36470401e+00 -6.41814947e-01 3.35406214e-01 -4.85993803e-01 -8.61764669e-01 5.94967569e-04 6.28023803e-01 -4.26370531e-01 -3.65722865e-01 -2.80761302e-01 -1.17878765e-02 2.39667416e-01 3.79920840e-01 -1.05647016e+00 8.01819503e-01 -1.09379508e-01 5.47229946e-01 -6.07058465e-01 -1.42973483e-01 -1.04304039e+00 4.69518572e-01 8.16273093e-01 -9.50566307e-02 7.12478650e-04 2.02126846e-01 4.66987222e-01 -2.89536834e-01 5.79153411e-02 6.52592719e-01 -9.91025716e-02 -2.66310066e-01 3.44967216e-01 -1.09219596e-01 -6.60925925e-01 1.41433454e+00 -3.93001437e-01 -8.20324838e-01 -4.57881354e-02 -4.33313549e-01 4.56638068e-01 6.23515487e-01 -7.70350266e-03 5.14954746e-01 -9.08442497e-01 -7.94609725e-01 1.93816200e-01 2.71728605e-01 -3.89287099e-02 8.28913867e-01 1.16715419e+00 -9.11661506e-01 5.94989717e-01 -7.15541914e-02 -7.85281897e-01 -1.66644597e+00 5.37945509e-01 5.20495296e-01 -7.42551327e-01 -5.43024898e-01 7.83912361e-01 -1.17862411e-01 -4.74831522e-01 1.34333447e-01 1.87698796e-01 4.37691696e-02 -1.28438264e-01 8.79314423e-01 2.83489794e-01 6.44775987e-01 -1.96187258e-01 -4.46351469e-01 3.56002301e-01 -5.67551076e-01 1.24120593e-01 1.19583178e+00 2.64376730e-01 -9.10632834e-02 -9.39341262e-02 1.59084177e+00 1.76413268e-01 -7.10423589e-01 -5.86260594e-02 -3.83087426e-01 -4.87439871e-01 2.67561644e-01 -1.07091892e+00 -1.40623200e+00 4.14919555e-01 1.08463943e+00 -3.59745771e-01 1.40664780e+00 -1.05150662e-01 8.93055499e-01 1.84069708e-01 5.87188423e-01 -6.74203694e-01 8.84734541e-02 -1.68881610e-01 3.85287583e-01 -1.13375032e+00 -2.18048338e-02 -2.07942978e-01 -3.78886938e-01 1.11880875e+00 5.46612084e-01 2.34585315e-01 7.65135527e-01 5.82427621e-01 6.28334880e-01 -3.06754887e-01 -1.13147795e+00 4.00416195e-01 -1.44939110e-01 4.82587337e-01 3.26292872e-01 -5.73044792e-02 -2.35991448e-01 5.12817442e-01 7.85486028e-02 2.83240408e-01 4.23377097e-01 1.25734794e+00 -1.51061326e-01 -1.02471435e+00 -5.69008172e-01 7.47455537e-01 -8.28460038e-01 9.39505696e-02 -2.06104591e-01 7.02216148e-01 1.23839952e-01 1.02958894e+00 7.46804327e-02 -2.30820686e-01 -4.23995405e-02 -2.91264534e-01 -1.02131762e-01 -5.16715288e-01 -9.39399183e-01 1.11199662e-01 -4.76431280e-01 -5.91875911e-01 -1.37739062e-01 -1.64037168e-01 -1.35657382e+00 -6.11505926e-01 -6.36173785e-01 5.45827329e-01 9.63380098e-01 3.40158015e-01 7.08699167e-01 4.78603840e-01 9.61401999e-01 -8.66584629e-02 -4.62848216e-01 -7.63322711e-01 -5.86230159e-01 1.86701283e-01 4.15565312e-01 -1.22735603e-02 -4.27667409e-01 1.56016886e-01]
[15.142382621765137, -2.9214584827423096]
e6d13c01-2715-4921-9d28-b20bb524c7f3
sequence-aware-item-recommendations-for
2304.00578
null
https://arxiv.org/abs/2304.00578v1
https://arxiv.org/pdf/2304.00578v1.pdf
Sequence-aware item recommendations for multiply repeated user-item interactions
Recommender systems are one of the most successful applications of machine learning and data science. They are successful in a wide variety of application domains, including e-commerce, media streaming content, email marketing, and virtually every industry where personalisation facilitates better user experience or boosts sales and customer engagement. The main goal of these systems is to analyse past user behaviour to predict which items are of most interest to users. They are typically built with the use of matrix-completion techniques such as collaborative filtering or matrix factorisation. However, although these approaches have achieved tremendous success in numerous real-world applications, their effectiveness is still limited when users might interact multiple times with the same items, or when user preferences change over time. We were inspired by the approach that Natural Language Processing techniques take to compress, process, and analyse sequences of text. We designed a recommender system that induces the temporal dimension in the task of item recommendation and considers sequences of item interactions for each user in order to make recommendations. This method is empirically shown to give highly accurate predictions of user-items interactions for all users in a retail environment, without explicit feedback, besides increasing total sales by 5% and individual customer expenditure by over 50% in an A/B live test.
['Berthold Lausen', 'Henrik Nordmark', 'Maged Ali', 'Juan Pablo Equihua']
2023-04-02
null
null
null
null
['matrix-completion', 'marketing', 'collaborative-filtering']
['methodology', 'miscellaneous', 'miscellaneous']
[ 2.59476513e-01 -3.68076712e-01 -3.19601387e-01 -5.43674588e-01 -1.85097545e-01 -5.26000202e-01 5.77934921e-01 6.80446148e-01 -7.12040246e-01 3.20011199e-01 4.14614588e-01 -4.33114409e-01 -4.91789430e-01 -6.97291493e-01 -3.09434950e-01 -3.78786445e-01 -3.77124488e-01 5.36910832e-01 8.17507133e-03 -6.05418921e-01 5.38459063e-01 3.58288795e-01 -1.80316865e+00 7.24449277e-01 5.93106329e-01 8.94739449e-01 2.21061125e-01 7.11140335e-01 -3.12456518e-01 6.33623183e-01 -2.64946550e-01 -5.48013031e-01 2.75042683e-01 -2.80801535e-01 -5.96046567e-01 3.53057861e-01 -2.11677134e-01 -1.12725116e-01 1.49265416e-02 6.62674546e-01 2.34377533e-01 6.95668280e-01 4.62313384e-01 -6.71751201e-01 -3.94359767e-01 6.98667943e-01 -3.69475514e-01 3.96195292e-01 8.20539296e-01 -4.19469744e-01 1.22119677e+00 -8.85041833e-01 3.27481449e-01 1.02888799e+00 5.16318798e-01 1.87626444e-02 -1.37502682e+00 -2.77496159e-01 3.54856849e-01 2.80241609e-01 -9.22348857e-01 -2.83982873e-01 3.57827276e-01 -3.89098763e-01 8.89623523e-01 5.21373034e-01 5.59804797e-01 7.17189074e-01 2.98072070e-01 1.07925093e+00 5.70580602e-01 -3.82954687e-01 3.87490422e-01 4.61386472e-01 2.22711205e-01 -1.48881331e-01 -3.19697469e-01 -1.74570411e-01 -4.05598849e-01 -3.18429053e-01 4.03365672e-01 7.61474311e-01 -3.97356367e-03 -2.00515285e-01 -1.01707876e+00 1.23021710e+00 3.37878168e-02 5.45211673e-01 -8.80159557e-01 -5.75951755e-01 4.11819100e-01 7.84083188e-01 6.88687623e-01 4.89712000e-01 -5.40266514e-01 -3.52594137e-01 -7.31859028e-01 4.07681912e-01 1.17516637e+00 6.65255010e-01 3.42508137e-01 -4.12430733e-01 1.85520574e-01 1.07664967e+00 1.79951400e-01 1.78967729e-01 9.88033772e-01 -5.99118352e-01 2.57421643e-01 5.35289466e-01 3.30468506e-01 -1.24355984e+00 -5.09908020e-01 -4.19478148e-01 -7.49403417e-01 -3.26059520e-01 3.28958303e-01 -1.14533350e-01 -2.56352395e-01 1.12869906e+00 3.08010221e-01 8.18438735e-03 -1.89635828e-02 7.65830398e-01 1.16828181e-01 8.46327186e-01 1.76138952e-02 -7.90047348e-01 1.08496678e+00 -6.30199134e-01 -7.15532482e-01 -1.75407782e-01 8.58414292e-01 -1.10396528e+00 8.43796790e-01 1.03557718e+00 -1.00872791e+00 -6.12175226e-01 -5.18422246e-01 5.00593305e-01 -8.74999687e-02 -3.52014750e-01 7.77057588e-01 6.67761624e-01 -4.96967584e-01 1.02638257e+00 -5.72887301e-01 -4.21389490e-01 -2.34603230e-02 5.51647902e-01 -1.83587343e-01 -1.35215297e-01 -1.04666948e+00 6.27818227e-01 5.93458861e-02 -9.27758962e-02 -3.42377350e-02 -5.23029864e-01 -3.95478517e-01 6.52701110e-02 4.84547764e-01 -2.54618436e-01 1.51674998e+00 -1.10922205e+00 -1.42148530e+00 1.25917077e-01 -6.37969002e-02 -6.90079510e-01 1.01011604e-01 -4.77685869e-01 -8.09529603e-01 -5.20806789e-01 -4.05231357e-01 -2.05671713e-01 7.31268346e-01 -4.47090089e-01 -1.20440233e+00 -5.46610594e-01 -1.50203958e-01 4.70623136e-01 -5.39299190e-01 1.88414082e-01 -3.03386509e-01 -5.06222546e-01 6.15679808e-02 -1.05091166e+00 -5.74103057e-01 -8.34852040e-01 2.59708405e-01 -3.78158271e-01 5.43669820e-01 -5.36334515e-01 1.30901432e+00 -2.22028422e+00 1.67022794e-01 5.50346494e-01 -1.04844719e-01 2.82376170e-01 -1.65918991e-02 9.53029871e-01 1.45762697e-01 -1.56156138e-01 3.04806054e-01 -1.73333839e-01 -6.73727840e-02 2.89682895e-01 -3.80584776e-01 3.37316781e-01 -4.56658483e-01 4.44965392e-01 -8.61803114e-01 1.73888341e-01 3.76617491e-01 3.83538783e-01 -8.55204761e-01 2.44069189e-01 -2.17280388e-01 4.34795737e-01 -3.01493853e-01 -1.22772649e-01 1.27938855e-02 -1.68111712e-01 5.73945761e-01 1.76067889e-01 -1.42868087e-01 4.16631132e-01 -1.61141860e+00 1.19171703e+00 -6.46609783e-01 4.25074816e-01 -9.22110528e-02 -1.18583596e+00 8.57438803e-01 2.45004222e-01 8.81864250e-01 -9.86955881e-01 1.14038236e-01 1.20442035e-02 1.47626296e-01 -6.39994740e-01 9.11447287e-01 3.13143292e-03 1.21813118e-01 8.04726243e-01 -3.54252368e-01 3.51852149e-01 5.13796091e-01 2.57907450e-01 1.00808418e+00 -4.41155463e-01 5.55034041e-01 1.08563527e-01 4.65227693e-01 -3.31942528e-01 3.80148083e-01 5.46218693e-01 3.17210317e-01 1.74991518e-01 -1.62634589e-02 -5.48803270e-01 -8.55227709e-01 -4.71185029e-01 3.85484062e-02 1.77762377e+00 -6.15910441e-02 -6.16132498e-01 -2.10406154e-01 -3.03585351e-01 6.04389794e-02 9.83919084e-01 -3.70726824e-01 -4.69403565e-02 -3.88381779e-01 -7.42470682e-01 -4.08010095e-01 3.52647364e-01 -2.32823029e-01 -1.11725295e+00 -3.91934812e-01 8.00152898e-01 -1.28888458e-01 -7.67451763e-01 -6.52409732e-01 3.86011414e-02 -1.09820879e+00 -8.44878852e-01 -4.91942078e-01 -4.32346731e-01 3.13969344e-01 4.84233767e-01 9.64352012e-01 -1.40335364e-02 -4.94683795e-02 4.60011512e-01 -8.16081941e-01 -3.90168726e-01 -3.73128951e-01 4.31679413e-02 4.29505199e-01 5.45405209e-01 6.04738355e-01 -5.53578436e-01 -6.01911604e-01 6.75465107e-01 -1.01424372e+00 -2.31787249e-01 4.92486745e-01 6.33304000e-01 4.06114638e-01 4.05028701e-01 5.46022713e-01 -1.40047061e+00 1.08221972e+00 -9.17531073e-01 -1.80821344e-01 -6.99728504e-02 -1.01347458e+00 -1.95324436e-01 7.18399644e-01 -8.11327040e-01 -8.24445784e-01 4.43519689e-02 -3.51913959e-01 1.09898962e-01 -2.43347377e-01 9.77668345e-01 3.19059312e-01 3.97088915e-01 7.45323181e-01 2.04409480e-01 -4.60848361e-02 -7.27827668e-01 3.36896032e-01 9.34167683e-01 2.10276261e-01 1.18158370e-01 1.78839833e-01 9.64360535e-02 -4.74492878e-01 -1.07718885e+00 -7.00714946e-01 -1.19378805e+00 -5.96560597e-01 -2.40272701e-01 2.64172286e-01 -5.50499320e-01 -8.47170293e-01 -7.44856149e-02 -6.22484684e-01 -7.75586069e-02 -2.85106629e-01 7.73624539e-01 -3.40962261e-01 3.24685007e-01 -4.44382906e-01 -9.42108631e-01 -2.68944949e-01 -6.52734220e-01 3.30485344e-01 1.71109140e-01 -6.44772947e-01 -1.15173161e+00 1.47593245e-01 3.08828801e-01 4.87590611e-01 -3.33448082e-01 7.17749178e-01 -1.22019815e+00 1.18013486e-01 -5.89638472e-01 3.65603238e-01 3.30042481e-01 3.45475435e-01 -2.31732249e-01 -3.52477729e-01 -4.16557550e-01 6.39666915e-02 1.37958437e-01 3.12060714e-01 3.23198318e-01 8.03830445e-01 -4.85878259e-01 -2.14752376e-01 -6.18590005e-02 1.05946863e+00 6.42242491e-01 4.77310300e-01 5.32049201e-02 2.69240022e-01 8.53320420e-01 8.68533015e-01 9.11522269e-01 1.90939561e-01 8.84261966e-01 2.18013704e-01 2.59081632e-01 6.17595911e-01 -4.67831548e-03 4.66157317e-01 1.01174808e+00 -4.96551469e-02 -3.25401038e-01 -5.27590334e-01 5.08607745e-01 -2.16332412e+00 -1.05069041e+00 -2.87023813e-01 2.53603435e+00 3.94891173e-01 2.13654980e-01 7.14964449e-01 5.13365388e-01 3.06244761e-01 -3.89559090e-01 -3.97307843e-01 -7.32715726e-01 4.22067732e-01 5.58128878e-02 4.07275110e-01 3.79723996e-01 -7.50530541e-01 4.57369834e-01 5.98852348e+00 4.96681929e-01 -8.18665147e-01 -1.52610332e-01 4.40598071e-01 -3.37919295e-01 -1.32062376e-01 -3.10363829e-01 -7.10287273e-01 5.59051275e-01 1.46078372e+00 -2.28701666e-01 7.13357031e-01 7.33070016e-01 5.88994324e-01 -2.56282032e-01 -1.20274401e+00 9.78228271e-01 1.15521200e-01 -1.14746702e+00 -3.25826854e-01 2.90286094e-01 6.58666074e-01 -7.77359903e-02 1.29014224e-01 3.88276190e-01 2.53336668e-01 -7.17657268e-01 2.43391678e-01 5.90261519e-01 -9.32516530e-02 -9.87118900e-01 8.21680129e-01 9.00769293e-01 -9.87290800e-01 -5.57103813e-01 -3.77112478e-01 -6.69035256e-01 4.32787448e-01 7.99448609e-01 -9.60269332e-01 2.73886889e-01 6.63425863e-01 6.18715107e-01 -6.13654964e-02 1.14768004e+00 3.81953388e-01 8.00467610e-01 -4.09127563e-01 -3.11318070e-01 1.38231918e-01 -5.79866827e-01 2.50538677e-01 1.09008646e+00 3.14948261e-01 3.83310080e-01 3.12435657e-01 -1.26357630e-01 1.40979454e-01 8.98842216e-01 -5.18367231e-01 -1.93703622e-01 2.03784913e-01 1.10888124e+00 -6.90855265e-01 -1.89242512e-01 -5.97282350e-01 9.03799295e-01 -1.90733224e-02 5.40271550e-02 -4.13407981e-01 -2.69800782e-01 6.79864466e-01 4.68291312e-01 5.12359083e-01 -2.93917805e-01 1.26023635e-01 -8.01549733e-01 -2.99096853e-01 -1.03998566e+00 4.63526666e-01 -2.13626504e-01 -1.28939080e+00 3.35424721e-01 -3.16833854e-01 -1.10049593e+00 -7.93863118e-01 -4.33323294e-01 -3.44662637e-01 5.67818820e-01 -7.06332922e-01 -2.38073081e-01 3.44387919e-01 6.85698390e-01 9.64200556e-01 -2.25201204e-01 8.80037844e-01 6.74276650e-01 -3.65821421e-01 2.58356661e-01 8.00400913e-01 -3.47170591e-01 7.48246133e-01 -1.06874359e+00 3.76892358e-01 5.20539045e-01 6.92306817e-01 7.41100311e-01 9.16457415e-01 -5.31758726e-01 -1.61953783e+00 -7.66635239e-01 1.17708659e+00 -2.74881810e-01 6.60052538e-01 -1.82096332e-01 -8.60652685e-01 5.54077923e-01 -3.71242389e-02 -4.91855353e-01 1.21501768e+00 7.64991403e-01 8.96702893e-03 -1.84000582e-01 -9.14513469e-01 5.71110249e-01 6.15808547e-01 -2.69100726e-01 -5.02897441e-01 5.14532506e-01 3.79200786e-01 -8.58700722e-02 -1.13370025e+00 -1.04534104e-01 6.90106690e-01 -1.07837605e+00 8.43878090e-01 -8.12656522e-01 1.61018625e-01 7.99967200e-02 -1.75892159e-01 -1.43066454e+00 -7.05297828e-01 -7.63537347e-01 -2.39530668e-01 1.06546116e+00 4.79731113e-01 -3.74665827e-01 7.42699504e-01 9.10619795e-01 2.64354467e-01 -5.96714079e-01 -2.85825372e-01 -3.91448289e-01 -6.26607835e-01 -8.54207933e-01 4.00166184e-01 6.95632756e-01 4.72694099e-01 6.35593057e-01 -7.89428830e-01 -1.58458158e-01 2.42264852e-01 2.47494787e-01 9.14234936e-01 -1.39147627e+00 -7.28902102e-01 -3.33660185e-01 -1.94056109e-01 -1.32068360e+00 -4.97273296e-01 -7.15462267e-01 -1.42598167e-01 -1.27574039e+00 -1.86440632e-01 -3.72907877e-01 -3.54436189e-01 7.04174070e-03 1.87257841e-01 2.79335856e-01 1.44206539e-01 3.78087372e-01 -7.10642397e-01 4.55757529e-02 7.50476241e-01 1.32088438e-01 -7.66374886e-01 9.78844702e-01 -7.82711089e-01 5.64833105e-01 5.42909145e-01 -3.02959621e-01 -5.87050259e-01 -9.14582312e-02 7.77625799e-01 1.53697833e-01 -4.70615089e-01 -5.54016113e-01 3.52066487e-01 -2.81926125e-01 1.67712912e-01 -4.69949722e-01 1.67991906e-01 -1.07395530e+00 4.42443848e-01 2.07132116e-01 -5.88004529e-01 1.41619161e-01 -7.37459809e-02 8.23001742e-01 -1.58685938e-01 -3.47550720e-01 3.84355426e-01 9.17782187e-02 -8.31100702e-01 1.72909588e-01 -8.55050921e-01 -4.47373569e-01 8.73045683e-01 -9.92638096e-02 5.28202176e-01 -8.37695956e-01 -8.84825945e-01 5.67257181e-02 -2.86500677e-02 6.69629216e-01 4.04360235e-01 -1.04120076e+00 -6.23967946e-01 4.27014053e-01 3.95910256e-03 -5.18432379e-01 3.34110647e-01 8.26769948e-01 4.20814119e-02 4.42573249e-01 4.62452956e-02 -4.50217515e-01 -1.52864957e+00 7.63781071e-01 -4.11080360e-01 -4.56949741e-01 -6.96588159e-01 7.40736783e-01 -1.65578306e-01 -1.00098781e-01 4.00382161e-01 -6.10777773e-02 -7.22877622e-01 3.96268755e-01 1.03427935e+00 4.61898923e-01 3.51887375e-01 -5.43987572e-01 1.33621633e-01 9.26847532e-02 -6.26110911e-01 -1.20873225e-03 1.60332334e+00 -5.26886165e-01 2.28236794e-01 7.85529077e-01 9.22645807e-01 3.18049155e-02 -7.74576068e-01 -7.25165069e-01 3.61268073e-01 -5.21594763e-01 1.08585805e-01 -5.19880235e-01 -8.16577554e-01 5.07843673e-01 5.13237238e-01 1.00975168e+00 1.09873617e+00 -2.72332907e-01 9.76008713e-01 5.77921450e-01 3.93228769e-01 -1.09961915e+00 -3.60419601e-02 5.74068785e-01 5.63314974e-01 -1.12446070e+00 2.78403554e-02 9.15428698e-02 -8.89880717e-01 9.58889365e-01 -1.65632591e-01 -8.02438632e-02 9.28715408e-01 1.00908577e-01 -1.40990928e-01 1.54653281e-01 -9.93842959e-01 -5.96718788e-02 4.42936361e-01 2.00692117e-01 7.75066614e-01 1.90638855e-01 -6.03032410e-01 6.94602251e-01 -1.34646446e-01 -5.23879565e-02 4.02594507e-01 8.91200542e-01 -5.92193604e-01 -1.48929477e+00 -2.58647054e-01 8.74166429e-01 -6.77663028e-01 1.70000549e-02 -1.24678575e-01 2.33514383e-01 -2.54538745e-01 1.26347899e+00 7.07292706e-02 -7.14799404e-01 5.03314972e-01 1.88170552e-01 2.40577504e-01 -8.07135284e-01 -7.97974885e-01 3.80343467e-01 1.05102435e-01 -5.73988259e-01 -4.15740162e-01 -9.94187474e-01 -8.94800782e-01 -5.73577642e-01 -3.92280072e-01 5.46285152e-01 9.63758409e-01 1.22275519e+00 3.21039855e-01 3.26203793e-01 1.06241977e+00 -9.65391457e-01 -5.61891317e-01 -1.00228894e+00 -8.56841207e-01 7.05395579e-01 -2.73172650e-02 -3.48491758e-01 -1.97056368e-01 2.16485575e-01]
[10.067075729370117, 5.804570198059082]
31dcf81a-0395-4aab-91bd-3bf0242849b2
neural-sign-language-translation-based-on
1811.11436
null
https://arxiv.org/abs/1811.11436v2
https://arxiv.org/pdf/1811.11436v2.pdf
Neural Sign Language Translation based on Human Keypoint Estimation
We propose a sign language translation system based on human keypoint estimation. It is well-known that many problems in the field of computer vision require a massive amount of dataset to train deep neural network models. The situation is even worse when it comes to the sign language translation problem as it is far more difficult to collect high-quality training data. In this paper, we introduce the KETI (short for Korea Electronics Technology Institute) sign language dataset which consists of 14,672 videos of high resolution and quality. Considering the fact that each country has a different and unique sign language, the KETI sign language dataset can be the starting line for further research on the Korean sign language translation. Using the KETI sign language dataset, we develop a neural network model for translating sign videos into natural language sentences by utilizing the human keypoints extracted from a face, hands, and body parts. The obtained human keypoint vector is normalized by the mean and standard deviation of the keypoints and used as input to our translation model based on the sequence-to-sequence architecture. As a result, we show that our approach is robust even when the size of the training data is not sufficient. Our translation model achieves 93.28% (55.28%, respectively) translation accuracy on the validation set (test set, respectively) for 105 sentences that can be used in emergency situations. We compare several types of our neural sign translation models based on different attention mechanisms in terms of classical metrics for measuring the translation performance.
['Sang-Ki Ko', 'Choongsang Cho', 'Hyedong Jung', 'Chang Jo Kim']
2018-11-28
null
null
null
null
['sign-language-translation']
['computer-vision']
[ 1.66990891e-01 -5.51288545e-01 -3.15941513e-01 -3.28399599e-01 -7.55663216e-01 -3.61425728e-01 5.03263474e-01 -9.79738355e-01 -7.66760707e-01 6.39117718e-01 4.75090802e-01 -1.65112510e-01 2.20096424e-01 -5.49785972e-01 -7.29244828e-01 -7.58977830e-01 4.39945728e-01 3.87313962e-01 -4.25412841e-02 -2.40658179e-01 1.62924957e-02 5.45810521e-01 -1.47834587e+00 2.09060639e-01 8.34788680e-01 9.74086344e-01 1.03206951e-02 7.03613341e-01 1.40323848e-01 6.40482485e-01 -6.24627113e-01 -4.26762044e-01 5.15621781e-01 -9.12406266e-01 -5.69503307e-01 -1.50526762e-01 9.31272924e-01 -7.92350829e-01 -5.10297716e-01 1.07227695e+00 9.22791719e-01 -2.76112892e-02 6.59195602e-01 -1.44068146e+00 -8.03131580e-01 3.20374906e-01 -2.57744402e-01 -1.98622450e-01 1.36384726e-01 4.16696429e-01 8.30517888e-01 -9.70145345e-01 1.09293020e+00 1.01938236e+00 5.01795530e-01 8.58524323e-01 -3.72881144e-01 -9.67951536e-01 -1.52219981e-01 4.69387442e-01 -1.11015391e+00 -3.06833267e-01 7.14951456e-01 -3.57438356e-01 7.02408612e-01 -3.47406268e-02 9.41909254e-01 1.34726489e+00 2.92258084e-01 9.62556243e-01 1.03262103e+00 -3.99574280e-01 -5.07085249e-02 -3.03736508e-01 1.54609205e-02 7.62168109e-01 3.30581427e-01 2.93565124e-01 -5.10360360e-01 3.12277853e-01 8.32765102e-01 -7.71501362e-02 -4.48028773e-01 -3.55295718e-01 -1.63336122e+00 6.81947291e-01 4.98851120e-01 3.91897082e-01 -4.51606780e-01 8.23862702e-02 5.16633391e-01 4.76582497e-01 -1.25732526e-01 1.53659731e-01 -3.68058085e-01 -3.88409764e-01 -7.35781014e-01 1.35794416e-01 5.29577851e-01 9.72374856e-01 1.50374293e-01 2.61586040e-01 -1.97778150e-01 6.65210605e-01 2.74489701e-01 1.21023393e+00 8.24239433e-01 -8.53750527e-01 7.06774354e-01 5.25396526e-01 1.64870769e-01 -9.30528879e-01 -3.74556452e-01 -1.54101238e-01 -9.11152780e-01 4.13196415e-01 6.68452978e-01 -3.56018633e-01 -1.21472824e+00 1.66052079e+00 -2.70727649e-02 -3.56317349e-02 7.05714077e-02 1.34106958e+00 1.01268482e+00 3.78649950e-01 -1.96358100e-01 -5.63306957e-02 1.14385164e+00 -1.03869176e+00 -7.40679324e-01 1.80897474e-01 6.49793327e-01 -7.56620765e-01 1.24258125e+00 2.78233945e-01 -7.78710067e-01 -5.75712621e-01 -9.83190954e-01 -3.82685699e-02 -3.78785074e-01 7.21669316e-01 3.39272112e-01 4.51639503e-01 -9.22128737e-01 1.10384986e-01 -6.51252389e-01 -8.21267486e-01 2.09940314e-01 2.50100017e-01 -5.74259460e-01 -2.33694553e-01 -1.05947471e+00 1.11618519e+00 6.26126379e-02 4.82138366e-01 -3.77916187e-01 -1.88309267e-01 -7.35029459e-01 -3.01609904e-01 -6.21477468e-03 -7.43991137e-01 1.18654883e+00 -1.10653174e+00 -1.74949098e+00 8.65561128e-01 -9.17735398e-02 -1.14647679e-01 1.03901160e+00 -2.23136857e-01 -4.09778744e-01 1.23356104e-01 -5.46307750e-02 7.43946016e-01 9.48128164e-01 -8.58498275e-01 -7.91442096e-01 -2.83941776e-01 -1.94313154e-01 3.10133882e-02 -1.87567875e-01 3.23983192e-01 -3.94427449e-01 -6.07174098e-01 4.77216169e-02 -1.19483519e+00 2.66965896e-01 2.54395902e-01 -8.35063010e-02 4.63835225e-02 9.07731354e-01 -1.02750969e+00 9.84066486e-01 -1.88821638e+00 3.07925701e-01 7.65868202e-02 -8.64918996e-03 6.60596907e-01 -5.29030561e-01 1.34950370e-01 8.69409442e-02 -2.30767101e-01 -2.25262761e-01 1.46389738e-01 -1.50509207e-02 2.34256908e-01 -3.34486902e-01 4.08529490e-01 1.18349697e-02 1.31787634e+00 -8.24053347e-01 -4.32512641e-01 2.93871224e-01 5.61743796e-01 -3.00189465e-01 5.64937405e-02 2.18913034e-01 5.63305974e-01 -1.86330587e-01 9.87597346e-01 5.03059864e-01 3.59728038e-02 -8.38800445e-02 -5.35783589e-01 1.05558038e-01 -1.33620948e-01 -8.97239983e-01 1.60878360e+00 -3.67175370e-01 1.02972424e+00 -1.31343201e-01 -7.87186325e-01 8.83689761e-01 3.99315357e-01 6.06651008e-01 -8.64380062e-01 5.97216725e-01 5.93830407e-01 2.86693454e-01 -7.63185680e-01 3.91095400e-01 -1.01176739e-01 -1.66613713e-01 5.86697996e-01 4.21116725e-02 -8.90918747e-02 4.25848871e-01 -2.86932856e-01 8.09588432e-01 2.83167750e-01 1.17376976e-01 2.88848788e-01 5.12462795e-01 1.02374643e-01 4.62225080e-01 4.97030675e-01 -6.01377726e-01 6.40653849e-01 9.88375396e-02 -5.48388720e-01 -1.23929930e+00 -9.78538096e-01 1.65356174e-01 6.65311217e-01 -9.48081091e-02 7.21817613e-02 -6.98048413e-01 -7.95683324e-01 -1.75029606e-01 1.65926367e-01 -4.54287350e-01 -2.63346434e-01 -1.03322995e+00 -3.88334215e-01 8.43469262e-01 7.71794260e-01 9.59784508e-01 -1.36853063e+00 -7.60041833e-01 -7.55103379e-02 -5.56215465e-01 -1.35588515e+00 -7.24819899e-01 -5.29163003e-01 -6.50159955e-01 -1.17791224e+00 -1.40734577e+00 -1.01944828e+00 8.03144753e-01 2.20748752e-01 5.55290222e-01 -1.43069744e-01 -1.96984589e-01 4.95755136e-01 -5.34297645e-01 -3.07995170e-01 -5.59483469e-01 -8.27247351e-02 2.68312484e-01 6.07877485e-02 6.35153115e-01 -2.08205193e-01 -3.20570946e-01 4.65143323e-01 -7.55488276e-01 8.96074623e-02 8.20506513e-01 1.21678805e+00 1.84596762e-01 -5.96983194e-01 2.47379065e-01 2.00594783e-01 7.45304942e-01 3.00062001e-01 -6.39930665e-01 4.74523574e-01 -2.16639861e-01 -3.64783183e-02 4.73587334e-01 -7.81334579e-01 -7.10555255e-01 8.95377323e-02 3.02699469e-02 -5.23264050e-01 3.75947207e-02 4.27519947e-01 -6.14109747e-02 -3.27130049e-01 4.43606019e-01 4.71984565e-01 2.79529572e-01 -1.71081752e-01 3.65752429e-01 1.00676572e+00 5.99062145e-01 -1.89672098e-01 8.65782082e-01 3.90475422e-01 1.11169957e-01 -8.15822601e-01 -2.58194536e-01 -1.15847975e-01 -9.73710597e-01 -5.85656703e-01 9.04254556e-01 -7.08194911e-01 -8.93282831e-01 9.69768047e-01 -1.19184554e+00 -1.70926124e-01 -7.78728426e-02 1.00971007e+00 -7.59432614e-01 4.90739286e-01 -4.99835819e-01 -4.31299180e-01 -5.75661659e-01 -1.21009707e+00 1.00545633e+00 7.85213634e-02 -1.61582276e-01 -4.44625556e-01 3.45753096e-02 3.81769449e-01 4.46381360e-01 2.14720547e-01 6.29337072e-01 -1.26905486e-01 -6.12432182e-01 -5.22536874e-01 -4.12780315e-01 7.12224245e-01 3.26378107e-01 1.17303748e-02 -5.21716416e-01 -2.61663139e-01 -3.13559353e-01 -4.34969395e-01 8.41284037e-01 4.30091590e-01 4.06611085e-01 -1.56730950e-01 9.13853422e-02 5.83235741e-01 1.13671196e+00 2.66309589e-01 6.27223551e-01 2.96676069e-01 8.45507503e-01 2.89461553e-01 7.10674584e-01 1.52931094e-01 2.99295485e-01 9.00952041e-01 -6.71274960e-02 -1.04477964e-01 -4.31098372e-01 -4.46257323e-01 7.11159885e-01 1.07443678e+00 -5.83347917e-01 1.73672277e-03 -8.49073946e-01 4.80963171e-01 -1.88899660e+00 -1.14808404e+00 9.36439037e-02 2.15392017e+00 5.72886765e-01 -4.50535744e-01 1.92169875e-01 2.02010497e-01 4.87149596e-01 -1.08483054e-01 -5.17990649e-01 -2.20090613e-01 -2.95911521e-01 1.99475251e-02 5.52701056e-01 3.64155143e-01 -1.09201157e+00 1.06058621e+00 5.86939144e+00 2.84523368e-01 -1.75254571e+00 -9.71285850e-02 -1.01870984e-01 -7.63607398e-02 3.88510287e-01 -6.12521052e-01 -7.61017263e-01 5.08813739e-01 6.76965177e-01 -1.29094318e-01 3.60459596e-01 6.39981687e-01 4.89955544e-01 1.59106776e-01 -8.89952779e-01 1.32997584e+00 4.90219027e-01 -1.09147334e+00 3.49489361e-01 7.07914010e-02 7.51574278e-01 2.39290491e-01 4.09746339e-04 3.29661101e-01 9.26476568e-02 -8.60909343e-01 6.64280236e-01 6.26401603e-01 1.13050318e+00 -3.57214987e-01 1.01785505e+00 3.43918800e-01 -1.04915607e+00 -1.18002661e-01 -1.57625839e-01 2.35457346e-02 4.30199057e-01 -1.80033192e-01 -6.77178204e-01 3.58784139e-01 6.14192367e-01 7.69873917e-01 -3.49124521e-01 1.16196632e+00 -4.09406424e-01 5.44173360e-01 -4.17721778e-01 -3.58470857e-01 2.75409311e-01 -3.80860388e-01 4.51742530e-01 9.75796521e-01 8.33393335e-01 -1.03972487e-01 -7.81758428e-02 5.18305242e-01 -3.89155336e-02 2.53078610e-01 -7.75224447e-01 -7.87993073e-02 -8.96093175e-02 7.76710212e-01 -4.04485494e-01 -6.06979251e-01 -4.71108913e-01 1.20996034e+00 -2.05503285e-01 6.72649741e-01 -9.09785211e-01 -5.35713851e-01 8.03614676e-01 -3.32395494e-01 3.33774984e-01 -4.23452079e-01 -1.82208344e-01 -1.60215151e+00 4.53626364e-01 -1.10481334e+00 1.10334948e-01 -9.73308325e-01 -1.04283309e+00 6.32630467e-01 -1.30318090e-01 -1.92089403e+00 -6.65262103e-01 -1.09793317e+00 -2.89328992e-01 7.83183932e-01 -1.37455750e+00 -1.52611375e+00 -6.61425531e-01 6.98662877e-01 3.72001469e-01 -4.18400228e-01 7.80708432e-01 5.29253423e-01 -2.00235039e-01 8.67499530e-01 1.36367157e-01 7.77011216e-01 8.27477336e-01 -4.71728832e-01 3.12288851e-01 9.21936750e-01 2.33882949e-01 5.04902124e-01 3.81251007e-01 -5.13320446e-01 -1.45836830e+00 -8.86504531e-01 1.31103516e+00 -5.08645058e-01 4.83806551e-01 -2.35049818e-02 -3.69804800e-01 5.61974585e-01 -2.78585646e-02 -4.32714261e-02 2.60072172e-01 -5.73283136e-01 -2.84665257e-01 -1.08235449e-01 -9.98312175e-01 8.49116564e-01 1.33659685e+00 -4.89155382e-01 -6.25007749e-01 2.32526973e-01 3.17095459e-01 -4.45409983e-01 -6.15451753e-01 4.74267185e-01 1.12919688e+00 -5.52145362e-01 7.11522222e-01 -8.26315641e-01 5.07420599e-01 -4.39979285e-01 -3.16153556e-01 -1.16929495e+00 -3.01607940e-02 -3.07341307e-01 1.36263311e-01 6.67082906e-01 2.09436744e-01 -6.76963806e-01 7.20975995e-01 4.47058052e-01 2.09595695e-01 -5.61604679e-01 -1.11475813e+00 -1.07438469e+00 7.81862587e-02 -3.29510331e-01 5.42781234e-01 7.10162401e-01 -1.56286627e-01 2.75570959e-01 -8.40753198e-01 -2.43592009e-01 5.36762595e-01 3.14102232e-01 1.17252004e+00 -9.70920861e-01 1.53536335e-01 -5.78066468e-01 -7.24244893e-01 -1.11665976e+00 1.68176800e-01 -7.97071874e-01 1.90516785e-02 -1.69126523e+00 -8.90466850e-03 2.42789745e-01 -7.38121420e-02 6.05261862e-01 1.91081285e-01 5.10087192e-01 6.08308375e-01 1.46863371e-01 -4.43499275e-02 7.00877547e-01 1.69947457e+00 -4.79109973e-01 -1.22654051e-01 9.45138484e-02 -1.15661107e-01 6.36541188e-01 6.93872511e-01 1.36601329e-01 2.87702084e-02 -5.56715071e-01 -1.71480671e-01 -1.34458989e-01 4.70237106e-01 -9.97233689e-01 1.95659220e-01 -1.81669459e-01 2.89904863e-01 -6.81376696e-01 3.37646931e-01 -1.04736936e+00 -1.64110586e-01 7.75720000e-01 -1.74546480e-01 1.90376282e-01 -8.58264789e-02 8.63112286e-02 -4.96867001e-01 1.39314279e-01 7.81561315e-01 -2.45042332e-02 -9.78955030e-01 3.25126082e-01 -3.13594788e-01 -1.37088060e-01 8.77016783e-01 -4.91722345e-01 -2.76255339e-01 -7.49592185e-01 -4.49402869e-01 -9.96293053e-02 3.85073960e-01 8.79977167e-01 9.15792644e-01 -1.79096246e+00 -8.77424479e-01 5.34844398e-01 3.45442414e-01 -6.20256305e-01 2.63136644e-02 1.01876748e+00 -6.79750979e-01 6.80485904e-01 -7.32868850e-01 -6.09201193e-01 -1.69464993e+00 1.97948769e-01 3.03597957e-01 1.33891642e-01 -7.91718602e-01 4.52573121e-01 -3.87643129e-01 -5.96741259e-01 3.67022872e-01 -8.36252928e-01 -1.57993305e-02 -2.78038867e-02 5.76156974e-01 2.75643766e-01 -1.99073687e-01 -1.24607801e+00 -3.10506195e-01 1.18818450e+00 3.27817082e-01 -3.09150010e-01 1.14022338e+00 2.33544707e-01 1.42222112e-02 1.32994965e-01 1.27914417e+00 -2.83715516e-01 -8.71002316e-01 -3.48675579e-01 -3.48911822e-01 -4.83267903e-01 -3.50296110e-01 -1.01694250e+00 -1.14914095e+00 9.99937356e-01 9.27840352e-01 -8.63755226e-01 1.16726458e+00 -2.82934815e-01 1.16860127e+00 7.49305069e-01 6.38650715e-01 -1.18992162e+00 -2.30621547e-01 8.01375866e-01 1.23061860e+00 -1.38841498e+00 -2.82538652e-01 2.07765907e-01 -6.90879881e-01 1.12996018e+00 4.47113544e-01 -1.05521850e-01 4.91330177e-01 4.78428975e-02 8.22520018e-01 3.41098189e-01 -2.64530808e-01 -2.23712280e-01 4.45907295e-01 7.17680275e-01 2.02058271e-01 1.71084434e-01 -7.07368255e-01 2.64903754e-01 -4.08858329e-01 5.43127716e-01 4.26525503e-01 7.76820540e-01 -2.71732002e-01 -1.03150558e+00 -5.01563430e-01 2.98443019e-01 9.39056575e-02 1.13013417e-01 -5.41317701e-01 8.35121453e-01 1.40860766e-01 6.21702969e-01 -3.54707181e-01 -5.91075957e-01 4.97866929e-01 2.26595178e-01 7.47422755e-01 1.36642709e-01 -2.58235663e-01 -3.33495885e-01 -9.57945064e-02 -6.01639748e-01 -6.29051268e-01 -6.77513003e-01 -1.20345974e+00 -2.18980551e-01 -4.19340804e-02 -4.37944919e-01 7.63270080e-01 9.15368617e-01 2.10481524e-01 1.37932584e-01 2.12071389e-01 -8.68677437e-01 -7.07663774e-01 -1.20215988e+00 -3.02414536e-01 6.14727855e-01 2.84346581e-01 -6.88480735e-01 -1.55831769e-01 2.29075164e-01]
[9.155017852783203, -6.467704772949219]
6809937e-4fb9-49b9-a85b-79b7cb25ec6c
energy-disaggregation-using-variational
2103.12177
null
https://arxiv.org/abs/2103.12177v2
https://arxiv.org/pdf/2103.12177v2.pdf
Energy Disaggregation using Variational Autoencoders
Non-intrusive load monitoring (NILM) is a technique that uses a single sensor to measure the total power consumption of a building. Using an energy disaggregation method, the consumption of individual appliances can be estimated from the aggregate measurement. Recent disaggregation algorithms have significantly improved the performance of NILM systems. However, the generalization capability of these methods to different houses as well as the disaggregation of multi-state appliances are still major challenges. In this paper we address these issues and propose an energy disaggregation approach based on the variational autoencoders framework. The probabilistic encoder makes this approach an efficient model for encoding information relevant to the reconstruction of the target appliance consumption. In particular, the proposed model accurately generates more complex load profiles, thus improving the power signal reconstruction of multi-state appliances. Moreover, its regularized latent space improves the generalization capabilities of the model across different houses. The proposed model is compared to state-of-the-art NILM approaches on the UK-DALE and REFIT datasets, and yields competitive results. The mean absolute error reduces by 18% on average across all appliances compared to the state-of-the-art. The F1-Score increases by more than 11%, showing improvements for the detection of the target appliance in the aggregate measurement.
['Ghyslain Gagnon', 'Mohamed Cheriet', 'Marc-André Carbonneau', 'Antoine Langevin']
2021-03-22
null
null
null
null
['non-intrusive-load-monitoring', 'non-intrusive-load-monitoring', 'non-intrusive-load-monitoring']
['knowledge-base', 'miscellaneous', 'time-series']
[-6.99132308e-02 -1.78744644e-01 5.02270535e-02 -2.83602893e-01 -1.04117894e+00 -2.91370392e-01 4.67899561e-01 -1.74706317e-02 4.11780402e-02 5.99156618e-01 2.47027084e-01 3.02278936e-01 -1.29641324e-01 -9.76622581e-01 -5.93925953e-01 -1.24503732e+00 2.60426432e-01 4.05343711e-01 -3.40007126e-01 2.02055186e-01 -5.81931472e-01 2.59054482e-01 -1.69575679e+00 3.10073905e-02 8.59280825e-01 1.28162730e+00 3.38319272e-01 3.62306714e-01 4.00443316e-01 7.92749226e-01 -8.42830181e-01 -1.28449246e-01 -5.86797409e-02 -2.15398923e-01 -3.95269215e-01 1.00244775e-01 1.09442249e-02 -6.71900213e-01 -2.67070442e-01 1.22020221e+00 6.23162806e-01 1.24619253e-01 6.77363276e-01 -1.32198131e+00 -4.70935553e-01 9.53143775e-01 -3.23414385e-01 -1.09907925e-01 2.11080432e-01 -6.52320012e-02 1.05368602e+00 -1.76935613e-01 -2.69581884e-01 9.18261945e-01 6.81935966e-01 2.14044392e-01 -1.74920356e+00 -7.34956324e-01 3.81288640e-02 4.60552335e-01 -1.61289513e+00 -3.03229153e-01 1.07590365e+00 -3.40107203e-01 1.27582943e+00 5.50108671e-01 6.22128665e-01 1.31090975e+00 6.45875558e-02 1.08841765e+00 1.03190219e+00 -1.36876732e-01 5.58775425e-01 2.59673148e-01 5.68146594e-02 2.95620680e-01 2.92715698e-01 -8.67984537e-03 -8.19809288e-02 -3.29370022e-01 3.59017402e-02 2.54423589e-01 -2.80451387e-01 -3.45088504e-02 -7.56007910e-01 9.05250788e-01 2.59806484e-01 4.69916612e-01 -8.04442406e-01 1.01744153e-01 4.01794702e-01 -3.61837685e-01 7.09321737e-01 -2.82137059e-02 -4.26927298e-01 -8.16172734e-02 -1.42775154e+00 -7.70618767e-02 8.40633392e-01 6.46612763e-01 6.75951302e-01 3.39953482e-01 -1.75777689e-01 6.50805414e-01 4.49155211e-01 9.45187271e-01 6.07098877e-01 -1.09830236e+00 3.36666584e-01 6.69236243e-01 -5.63123077e-02 -6.30651891e-01 -7.14685500e-01 -3.33672881e-01 -1.31692231e+00 -1.05420701e-01 -2.57739156e-01 -2.84185410e-01 -4.73790228e-01 1.99530149e+00 3.86883825e-01 1.35071561e-01 1.22148201e-01 3.22805941e-01 4.29332733e-01 1.16993690e+00 2.58492857e-01 -5.59561253e-01 1.26759791e+00 -6.37822866e-01 -1.10760081e+00 1.67923838e-01 2.55590796e-01 -3.00555378e-01 5.34623861e-01 3.11318249e-01 -7.89259434e-01 -5.23117721e-01 -1.06019783e+00 1.51744306e-01 -5.60235679e-01 2.91278809e-01 2.08876610e-01 7.85589039e-01 -7.12333560e-01 7.43403435e-01 -1.33733404e+00 -3.43738556e-01 3.66940022e-01 4.22448516e-01 2.48383321e-02 2.80590504e-01 -1.06823850e+00 7.83540666e-01 7.50482500e-01 -3.09298448e-02 -7.40120232e-01 -9.43202376e-01 -8.87954116e-01 4.49312776e-01 -4.67679612e-02 -5.18784106e-01 1.18535709e+00 -3.15713018e-01 -1.66755271e+00 5.84319234e-02 -1.38209045e-01 -6.75363779e-01 4.41825897e-01 -1.06923699e-01 -8.22606206e-01 1.08785909e-02 1.18565664e-01 1.97040051e-01 8.12509656e-01 -1.04963112e+00 -9.88961577e-01 -4.32034791e-01 -3.06430161e-01 -2.20761672e-01 -3.81769478e-01 -6.15537822e-01 1.31892473e-01 -4.54968363e-01 -2.45368406e-01 -1.00214231e+00 3.47961128e-01 -7.81427979e-01 -5.86951315e-01 -4.71775413e-01 1.12365043e+00 -1.16788912e+00 1.50368738e+00 -2.40581322e+00 1.39562320e-02 1.96046699e-02 -8.37693065e-02 5.58917597e-02 3.43712717e-01 5.12637198e-01 -1.87565356e-01 -3.98284972e-01 -3.45670462e-01 -9.11845326e-01 7.17837155e-01 4.52285767e-01 -1.47911519e-01 6.47392571e-01 -2.91810066e-01 1.00866604e+00 -6.89619362e-01 -2.99594492e-01 9.62973297e-01 9.06857431e-01 -6.80656508e-02 3.96671653e-01 -3.43234465e-02 2.96985000e-01 -3.75915579e-02 4.45033729e-01 5.77928364e-01 -2.00598598e-01 2.83250540e-01 -6.85604632e-01 7.30720982e-02 2.69845843e-01 -1.28680003e+00 1.41323471e+00 -8.98430169e-01 4.83651280e-01 -1.34578824e-01 -1.09082031e+00 6.32331967e-01 7.28842735e-01 9.86157775e-01 -5.62524796e-01 1.64970994e-01 8.51380974e-02 -4.80392009e-01 -2.62897968e-01 1.13379203e-01 3.30665298e-02 -3.69801939e-01 3.11763883e-01 1.90888032e-01 8.68030638e-02 2.29803279e-01 -3.87511104e-01 8.46437633e-01 -1.13075167e-01 4.67476606e-01 -3.94444495e-01 4.68382210e-01 -6.56774998e-01 6.61946952e-01 3.80056798e-01 2.29571387e-02 -1.72624867e-02 -1.50271252e-01 -2.24985912e-01 -8.21138680e-01 -1.16021657e+00 -3.42964143e-01 8.77320588e-01 -2.47668996e-01 -2.82920003e-01 -1.11319971e+00 -3.44305992e-01 1.70499444e-01 1.61872101e+00 -5.23524821e-01 -2.62963563e-01 -3.01745474e-01 -1.31142688e+00 2.41854444e-01 6.48958743e-01 8.51633966e-01 -7.82779634e-01 -8.61117005e-01 5.44180989e-01 -6.36955142e-01 -1.25334764e+00 -1.94267645e-01 5.11653304e-01 -6.31310642e-01 -9.27356839e-01 -3.60764354e-01 -3.07566911e-01 2.55802512e-01 -2.73324996e-01 1.15728998e+00 -7.69497335e-01 2.60665696e-02 3.94703746e-01 7.49861589e-03 -4.85238075e-01 -6.32683814e-01 3.88339996e-01 3.84379953e-01 4.20930952e-01 8.98842692e-01 -9.44393158e-01 -4.97902244e-01 8.96069035e-03 -7.50463367e-01 -2.31618986e-01 2.72566050e-01 5.69003582e-01 6.33940399e-01 1.00014162e+00 4.90728915e-01 -5.27685225e-01 3.67764771e-01 -6.44542873e-01 -8.98264050e-01 1.49294615e-01 -1.07330251e+00 7.77973458e-02 8.15609515e-01 -4.01484519e-01 -1.05259264e+00 1.72293514e-01 -1.68876827e-01 -3.70881915e-01 -3.77318829e-01 -1.53029382e-01 -5.73737800e-01 6.59963012e-01 3.72545980e-02 4.95941043e-01 -5.67668021e-01 -8.81209135e-01 1.67126760e-01 7.93363869e-01 5.85757315e-01 -3.03225100e-01 6.59284949e-01 4.22497988e-01 2.13427618e-01 -9.96698976e-01 -7.27620304e-01 -3.66060972e-01 -4.99976456e-01 6.03857264e-02 1.05150223e+00 -1.24028778e+00 -1.09992528e+00 6.98264837e-01 -9.66615438e-01 -3.30153674e-01 -7.97473192e-01 3.68614644e-01 -5.68148255e-01 2.06465483e-01 -6.56061888e-01 -1.21441507e+00 -6.44573092e-01 -1.37593043e+00 1.46599948e+00 1.16596833e-01 -4.94536936e-01 -1.07514179e+00 8.38765129e-02 2.27865979e-01 3.20121229e-01 6.05614305e-01 1.00731969e+00 -5.23971796e-01 -3.60728800e-01 -4.07642365e-01 3.21586818e-01 7.42072999e-01 4.95699584e-01 -3.08969915e-01 -1.37334347e+00 -5.83172262e-01 4.60897863e-01 2.00291350e-01 5.37952125e-01 5.79527020e-01 1.05242455e+00 -5.74876845e-01 -3.45027328e-01 4.11602467e-01 1.70149052e+00 2.76669860e-01 3.49752456e-01 -7.40628317e-02 6.19168460e-01 1.66668534e-01 -1.57334223e-01 6.42882526e-01 6.96492970e-01 6.43588841e-01 4.44164991e-01 1.39638022e-01 9.97253805e-02 -3.46025079e-01 5.70987582e-01 1.23295712e+00 3.32400769e-01 -2.96567440e-01 -3.11785936e-01 7.01910436e-01 -1.97634339e+00 -9.72782493e-01 7.40180314e-02 1.88755465e+00 5.53302467e-01 -2.19586879e-01 2.50700146e-01 8.15865278e-01 4.56441730e-01 3.29146177e-01 -7.97784090e-01 -1.88131586e-01 2.11351682e-02 8.57569799e-02 6.04685009e-01 4.53068405e-01 -1.18682647e+00 -4.73415758e-03 6.08645248e+00 8.21666360e-01 -7.10488260e-01 6.04529321e-01 3.44028711e-01 -2.30957925e-01 1.62250370e-01 -7.24316418e-01 -7.98885822e-01 1.15658379e+00 1.48953450e+00 -8.42973441e-02 8.15820158e-01 9.59025979e-01 2.71551162e-01 -2.17599884e-01 -1.43893516e+00 1.30744803e+00 -6.60720542e-02 -7.03513741e-01 -4.10027981e-01 3.58255744e-01 9.57166672e-01 1.95771813e-01 -3.70189622e-02 4.55872387e-01 4.02437985e-01 -5.53871274e-01 6.24125421e-01 6.98975801e-01 4.47796553e-01 -1.05066168e+00 9.25810695e-01 6.26814485e-01 -1.58606708e+00 -4.92601633e-01 -1.07133061e-01 1.09005913e-01 2.98699379e-01 1.06370628e+00 -2.89972335e-01 6.90675437e-01 1.09026432e+00 3.72520417e-01 -5.19867182e-01 2.82733470e-01 -2.77906179e-01 8.79425883e-01 -8.65454912e-01 1.17622927e-01 -1.40414640e-01 -3.43654901e-01 3.06120723e-01 1.05477238e+00 4.42840695e-01 -1.37645617e-01 2.46572807e-01 9.31110740e-01 5.59610082e-04 -3.20160210e-01 -3.38851362e-01 2.42521003e-01 4.16752189e-01 1.17738426e+00 -1.56978771e-01 -4.69997615e-01 -4.42870170e-01 1.15601790e+00 -1.27458006e-01 4.27033573e-01 -9.69878972e-01 -1.37483120e-01 9.49992359e-01 -1.34260163e-01 6.57171309e-01 2.17958540e-01 1.55864181e-02 -1.13423383e+00 6.24715947e-02 -6.25868678e-01 3.13236296e-01 -4.64011312e-01 -1.31950891e+00 3.22155923e-01 2.65825272e-01 -7.60666311e-01 -7.84373939e-01 -1.33264467e-01 -3.66434008e-01 7.36199200e-01 -1.20498502e+00 -1.18375993e+00 -2.36429960e-01 4.97346371e-01 5.73158562e-01 -5.97475888e-03 1.27136493e+00 5.79194307e-01 -9.34909999e-01 4.80017096e-01 8.92491221e-01 2.02923585e-02 -6.66440427e-02 -1.50699043e+00 3.59918267e-01 9.11731660e-01 2.17664301e-01 -1.81639075e-01 8.47030878e-01 -3.38777661e-01 -1.18279922e+00 -1.40568340e+00 5.73259652e-01 -6.35384858e-01 4.92273837e-01 -5.56714535e-01 -6.85577095e-01 7.81601250e-01 3.46738249e-01 -2.91925758e-01 8.53214562e-01 -1.22516647e-01 -5.97351752e-02 -5.20215154e-01 -1.47795260e+00 5.17669804e-02 3.60947341e-01 -8.32891762e-01 -5.58300734e-01 2.00287789e-01 4.57960576e-01 8.36710408e-02 -1.36089814e+00 3.61520857e-01 4.86107528e-01 -9.69280183e-01 8.59359443e-01 1.50087312e-01 -2.36320719e-01 -4.26356912e-01 -8.93357217e-01 -1.50757504e+00 -7.84167051e-01 -4.18083459e-01 -1.23700655e+00 1.80709422e+00 -1.36073247e-01 -7.66077757e-01 3.32652867e-01 6.61764622e-01 4.34634209e-01 -5.14188230e-01 -1.19579089e+00 -7.47817934e-01 -1.94820687e-01 -5.46653509e-01 1.22485900e+00 4.51329082e-01 -2.12054059e-01 3.59023780e-01 -3.63911510e-01 7.14440286e-01 1.15009296e+00 1.89793989e-01 3.35531443e-01 -1.45258224e+00 -4.78771508e-01 -1.89553589e-01 -3.31917882e-01 -7.11753845e-01 5.12822390e-01 -6.81445003e-01 -2.99295709e-02 -1.41199100e+00 1.43391505e-01 3.69657278e-01 -5.79579294e-01 3.36245626e-01 1.13473319e-01 3.03146422e-01 2.83405960e-01 -1.25141621e-01 -1.96840182e-01 7.56237268e-01 1.19199894e-01 -5.92653692e-01 -1.30854964e-01 2.40846395e-01 -3.75220984e-01 7.57751644e-01 1.03121161e+00 -3.99213016e-01 -4.37595099e-01 -2.41244569e-01 -2.11458564e-01 -2.34455302e-01 2.74045825e-01 -1.35816932e+00 -1.31226838e-01 3.09171528e-01 7.14747310e-01 -1.03472245e+00 5.64102590e-01 -1.47480464e+00 9.56166863e-01 5.86531699e-01 5.51966019e-02 -6.81081712e-02 1.96946412e-01 5.85489571e-01 1.27290875e-01 -8.38358179e-02 8.47741127e-01 6.58056140e-02 -3.69859308e-01 8.78922716e-02 -4.64425743e-01 -5.02207160e-01 9.61032152e-01 2.95631617e-01 1.38669059e-01 -3.95368189e-01 -6.19860053e-01 1.70437053e-01 1.41433507e-01 3.12330872e-01 -2.60363400e-01 -1.67857838e+00 -5.70714891e-01 2.75113463e-01 -1.31282210e-01 -1.05141979e-02 3.45494777e-01 7.47427225e-01 1.60939604e-01 5.87832034e-01 4.55888271e-01 -8.12831283e-01 -9.76034760e-01 9.03127551e-01 4.94148910e-01 -5.03532052e-01 -6.49966717e-01 5.07124327e-02 2.72852421e-01 -8.44662413e-02 1.78909063e-01 -7.24206507e-01 3.05961631e-02 4.94494289e-01 6.37432218e-01 1.07069933e+00 2.69046634e-01 -9.42183018e-01 -3.70649159e-01 5.26129425e-01 4.22388285e-01 3.25353593e-01 1.47175825e+00 -5.31823218e-01 -1.23551562e-01 1.01249313e+00 1.65376139e+00 -4.03287590e-01 -1.11408103e+00 -1.31713048e-01 -1.82658374e-01 1.64060354e-01 4.59823042e-01 -7.88614035e-01 -1.26932883e+00 7.09221065e-01 1.26951551e+00 8.51319611e-01 1.52130520e+00 -6.10628538e-03 1.10030890e+00 1.92658424e-01 5.58133245e-01 -1.30999076e+00 -7.57146776e-01 -2.18721136e-01 4.23953176e-01 -1.15396035e+00 -1.53587051e-02 1.60827860e-01 -3.37545387e-02 6.95586145e-01 -1.60267189e-01 9.68242139e-02 9.24551904e-01 3.56744409e-01 -2.08380982e-01 9.30307657e-02 -4.32986498e-01 -1.02223046e-01 1.76084548e-01 5.77279568e-01 -1.58673078e-01 7.31002986e-01 2.99285263e-01 6.99648440e-01 -3.51033241e-01 -7.89182410e-02 -3.45303230e-02 4.45480049e-01 2.11661169e-03 -6.45844877e-01 -5.20785034e-01 5.20862341e-01 -5.53890467e-01 3.16070378e-01 4.77803707e-01 4.83543009e-01 2.01838523e-01 1.39043128e+00 1.75312132e-01 -2.74442613e-01 5.91246128e-01 5.85167348e-01 2.34271646e-01 -5.32320663e-02 -2.40523055e-01 2.03402326e-01 -3.36814612e-01 -6.51439250e-01 -5.17977417e-01 -9.44026530e-01 -6.92282379e-01 -5.96792161e-01 -3.85617971e-01 1.98021419e-02 6.18525684e-01 9.70702589e-01 3.15336883e-01 9.92070079e-01 1.14953196e+00 -1.13216853e+00 -8.12796235e-01 -1.22045338e+00 -1.06760859e+00 5.03349543e-01 5.82546890e-01 -5.71454167e-01 -4.97874975e-01 -6.91967783e-04]
[16.06534194946289, 7.581466197967529]
9acae079-eae2-4996-8e91-a9184d12b967
multi-modal-transformer-path-prediction-for
2208.07256
null
https://arxiv.org/abs/2208.07256v1
https://arxiv.org/pdf/2208.07256v1.pdf
Multi-modal Transformer Path Prediction for Autonomous Vehicle
Reasoning about vehicle path prediction is an essential and challenging problem for the safe operation of autonomous driving systems. There exist many research works for path prediction. However, most of them do not use lane information and are not based on the Transformer architecture. By utilizing different types of data collected from sensors equipped on the self-driving vehicles, we propose a path prediction system named Multi-modal Transformer Path Prediction (MTPP) that aims to predict long-term future trajectory of target agents. To achieve more accurate path prediction, the Transformer architecture is adopted in our model. To better utilize the lane information, the lanes which are in opposite direction to target agent are not likely to be taken by the target agent and are consequently filtered out. In addition, consecutive lane chunks are combined to ensure the lane input to be long enough for path prediction. An extensive evaluation is conducted to show the efficacy of the proposed system using nuScene, a real-world trajectory forecasting dataset.
['Wei-Shinn Ku', 'Kazuya Sakai', 'Min-Te Sun', 'Jie Zhang', 'Chia Hong Tseng']
2022-08-15
null
null
null
null
['trajectory-forecasting']
['computer-vision']
[-2.71226913e-01 3.00087556e-02 -5.18771470e-01 -5.52464068e-01 2.26405989e-02 -2.79147536e-01 5.72621346e-01 2.32637823e-02 -2.32205242e-01 6.91476762e-01 2.63063312e-01 -7.94288278e-01 -3.16285431e-01 -1.24652767e+00 -4.83472198e-01 -6.58085883e-01 1.56624373e-02 3.07287097e-01 9.20113862e-01 -5.71831286e-01 3.68075132e-01 5.81732869e-01 -1.61104953e+00 5.36557138e-02 1.00348496e+00 7.90839136e-01 3.13650817e-01 2.06839770e-01 -3.10745478e-01 7.35241532e-01 1.64555371e-01 -1.87782004e-01 3.35881144e-01 1.58998650e-02 -3.89573097e-01 -1.78453833e-01 -3.14314097e-01 -5.74234903e-01 -6.99327290e-01 8.03053141e-01 -1.08019747e-01 3.10910553e-01 5.79913855e-01 -1.68877637e+00 2.03681827e-01 5.80271423e-01 -1.54529318e-01 4.19508427e-01 1.36418641e-02 3.63847733e-01 6.38093710e-01 -5.74669659e-01 5.94192266e-01 1.24273050e+00 5.37521541e-01 2.33172715e-01 -5.42287171e-01 -7.35748589e-01 4.48873341e-01 1.03073287e+00 -1.28457975e+00 -4.24868733e-01 9.89072204e-01 -3.93691152e-01 6.75000906e-01 6.60183504e-02 5.87246358e-01 5.70785284e-01 7.97618508e-01 6.90163791e-01 8.39751005e-01 2.05856606e-01 -4.89458963e-02 3.53991389e-01 3.61059546e-01 5.98877251e-01 1.41042622e-03 4.25291389e-01 -1.90432578e-01 1.49880022e-01 6.48471490e-02 2.20022216e-01 -1.30997911e-01 -3.27395767e-01 -1.16689372e+00 7.07350969e-01 4.51159984e-01 -8.76213238e-02 -5.97039938e-01 -2.98704267e-01 5.43075502e-01 1.26709059e-01 8.92906860e-02 -4.58412290e-01 -2.64042646e-01 -1.64646894e-01 -5.36547303e-01 5.12323737e-01 4.90275800e-01 1.29335248e+00 1.02123296e+00 8.80188250e-04 -9.61125419e-02 2.88883030e-01 5.97983420e-01 6.55292571e-01 1.95504099e-01 -7.13755786e-01 7.48329580e-01 9.52245474e-01 2.57874221e-01 -1.31828249e+00 -6.71656549e-01 -1.70528486e-01 -5.02660453e-01 2.31422499e-01 2.51176476e-01 -2.49978095e-01 -6.53074324e-01 1.30288398e+00 3.87444854e-01 4.67816919e-01 4.56956565e-01 9.99123216e-01 6.25142217e-01 1.19918907e+00 2.50044167e-01 -2.35380277e-01 1.01908445e+00 -1.02670634e+00 -6.51989698e-01 -1.30184650e-01 8.52462053e-01 -5.97543299e-01 5.71433902e-01 2.33942688e-01 -5.07862091e-01 -7.05004334e-01 -1.14020157e+00 1.64349884e-01 -5.27808249e-01 -9.90195852e-03 3.70255500e-01 2.90949285e-01 -4.55112875e-01 3.46559078e-01 -6.70338392e-01 -4.01372671e-01 1.80640861e-01 3.58501673e-02 -2.13202924e-01 -3.70618194e-01 -1.29413772e+00 1.05870068e+00 7.10429609e-01 3.10001820e-01 -1.01244915e+00 -4.79287565e-01 -6.76207066e-01 -1.53285742e-01 4.47757661e-01 -2.24409178e-02 9.47269738e-01 -2.80120969e-01 -1.19430232e+00 -5.53379161e-03 -5.71835458e-01 -6.51608646e-01 5.46147287e-01 6.35653362e-02 -9.83609080e-01 -2.96835989e-01 3.18209175e-03 4.22733635e-01 3.49106699e-01 -1.07522357e+00 -1.42539370e+00 -3.07261020e-01 -5.50907105e-02 4.64995712e-01 -1.34415925e-01 -3.75984162e-01 -3.59370500e-01 -8.18908494e-03 1.50805220e-01 -1.13879383e+00 -4.30476457e-01 -3.67936999e-01 -4.24106419e-01 -5.03680348e-01 1.46690941e+00 -6.48470879e-01 1.36951005e+00 -1.95739591e+00 -2.70615160e-01 4.62290406e-01 -4.25936542e-02 3.26037496e-01 -9.69599411e-02 6.20477796e-01 4.89052445e-01 -3.40940654e-01 9.48910117e-02 1.38640985e-01 -1.17213711e-01 4.11548436e-01 -6.18026555e-01 3.28454167e-01 -3.27228129e-01 4.75608319e-01 -7.08812177e-01 -4.59513247e-01 5.84987164e-01 7.62827843e-02 -9.71559584e-02 1.55627102e-01 -3.14118952e-01 4.94822383e-01 -8.16924155e-01 2.10419551e-01 9.67721879e-01 4.51420695e-01 -1.17200375e-01 -8.61551762e-02 -7.66658187e-01 2.09483445e-01 -9.38058972e-01 1.08172643e+00 -2.19381496e-01 6.04360700e-01 -2.00355023e-01 -7.51117110e-01 1.21100938e+00 5.75667061e-02 5.64669430e-01 -1.06870580e+00 6.16342872e-02 2.42060453e-01 1.19113714e-01 -6.91204250e-01 7.95485914e-01 2.04172045e-01 -3.24460194e-02 1.61225900e-01 -6.94048405e-01 4.78884280e-01 3.87245685e-01 -3.41593772e-02 8.74246418e-01 1.37281060e-01 -1.97204828e-01 -1.50511593e-01 1.01796532e+00 7.40130246e-01 1.08646929e+00 2.27761626e-01 -5.53674400e-01 -3.14340413e-01 2.65852809e-01 -6.22738540e-01 -1.10201645e+00 -8.41960609e-01 2.92549878e-02 7.15903163e-01 8.17284226e-01 -3.34239691e-01 -4.39768940e-01 -6.89002454e-01 5.37277237e-02 9.93886352e-01 -1.10228077e-01 -2.59635061e-01 -7.34398007e-01 -3.61725718e-01 3.35938990e-01 3.59198540e-01 6.54173315e-01 -9.02360201e-01 -5.46793699e-01 5.47490597e-01 -2.85605520e-01 -1.08851695e+00 -1.72538385e-01 -5.00642896e-01 -6.61041081e-01 -1.18479693e+00 -2.67821774e-02 -5.47581494e-01 5.22250533e-01 7.14861512e-01 2.33609378e-01 6.19474240e-02 4.99955058e-01 -1.59193426e-01 -2.88111895e-01 -5.55767715e-01 -5.46508789e-01 1.05611764e-01 1.70415536e-01 1.59009516e-01 7.88042307e-01 -2.93673724e-01 -6.44749761e-01 7.47522533e-01 -3.33864599e-01 4.40715611e-01 6.46304250e-01 2.92206496e-01 5.43508410e-01 7.08106220e-01 8.35108936e-01 -6.40048146e-01 3.91833186e-01 -1.00451255e+00 -7.65587747e-01 -4.38500643e-02 -9.01079953e-01 -1.61718413e-01 1.05532157e+00 -9.65717956e-02 -1.24832189e+00 -1.25090275e-02 -3.91402572e-01 -2.44967982e-01 -3.52286160e-01 4.93403018e-01 -3.68788481e-01 1.73859969e-01 6.11984804e-02 5.82855940e-01 1.57086998e-01 -2.74993807e-01 1.53366283e-01 6.99219763e-01 2.85224795e-01 1.66284367e-01 7.06366897e-01 4.73704755e-01 2.74883777e-01 -5.63239038e-01 -1.26424387e-01 -5.10576606e-01 -4.30443883e-01 -7.08489537e-01 6.24342263e-01 -8.17035317e-01 -9.90307748e-01 3.90860379e-01 -9.91812587e-01 -1.30030796e-01 5.36431491e-01 6.41151071e-01 -4.82344747e-01 2.15022907e-01 -2.92677641e-01 -8.99123609e-01 -1.18391544e-01 -1.26068223e+00 2.75529504e-01 4.93323177e-01 2.72311777e-01 -7.89460361e-01 -1.20618502e-02 9.62122977e-02 3.66226703e-01 -7.34211877e-02 9.80668128e-01 -6.60295427e-01 -9.33581710e-01 -6.68053627e-02 -3.00208777e-01 -2.10094646e-01 9.12268087e-03 6.06525242e-02 -4.01784390e-01 -3.08248959e-02 -3.72703642e-01 4.30453986e-01 5.91874599e-01 9.56198350e-02 7.58097291e-01 -4.49222535e-01 -9.98248160e-01 2.51753300e-01 1.39301074e+00 6.96018994e-01 7.75588751e-01 5.31067312e-01 7.37109423e-01 1.06105590e+00 1.54297376e+00 2.08371907e-01 1.09294558e+00 7.25324869e-01 6.91371799e-01 3.92213732e-01 1.77349225e-01 -5.86596608e-01 4.87702429e-01 6.70241177e-01 1.76226407e-01 -2.88627476e-01 -9.72679317e-01 8.43549371e-01 -2.19608283e+00 -1.12308669e+00 -8.86119008e-01 2.03566384e+00 -1.72183067e-01 5.59038281e-01 2.26107538e-01 2.61675060e-01 5.37194908e-01 6.92865327e-02 -6.67491198e-01 -4.28833157e-01 2.08669335e-01 -9.46223259e-01 8.18999290e-01 5.01728594e-01 -8.45745325e-01 9.52199697e-01 5.17674398e+00 8.23118210e-01 -1.18432367e+00 -9.44767371e-02 2.17037499e-01 3.92068326e-01 -4.66679633e-01 2.57097721e-01 -1.22599828e+00 8.49187970e-01 1.13702416e+00 -3.51580143e-01 1.82304308e-01 8.29857886e-01 9.83781755e-01 -2.32868537e-01 -6.44943893e-01 5.06294489e-01 -3.98612887e-01 -1.24548078e+00 -1.24928541e-01 5.90643026e-02 3.91308844e-01 1.97239384e-01 -1.40537620e-01 3.52355868e-01 1.49744794e-01 -6.50836647e-01 6.92364216e-01 8.60259295e-01 5.80014326e-02 -1.13954639e+00 8.44054461e-01 8.92984509e-01 -1.48611259e+00 -4.89793569e-01 -4.81011420e-01 -3.19674090e-02 7.17490256e-01 4.76216435e-01 -1.09942055e+00 8.54374290e-01 4.79762286e-01 9.82302964e-01 -3.54364753e-01 1.16891229e+00 2.19287537e-03 7.16084361e-01 -3.06751400e-01 -1.15042001e-01 4.45318341e-01 -4.78744954e-01 8.77849519e-01 8.23996127e-01 5.48994601e-01 2.10260525e-01 4.14007485e-01 4.55177307e-01 5.19339025e-01 2.39006177e-01 -1.03345871e+00 4.83811677e-01 7.33958602e-01 1.06878686e+00 -2.69830734e-01 -2.58015841e-01 -5.73936999e-01 3.24848324e-01 -5.39514720e-02 2.70220965e-01 -1.02116787e+00 -3.12372983e-01 8.24805677e-01 3.00351888e-01 1.20911673e-01 -3.56986970e-01 -3.27390075e-01 -3.90948862e-01 -9.15768445e-02 -1.86574429e-01 1.64696589e-01 -6.78953052e-01 -8.51147771e-01 6.09063983e-01 7.38250837e-02 -1.74087441e+00 -2.28481397e-01 -3.95289838e-01 -9.29364800e-01 8.04366350e-01 -1.98588407e+00 -1.26053286e+00 -4.18729633e-01 6.45273507e-01 4.95802015e-01 -2.86364824e-01 3.05113941e-01 4.41450596e-01 -6.66682184e-01 1.70634359e-01 2.07996666e-01 -2.96312153e-01 2.60164797e-01 -4.67057824e-01 1.77533656e-01 1.01540983e+00 -6.68354869e-01 8.01973566e-02 8.89691591e-01 -9.56474483e-01 -1.36912227e+00 -1.59872878e+00 8.56284440e-01 -6.95709065e-02 4.88714188e-01 2.05007955e-01 -9.35732484e-01 8.18992674e-01 -3.57430950e-02 -4.05137777e-01 1.69500500e-01 -3.04538161e-01 1.42716467e-01 -5.41375816e-01 -1.06566978e+00 7.76020646e-01 9.31449115e-01 1.82825923e-01 -3.79693002e-01 -4.48957011e-02 4.88735855e-01 -1.53477207e-01 -7.49559343e-01 5.79410076e-01 5.13714254e-01 -9.78313625e-01 5.87466538e-01 -3.29936713e-01 9.33100432e-02 -7.06153572e-01 -1.51662133e-03 -1.30745006e+00 -3.25470686e-01 -8.20605233e-02 7.29673877e-02 1.15427089e+00 3.83455187e-01 -9.48513985e-01 1.02742434e+00 4.76474345e-01 -6.09652400e-01 -7.90411592e-01 -8.77296805e-01 -6.02868021e-01 -1.28399462e-01 -6.08796656e-01 1.13004982e+00 3.19157958e-01 1.67575166e-01 1.51930124e-01 -4.44212615e-01 4.73513275e-01 7.12744594e-01 1.77619621e-01 1.03528893e+00 -1.13103569e+00 6.97145581e-01 -3.73203665e-01 -5.83066463e-01 -1.31054986e+00 3.16643953e-01 -7.58132398e-01 3.57647359e-01 -1.68535316e+00 -1.35998785e-01 -9.96054530e-01 -7.24864006e-02 2.28214920e-01 2.18626589e-01 -2.54477441e-01 1.53266208e-03 3.45811754e-01 -3.69361132e-01 7.12727904e-01 1.23760462e+00 -1.40612110e-01 -2.96519309e-01 4.58086073e-01 -1.21810146e-01 7.07895994e-01 1.10181451e+00 -2.33432084e-01 -9.01428223e-01 -2.71741360e-01 -2.34799504e-01 5.19370973e-01 2.03109458e-01 -1.17835629e+00 5.84494889e-01 -8.14044058e-01 -7.94594735e-02 -1.50977886e+00 3.74735147e-01 -1.29673791e+00 4.35574532e-01 5.80686212e-01 1.88258402e-02 3.13534826e-01 2.43732288e-01 8.16594601e-01 -9.12468657e-02 1.81535608e-03 4.73468840e-01 2.82564431e-01 -1.57642090e+00 6.71714842e-01 -9.02545989e-01 -6.77174330e-01 1.71285760e+00 -3.54783595e-01 -5.87724805e-01 -1.61917686e-01 -3.76766384e-01 1.03505528e+00 4.07754064e-01 7.24195182e-01 8.51354897e-01 -1.47978246e+00 -6.15432322e-01 1.85411006e-01 4.13548917e-01 -2.31989115e-01 6.19477689e-01 1.04716146e+00 -4.28562224e-01 9.34238732e-01 -4.73390013e-01 -4.46003169e-01 -1.11771452e+00 8.25371921e-01 2.26403937e-01 -1.36665881e-01 -9.79069710e-01 -2.63361633e-02 -9.47988108e-02 -4.96598005e-01 -1.05021581e-01 -4.22603413e-02 -9.14087772e-01 -2.04108402e-01 5.50040066e-01 6.72171652e-01 -8.70521888e-02 -1.18981051e+00 -4.19343144e-01 3.40781808e-01 9.01600942e-02 -8.52174088e-02 8.56476963e-01 -7.21018016e-01 1.19516745e-01 3.29190105e-01 8.02341759e-01 -1.83305349e-02 -1.36639452e+00 -1.35937780e-01 -2.80696526e-02 -4.56489205e-01 2.42087510e-04 -4.95154589e-01 -9.91679192e-01 6.88269734e-01 5.25019586e-01 7.48246312e-02 7.88064778e-01 -4.50053990e-01 1.46980882e+00 2.10503697e-01 8.39669764e-01 -1.06284332e+00 -6.80869162e-01 5.74414849e-01 4.05269235e-01 -1.17026567e+00 -2.77075022e-01 -7.04709053e-01 -7.29527950e-01 9.90440965e-01 1.06534266e+00 1.12405173e-01 7.57463515e-01 -1.36839435e-01 8.01913738e-02 1.28703155e-02 -8.43681753e-01 -2.45098844e-01 -5.96057177e-02 7.43295550e-01 -3.76093030e-01 2.77199060e-01 -5.26553392e-01 4.63706851e-01 -1.52833059e-01 1.60155147e-01 7.57987559e-01 6.71107471e-01 -8.65255415e-01 -9.75715756e-01 -3.21593910e-01 6.47479713e-01 1.65072083e-01 5.93937516e-01 4.54532117e-01 5.56485474e-01 2.61029929e-01 1.31610143e+00 1.70594901e-01 -8.03795159e-01 4.17318672e-01 -4.14914154e-02 -1.69358566e-01 -3.47913429e-02 1.89608634e-01 -6.22111976e-01 3.77482355e-01 -5.82735181e-01 -1.13475524e-01 -7.79683471e-01 -1.79716706e+00 -9.98560607e-01 3.55365798e-02 2.65778899e-01 6.09869719e-01 1.13641179e+00 4.60705012e-01 4.24065620e-01 9.31155801e-01 -6.04709268e-01 -5.06890267e-02 -6.13067389e-01 -3.31479132e-01 7.86210820e-02 2.79912800e-01 -8.72118115e-01 2.20389646e-02 -2.96876580e-01]
[5.774857521057129, 1.1552883386611938]
19004410-3e16-49ec-bbae-452ffcf5bfbd
learning-based-defect-recognitions-for
2302.06093
null
https://arxiv.org/abs/2302.06093v1
https://arxiv.org/pdf/2302.06093v1.pdf
Learning-Based Defect Recognitions for Autonomous UAV Inspections
Automatic crack detection and segmentation play a significant role in the whole system of unmanned aerial vehicle inspections. In this paper, we have implemented a deep learning framework for crack detection based on classical network architectures including Alexnet, VGG, and Resnet. Moreover, inspired by the feature pyramid network architecture, a hierarchical convolutional neural network (CNN) deep learning framework which is efficient in crack segmentation is also proposed, and its performance of it is compared with other state-of-the-art network architecture. We have summarized the existing crack detection and segmentation datasets and established the largest existing benchmark dataset on the internet for crack detection and segmentation, which is open-sourced for the research community. Our feature pyramid crack segmentation network is tested on the benchmark dataset and gives satisfactory segmentation results. A framework for automatic unmanned aerial vehicle inspections is also proposed and will be established for the crack inspection tasks of various concrete structures. All our self-established datasets and codes are open-sourced at: https://github.com/KangchengLiu/Crack-Detection-and-Segmentation-Dataset-for-UAV-Inspection
['Kangcheng Liu']
2023-02-13
null
null
null
null
['crack-segmentation']
['computer-vision']
[-2.01596677e-01 1.82277486e-02 2.46446967e-01 -1.29904121e-01 -3.53732854e-01 -1.55499633e-02 -3.66541356e-01 -1.49628625e-03 -2.85843551e-01 2.16709971e-01 -4.47032005e-01 -4.36643630e-01 1.13208428e-01 -1.29375172e+00 -5.25575936e-01 -6.94762588e-01 2.29445449e-03 -8.42151493e-02 6.50853097e-01 -5.29744864e-01 5.89906752e-01 4.42978829e-01 -1.54601896e+00 4.92096022e-02 7.74327159e-01 1.09444535e+00 2.59609103e-01 7.79353917e-01 6.81204855e-01 6.82219803e-01 -5.10372281e-01 1.49372131e-01 1.08740941e-01 -1.65752526e-02 -1.15795934e+00 2.37041563e-01 2.78649658e-01 -6.70635223e-01 -7.30705857e-01 1.12586296e+00 5.22899449e-01 -2.08217353e-01 5.01557469e-01 -8.32411051e-01 -7.26677358e-01 5.47476888e-01 -5.69685459e-01 2.23976865e-01 2.06173003e-01 1.43911839e-01 1.02819431e+00 -9.29969251e-01 3.44690353e-01 7.19209254e-01 1.09827054e+00 2.92062104e-01 -3.11229825e-01 -5.41325390e-01 -1.31562203e-01 4.19295132e-01 -1.30227041e+00 3.36464316e-01 1.04049838e+00 -6.49068236e-01 7.09129751e-01 -1.43468857e-01 8.20176482e-01 4.86151308e-01 5.23956835e-01 7.86096096e-01 3.42784703e-01 -4.16483790e-01 -7.18382327e-03 -7.93099940e-01 6.51468873e-01 1.50179529e+00 4.24743384e-01 1.40108019e-01 1.72241941e-01 3.63844126e-01 1.17811799e+00 2.09239095e-01 -2.32685417e-01 9.86775532e-02 -8.35999668e-01 1.09197021e+00 1.09414876e+00 5.08352041e-01 -2.57391989e-01 4.60877985e-01 5.12417257e-01 4.35942620e-01 2.95872748e-01 3.04960907e-01 -4.57998544e-01 5.50305605e-01 -7.85583913e-01 2.99380541e-01 3.17299336e-01 8.17165136e-01 1.09231734e+00 3.57362390e-01 3.31672162e-01 6.62800848e-01 5.38750291e-01 3.12776119e-01 2.60688841e-01 -1.07562017e+00 1.71775222e-01 9.23782289e-01 -1.58010215e-01 -1.24826300e+00 -8.14308941e-01 -1.97137535e-01 -9.51790333e-01 4.62993801e-01 4.37780917e-02 -6.03921652e-01 -1.12616491e+00 7.10834622e-01 2.48899981e-01 7.95325562e-02 -2.47885026e-02 8.72128427e-01 1.35411358e+00 4.01587844e-01 -2.72610903e-01 3.72734934e-01 1.44141245e+00 -1.19656765e+00 -5.27635336e-01 -8.97914544e-02 7.31723130e-01 -5.22913575e-01 1.10131609e+00 5.23195028e-01 -7.10258484e-01 -8.56062114e-01 -1.57436168e+00 -7.30633065e-02 -3.99924576e-01 4.77995545e-01 6.00161970e-01 4.00399745e-01 -1.01641071e+00 8.19182575e-01 -9.12791669e-01 -3.24204087e-01 6.19208038e-01 1.36233032e-01 -2.19398662e-01 -2.48736247e-01 -1.33893430e+00 7.20109284e-01 5.30865431e-01 7.51939714e-01 -1.44099450e+00 -2.09852979e-01 -1.02265906e+00 -2.24884301e-01 2.35602841e-01 -3.22970152e-01 1.14396489e+00 -1.06358677e-01 -1.08072567e+00 7.31596172e-01 7.29819715e-01 -3.83464992e-01 -1.53989226e-01 -3.89532089e-01 -1.92518145e-01 6.89079046e-01 1.66530102e-01 5.37991285e-01 8.49093556e-01 -1.30951655e+00 -5.10427058e-01 -1.34190157e-01 5.13620853e-01 -2.35145450e-01 -1.46070600e-01 -1.79601535e-01 1.24118454e-03 -5.02945125e-01 3.80016059e-01 -5.95224619e-01 -5.18481195e-01 -1.10450558e-01 -6.98825002e-01 -4.04578805e-01 1.37157571e+00 -8.87768567e-01 1.24758136e+00 -1.92126429e+00 -6.67465553e-02 5.82544729e-02 2.91432083e-01 3.65494400e-01 -1.56482868e-02 5.61287701e-01 -5.09230681e-02 2.37374362e-02 -9.71927404e-01 6.45644497e-03 -3.30523103e-01 2.45904326e-01 3.36046100e-01 7.49934614e-01 6.29324317e-02 5.82091033e-01 -6.73203826e-01 -6.47075891e-01 2.86858201e-01 4.89925370e-02 -6.53973281e-01 1.75558999e-01 -5.71919009e-02 4.12514597e-01 -4.03443694e-01 1.27478206e+00 9.31967378e-01 3.83772366e-02 -3.91883731e-01 -6.49572313e-01 -3.30435008e-01 -7.06511557e-01 -9.72157300e-01 1.97915959e+00 -2.13351503e-01 5.11566579e-01 3.03736001e-01 -1.28290713e+00 1.14400327e+00 5.00637114e-01 4.72936451e-01 -7.09658191e-02 7.53450513e-01 3.32386076e-01 -3.08998108e-01 -1.01468134e+00 6.78196549e-01 3.45066845e-01 -1.98107108e-01 1.72146991e-01 9.51947495e-02 -6.29318237e-01 6.07213438e-01 3.22872885e-02 1.06769931e+00 2.57733185e-02 -3.75160873e-01 -5.94236970e-01 6.58876002e-01 3.13376456e-01 3.12038392e-01 3.97972047e-01 -3.20976347e-01 7.72209406e-01 2.15699479e-01 -9.62685943e-01 -7.31531501e-01 -7.00101256e-01 -3.63378972e-01 5.76992929e-01 5.78320622e-01 -1.46334231e-01 -1.14871287e+00 -6.23003602e-01 -2.78279126e-01 -4.76324707e-02 -6.57733560e-01 -5.01012877e-02 -5.24822652e-01 -8.12990010e-01 9.50481832e-01 7.73567319e-01 1.21384549e+00 -1.45304179e+00 -9.48184431e-01 1.82495847e-01 -3.31859797e-01 -1.05845129e+00 1.03006121e-02 4.16840091e-02 -7.45213330e-01 -1.99120545e+00 -5.71486175e-01 -1.51026762e+00 7.47231901e-01 2.21101701e-01 8.69832456e-01 1.07802510e+00 -9.03486967e-01 4.57869619e-01 -8.19175959e-01 -3.18130940e-01 -1.61657661e-01 1.10685825e-01 -3.48719358e-01 -2.12522313e-01 -6.48346320e-02 -1.40554205e-01 -1.03648734e+00 1.60625145e-01 -1.02685523e+00 -4.75520819e-01 3.30546945e-01 7.29772925e-01 3.80890459e-01 4.91114199e-01 3.80546987e-01 -5.49743116e-01 7.06206739e-01 -3.33743006e-01 -5.36884189e-01 -1.05838761e-01 -5.76067626e-01 -6.84802115e-01 2.91030109e-01 4.20531958e-01 -7.27196813e-01 4.13335115e-02 -9.45645928e-01 -2.84244150e-01 -4.87461746e-01 1.00993323e+00 2.19287142e-01 -4.06293243e-01 5.98247528e-01 -2.27463976e-01 8.15466195e-02 -5.23056805e-01 1.56617135e-01 7.99956441e-01 7.52399385e-01 -4.31886107e-01 8.20834637e-01 4.50395048e-01 -4.05677520e-02 -1.23652625e+00 -8.90698850e-01 -4.51937914e-01 -1.13884962e+00 -6.30407929e-01 1.56447697e+00 -1.02381754e+00 -5.95182598e-01 1.41576469e+00 -1.35947573e+00 -4.34189200e-01 -1.59921825e-01 1.97141483e-01 -2.88593620e-01 8.93277884e-01 -1.31339681e+00 -3.69334936e-01 -7.09423065e-01 -1.48114407e+00 9.02779281e-01 4.93210047e-01 6.39459491e-01 -9.85100806e-01 -2.97569926e-03 5.10860384e-01 2.96025991e-01 7.94884205e-01 7.82837987e-01 7.29536787e-02 -4.78632569e-01 -5.48975229e-01 -2.90289611e-01 1.01776159e+00 -6.17039111e-03 6.05878592e-01 -6.84377074e-01 -5.16840816e-01 -2.31031664e-02 -5.73091507e-01 1.25398743e+00 6.00231230e-01 1.06208897e+00 3.18449616e-01 -2.38160878e-01 2.65628755e-01 1.73726964e+00 6.47912361e-03 7.24394321e-01 3.29561502e-01 9.01270270e-01 3.38225365e-01 7.34059095e-01 4.38751578e-01 4.63311762e-01 9.49215703e-03 1.48562539e+00 -6.16389215e-01 2.15467572e-01 1.99874222e-01 -1.91336170e-01 9.10403967e-01 -4.02596295e-01 3.18069533e-02 -1.06671977e+00 6.80083096e-01 -1.59180796e+00 -5.68504691e-01 -8.77363920e-01 1.18527865e+00 3.31808209e-01 4.89864871e-02 -8.26410577e-02 7.77131319e-01 8.77899170e-01 2.22333074e-01 -3.73831034e-01 -3.01126391e-01 1.60209149e-01 3.53342116e-01 3.27575296e-01 4.24037397e-01 -1.82990897e+00 1.05704999e+00 5.57856178e+00 5.42455196e-01 -8.89077961e-01 1.68407276e-01 2.59520710e-01 1.00345004e+00 4.50917691e-01 -1.09013639e-01 -4.15057361e-01 -6.70635998e-02 3.34357560e-01 6.42807126e-01 -1.14336669e-01 9.79719639e-01 -1.96236417e-01 -1.00923471e-01 -4.30943400e-01 5.54365218e-01 -1.39642015e-01 -1.36540270e+00 -3.35040063e-01 -2.76868433e-01 6.78316116e-01 2.68314481e-01 -2.77237147e-01 5.87904975e-02 1.90588161e-01 -6.65683508e-01 4.90344465e-01 2.34325677e-01 8.83821249e-01 -7.95650721e-01 1.24452925e+00 7.40338489e-02 -1.66107297e+00 -5.72534919e-01 -9.33729529e-01 -1.64061487e-01 2.21102282e-01 5.64274251e-01 -7.11045042e-02 9.87937987e-01 1.08495533e+00 1.27721775e+00 -6.55676901e-01 1.06937981e+00 -5.64736664e-01 8.02466273e-01 2.24954002e-02 4.90882546e-01 6.61184907e-01 -1.52900040e-01 1.08442388e-01 1.09942555e+00 2.66381383e-01 3.56178591e-03 5.25447011e-01 6.68171763e-01 4.88863885e-02 -7.16304928e-02 -6.40255332e-01 3.80181015e-01 2.97393262e-01 1.46255946e+00 -9.67199564e-01 -6.52249530e-02 -4.32918280e-01 4.44033116e-01 -2.76965857e-01 -5.53783625e-02 -1.04388785e+00 -1.06411183e+00 3.27878952e-01 -9.64281112e-02 2.75453925e-01 -3.59062374e-01 -2.00203508e-01 -9.06332195e-01 -4.86231536e-01 -5.89264810e-01 4.42188382e-01 -7.09793210e-01 -1.07361495e+00 8.30280125e-01 -5.79319138e-04 -1.26840889e+00 6.00739598e-01 -8.63342106e-01 -1.17418432e+00 1.43149734e-01 -1.56371176e+00 -1.47831178e+00 -8.12672496e-01 7.26222813e-01 9.53800440e-01 -6.29935488e-02 6.12974524e-01 4.20101225e-01 -9.66704011e-01 2.62055218e-01 -3.21602196e-01 9.70907867e-01 4.96635539e-03 -1.12614620e+00 5.30858338e-01 1.26904130e+00 -2.83349335e-01 1.55830845e-01 3.45823526e-01 -5.92585683e-01 -9.44423854e-01 -1.39872193e+00 1.16227895e-01 1.26624005e-02 6.89333022e-01 1.83036178e-01 -1.04374897e+00 5.74982345e-01 7.73092628e-01 4.69765253e-02 1.81976095e-01 -5.19960225e-01 8.80050659e-02 1.23856410e-01 -1.27305686e+00 1.53289828e-02 6.47420168e-01 -2.12955415e-01 -6.61948025e-01 5.33190846e-01 9.97654498e-01 -5.37084341e-01 -1.26552296e+00 7.74801016e-01 3.46509278e-01 -1.20470607e+00 9.19395626e-01 -3.07690632e-02 8.05999160e-01 -3.53954971e-01 -9.80246961e-02 -1.14997411e+00 -4.22212154e-01 -5.76645397e-02 2.66860247e-01 6.41712248e-01 1.69915333e-01 -4.87277240e-01 8.47532868e-01 -1.27513349e-01 -1.11909938e+00 -1.12457454e+00 -6.56408310e-01 -2.76569933e-01 2.85042852e-01 -3.20112497e-01 5.84771514e-01 5.61977386e-01 -2.01912820e-01 2.10540652e-01 -7.07218423e-02 6.24861658e-01 7.92434037e-01 1.35915652e-01 3.74165416e-01 -1.68589151e+00 4.43664879e-01 -1.05182044e-01 -4.36818391e-01 -1.09714973e+00 7.66533520e-03 -6.46999896e-01 3.56802732e-01 -1.94051242e+00 -4.47713643e-01 -2.10722461e-01 -1.08937956e-01 5.81963360e-01 8.80945995e-02 6.93186045e-01 -8.86623841e-03 1.10351138e-01 -4.36288148e-01 3.74874532e-01 1.76638138e+00 -3.81929934e-01 1.95196807e-01 1.14156194e-02 -2.44535342e-01 9.22405124e-01 1.05058599e+00 -2.60220647e-01 -7.82800615e-02 -6.16589189e-01 -1.10038310e-01 1.11872353e-01 5.31995714e-01 -1.66688144e+00 3.78940910e-01 4.37890738e-01 -4.10410017e-02 -1.28508413e+00 -2.59251315e-02 -8.31578434e-01 -4.92700279e-01 1.17095113e+00 1.46700382e-01 1.17663205e-01 -2.36810558e-02 5.06134212e-01 -5.30486882e-01 -7.01828122e-01 1.11765873e+00 -6.35109723e-01 -9.20745432e-01 5.94352007e-01 -8.49514544e-01 -7.29213357e-02 9.92707193e-01 -3.43756706e-01 -4.11331952e-01 2.24023953e-01 -8.01185846e-01 1.94155842e-01 2.85157323e-01 1.42763257e-01 1.16327143e+00 -9.22833145e-01 -7.54780173e-01 4.78816390e-01 -4.33568209e-02 5.79703808e-01 5.08766770e-01 7.29154468e-01 -1.60799491e+00 1.70082122e-01 -4.51009482e-01 -7.76023328e-01 -9.72571194e-01 3.52705777e-01 4.43534344e-01 -2.04274058e-01 -6.51868045e-01 9.72769201e-01 -3.88293445e-01 -5.87393403e-01 2.17130650e-02 -8.72756600e-01 -5.93568206e-01 -9.43200383e-03 8.17223452e-03 7.10093141e-01 2.79068053e-01 -4.89173323e-01 -8.13396648e-02 1.18637705e+00 1.94448143e-01 9.09896731e-01 1.53305602e+00 -2.25665402e-02 -5.71363986e-01 -1.01999268e-01 1.07828450e+00 -7.46826291e-01 -1.13402689e+00 1.68785423e-01 -1.08884826e-01 2.19693836e-02 1.34175330e-01 -1.01561740e-01 -1.94050765e+00 1.17599404e+00 8.06441069e-01 6.30524457e-01 1.13942432e+00 -2.27055967e-01 1.32915235e+00 7.48120368e-01 5.42810798e-01 -1.18872440e+00 6.29932284e-01 7.65963316e-01 9.11476672e-01 -1.31060052e+00 2.40275040e-02 -3.63047719e-01 -4.23087806e-01 1.48005390e+00 8.70470524e-01 -8.62576246e-01 1.29627466e+00 3.12669963e-01 3.44573051e-01 -1.17665255e+00 -1.55905914e-02 -3.83524925e-01 -4.39017653e-01 6.58097863e-01 2.53817141e-01 -7.00005069e-02 -1.98957473e-01 3.84455770e-01 2.92312503e-01 -6.35762140e-02 1.00126565e+00 1.19920063e+00 -1.03396845e+00 -7.50706911e-01 -3.65476876e-01 4.47035372e-01 -6.17091238e-01 2.32404061e-02 5.66204749e-02 1.03664124e+00 4.07848358e-01 1.34219015e+00 -3.11605841e-01 -7.31975913e-01 5.22843182e-01 -4.58290040e-01 1.15917072e-01 -7.47251868e-01 -7.21152723e-01 -3.57222110e-01 -1.55402049e-01 -4.83497173e-01 -5.38520753e-01 -1.44013569e-01 -1.48828804e+00 6.27688468e-02 -7.73527205e-01 2.60736674e-01 4.63944197e-01 6.59919202e-01 -7.67870173e-02 6.68094635e-01 8.22174847e-01 -1.23648846e+00 -1.96052685e-01 -1.10638535e+00 -9.97516513e-01 -9.75909550e-03 2.30185285e-01 -8.68010819e-01 -3.89624417e-01 2.83251166e-01]
[7.4806742668151855, 1.5075167417526245]
7fba8e13-3d55-4202-b624-b7172ff0bd51
dory-automatic-end-to-end-deployment-of-real
2008.07127
null
https://arxiv.org/abs/2008.07127v3
https://arxiv.org/pdf/2008.07127v3.pdf
DORY: Automatic End-to-End Deployment of Real-World DNNs on Low-Cost IoT MCUs
The deployment of Deep Neural Networks (DNNs) on end-nodes at the extreme edge of the Internet-of-Things is a critical enabler to support pervasive Deep Learning-enhanced applications. Low-Cost MCU-based end-nodes have limited on-chip memory and often replace caches with scratchpads, to reduce area overheads and increase energy efficiency -- requiring explicit DMA-based memory transfers between different levels of the memory hierarchy. Mapping modern DNNs on these systems requires aggressive topology-dependent tiling and double-buffering. In this work, we propose DORY (Deployment Oriented to memoRY) - an automatic tool to deploy DNNs on low cost MCUs with typically less than 1MB of on-chip SRAM memory. DORY abstracts tiling as a Constraint Programming (CP) problem: it maximizes L1 memory utilization under the topological constraints imposed by each DNN layer. Then, it generates ANSI C code to orchestrate off- and on-chip transfers and computation phases. Furthermore, to maximize speed, DORY augments the CP formulation with heuristics promoting performance-effective tile sizes. As a case study for DORY, we target GreenWaves Technologies GAP8, one of the most advanced parallel ultra-low power MCU-class devices on the market. On this device, DORY achieves up to 2.5x better MAC/cycle than the GreenWaves proprietary software solution and 18.1x better than the state-of-the-art result on an STM32-F746 MCU on single layers. Using our tool, GAP-8 can perform end-to-end inference of a 1.0-MobileNet-128 network consuming just 63 pJ/MAC on average @ 4.3 fps - 15.4x better than an STM32-F746. We release all our developments - the DORY framework, the optimized backend kernels, and the related heuristics - as open-source software.
['Francesco Conti', 'Davide Rossi', 'Nazareno Bruschi', 'Alessio Burrello', 'Angelo Garofalo', 'Giuseppe Tagliavini']
2020-08-17
null
null
null
null
['tiling-deployment']
['computer-code']
[-2.12549001e-01 1.16138935e-01 -5.46776533e-01 -1.11257486e-01 -1.85562804e-01 -1.99519128e-01 -4.49905880e-02 -3.03497523e-01 -6.48141742e-01 7.75517166e-01 -4.27325904e-01 -9.31059241e-01 -1.27938807e-01 -9.84427273e-01 -8.96547258e-01 -6.02701068e-01 -7.89538771e-02 4.71128911e-01 5.11181712e-01 1.58300325e-01 -2.10758865e-01 4.60080028e-01 -1.66863120e+00 3.97229269e-02 3.97911042e-01 1.53519154e+00 4.47658330e-01 5.46766639e-01 -1.03189707e-01 6.05951905e-01 -6.02991521e-01 -4.35299166e-02 2.70118624e-01 3.97172160e-02 -3.20406914e-01 -5.95172465e-01 6.86159730e-01 -5.34698009e-01 -4.14422810e-01 8.21637511e-01 8.30344439e-01 -4.75810379e-01 1.55672789e-01 -1.44627035e+00 4.61876631e-01 1.01994145e+00 -4.10701275e-01 2.90525168e-01 -7.06742942e-01 1.54159933e-01 5.86485982e-01 -2.90665090e-01 5.94871700e-01 8.14611375e-01 5.36034644e-01 7.96538532e-01 -1.09457386e+00 -1.16128075e+00 -9.16042775e-02 2.68446982e-01 -1.29756284e+00 -9.53653455e-01 4.17707443e-01 1.70881838e-01 1.77629662e+00 2.34417275e-01 9.32232678e-01 1.14086640e+00 7.62121975e-01 2.73549646e-01 6.22964442e-01 -1.47511452e-01 1.01673162e+00 -3.65082413e-01 2.12337017e-01 8.33941340e-01 7.84860134e-01 -9.23843682e-02 -7.58228838e-01 1.56435296e-01 8.57263148e-01 -3.35542411e-01 2.69963473e-01 7.64653087e-02 -9.52046633e-01 2.75685400e-01 4.38026309e-01 2.30658129e-01 -2.55970895e-01 1.26072538e+00 5.77378869e-01 6.66625351e-02 2.01153621e-01 6.49734586e-02 -7.94323742e-01 -5.07442594e-01 -1.32285881e+00 -7.57951215e-02 8.49452317e-01 1.40110767e+00 5.08117437e-01 3.02433431e-01 2.36308455e-01 4.29633141e-01 6.35480464e-01 8.14945221e-01 1.38561368e-01 -1.12827682e+00 4.64606434e-01 4.10485923e-01 -5.40246248e-01 -1.68893576e-01 -9.57610011e-01 -9.27191854e-01 -1.13033175e+00 3.59113485e-01 -1.33405784e-02 -5.88987410e-01 -9.87651944e-01 1.79666412e+00 1.97111621e-01 4.02548164e-01 -1.11567676e-01 6.49137080e-01 6.94001257e-01 9.38024759e-01 8.47294107e-02 -1.08798809e-01 1.44824219e+00 -8.98487031e-01 -6.40469074e-01 -4.59330499e-01 8.64251912e-01 -4.13547069e-01 5.90395808e-01 4.04541939e-01 -1.34388530e+00 -4.39099044e-01 -1.71378469e+00 -1.44902557e-01 -2.77873695e-01 2.16247633e-01 3.67228866e-01 1.14108419e+00 -1.48576951e+00 4.70602781e-01 -1.45068538e+00 -2.74149090e-01 7.51560092e-01 9.65070128e-01 3.57585073e-01 1.84742466e-01 -5.99070847e-01 5.25493324e-01 1.86202452e-01 -2.12806717e-01 -9.30037439e-01 -1.24544132e+00 -2.01952875e-01 2.98525870e-01 3.32332432e-01 -9.84210908e-01 1.26420844e+00 -5.00852525e-01 -1.73893857e+00 3.88626277e-01 1.84821740e-01 -7.91932046e-01 1.33648496e-02 1.23016298e-01 -4.52055126e-01 -4.84133400e-02 -2.53713787e-01 1.14199281e+00 4.27144319e-01 -5.03056109e-01 -6.31900370e-01 -1.81947142e-01 -9.16051343e-02 -3.65536630e-01 -4.47688729e-01 -3.45336288e-01 -3.60700816e-01 -2.53254771e-01 -1.06082819e-01 -9.87473369e-01 -2.58705556e-01 3.76363546e-01 -4.16839987e-01 6.89900741e-02 1.23755193e+00 1.74315482e-01 1.19100058e+00 -2.07167840e+00 -1.98007897e-01 2.97020048e-01 3.64709198e-01 3.46434623e-01 3.04879993e-02 -3.57717365e-01 4.57092047e-01 9.61824059e-02 2.26933196e-01 -2.38439590e-01 2.20647231e-01 3.86639327e-01 -3.46183255e-02 2.90442288e-01 -3.25069785e-01 7.30741084e-01 -2.49608338e-01 -2.68910497e-01 3.44521999e-01 5.50382018e-01 -7.39015758e-01 -3.35681856e-01 -4.74297911e-01 -3.15479755e-01 -2.80062586e-01 7.62599468e-01 8.41040730e-01 -1.49045423e-01 5.95461965e-01 -6.43494666e-01 -5.01936555e-01 4.47240412e-01 -1.07052505e+00 2.08912230e+00 -7.48548090e-01 1.03967047e+00 5.70982814e-01 -5.43729484e-01 6.66435182e-01 -8.51471126e-02 4.47319537e-01 -1.20797110e+00 6.63488030e-01 6.18430078e-01 1.69944420e-01 -1.48221344e-01 2.62787044e-01 2.50680625e-01 -6.06840253e-02 3.16697747e-01 3.00824881e-01 3.09439421e-01 1.07314050e-01 -1.34624660e-01 1.78847480e+00 -1.71842948e-01 -2.39446670e-01 -1.13882816e+00 -1.09186396e-01 -8.63257889e-03 6.53191805e-01 5.02273262e-01 -2.09742144e-01 -2.79043078e-01 6.40979886e-01 -2.53353566e-01 -1.13902700e+00 -1.27960300e+00 -4.14349318e-01 8.33464265e-01 -2.86181327e-02 -5.78188479e-01 -1.31447577e+00 -4.39454336e-03 -3.37285995e-01 8.05362165e-01 7.72086084e-02 9.41609293e-02 -4.50831354e-01 -7.42164195e-01 8.79848361e-01 6.58114314e-01 9.33568895e-01 -4.47542399e-01 -1.74988592e+00 6.34197533e-01 4.57055062e-01 -1.32163870e+00 -5.35597876e-02 9.92475331e-01 -1.23207533e+00 -4.97648180e-01 4.76618521e-02 -6.78209603e-01 4.38472927e-01 -9.12494436e-02 1.19126606e+00 -6.28033578e-02 -5.89295805e-01 -2.26497743e-02 7.02434406e-02 -4.12639648e-01 1.44564420e-01 6.11531675e-01 2.78050840e-01 -6.51783705e-01 3.07344109e-01 -9.58475173e-01 -7.62514174e-01 2.43498638e-01 -4.52325493e-01 3.60129803e-01 6.13006294e-01 1.57935217e-01 7.85474181e-01 2.25892931e-01 3.40671629e-01 -3.13449770e-01 -2.14810818e-01 -3.56567532e-01 -1.10770619e+00 -1.41720444e-01 -5.17047644e-01 2.93116242e-01 7.70138979e-01 -3.86760235e-01 -5.56215823e-01 2.23948449e-01 -3.53066474e-01 -3.91928196e-01 1.83936223e-01 -8.41626674e-02 -6.99588656e-01 -3.74457657e-01 4.46653217e-01 -3.83401334e-01 -3.61756295e-01 -5.38852811e-02 5.29206768e-02 4.66720462e-01 4.29576248e-01 -6.51300311e-01 3.26316833e-01 3.91449600e-01 5.72514892e-01 -1.14539170e+00 -2.01004073e-01 4.49937433e-01 -1.41772479e-01 -5.15242398e-01 8.91305566e-01 -1.16816151e+00 -9.79691088e-01 2.90613949e-01 -1.03866184e+00 -1.31021655e+00 -5.29286377e-02 2.76322484e-01 -2.83288479e-01 -6.48988485e-01 -6.69597089e-01 -6.17558718e-01 -7.46612072e-01 -1.41530561e+00 7.82245636e-01 5.50459981e-01 -9.67414305e-02 -6.16885066e-01 -4.92764294e-01 -1.27799308e-03 8.41333270e-01 1.34075871e-02 9.94064867e-01 -1.81235313e-01 -1.08553553e+00 5.91086328e-01 -3.44629407e-01 4.73219678e-02 -6.65091217e-01 1.58057556e-01 -9.88722205e-01 -3.06234151e-01 -1.63534254e-01 2.30205096e-02 7.09860086e-01 9.24378037e-01 1.34440887e+00 3.29255797e-02 -6.04485989e-01 1.06753969e+00 1.92911625e+00 3.18875492e-01 6.34838343e-01 1.44761190e-01 5.51857948e-01 -1.17005944e-01 5.95871918e-02 5.36543429e-01 1.60592660e-01 6.50786042e-01 9.78288949e-01 2.56296784e-01 -2.32496828e-01 2.06210628e-01 6.56855464e-01 9.93771195e-01 4.69884515e-01 -6.37994766e-01 -7.93660581e-01 1.96548954e-01 -1.53727865e+00 -4.11333591e-01 -3.40974361e-01 1.90067887e+00 3.57479304e-01 7.79383004e-01 -4.11229730e-02 8.93142670e-02 2.17679024e-01 1.89185902e-01 -9.03130293e-01 -6.00651860e-01 2.29739279e-01 6.96947873e-01 1.24377751e+00 2.76884496e-01 -5.09377420e-01 6.66052043e-01 4.88270378e+00 1.29618216e+00 -1.44316936e+00 6.26465738e-01 7.36389101e-01 -1.06612539e+00 -2.26908922e-02 -4.04440463e-01 -1.34857190e+00 6.99300170e-01 1.94062948e+00 2.70176589e-01 4.10741150e-01 8.83388877e-01 1.95058182e-01 -3.35077792e-01 -1.43588579e+00 1.08787858e+00 -3.71086240e-01 -1.86026967e+00 -5.68168700e-01 5.69060802e-01 4.74801451e-01 4.99758154e-01 -4.75951517e-03 1.89095303e-01 -1.14490408e-02 -8.11005116e-01 1.16151142e+00 6.55084848e-02 1.32665527e+00 -1.25881028e+00 6.32342994e-01 2.32212469e-01 -1.37130058e+00 -1.03052072e-01 -6.65566325e-01 -1.95597574e-01 9.57882926e-02 1.20487046e+00 -2.42228881e-01 -2.00049147e-01 8.73291910e-01 1.04434900e-01 -1.56526893e-01 6.15875185e-01 2.43710548e-01 7.38407314e-01 -9.75418925e-01 -6.16897941e-01 1.77627742e-01 1.21231943e-01 1.65558472e-01 1.19280827e+00 6.44323170e-01 1.70353532e-01 -4.51304257e-01 9.67661321e-01 -4.93149757e-01 -4.86105174e-01 -2.79084206e-01 4.43419456e-01 1.11805379e+00 1.46039343e+00 -1.06833112e+00 -2.12362066e-01 -2.53526807e-01 5.57023168e-01 -1.88900270e-02 -1.40052572e-01 -1.30354714e+00 -4.24318701e-01 1.29496789e+00 3.21151316e-01 2.07669526e-01 -4.99049246e-01 -9.22177434e-01 -4.74524558e-01 3.60311233e-02 -3.81064534e-01 -4.00082529e-01 -5.64009726e-01 -4.52196717e-01 4.70832467e-01 -1.64777800e-01 -7.63763428e-01 4.15140510e-01 -9.49417949e-01 -5.32377243e-01 2.33949080e-01 -1.14782321e+00 -5.77791214e-01 -4.05848593e-01 2.04217032e-01 5.34582376e-01 -1.33996353e-01 5.86352170e-01 9.38235998e-01 -1.14482188e+00 7.83598185e-01 1.07192479e-01 -4.34765458e-01 4.27977219e-02 -6.00681245e-01 6.70542657e-01 8.71057272e-01 -3.78230035e-01 3.09599847e-01 4.72119510e-01 -5.97133517e-01 -2.03863335e+00 -1.28167570e+00 3.34573567e-01 1.95809156e-01 6.03143215e-01 -8.11821640e-01 -2.24647060e-01 3.74920994e-01 4.41097349e-01 2.04756171e-01 6.56910777e-01 -4.19573516e-01 1.84452057e-01 -7.78809190e-01 -1.22682524e+00 8.20740104e-01 1.50279093e+00 -7.41795599e-02 5.00609636e-01 1.40305907e-01 7.49569535e-01 -6.07468367e-01 -8.65817904e-01 2.09427565e-01 6.54952228e-01 -9.56122518e-01 7.28839576e-01 3.25623900e-01 1.56001791e-01 -2.24517703e-01 -6.08853817e-01 -7.92545319e-01 -6.88221306e-02 -6.81728184e-01 -5.34824789e-01 1.07938635e+00 4.41205055e-01 -4.69485790e-01 1.30183184e+00 2.66597718e-01 -5.73086023e-01 -9.70678806e-01 -1.77018237e+00 -8.24253321e-01 -1.99984416e-01 -9.44832802e-01 5.06831586e-01 2.64766753e-01 -1.50938541e-01 5.45781016e-01 2.62985289e-01 2.65701413e-01 1.00307000e+00 -8.33843112e-01 3.97086591e-01 -1.21311224e+00 -1.00763083e-01 -6.53223693e-01 -3.41382116e-01 -1.16782188e+00 1.61368787e-01 -7.21066058e-01 -1.34438142e-01 -1.30147231e+00 -2.97659039e-01 -6.75036550e-01 1.65688097e-01 5.72687209e-01 9.30197835e-01 1.86081946e-01 1.97399989e-01 -5.11016667e-01 -7.02433527e-01 6.32977113e-02 6.18095517e-01 -6.00166358e-02 -5.70097417e-02 -6.06056929e-01 -2.27995530e-01 6.22857153e-01 9.82696712e-01 -5.17998695e-01 -7.89974511e-01 -9.17303205e-01 3.96492273e-01 6.14845417e-02 3.67459893e-01 -2.04349589e+00 6.49096251e-01 1.37275621e-01 2.39890710e-01 -8.40563357e-01 3.24559569e-01 -1.28936017e+00 5.97484469e-01 9.30649042e-01 2.42775962e-01 1.51362479e-01 6.44532144e-01 5.50933480e-02 6.14191532e-01 -2.92731952e-02 9.41487193e-01 3.00401568e-01 -7.00756431e-01 2.85848141e-01 -9.31338966e-01 -2.53286026e-02 1.20050895e+00 -2.09271342e-01 -9.66350675e-01 4.02984530e-01 -2.61401355e-01 1.19637683e-01 2.72473127e-01 -1.53357655e-01 4.36437666e-01 -1.12457669e+00 -2.36615285e-01 4.19287682e-01 -5.98938167e-01 1.69887453e-01 6.35033786e-01 7.87048638e-01 -1.21412516e+00 5.32322586e-01 -6.00019455e-01 -7.48753369e-01 -1.08723342e+00 5.34975193e-02 7.34686911e-01 -1.47443205e-01 -4.89280790e-01 1.03959417e+00 -4.55087781e-01 1.96328059e-01 3.90539050e-01 -8.79729152e-01 6.56870246e-01 -5.73449172e-02 3.12566161e-01 9.07963872e-01 4.08136189e-01 1.95801273e-01 -6.56860948e-01 5.14731824e-01 2.85590202e-01 -2.71399647e-01 1.30224860e+00 -1.72288083e-02 -2.65858650e-01 3.49002816e-02 1.17985439e+00 -4.54141974e-01 -1.33473217e+00 2.61391461e-01 -1.57899335e-01 4.15286988e-01 9.36983347e-01 -6.79201186e-01 -1.58842456e+00 8.07944059e-01 1.08752549e+00 -1.97889835e-01 1.45331633e+00 -2.95395136e-01 1.19472146e+00 5.66314459e-01 8.37814689e-01 -1.42818284e+00 -1.13970347e-01 5.52038312e-01 -1.19739093e-01 -3.52288246e-01 8.57344568e-02 -2.29534417e-01 5.06434083e-01 1.29360998e+00 1.08887374e+00 1.13367952e-01 1.00677931e+00 1.55184305e+00 -2.31865540e-01 -1.35549903e-01 -1.18977869e+00 2.82625407e-01 -5.06598830e-01 4.36943591e-01 1.65481661e-02 4.60198909e-01 -3.09432372e-02 5.63354313e-01 -3.54395717e-01 1.30033612e-01 6.04258418e-01 1.00253129e+00 -7.12697983e-01 -9.78530347e-01 -1.03539892e-01 8.00117970e-01 -1.70362636e-01 -1.19744614e-01 2.64304936e-01 6.33603454e-01 6.12293184e-01 9.10754621e-01 7.38192022e-01 -8.50453675e-01 7.15620369e-02 -1.88791424e-01 5.81861913e-01 -3.37766171e-01 -6.44912958e-01 1.83645278e-01 4.17605221e-01 -9.67469335e-01 5.00768684e-02 -3.53890568e-01 -1.53970325e+00 -1.03185427e+00 7.63830990e-02 -5.90050638e-01 1.41618276e+00 6.59902453e-01 7.43450820e-01 1.31548548e+00 1.36879608e-01 -1.05857396e+00 7.85594881e-02 -3.99264544e-01 -6.65852904e-01 -1.16721904e+00 1.49588823e-01 -4.51179087e-01 -1.13871612e-01 -4.94455546e-01]
[8.338179588317871, 2.750638484954834]
5b758b0e-9de1-44cf-8560-6bae260d4296
pedestrian-crossing-action-recognition-and
2306.01075
null
https://arxiv.org/abs/2306.01075v1
https://arxiv.org/pdf/2306.01075v1.pdf
Pedestrian Crossing Action Recognition and Trajectory Prediction with 3D Human Keypoints
Accurate understanding and prediction of human behaviors are critical prerequisites for autonomous vehicles, especially in highly dynamic and interactive scenarios such as intersections in dense urban areas. In this work, we aim at identifying crossing pedestrians and predicting their future trajectories. To achieve these goals, we not only need the context information of road geometry and other traffic participants but also need fine-grained information of the human pose, motion and activity, which can be inferred from human keypoints. In this paper, we propose a novel multi-task learning framework for pedestrian crossing action recognition and trajectory prediction, which utilizes 3D human keypoints extracted from raw sensor data to capture rich information on human pose and activity. Moreover, we propose to apply two auxiliary tasks and contrastive learning to enable auxiliary supervisions to improve the learned keypoints representation, which further enhances the performance of major tasks. We validate our approach on a large-scale in-house dataset, as well as a public benchmark dataset, and show that our approach achieves state-of-the-art performance on a wide range of evaluation metrics. The effectiveness of each model component is validated in a detailed ablation study.
['CongCong Li', 'Eugene Ie', 'Weilong Yang', 'Khaled S. Refaat', 'Jeonhyung Kang', 'Junhua Mao', 'Tian Lan', 'Zhishuai Zhang', 'Jonathan Stroud', 'Feiyu Chen', 'Xinwei Shi', 'Jiachen Li']
2023-06-01
null
null
null
null
['trajectory-prediction', 'autonomous-vehicles', 'action-recognition-in-videos']
['computer-vision', 'computer-vision', 'computer-vision']
[-6.90090433e-02 -4.77481395e-01 -2.50423223e-01 -5.74645579e-01 -8.57043505e-01 -4.40042228e-01 6.83929384e-01 2.08234012e-01 -6.88286066e-01 5.72140932e-01 3.75058383e-01 -1.32498875e-01 9.81291533e-02 -8.36276472e-01 -7.85736620e-01 -4.66251910e-01 -1.42542452e-01 3.25151592e-01 8.60093117e-01 -3.14248741e-01 -6.79260641e-02 6.57264590e-01 -1.78588128e+00 1.98143125e-01 8.01512480e-01 9.10742939e-01 -4.84184176e-02 6.96053267e-01 4.45929646e-01 6.59400702e-01 -1.19100079e-01 -5.75716615e-01 1.63009241e-01 2.22100332e-01 -4.17378038e-01 -6.66986108e-02 6.01943314e-01 -4.80994612e-01 -8.43356967e-01 6.07540667e-01 4.27823514e-01 3.85540187e-01 5.04417360e-01 -1.58826649e+00 2.19178006e-01 -1.09445065e-01 -3.74392748e-01 3.02376539e-01 3.96240503e-01 7.07881510e-01 7.22972870e-01 -5.91205537e-01 1.83430776e-01 1.12164760e+00 7.17595816e-01 2.70646304e-01 -8.06616962e-01 -7.26431131e-01 5.92613935e-01 9.08123016e-01 -1.47553658e+00 -6.40490830e-01 7.35485137e-01 -4.78758365e-01 8.57226074e-01 8.26450139e-02 7.98053622e-01 1.29149568e+00 -8.81424248e-02 1.19374371e+00 6.15190625e-01 9.95857567e-02 -3.83747816e-02 -1.58582777e-01 9.32740346e-02 7.54960239e-01 2.48314366e-01 3.74077111e-01 -3.14554065e-01 1.89035058e-01 3.83817792e-01 3.58002692e-01 -8.11180286e-03 -4.16951001e-01 -1.29662526e+00 5.76979220e-01 5.82101285e-01 -2.47549161e-01 -4.77102757e-01 1.17613435e-01 4.06178057e-01 -2.08088294e-01 2.11412504e-01 -2.49860898e-01 -4.33917165e-01 -5.71953654e-01 -5.00922740e-01 5.26967764e-01 4.77136791e-01 1.15996480e+00 8.54460537e-01 -3.79543334e-01 -2.42047161e-01 4.14672315e-01 3.27841759e-01 8.56866598e-01 -1.08692646e-01 -8.33872736e-01 9.94013309e-01 7.28753030e-01 3.98371994e-01 -1.03386641e+00 -6.51283801e-01 -3.61039042e-02 -7.16082156e-01 -9.03458223e-02 6.39948726e-01 -1.90366015e-01 -8.53187382e-01 1.54275143e+00 6.05470777e-01 6.25924528e-01 -2.83037990e-01 1.00025535e+00 6.74763203e-01 6.11487448e-01 4.61752266e-01 2.78661221e-01 1.30354643e+00 -1.16981256e+00 -3.53940815e-01 -4.51915771e-01 7.51510382e-01 -3.05628955e-01 8.62230480e-01 8.88509583e-03 -5.71133196e-01 -7.84320295e-01 -8.15476954e-01 -7.73521215e-02 -4.00392860e-01 3.43597740e-01 5.05133927e-01 5.31214178e-01 -4.30885732e-01 2.14799792e-01 -1.24075246e+00 -4.10448551e-01 6.55990124e-01 1.91767022e-01 -4.71893907e-01 -2.89676428e-01 -1.14438355e+00 9.83877182e-01 2.05565974e-01 2.24205911e-01 -9.16943192e-01 -6.91956639e-01 -1.14221346e+00 -1.04375288e-01 5.80499530e-01 -4.18091923e-01 1.05874074e+00 -1.81508660e-02 -1.20710433e+00 4.88742262e-01 -4.47988063e-01 -5.97591043e-01 9.04785514e-01 -6.96689367e-01 -5.84491670e-01 8.24128836e-02 2.20049307e-01 6.56416416e-01 4.17794257e-01 -1.07397556e+00 -1.25890827e+00 -4.61452037e-01 -1.05472049e-03 -8.36053491e-02 -1.66037172e-01 -2.75887460e-01 -8.36134434e-01 -3.10130805e-01 -3.87889326e-01 -1.07380545e+00 -5.19703448e-01 -8.90820101e-03 -4.02380615e-01 -3.90985787e-01 9.38806355e-01 -6.90767884e-01 1.09340274e+00 -1.90670395e+00 -1.97355434e-01 2.70482212e-01 2.27770120e-01 6.46772921e-01 -1.04762062e-01 3.34051490e-01 3.58247310e-01 -4.02700424e-01 5.50287738e-02 -3.96573752e-01 1.33417040e-01 1.75874814e-01 -1.23834357e-01 5.57332039e-01 2.63363093e-01 1.16373742e+00 -9.00384307e-01 -5.27752578e-01 7.42131591e-01 6.32320642e-01 -4.37164038e-01 2.34590366e-01 -2.12388877e-02 7.33448148e-01 -8.10848415e-01 5.61850488e-01 5.66017985e-01 -4.66409996e-02 -4.27143872e-01 -3.40621561e-01 -3.43054891e-01 1.80210292e-01 -1.25799167e+00 1.57872081e+00 -4.36290801e-01 5.75432241e-01 -4.23744291e-01 -9.54921961e-01 6.55410707e-01 8.57462138e-02 5.43847024e-01 -9.23871040e-01 -7.11695105e-02 -1.68617547e-01 -3.00063878e-01 -6.54207408e-01 3.54846865e-01 5.72938263e-01 -2.29093745e-01 8.21683630e-02 -2.69308329e-01 5.19022048e-01 3.17409962e-01 4.07885052e-02 1.20576608e+00 1.24287002e-01 1.98881671e-01 2.17653319e-01 8.36108744e-01 7.36340806e-02 6.92926824e-01 6.05555058e-01 -5.88172138e-01 2.37829432e-01 2.77379513e-01 -7.98648596e-01 -1.00127411e+00 -1.10658717e+00 1.43187404e-01 9.37545180e-01 4.87730920e-01 -5.71158528e-01 -5.48585176e-01 -9.16838169e-01 3.35472613e-03 5.73708415e-01 -4.77837712e-01 -1.86929360e-01 -9.86001432e-01 -6.07983768e-01 5.21634638e-01 8.96027148e-01 8.41947138e-01 -5.63073218e-01 -9.10291374e-01 1.82508260e-01 -4.55888152e-01 -1.76909196e+00 -4.76881981e-01 -5.65481067e-01 -1.94005162e-01 -1.41425180e+00 -4.98331696e-01 -4.45905119e-01 3.64937395e-01 5.36907613e-01 7.50575662e-01 -1.94760598e-02 -3.45993876e-01 4.87964898e-01 -3.69899005e-01 -3.36740375e-01 9.25164968e-02 2.91281015e-01 -3.14852409e-02 3.86877269e-01 6.28170311e-01 -4.01824832e-01 -8.62899780e-01 6.26872420e-01 -2.17758626e-01 1.40020892e-01 6.84512317e-01 3.48782420e-01 4.90832180e-01 1.09570034e-01 3.36242378e-01 -2.62670547e-01 -6.83458596e-02 -3.71050805e-01 -6.81554615e-01 1.69187367e-01 -5.47010154e-02 -8.83598998e-02 5.57958841e-01 -2.59999305e-01 -1.08644271e+00 4.82530951e-01 -5.01738191e-01 -2.05767974e-01 -6.93436146e-01 1.06424399e-01 -7.04173684e-01 4.14667949e-02 3.88613880e-01 1.59445629e-01 -2.53238291e-01 -5.15366316e-01 4.43324089e-01 4.95583594e-01 6.69791996e-01 -5.19126117e-01 9.28516746e-01 7.76250541e-01 1.94600672e-01 -9.80371237e-01 -8.78177643e-01 -7.50262618e-01 -1.06923962e+00 -4.80820388e-01 9.21550810e-01 -1.20816791e+00 -1.14563560e+00 6.23480082e-01 -1.10916650e+00 -3.80726010e-01 1.11856699e-01 6.67653143e-01 -6.13403082e-01 2.32750505e-01 -3.53981584e-01 -7.61508286e-01 7.59715587e-02 -1.22336543e+00 1.32772541e+00 2.10148662e-01 1.49536431e-01 -8.35628390e-01 6.71291025e-03 4.77125287e-01 1.42546624e-01 4.15715337e-01 4.09133881e-01 -5.69169998e-01 -9.01888251e-01 -4.80657697e-01 -2.82303959e-01 1.92543026e-02 -6.55109761e-04 -2.33984351e-01 -5.87447643e-01 -1.43349349e-01 -7.64639854e-01 -1.37396216e-01 1.08511829e+00 2.12280735e-01 9.75279570e-01 -1.65774256e-01 -8.66864204e-01 5.52637517e-01 9.13753152e-01 -7.09169060e-02 5.97511590e-01 2.73827165e-01 1.10347247e+00 7.82952607e-01 9.84848559e-01 4.93780762e-01 1.20094979e+00 1.03381729e+00 2.87194192e-01 -4.35594432e-02 -1.26497671e-02 -6.00675404e-01 2.20941111e-01 2.76887834e-01 -2.43946478e-01 -6.52202144e-02 -1.18996549e+00 6.69965386e-01 -2.30167055e+00 -1.24301791e+00 -3.50632340e-01 2.13496685e+00 2.04907715e-01 2.77878165e-01 7.04619586e-01 8.16684887e-02 6.47234559e-01 1.30020246e-01 -6.54389083e-01 4.71180230e-01 3.55784416e-01 -2.17557326e-01 6.86794400e-01 5.31965494e-01 -1.70187449e+00 1.19887865e+00 5.52016640e+00 6.05910659e-01 -8.17242503e-01 2.36857235e-02 3.75027597e-01 -1.77701384e-01 1.76853880e-01 -2.63187081e-01 -1.17253387e+00 5.78824282e-01 9.61000323e-01 8.97498280e-02 2.70285457e-02 7.09031820e-01 5.48485875e-01 -1.77024398e-02 -1.19458854e+00 9.93879974e-01 -1.74172044e-01 -1.13130963e+00 -1.55494556e-01 1.35005757e-01 4.40950662e-01 1.86434850e-01 -1.54746845e-01 4.71475720e-01 3.50136101e-01 -8.34969580e-01 5.39613426e-01 6.60970807e-01 3.63139600e-01 -1.08701193e+00 6.08313084e-01 6.03314221e-01 -1.74224126e+00 -1.89252108e-01 1.01728715e-01 -6.46514744e-02 5.81049025e-01 2.88907945e-01 -4.69678938e-01 5.29273152e-01 7.67572582e-01 1.18208838e+00 -7.89505482e-01 1.35366678e+00 -4.18755144e-01 5.50695598e-01 -4.18337315e-01 4.66468036e-02 2.83591717e-01 -3.96115443e-04 4.53235269e-01 1.33015954e+00 1.40178531e-01 4.04998541e-01 5.95829070e-01 4.21712965e-01 3.59277278e-01 -2.05098450e-01 -5.77526748e-01 3.63576055e-01 4.96510267e-01 1.15976453e+00 -3.32648486e-01 -3.97592247e-01 -7.32862055e-01 6.37710929e-01 3.44177574e-01 4.35783952e-01 -1.17797709e+00 -2.43306726e-01 1.20150352e+00 3.31571698e-01 4.39436674e-01 -6.91738784e-01 1.12422533e-01 -1.25882208e+00 3.24504226e-01 -4.65646625e-01 2.87034124e-01 -1.95894748e-01 -9.99465168e-01 2.78479189e-01 2.56595582e-01 -1.39057136e+00 -2.66159862e-01 -5.26002109e-01 -7.28397250e-01 6.46881282e-01 -1.69125390e+00 -1.65077484e+00 -8.03670466e-01 8.92552733e-01 5.41393280e-01 -8.84077325e-02 2.46478245e-01 7.31044531e-01 -7.93488264e-01 6.43502116e-01 -4.17452604e-01 5.42303026e-01 5.74765503e-01 -7.95429707e-01 9.11621094e-01 9.50034022e-01 -4.02674899e-02 1.21582404e-01 5.47736585e-01 -5.62256634e-01 -1.37937129e+00 -1.64596677e+00 7.97843754e-01 -6.68221414e-01 4.77906466e-01 -4.16404903e-01 -6.57435834e-01 8.66433084e-01 -4.96012300e-01 2.88813531e-01 5.45365751e-01 1.08438008e-01 -1.87063843e-01 -3.94583911e-01 -7.70307422e-01 7.07057714e-01 1.44391453e+00 -2.91446358e-01 -4.06576782e-01 2.57673889e-01 5.42910755e-01 -3.75191748e-01 -6.72334492e-01 6.10087335e-01 7.09257245e-01 -7.93949366e-01 1.35429096e+00 -7.90117860e-01 2.41691247e-02 -3.89822870e-01 -1.70780987e-01 -1.09372294e+00 -2.81344265e-01 -2.66841024e-01 -3.29744279e-01 1.04716682e+00 1.77759051e-01 -5.12427568e-01 1.02956748e+00 7.82183707e-01 -2.17162222e-01 -6.94324493e-01 -9.98579264e-01 -6.58024132e-01 -2.53007680e-01 -7.45939434e-01 8.61444473e-01 3.43102783e-01 -2.95926809e-01 2.84117162e-01 -6.14639699e-01 5.47061026e-01 8.68976414e-01 -7.66033456e-02 1.31079340e+00 -1.18685687e+00 2.98166901e-01 -1.53074339e-01 -1.00190842e+00 -1.51121616e+00 3.91810715e-01 -4.02818263e-01 5.00245541e-02 -1.50858355e+00 -1.08131161e-02 -4.70161766e-01 -1.03900231e-01 4.03258383e-01 -3.72283548e-01 -1.95227545e-02 2.18107209e-01 -1.79241933e-02 -1.16279292e+00 8.88538063e-01 9.57769871e-01 -2.67373085e-01 -1.85600281e-01 5.18619657e-01 -2.84835756e-01 8.16760361e-01 5.75831652e-01 -1.58598498e-01 -4.49381709e-01 -4.30376917e-01 -2.85908431e-01 3.10745258e-02 1.01129222e+00 -1.48246610e+00 5.23033023e-01 -3.08107406e-01 4.67401743e-01 -1.01167929e+00 6.75799966e-01 -9.15511370e-01 -3.13372254e-01 3.96027148e-01 -2.19511956e-01 5.07189818e-02 1.51223183e-01 8.52388799e-01 -1.10651024e-01 5.24315298e-01 4.96563286e-01 1.25363603e-01 -1.32431018e+00 9.73728120e-01 -2.07250670e-01 1.50959939e-01 1.54989171e+00 -4.54195514e-02 -2.15209767e-01 -3.78161430e-01 -4.88624185e-01 8.04486930e-01 2.98774093e-01 8.83382320e-01 6.69407129e-01 -1.54167485e+00 -7.69109428e-01 3.94009620e-01 4.78843510e-01 4.71327901e-02 4.77731049e-01 8.93835306e-01 -1.42426312e-01 6.67304754e-01 -2.79166937e-01 -8.38004529e-01 -1.22792482e+00 5.71249425e-01 2.20637143e-01 1.79045275e-02 -8.67205441e-01 3.13907832e-01 -1.46346502e-02 -4.23069358e-01 2.60229111e-01 -1.68014973e-01 -3.42886150e-01 -1.74689651e-01 8.95672977e-01 7.03252494e-01 9.88385361e-03 -1.20686817e+00 -5.99499464e-01 6.54105663e-01 -1.00697950e-01 3.36530730e-02 1.12772596e+00 -2.93420583e-01 6.00028753e-01 1.23181500e-01 1.30472362e+00 -3.43738317e-01 -1.91265893e+00 -4.04858321e-01 6.36291951e-02 -6.89769685e-01 -1.69408321e-01 -5.22957742e-01 -8.75913560e-01 1.09021842e+00 6.23713136e-01 -3.65533680e-01 7.99068511e-01 1.39707327e-01 1.28794932e+00 5.74221849e-01 6.92246795e-01 -1.05701232e+00 -1.09992530e-02 4.57736939e-01 3.90163481e-01 -1.62455583e+00 -2.14925945e-01 -4.63833511e-01 -8.23646963e-01 7.22700655e-01 8.58076870e-01 1.10864200e-01 6.79758430e-01 -7.04345852e-02 -6.06373660e-02 6.71216100e-02 -7.43638992e-01 -7.72073328e-01 3.99812371e-01 8.36124837e-01 -6.28213286e-02 8.63055736e-02 2.35330686e-01 5.48645675e-01 -6.17660843e-02 -5.59458956e-02 -1.00041091e-01 8.72722089e-01 -5.62119186e-01 -9.65503514e-01 -1.81029633e-01 2.88573503e-01 1.60210505e-01 4.10222054e-01 -1.62509233e-02 8.04887176e-01 2.42946595e-01 1.11245394e+00 1.03314236e-01 -6.28798187e-01 8.87479782e-01 -2.48322949e-01 2.87968636e-01 -1.61801636e-01 -4.24599238e-02 -5.05630434e-01 2.36320004e-01 -1.08487928e+00 -3.21570992e-01 -1.06934857e+00 -1.09565818e+00 -5.01737893e-01 2.46700600e-01 -1.15555324e-01 4.39513326e-01 1.26241827e+00 5.39167523e-01 3.83275419e-01 5.92561841e-01 -1.15399802e+00 -3.12703311e-01 -5.77960789e-01 6.50275848e-04 6.30804360e-01 5.87769926e-01 -9.91334379e-01 2.25283965e-01 2.10649837e-02]
[6.250101089477539, 0.6500959992408752]
5e1f3841-e509-43d4-b58b-97f8db42a657
prompt-based-time-series-forecasting-a-new
2210.08964
null
https://arxiv.org/abs/2210.08964v4
https://arxiv.org/pdf/2210.08964v4.pdf
PromptCast: A New Prompt-based Learning Paradigm for Time Series Forecasting
This paper presents a new perspective on time series forecasting. In existing time series forecasting methods, the models take a sequence of numerical values as input and yield numerical values as output. The existing SOTA models are largely based on the Transformer architecture, modified with multiple encoding mechanisms to incorporate the context and semantics around the historical data. Inspired by the successes of pre-trained language foundation models, we pose a question about whether these models can also be adapted to solve time-series forecasting. Thus, we propose a new forecasting paradigm: prompt-based time series forecasting (PromptCast). In this novel task, the numerical input and output are transformed into prompts and the forecasting task is framed in a sentence-to-sentence manner, making it possible to directly apply language models for forecasting purposes. To support and facilitate the research of this task, we also present a large-scale dataset (PISA) that includes three real-world forecasting scenarios. We evaluate different SOTA numerical-based forecasting methods and language generation models. The benchmark results with various forecasting settings demonstrate the proposed PromptCast with language generation models is a promising research direction. Additionally, in comparison to conventional numerical-based forecasting, PromptCast shows a much better generalization ability under the zero-shot setting.
['Flora D. Salim', 'Hao Xue']
2022-09-20
null
null
null
null
['weather-forecasting']
['miscellaneous']
[ 1.93556339e-01 -3.00947666e-01 -4.11075912e-02 -7.40217030e-01 -4.80686039e-01 -6.98101938e-01 1.15972745e+00 -1.33414741e-03 1.48441583e-01 6.96675599e-01 5.62543631e-01 -7.69306839e-01 -5.84984161e-02 -1.07510817e+00 -3.49762589e-01 -6.28878117e-01 -1.63671076e-01 1.95720971e-01 -3.04082543e-01 -8.21233809e-01 4.77677077e-01 3.55634272e-01 -1.78847516e+00 5.64100921e-01 8.47173870e-01 1.20428205e+00 1.74639419e-01 6.09846056e-01 -8.76928806e-01 1.08785999e+00 -8.30753207e-01 -3.19481283e-01 1.66384563e-01 -4.27711397e-01 -5.29160321e-01 -2.15863973e-01 -1.12600893e-01 -2.24510849e-01 -1.42253056e-01 5.31289697e-01 3.74453306e-01 5.36905348e-01 5.62074363e-01 -1.54984701e+00 -9.04569149e-01 8.71158242e-01 -4.85869031e-03 2.58286893e-01 6.62810266e-01 1.58381481e-02 6.78145409e-01 -8.41977358e-01 3.63809973e-01 1.30468929e+00 7.66434848e-01 3.69889289e-01 -8.34533632e-01 -5.19645572e-01 5.67730486e-01 1.61469698e-01 -8.17613423e-01 -1.93216115e-01 1.14328635e+00 -5.39196551e-01 1.17988467e+00 5.35733223e-01 6.54813290e-01 1.20410776e+00 5.03163099e-01 5.23045838e-01 1.14638865e+00 -4.68519032e-01 3.29937369e-01 -5.07800840e-02 2.44004786e-01 -3.83765809e-02 -6.22751057e-01 2.35460252e-01 -3.52105737e-01 -2.03459024e-01 4.44521666e-01 3.79679412e-01 -2.02836236e-04 7.52776623e-01 -1.40677798e+00 8.37381661e-01 6.05286099e-02 6.45980597e-01 -6.73919201e-01 7.12639000e-03 6.70974970e-01 6.13996863e-01 1.07498264e+00 2.43322402e-01 -5.52340686e-01 -3.97864521e-01 -1.05081475e+00 5.55976272e-01 7.51377225e-01 8.85607421e-01 1.19763665e-01 7.79588699e-01 -5.06937444e-01 5.79300702e-01 7.89245665e-02 7.64471412e-01 9.61770475e-01 -4.86471027e-01 6.00214124e-01 3.84473860e-01 2.81497985e-01 -1.32252491e+00 -4.11547542e-01 -3.67129564e-01 -1.03124046e+00 -2.84199506e-01 1.02911130e-01 -3.85932267e-01 -9.60324764e-01 1.66812575e+00 1.38640851e-01 5.09146988e-01 3.38114649e-01 6.84508920e-01 8.42801332e-01 1.74890721e+00 2.37159744e-01 -7.82028794e-01 1.09669852e+00 -8.08025718e-01 -1.02689946e+00 1.24896958e-01 7.56034672e-01 -9.32480991e-01 1.18514597e+00 3.70349616e-01 -7.36831903e-01 -8.02766800e-01 -6.06694460e-01 -1.68860387e-02 -8.13392401e-01 1.46656141e-01 6.81895435e-01 4.15650129e-01 -1.14633858e+00 5.34953892e-01 -4.64407891e-01 -3.07757765e-01 -5.63592851e-01 -3.33723009e-01 2.06974968e-01 3.66554648e-01 -1.78561985e+00 8.79707754e-01 2.46682435e-01 3.43473762e-01 -3.74978870e-01 -7.40346491e-01 -8.07325661e-01 3.34900133e-02 -8.59786272e-02 -4.74398077e-01 1.53192163e+00 -8.08422387e-01 -1.72581398e+00 1.73546672e-01 -4.97799575e-01 -5.97325802e-01 2.64078885e-01 6.34812936e-02 -1.07636666e+00 -4.03766334e-01 -1.67393442e-02 3.05820554e-01 7.24731803e-01 -7.38762796e-01 -6.03179097e-01 -1.89314000e-02 8.43263343e-02 -9.05829668e-02 -4.80187684e-01 3.13865185e-01 4.78448808e-01 -1.19474351e+00 -1.25848562e-01 -5.42695761e-01 -3.56185675e-01 -4.99490887e-01 -1.95142496e-02 -7.25162148e-01 7.16522634e-01 -7.75674403e-01 1.76500285e+00 -1.90197790e+00 -1.63752094e-01 4.84532230e-02 -2.75494426e-01 -5.78635521e-02 -3.03707600e-01 1.21584880e+00 -2.53433406e-01 9.98094976e-02 -1.10849954e-01 -1.92813933e-01 1.74509332e-01 2.28105515e-01 -1.76152372e+00 -2.05025852e-01 7.44030401e-02 9.55360770e-01 -9.50499415e-01 -1.29057065e-01 3.49482626e-01 3.16044420e-01 -1.77129462e-01 4.88400549e-01 -5.57794333e-01 3.98085266e-01 -4.45203066e-01 3.93246174e-01 5.23832083e-01 -1.81589007e-01 2.32565328e-02 -1.37025416e-02 -6.51980102e-01 4.12439764e-01 -8.35290790e-01 1.29971254e+00 -7.20550179e-01 4.86992776e-01 -7.91034877e-01 -1.12420380e+00 1.57236826e+00 6.06192112e-01 6.13979995e-01 -8.45814764e-01 -1.10472351e-01 1.48755521e-01 -3.70862901e-01 -6.42215967e-01 9.85577643e-01 -4.24714267e-01 -3.50676745e-01 4.97970551e-01 -2.80666947e-01 -3.82226020e-01 4.21505034e-01 -4.07072045e-02 5.51980555e-01 3.38561952e-01 4.95030247e-02 -9.84852090e-02 5.90232134e-01 2.81127214e-01 4.64050740e-01 4.07476276e-01 4.10501391e-01 4.71250415e-01 3.40895593e-01 -1.14748871e+00 -9.88245368e-01 -6.56903327e-01 -2.06818487e-02 1.32796490e+00 -3.76297683e-01 -6.65256500e-01 -3.29027593e-01 -2.00468123e-01 -2.16461599e-01 1.36181855e+00 -6.28552377e-01 1.68726012e-01 -4.95927393e-01 -7.37558663e-01 3.64187747e-01 5.98266006e-01 7.88500011e-02 -1.31964123e+00 -5.02044380e-01 7.43567467e-01 -4.14678186e-01 -8.38281631e-01 -3.85249734e-01 -4.88938428e-02 -9.68361080e-01 -2.62949556e-01 -8.72596383e-01 -5.95597446e-01 3.42455983e-01 1.83080912e-01 1.22935557e+00 -2.60755867e-01 3.10606122e-01 3.17220598e-01 -6.71943069e-01 -7.39036262e-01 -5.27899086e-01 -7.25957304e-02 1.03549555e-01 8.24040473e-02 2.55921841e-01 -7.29582071e-01 -1.64536655e-01 2.36043856e-02 -1.05964208e+00 4.05144602e-01 -6.81496859e-02 6.37509942e-01 1.99528724e-01 -9.65284482e-02 1.16556394e+00 -6.83886349e-01 1.17614627e+00 -9.09064770e-01 -7.37370372e-01 5.78090847e-01 -7.16050327e-01 -2.16871593e-02 1.31443417e+00 -6.88051581e-01 -1.23088217e+00 -3.03772360e-01 -3.42553169e-01 -2.07616985e-01 -4.64708135e-02 1.13319933e+00 5.14154315e-01 6.27969205e-01 4.55304742e-01 7.88325727e-01 -1.68673933e-01 -5.15132546e-01 5.42092681e-01 7.08021998e-01 4.24163580e-01 -6.88658714e-01 5.03173113e-01 1.18283696e-01 -1.73602387e-01 -5.47270358e-01 -7.53503561e-01 -4.40903120e-02 -2.33282223e-01 -5.12678206e-01 3.53942066e-01 -8.09326053e-01 -5.89508832e-01 5.75858414e-01 -1.58557653e+00 -1.91977322e-01 -4.28103805e-01 4.44406718e-01 -4.48066115e-01 6.24133460e-02 -5.11987448e-01 -1.14853990e+00 -6.59310043e-01 -7.91622162e-01 1.02624500e+00 3.18831727e-02 -2.57964522e-01 -1.31505537e+00 1.64631352e-01 -3.91625434e-01 1.01439166e+00 3.50815803e-01 1.09011602e+00 -6.51849806e-01 4.61106002e-02 -1.81924433e-01 7.97402188e-02 8.56691524e-02 2.13267133e-01 2.41944730e-01 -8.44204783e-01 9.42151099e-02 2.71862566e-01 -1.06622903e-02 3.66913795e-01 3.23395789e-01 1.30417478e+00 -6.35694206e-01 8.22999701e-02 4.52009112e-01 1.11345518e+00 7.21528053e-01 6.02872133e-01 1.50505662e-01 2.22996011e-01 7.29167879e-01 7.31186867e-01 9.93789673e-01 8.70163143e-01 4.79039401e-01 -9.43367183e-02 1.88368678e-01 1.94994643e-01 -5.94933867e-01 6.03341937e-01 1.69763672e+00 -1.12227835e-01 -6.75597727e-01 -1.05477798e+00 5.26629388e-01 -1.94888365e+00 -1.30668128e+00 -3.10285747e-01 1.77106738e+00 9.23950434e-01 -1.34741515e-01 3.66582908e-02 2.58560717e-01 3.43403608e-01 5.17575622e-01 -3.18178475e-01 -8.12989712e-01 -1.76680982e-01 4.68997210e-02 -2.28541911e-01 3.50166678e-01 -7.33886600e-01 6.34032369e-01 7.02899265e+00 7.72944152e-01 -1.82589710e+00 -1.26381785e-01 8.51312101e-01 2.72227407e-01 -8.35200429e-01 -2.87732538e-02 -7.53315210e-01 8.96624386e-01 1.58056259e+00 -9.35893953e-01 4.32159364e-01 7.48824835e-01 6.27974689e-01 3.81203413e-01 -9.57044959e-01 9.92502570e-01 -5.11686038e-03 -1.59538937e+00 3.59757215e-01 -4.97183055e-01 6.78296745e-01 -3.35030407e-01 1.19501077e-01 6.78373814e-01 1.76523015e-01 -9.35083866e-01 9.31910634e-01 1.07200086e+00 7.76313305e-01 -3.60712051e-01 7.70479739e-01 5.68384051e-01 -1.39099348e+00 -2.28429541e-01 -3.13585967e-01 -8.03211629e-01 6.74975872e-01 7.27742612e-01 -6.06537819e-01 9.02239382e-01 4.12945688e-01 9.97833848e-01 -1.57193318e-01 6.42032027e-01 1.86252549e-01 1.07448637e+00 -3.17086190e-01 -3.09781373e-01 3.33210647e-01 -3.38062912e-01 2.26133823e-01 1.13005817e+00 1.16667819e+00 3.86722684e-01 3.38784486e-01 6.87467277e-01 3.88815433e-01 3.71065915e-01 -7.49590099e-01 -3.47670674e-01 5.04082441e-01 9.54971731e-01 -5.17632842e-01 -7.21289575e-01 -4.26488906e-01 4.41835225e-01 -1.51595682e-01 4.71555769e-01 -8.90650690e-01 -3.13084513e-01 1.62336007e-01 5.78919351e-02 -1.23484343e-01 -2.98930556e-01 -5.08343399e-01 -1.27526641e+00 5.84013201e-02 -8.71190667e-01 3.56662840e-01 -1.21222210e+00 -1.54180241e+00 1.17794716e+00 3.83582145e-01 -1.68037713e+00 -1.05402815e+00 -2.46748477e-01 -9.14963543e-01 1.07791126e+00 -1.47126222e+00 -1.19593203e+00 -1.65198237e-01 4.06671852e-01 8.01984906e-01 -3.70828539e-01 1.04837239e+00 2.54586607e-01 -8.71173218e-02 9.82305780e-02 2.13550285e-01 -3.23172152e-01 3.63424450e-01 -9.31051195e-01 9.22382057e-01 9.07145798e-01 -7.49607477e-03 5.94379961e-01 8.43242705e-01 -6.17565572e-01 -1.50100219e+00 -1.13562799e+00 1.69220781e+00 -3.74415457e-01 8.73302042e-01 -2.82057285e-01 -9.94726658e-01 5.54149926e-01 3.97540212e-01 -2.52885520e-01 4.02302712e-01 -1.20881729e-01 -1.95302650e-01 -3.22689772e-01 -8.60488713e-01 4.87100780e-01 7.69089639e-01 -3.52375120e-01 -7.94004679e-01 5.59788167e-01 1.15996873e+00 -3.28103036e-01 -7.96816766e-01 2.33045697e-01 4.15907979e-01 -4.47669089e-01 6.91835046e-01 -7.25463808e-01 7.35869050e-01 -2.36956134e-01 -2.01074824e-01 -1.49424040e+00 -3.24340522e-01 -9.12508130e-01 -1.60865948e-01 1.40148973e+00 1.70549080e-01 -9.27399397e-01 -3.96324843e-02 6.11736894e-01 -2.44297966e-01 -6.14711404e-01 -8.09308827e-01 -8.62182975e-01 2.48682901e-01 -8.76174748e-01 1.46452487e+00 1.07986367e+00 1.43586665e-01 1.07105449e-01 -7.25923181e-01 -2.13600487e-01 -5.09752333e-02 7.21945524e-01 5.63250899e-01 -1.15139854e+00 1.44347236e-01 -3.70968729e-01 -9.59520694e-04 -1.06973290e+00 1.27212554e-01 -8.88168275e-01 -1.20891899e-01 -1.30739391e+00 -5.37920713e-01 -4.88342106e-01 -2.91829139e-01 5.74887812e-01 6.48374632e-02 -2.76243359e-01 4.61402744e-01 1.89448699e-01 5.84377646e-02 7.75450587e-01 9.59283888e-01 -2.58052852e-02 -2.37945661e-01 2.04949319e-01 -4.77408588e-01 2.84736603e-01 7.41169751e-01 -2.41101459e-01 -7.69977987e-01 -4.67916161e-01 5.21055102e-01 7.81220794e-01 2.15455145e-01 -6.33290827e-01 2.97012806e-01 -8.09175968e-01 -7.67418277e-03 -9.86541927e-01 8.63948464e-02 -7.20882714e-01 4.89756405e-01 1.58026248e-01 -6.64218426e-01 8.59704971e-01 3.15897822e-01 1.00022294e-01 -5.06042361e-01 -6.73064636e-03 -8.88196453e-02 9.35457572e-02 -7.45789170e-01 2.48832658e-01 -6.39576077e-01 -1.25468075e-01 7.45332837e-01 3.60045955e-02 -3.77024978e-01 -7.87433505e-01 -4.64334756e-01 1.35251805e-01 -2.43011102e-01 8.52784872e-01 6.47375822e-01 -1.62420583e+00 -9.43003833e-01 3.67506862e-01 3.89472842e-02 -5.21225393e-01 3.57448310e-01 5.50296187e-01 -1.44387037e-01 6.88627064e-01 -4.62474003e-02 -2.60549337e-01 -5.78676641e-01 7.73689151e-01 -1.61004160e-02 -2.57736534e-01 -6.15117013e-01 3.24533552e-01 -2.19265204e-02 -6.55964255e-01 2.43821051e-02 -1.07778513e+00 -4.22155052e-01 2.51427442e-01 7.67279744e-01 2.15112284e-01 -6.42221123e-02 -4.72698152e-01 -2.90454626e-02 3.87767762e-01 3.31772000e-01 -3.05436552e-01 1.62724292e+00 -7.01753646e-02 -2.11417526e-01 1.07657254e+00 8.53698730e-01 -2.40916669e-01 -7.46103346e-01 -3.75484109e-01 1.00453198e-01 -3.18167657e-01 -1.38718069e-01 -9.85283732e-01 -8.05336654e-01 9.65950310e-01 2.72743374e-01 8.42617869e-01 1.31854534e+00 -5.56705654e-01 1.10348189e+00 2.07494825e-01 4.07823980e-01 -9.00979221e-01 -4.21872616e-01 8.28771710e-01 1.49350667e+00 -9.62964237e-01 -3.58730286e-01 1.38472877e-02 -7.25695133e-01 1.57506931e+00 2.47035190e-01 1.33262098e-01 7.37898052e-01 4.85647112e-01 3.59065264e-01 1.46966398e-01 -1.54164195e+00 1.72973603e-01 4.88706172e-01 4.26576227e-01 8.53459954e-01 1.72060937e-01 -5.48328161e-01 1.05471289e+00 -6.58820987e-01 5.65259218e-01 4.59086597e-01 6.96086347e-01 -1.59420237e-01 -1.11839736e+00 -4.53589469e-01 4.42085624e-01 -1.05297536e-01 -1.71065241e-01 2.94740181e-02 2.39683509e-01 -2.69877523e-01 1.18998206e+00 1.94681451e-01 -5.48196435e-01 2.44263247e-01 4.21615422e-01 -2.49809802e-01 -2.48744190e-01 -8.91137600e-01 -8.57376531e-02 -3.67446095e-02 -1.89306319e-01 -4.54173565e-01 -5.46450198e-01 -1.19921029e+00 -5.20113766e-01 1.26647964e-01 3.73277903e-01 7.47117937e-01 1.05013931e+00 4.61882770e-01 6.01292908e-01 1.09926534e+00 -7.14778304e-01 -8.30626488e-01 -1.10257351e+00 -2.26721555e-01 3.18766028e-01 3.69271874e-01 -3.27663213e-01 -2.17043459e-01 4.06914741e-01]
[6.8344645500183105, 2.990361452102661]
1168ee85-7198-47e0-b313-dc41bf5e9d3e
sod-mtgan-small-object-detection-via-multi
null
null
http://openaccess.thecvf.com/content_ECCV_2018/html/Yongqiang_Zhang_SOD-MTGAN_Small_Object_ECCV_2018_paper.html
http://openaccess.thecvf.com/content_ECCV_2018/papers/Yongqiang_Zhang_SOD-MTGAN_Small_Object_ECCV_2018_paper.pdf
SOD-MTGAN: Small Object Detection via Multi-Task Generative Adversarial Network
Object detection is a fundamental and important problem in computer vision. Although impressive results have been achieved on large/medium sized objects on large-scale detection benchmarks (e.g. the COCO dataset), the performance on small objects is far from satisfaction. The reason is that small objects lack sufficient detailed appearance information, which can distinguish them from the background or similar objects. To deal with small object detection problem, we propose an end-to-end multi-task generative adversarial network (MTGAN). In the MTGAN, the generator is a super-resolution network, which can up-sample small blurred images into fine-scale ones and recover detailed information for more accurate detection. The discriminator is a multi task network, which describes each super-resolution image patch with a real/fake score, object category scores, and bounding box regression off sets. Furthermore, to make the generator recover more details for easier detection, the classification and regression losses in the discriminator are back-propagated into the generator during training. Extensive experiments on the challenging COCO dataset demonstrate the effectiveness of the proposed method in restoring a clear super-resolution image from a blurred small one, and show that the detection performance, especially for small sized objects, improves over state-of-the-art methods.
['Yancheng Bai', 'Yongqiang Zhang', 'Mingli Ding', 'Bernard Ghanem']
2018-09-01
null
null
null
eccv-2018-9
['small-object-detection']
['computer-vision']
[ 4.17114019e-01 -5.20278104e-02 2.28840739e-01 2.36751549e-02 -8.16242158e-01 -4.10146743e-01 3.47518325e-01 -5.46379387e-01 -2.93222100e-01 7.23082542e-01 -1.04960315e-01 2.84599215e-01 3.51241231e-01 -8.82359982e-01 -9.68715787e-01 -9.44512188e-01 1.12138525e-01 3.16016793e-01 7.15003848e-01 -1.34536222e-01 -2.81551178e-03 2.90040612e-01 -1.30239379e+00 4.65513855e-01 1.01397455e+00 1.06212056e+00 6.53268695e-01 6.43487811e-01 3.14463735e-01 9.57571328e-01 -8.58059406e-01 -4.82876569e-01 4.27254379e-01 -4.47095275e-01 -2.87504613e-01 2.03289181e-01 7.69034386e-01 -7.17493534e-01 -4.43377346e-01 1.59621203e+00 5.00136018e-01 -1.90582678e-01 6.49623036e-01 -1.04648721e+00 -1.05860257e+00 5.75768352e-01 -1.01641798e+00 4.61086869e-01 8.87860656e-02 3.86411548e-01 5.72472632e-01 -1.03100574e+00 4.49775606e-01 1.55005276e+00 5.23245215e-01 5.67737162e-01 -1.27166200e+00 -1.09976804e+00 -5.72600551e-02 4.53651994e-02 -1.47028244e+00 -2.73364156e-01 6.19595706e-01 -4.49360132e-01 2.25298375e-01 2.07033157e-01 2.22463191e-01 1.17709517e+00 2.84098476e-01 7.89655387e-01 1.11157477e+00 1.04271799e-01 -1.16601281e-01 4.11718726e-01 -3.01772773e-01 6.51009142e-01 7.25571871e-01 3.06476474e-01 5.81839234e-02 1.75035790e-01 1.19739044e+00 2.57135570e-01 -5.07054150e-01 -2.54770845e-01 -1.10858989e+00 5.79936802e-01 9.47776556e-01 3.36815007e-02 -4.21916664e-01 -5.69583196e-03 5.24910465e-02 6.55020624e-02 5.22403061e-01 2.23833263e-01 -6.78898767e-02 5.98643124e-01 -7.11602032e-01 2.88973898e-01 1.67552695e-01 8.64153385e-01 6.50068045e-01 1.16167977e-01 -6.77446127e-01 9.87254798e-01 -1.97790079e-02 6.76701307e-01 4.67941999e-01 -6.63914502e-01 6.40932858e-01 5.60749054e-01 4.64872867e-01 -9.31318164e-01 -1.13425925e-02 -8.65996718e-01 -1.27932167e+00 6.40510917e-01 5.85099459e-01 -3.83047014e-02 -9.74134803e-01 1.66810191e+00 4.09348339e-01 2.85960436e-01 1.58198267e-01 1.43625319e+00 8.71150136e-01 7.28765070e-01 -4.46367599e-02 -1.34686872e-01 1.61215711e+00 -1.14488494e+00 -4.40905899e-01 -7.36713350e-01 -1.66914940e-01 -8.58202696e-01 7.86125958e-01 3.15725178e-01 -1.15116096e+00 -9.82887268e-01 -1.00906086e+00 -1.42525434e-01 -7.46096298e-02 4.40731853e-01 3.43983233e-01 4.02834177e-01 -5.31239867e-01 4.11898464e-01 -3.70589674e-01 3.18122469e-02 1.02764201e+00 -1.51219741e-01 -2.67776549e-01 -3.71301681e-01 -1.04497504e+00 8.75292301e-01 6.83796346e-01 7.24036247e-02 -1.40479624e+00 -5.50260484e-01 -6.75362110e-01 2.06201449e-01 4.88723010e-01 -7.62206078e-01 9.47888136e-01 -1.14558005e+00 -9.30824101e-01 8.30960691e-01 2.99236387e-01 -5.76554418e-01 9.31534231e-01 -5.85356876e-02 -4.00664926e-01 1.45308092e-01 4.30718452e-01 5.20034134e-01 1.56381607e+00 -1.38897669e+00 -1.04144561e+00 -2.58871019e-01 1.10555537e-01 1.40569240e-01 -5.90593517e-02 1.51540279e-01 -3.44212294e-01 -1.03786397e+00 -3.04094076e-01 -7.08669484e-01 -1.28072351e-01 1.58879861e-01 -4.32194620e-01 -2.59791762e-02 9.72111940e-01 -8.53401780e-01 7.56017148e-01 -2.23610950e+00 2.38622487e-01 -5.89380145e-01 3.83365750e-01 4.83003259e-01 -2.96536684e-01 -3.60117912e-01 -1.33446604e-01 -1.60016224e-01 -2.38725200e-01 -2.03539297e-01 -4.38036680e-01 -1.27090678e-01 -4.22092229e-01 5.20770967e-01 4.94928628e-01 9.18711483e-01 -1.01694596e+00 -3.62262338e-01 2.37816066e-01 5.91325283e-01 -1.86926812e-01 4.18992013e-01 -1.23630337e-01 4.46846485e-01 -4.46836770e-01 7.37282872e-01 1.09323943e+00 -4.02480692e-01 -5.02380610e-01 -3.47051114e-01 1.53846741e-01 -3.40744376e-01 -1.25671422e+00 1.06377065e+00 -3.85472029e-01 4.52104300e-01 2.37907857e-01 -6.14540935e-01 7.19262779e-01 -4.85545509e-02 -1.41109303e-01 -5.99495292e-01 8.21683109e-02 1.91029996e-01 1.55805483e-01 -4.76327747e-01 3.62522721e-01 -1.32705286e-01 -1.42403971e-03 1.30755052e-01 -1.86035216e-01 -1.28927156e-01 1.89208791e-01 1.66758597e-01 8.19018424e-01 -9.00616050e-02 2.90412277e-01 1.45439759e-01 6.36290014e-01 -2.15231687e-01 6.00565434e-01 6.91738367e-01 -1.38102710e-01 1.07683265e+00 3.62952322e-01 -2.36921802e-01 -1.27007616e+00 -1.19093513e+00 -1.87439457e-01 9.67712879e-01 4.79267240e-01 3.10079128e-01 -8.84305120e-01 -7.93160319e-01 6.59678876e-02 5.00668466e-01 -7.60374963e-01 -3.13231528e-01 -6.07672215e-01 -1.00943303e+00 3.70185375e-01 5.44067860e-01 7.94965982e-01 -1.19890893e+00 -4.52806205e-01 1.12604022e-01 -3.11781347e-01 -1.29019308e+00 -8.00567389e-01 -2.92521060e-01 -5.13713062e-01 -1.23294663e+00 -1.03786182e+00 -9.45255101e-01 8.10786247e-01 7.51300573e-01 8.56885493e-01 -1.80580288e-01 -6.42651439e-01 -4.32616025e-01 -2.03919142e-01 -3.48629564e-01 -7.55052328e-01 -4.45275605e-01 -1.32116333e-01 3.87229025e-01 -1.86810389e-01 -2.62377411e-01 -8.95396113e-01 4.50054824e-01 -1.08973718e+00 1.50688484e-01 1.21990919e+00 1.01861393e+00 5.18055379e-01 3.21351528e-01 5.90283990e-01 -8.91810060e-01 2.21616074e-01 -3.88938934e-01 -8.18476677e-01 1.14834227e-01 -4.48669136e-01 -1.13518715e-01 8.56753409e-01 -8.02105904e-01 -1.16703439e+00 -9.51489061e-03 1.37332842e-01 -8.78027141e-01 1.84578076e-02 -4.31992292e-01 -1.90501377e-01 -1.71899408e-01 7.59208858e-01 6.31853819e-01 -1.07100196e-01 -4.10648346e-01 2.87449986e-01 7.15956330e-01 8.61261845e-01 4.36463803e-02 1.21711135e+00 5.85026741e-01 -2.17846513e-01 -4.66588765e-01 -1.15413797e+00 -2.76791930e-01 -1.98541641e-01 -8.23250320e-03 9.69991386e-01 -1.25088704e+00 -2.76318222e-01 6.92661047e-01 -1.16771281e+00 -1.07250579e-01 -2.38064274e-01 1.38855681e-01 -2.26475015e-01 1.71040848e-01 -6.95561230e-01 -7.51880527e-01 -4.64659959e-01 -1.12673914e+00 1.35282028e+00 5.98529637e-01 5.81300318e-01 -4.69257027e-01 -5.22949338e-01 6.29608512e-01 5.41385949e-01 4.03825074e-01 4.94838417e-01 -2.59941727e-01 -1.06027699e+00 -2.93946922e-01 -7.86253929e-01 7.76687026e-01 -1.94526312e-03 -3.28388363e-01 -9.20713365e-01 -6.55424893e-01 1.65005893e-01 -3.20298910e-01 1.27422845e+00 2.75059789e-01 1.31083977e+00 -4.99080181e-01 -4.95314807e-01 6.45557046e-01 1.58262002e+00 -7.01834261e-02 6.40714586e-01 1.56298369e-01 9.13502514e-01 1.63379535e-01 9.00932372e-01 1.00251295e-01 -1.42239258e-02 6.91717207e-01 7.48193085e-01 -1.99163467e-01 -8.80044758e-01 -1.48147270e-01 4.94805098e-01 -9.19082165e-02 -1.45415962e-01 -5.66988662e-02 -2.75414050e-01 4.37025607e-01 -1.53858912e+00 -1.18495667e+00 -1.22867368e-01 2.13459992e+00 7.44726241e-01 2.79193908e-01 1.22716725e-01 -2.51983315e-01 1.18222606e+00 3.33283335e-01 -8.40275347e-01 4.07931238e-01 -4.13237721e-01 -1.04241095e-01 6.60520256e-01 2.08825082e-01 -1.27111447e+00 9.13251996e-01 5.05501699e+00 1.20162320e+00 -1.07576048e+00 4.83529091e-01 8.30903351e-01 -1.45478979e-01 2.70606458e-01 -4.44031805e-01 -8.97368252e-01 8.12998652e-01 1.96053863e-01 -1.29259661e-01 6.16845310e-01 1.09019291e+00 3.40700634e-02 -6.34991452e-02 -7.56674886e-01 1.01853955e+00 2.78428912e-01 -1.15491974e+00 1.16616987e-01 -9.70460549e-02 1.01404297e+00 9.25492868e-02 3.06076229e-01 3.51477802e-01 2.01247737e-01 -1.02571249e+00 9.80280519e-01 3.04578424e-01 1.06607282e+00 -7.03971982e-01 7.96977997e-01 5.52439272e-01 -1.25151193e+00 -4.31341141e-01 -8.34667385e-01 2.20180213e-01 8.01940933e-02 6.08223915e-01 -6.38050139e-01 4.27343249e-01 8.24042499e-01 5.31794131e-01 -9.76745367e-01 1.09983265e+00 -3.89056534e-01 1.46637917e-01 1.35955736e-01 3.12000006e-01 -4.09968235e-02 -2.66837209e-01 8.85527670e-01 1.20383811e+00 2.47191563e-01 5.57051320e-03 8.82275105e-02 1.27199721e+00 -3.85773182e-01 -4.10056502e-01 -4.37718034e-01 2.90093184e-01 3.98140609e-01 1.64903700e+00 -6.01875663e-01 -5.51069856e-01 -3.40651721e-01 1.34243286e+00 4.33369994e-01 3.32146585e-01 -1.14132106e+00 -4.39707726e-01 6.95345640e-01 2.25456417e-01 7.52899945e-01 4.60586846e-01 -5.10753132e-02 -1.30572045e+00 2.60120660e-01 -1.00907445e+00 3.05217922e-01 -9.13038492e-01 -1.30974257e+00 7.47039318e-01 -2.88934022e-01 -1.35871959e+00 1.89224537e-02 -5.81596434e-01 -6.07017517e-01 9.35458660e-01 -1.49382937e+00 -1.27709401e+00 -6.51034951e-01 3.48005801e-01 8.38124931e-01 -1.94567114e-01 2.13668823e-01 4.58346516e-01 -7.37459838e-01 5.98050177e-01 2.16806471e-01 4.65260893e-01 7.94140458e-01 -1.16279542e+00 2.84617186e-01 1.29599333e+00 -5.11305965e-02 2.42152512e-01 7.46586919e-01 -6.94579005e-01 -1.20161927e+00 -1.75529933e+00 -1.20092249e-02 -6.01707041e-01 3.76242518e-01 -4.33086663e-01 -1.08802891e+00 5.42781532e-01 -6.96919337e-02 5.64088523e-01 -4.07921433e-01 -5.94546139e-01 -4.72041607e-01 -3.16235095e-01 -1.27094495e+00 3.16273183e-01 9.13887918e-01 -3.15698087e-01 -6.24218702e-01 4.08514708e-01 7.73595452e-01 -6.84608221e-01 -5.44809461e-01 5.51399052e-01 3.80546033e-01 -1.09704578e+00 1.46245503e+00 -2.80781657e-01 7.26605713e-01 -6.79675519e-01 1.74554184e-01 -1.41272187e+00 -5.37956893e-01 -2.06017360e-01 -2.83144712e-01 1.20071125e+00 -7.94517342e-03 -6.20454133e-01 5.38242936e-01 3.43476958e-03 1.08354591e-01 -4.74106252e-01 -7.11840510e-01 -8.67747009e-01 -1.85109243e-01 1.23123370e-01 3.85099828e-01 7.12843418e-01 -1.00191140e+00 5.52969217e-01 -6.29494429e-01 5.09589612e-01 1.10097790e+00 5.18533230e-01 8.22210371e-01 -1.06204069e+00 -4.96320903e-01 -5.02467871e-01 -3.03821385e-01 -9.57689762e-01 -2.79218376e-01 -6.41652107e-01 7.85974264e-02 -1.31584871e+00 7.46904612e-01 -2.43305430e-01 -2.81754106e-01 1.45448834e-01 -8.04277897e-01 8.18959236e-01 2.45389581e-01 3.50141287e-01 -6.89214051e-01 4.58967775e-01 1.73620260e+00 -3.43942344e-01 2.05869034e-01 1.79194316e-01 -8.23049128e-01 7.69780278e-01 4.17106897e-01 -6.07247770e-01 -1.10657951e-04 -2.65911281e-01 -2.75737464e-01 1.03492416e-01 9.07109320e-01 -9.91745412e-01 -7.99514800e-02 -9.64895822e-03 9.59271550e-01 -4.64327961e-01 2.56472349e-01 -5.84223807e-01 1.53137684e-01 7.45349050e-01 -1.33099228e-01 -5.50081313e-01 -2.70420685e-02 9.46196020e-01 -1.29637599e-01 2.40085293e-02 1.46107507e+00 -1.51736438e-01 -6.38316154e-01 4.30116534e-01 3.05434912e-01 1.50466949e-01 1.22414637e+00 -1.20582180e-02 -6.63627505e-01 -2.58388240e-02 -4.36597496e-01 1.63777769e-01 6.10784650e-01 8.23851109e-01 7.07257569e-01 -1.28981996e+00 -1.20468414e+00 2.54512787e-01 7.67279193e-02 5.14531016e-01 3.50173324e-01 6.19081974e-01 -3.55198681e-01 1.05863869e-01 -3.99750441e-01 -4.92629945e-01 -1.25355303e+00 9.97325480e-01 5.55977702e-01 -1.06236460e-02 -7.39412963e-01 9.55141068e-01 1.01596498e+00 1.45286933e-01 1.22524738e-01 -2.62470365e-01 -2.18773782e-01 -9.63492095e-02 1.07039642e+00 3.62447947e-01 -2.87687510e-01 -5.53107977e-01 -1.64776757e-01 5.04895449e-01 -2.36031309e-01 3.96060944e-01 1.34903193e+00 -2.02712759e-01 -9.61394310e-02 2.29867268e-02 9.23466921e-01 -9.13557503e-03 -1.77564764e+00 -4.39384431e-01 -6.46756828e-01 -8.71074736e-01 5.72323613e-02 -7.05433428e-01 -1.29385161e+00 6.57672942e-01 9.07212675e-01 2.33712748e-01 1.16007626e+00 2.47542441e-01 8.97686362e-01 -1.09068111e-01 3.02909911e-01 -6.82165444e-01 3.47342163e-01 1.02040589e-01 1.09922063e+00 -1.57548034e+00 -7.66634941e-02 -5.39710820e-01 -6.94148779e-01 8.06482673e-01 9.23633873e-01 -5.31493068e-01 -6.10708147e-02 1.23645693e-01 -2.27654174e-01 1.77013144e-01 -4.80999947e-01 -3.82464439e-01 3.19750845e-01 6.33362412e-01 -1.42324820e-01 6.88739941e-02 1.13874562e-01 7.22661257e-01 9.41179693e-02 -2.55416363e-01 6.48056865e-01 1.16933040e-01 -6.62915468e-01 -5.41320264e-01 -8.42827797e-01 4.35893714e-01 -5.58762133e-01 -7.37127438e-02 -2.11408094e-01 6.29124820e-01 5.01046836e-01 6.94519699e-01 2.09828801e-02 -1.61382467e-01 3.71627539e-01 -5.36135256e-01 4.35163587e-01 -6.33953035e-01 -3.39865476e-01 3.69547680e-02 -2.73491591e-01 -5.75836778e-01 5.02597950e-02 -5.57964802e-01 -8.42768192e-01 5.79040647e-02 -4.90647346e-01 -8.41200203e-02 2.35223114e-01 5.61282635e-01 8.61638114e-02 9.63616371e-01 7.26726711e-01 -1.10318255e+00 -9.37122941e-01 -1.26584649e+00 -6.25833929e-01 7.49869943e-01 8.00633430e-01 -6.68014705e-01 -4.76172209e-01 5.96336555e-03]
[10.079021453857422, -0.8884159326553345]
671a1de4-14eb-417c-a614-79f1ef029fff
mathqa-towards-interpretable-math-word
1905.13319
null
https://arxiv.org/abs/1905.13319v1
https://arxiv.org/pdf/1905.13319v1.pdf
MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms
We introduce a large-scale dataset of math word problems and an interpretable neural math problem solver that learns to map problems to operation programs. Due to annotation challenges, current datasets in this domain have been either relatively small in scale or did not offer precise operational annotations over diverse problem types. We introduce a new representation language to model precise operation programs corresponding to each math problem that aim to improve both the performance and the interpretability of the learned models. Using this representation language, our new dataset, MathQA, significantly enhances the AQuA dataset with fully-specified operational programs. We additionally introduce a neural sequence-to-program model enhanced with automatic problem categorization. Our experiments show improvements over competitive baselines in our MathQA as well as the AQuA dataset. The results are still significantly lower than human performance indicating that the dataset poses new challenges for future research. Our dataset is available at: https://math-qa.github.io/math-QA/
['Hannaneh Hajishirzi', 'Rik Koncel-Kedziorski', 'Yejin Choi', 'Saadia Gabriel', 'Peter Lin', 'Aida Amini']
2019-05-30
mathqa-towards-interpretable-math-word-1
https://aclanthology.org/N19-1245
https://aclanthology.org/N19-1245.pdf
naacl-2019-6
['math-word-problem-solving', 'math-word-problem-solving', 'math-word-problem-solving']
['knowledge-base', 'reasoning', 'time-series']
[ 1.19245671e-01 2.61126250e-01 -2.24715292e-01 -7.93730736e-01 -1.00463724e+00 -9.95748460e-01 9.81654748e-02 3.93211007e-01 -1.75670952e-01 3.51495296e-01 2.61426419e-01 -6.85476005e-01 -3.55666243e-02 -1.06726301e+00 -1.11407208e+00 1.28339350e-01 2.13570431e-01 8.70815277e-01 -1.15008041e-01 -3.60958666e-01 1.97836518e-01 -1.04084276e-01 -1.26425159e+00 7.49434888e-01 1.08628368e+00 7.87709653e-01 8.64188299e-02 8.30807984e-01 -3.97150576e-01 1.25816250e+00 -6.56143427e-01 -5.66879153e-01 3.73813987e-01 -1.14160918e-01 -1.39031529e+00 -5.29965997e-01 9.36640918e-01 -3.54485512e-01 -4.18666899e-01 1.00572550e+00 -5.48376776e-02 1.75282300e-01 1.72237337e-01 -1.32698607e+00 -1.39400709e+00 1.11049259e+00 -7.63954297e-02 6.46969080e-02 6.76982880e-01 4.87588674e-01 1.57320976e+00 -5.94286442e-01 5.17028272e-01 1.30415666e+00 6.85661256e-01 6.14109278e-01 -1.43853021e+00 -4.37316537e-01 3.16957757e-02 1.33183569e-01 -1.26818419e+00 -2.58329600e-01 2.34411359e-01 -4.92526442e-01 1.46611822e+00 4.96074617e-01 3.89216155e-01 6.71925187e-01 -1.13562942e-02 7.58440614e-01 6.69264734e-01 -2.38363668e-01 5.49708381e-02 -2.10653037e-01 8.47827435e-01 1.17000544e+00 1.48542166e-01 -3.38286996e-01 -2.38430813e-01 6.46311278e-03 6.23535693e-01 -2.53996998e-02 -1.77462891e-01 -7.23645315e-02 -1.19918215e+00 8.95325959e-01 6.97219908e-01 6.47823960e-02 -5.84365726e-02 6.49775684e-01 6.43972397e-01 5.87147295e-01 2.73195535e-01 1.39136899e+00 -7.73275435e-01 -3.87838542e-01 -6.38561845e-01 7.82065749e-01 1.03283882e+00 1.19102263e+00 7.17605531e-01 -2.17181332e-02 -2.92908430e-01 5.31106472e-01 -2.42697615e-02 2.06484377e-01 1.25939175e-01 -1.24744618e+00 1.01450562e+00 1.16819608e+00 -1.87071830e-01 -8.15809131e-01 -4.04597789e-01 -1.80925652e-02 -2.51511812e-01 5.56007661e-02 7.58940697e-01 1.01806641e-01 -8.64815414e-01 1.73488498e+00 -2.20381722e-01 1.10181525e-01 6.00596890e-02 7.90712595e-01 1.18392134e+00 1.06998396e+00 1.77121311e-01 5.10957658e-01 1.29272985e+00 -1.49375665e+00 -5.66705465e-01 -4.59906578e-01 1.22440732e+00 -4.44881022e-01 1.73739040e+00 5.49640000e-01 -1.40048432e+00 -7.22418129e-01 -9.62802470e-01 -7.28771210e-01 -6.26722693e-01 2.49845996e-01 1.15233648e+00 5.37071168e-01 -1.19027972e+00 2.53072321e-01 -8.45966339e-01 -1.25507727e-01 5.74363112e-01 2.83183426e-01 -2.02602193e-01 -3.88387561e-01 -8.41196001e-01 8.86038065e-01 7.20254600e-01 -1.64038450e-01 -8.70431125e-01 -1.43906260e+00 -1.39096296e+00 2.66914845e-01 3.95803273e-01 -5.92227399e-01 1.62692034e+00 -1.01622534e+00 -1.00799716e+00 9.47605968e-01 -2.64765233e-01 -7.57629693e-01 1.34269089e-01 -3.73889118e-01 -7.11345747e-02 -1.35860205e-01 1.26984507e-01 8.00527513e-01 2.25951094e-02 -8.25231969e-01 -3.35810244e-01 -1.07198045e-01 9.57552850e-01 -6.12857640e-02 -1.65786147e-02 7.45830983e-02 -3.61582369e-01 -6.77980065e-01 -6.63690940e-02 -7.14663446e-01 -1.69810072e-01 3.05043887e-02 -5.47678173e-02 -5.83115876e-01 4.06654239e-01 -8.54709208e-01 1.30440867e+00 -2.00745082e+00 4.91320968e-01 -1.43243447e-01 4.41701055e-01 6.22097552e-02 -5.49994767e-01 4.00036275e-01 -3.08482021e-01 3.96826178e-01 -3.24141502e-01 -1.73197865e-01 2.84334302e-01 3.73841256e-01 -7.14693487e-01 8.83393064e-02 6.24461710e-01 1.39520204e+00 -9.84585702e-01 -1.22184843e-01 8.36251900e-02 -1.55227751e-01 -1.11653149e+00 5.55533648e-01 -1.09226131e+00 -1.84764285e-02 -3.30541402e-01 6.74271584e-01 7.37174153e-01 -4.47690576e-01 -1.43536022e-02 -5.36331274e-02 1.65672615e-01 7.70892203e-01 -9.16273534e-01 2.19785857e+00 -7.59577632e-01 7.99463749e-01 -1.59697667e-01 -1.13934338e+00 6.78421736e-01 2.04140805e-02 1.89687107e-02 -5.16829550e-01 -2.15808153e-01 5.26772216e-02 1.15429506e-01 -6.92754745e-01 8.26965809e-01 2.19075948e-01 -3.48218888e-01 3.12885344e-01 3.65388811e-01 -6.33532286e-01 4.76135731e-01 5.40305734e-01 1.24413657e+00 2.04992920e-01 1.90582350e-01 -4.52716649e-01 4.86179024e-01 4.92285758e-01 3.46641660e-01 8.13099205e-01 1.43274456e-01 5.91887414e-01 7.53056228e-01 -8.99069071e-01 -8.24856818e-01 -9.33416128e-01 6.24689125e-02 1.50174844e+00 -3.26955877e-02 -9.23407555e-01 -6.11420274e-01 -7.17039883e-01 6.09885193e-02 1.02518928e+00 -5.27396977e-01 -5.87567277e-02 -8.88511062e-01 -3.02851528e-01 1.00860095e+00 8.80945206e-01 3.12044084e-01 -9.61964846e-01 -1.55379921e-01 5.11499457e-02 -3.61608118e-01 -1.14374363e+00 -3.52064788e-01 1.81141332e-01 -7.42506921e-01 -1.20169628e+00 -2.72428039e-02 -1.06852782e+00 7.83812523e-01 -7.66361132e-02 1.80269563e+00 5.21483123e-01 -2.77954191e-01 2.75824547e-01 -3.78043085e-01 -4.52988058e-01 -5.49681902e-01 2.40407631e-01 -3.68462771e-01 -9.27180350e-01 4.46190804e-01 -1.46680415e-01 5.21679521e-02 -1.85129240e-01 -8.93806875e-01 2.69952565e-01 8.57068524e-02 6.55336201e-01 1.91432193e-01 1.46464348e-01 3.97724301e-01 -1.26003492e+00 5.19160926e-01 -4.65747029e-01 -1.01430893e+00 3.82261634e-01 -3.00159812e-01 3.00891280e-01 8.78219128e-01 -1.66375250e-01 -9.49139416e-01 -8.19047615e-02 -2.77196676e-01 -1.32027179e-01 -3.14522266e-01 8.60082328e-01 -3.28746438e-02 -5.05682081e-02 9.96802926e-01 -2.78026238e-02 -3.78415644e-01 -1.89290494e-01 5.73087037e-01 3.00255597e-01 7.32652366e-01 -1.39584494e+00 9.49912310e-01 -1.42859682e-01 -2.74346024e-01 -2.53900349e-01 -1.09291768e+00 -1.99784756e-01 -4.77374464e-01 4.00604278e-01 8.75354767e-01 -1.17503107e+00 -7.15583920e-01 1.87410846e-01 -1.59537995e+00 -9.06152546e-01 -3.29348713e-01 1.02435000e-01 -5.47924697e-01 1.20503463e-01 -9.32319939e-01 -4.95097429e-01 -4.25017059e-01 -1.54654920e+00 9.87805843e-01 7.57886097e-02 -6.20859742e-01 -1.08990109e+00 -7.03446046e-02 8.41308355e-01 4.69258845e-01 1.76260531e-01 1.46043777e+00 -6.84456229e-01 -1.05090189e+00 -1.02907233e-02 -4.71128464e-01 3.43866944e-01 -1.62061512e-01 2.99147032e-02 -6.59720421e-01 3.23597044e-02 -2.75036544e-01 -1.05063140e+00 7.03283608e-01 2.21750364e-01 1.83052468e+00 -4.63664949e-01 1.66456178e-01 7.25591600e-01 1.40374184e+00 -9.80797559e-02 6.87744617e-01 1.88260302e-01 6.42684579e-01 3.34232926e-01 5.91182649e-01 6.65806159e-02 5.86650193e-01 3.26533854e-01 4.22952652e-01 1.46872029e-01 -4.75399494e-02 -3.22730273e-01 3.79647195e-01 6.46360040e-01 8.97010490e-02 -3.94224524e-01 -1.42074358e+00 6.96368694e-01 -1.76493299e+00 -5.87698758e-01 -2.51140803e-01 1.70020342e+00 1.15252626e+00 6.13342226e-02 -3.63680674e-03 -3.06655854e-01 1.56120002e-01 1.15281060e-01 -2.78392613e-01 -7.33590364e-01 2.21386820e-01 8.88061345e-01 3.96226496e-01 6.68068349e-01 -1.11243975e+00 1.23799253e+00 6.36423016e+00 6.87948287e-01 -8.61595988e-01 -1.25125691e-01 4.21387076e-01 2.05390062e-02 -3.54492486e-01 -3.49831469e-02 -5.23449421e-01 1.98021472e-01 1.05999565e+00 -2.49472141e-01 9.28653002e-01 1.01598668e+00 -2.74557441e-01 2.00719461e-01 -1.71387291e+00 8.03722739e-01 3.50288674e-02 -1.71399975e+00 1.78423524e-01 -4.57629234e-01 6.09232187e-01 9.10625756e-02 7.84520656e-02 1.04810143e+00 7.11953878e-01 -1.63949907e+00 7.95024753e-01 2.41675958e-01 7.91862428e-01 -4.91074920e-01 6.37977242e-01 1.52466819e-01 -1.21503890e+00 -1.95290358e-03 -2.96285421e-01 -6.75111592e-01 -1.92617178e-01 1.59798656e-02 -6.64521039e-01 4.52150464e-01 5.21744072e-01 9.31424975e-01 -9.34843659e-01 7.39959538e-01 -5.18322647e-01 7.29246140e-01 -8.03846866e-02 -9.50239897e-02 3.59154433e-01 -3.13137472e-02 1.71650171e-01 1.21890879e+00 6.51201829e-02 3.94544035e-01 3.88946831e-01 1.68247223e+00 -4.28971887e-01 -2.38596722e-01 -5.70008695e-01 -6.36972010e-01 3.64161760e-01 1.21549749e+00 -2.78239578e-01 -4.86675858e-01 -5.50325215e-01 7.37436652e-01 7.92427003e-01 3.04805964e-01 -1.16481376e+00 -5.75083137e-01 8.28416526e-01 -1.34140491e-01 -1.19906768e-01 -3.60016406e-01 -6.99202776e-01 -1.47685897e+00 1.10652767e-01 -1.36003244e+00 7.96850383e-01 -9.68695223e-01 -1.20585155e+00 2.37307832e-01 1.44124880e-01 -4.65599090e-01 -2.03597564e-02 -1.08209383e+00 -5.63069820e-01 9.17367876e-01 -1.17215431e+00 -1.12578142e+00 -4.61617470e-01 1.70776099e-01 9.33880210e-01 -9.18923765e-02 1.03107822e+00 2.44620994e-01 -5.76921701e-01 7.80984819e-01 -5.09373069e-01 4.86060917e-01 6.13537252e-01 -1.59852314e+00 7.50978827e-01 8.90139639e-01 1.78303391e-01 1.04561126e+00 5.62340319e-01 -3.09965074e-01 -2.00618458e+00 -1.29704261e+00 6.20697200e-01 -1.07252753e+00 8.96761060e-01 -5.69788098e-01 -1.15684211e+00 1.41732061e+00 3.33384931e-01 -2.12527923e-02 5.77968061e-01 4.52942550e-01 -8.04039657e-01 1.53217793e-01 -1.12260532e+00 3.82089823e-01 1.01767933e+00 -6.68481886e-01 -1.01223016e+00 6.93839610e-01 1.40102625e+00 -1.11512947e+00 -1.03785169e+00 2.29824588e-01 1.08962215e-01 -3.42084706e-01 1.05400860e+00 -1.19481587e+00 1.12018299e+00 -2.87568837e-01 -2.16754839e-01 -1.17895925e+00 -2.54147381e-01 -6.12389222e-02 -2.86247075e-01 1.21259856e+00 5.29569447e-01 -5.68098247e-01 7.42110729e-01 1.05345404e+00 -3.87761533e-01 -7.21196651e-01 -3.77656877e-01 -6.41716957e-01 4.38879341e-01 -7.37408042e-01 7.63124645e-01 1.18125403e+00 2.55391687e-01 3.84500146e-01 1.77730888e-01 4.38090205e-01 2.14431614e-01 4.79285389e-01 9.07143354e-01 -7.75183022e-01 -6.39204860e-01 -5.54404020e-01 -3.96036744e-01 -1.15595317e+00 6.66526854e-01 -1.51025331e+00 -4.04440649e-02 -1.60252464e+00 1.58498719e-01 -4.47596431e-01 -9.00970120e-03 1.02328587e+00 -2.00334057e-01 -6.71730116e-02 9.66837183e-02 -3.28966171e-01 -6.45758986e-01 1.32011592e-01 7.82846570e-01 -5.08878231e-01 -3.31508778e-02 -4.34407920e-01 -9.28435683e-01 5.87354839e-01 8.82782519e-01 -2.34867111e-01 -4.63336259e-01 -1.41226232e+00 5.17810345e-01 4.27625738e-02 4.01438922e-01 -9.98265684e-01 1.92473903e-01 -4.56649750e-01 2.63823592e-03 -1.99689776e-01 1.75178960e-01 -5.30157745e-01 -2.87598789e-01 4.36798990e-01 -8.34394276e-01 3.17494929e-01 6.55322075e-01 1.65350080e-01 -1.90127924e-01 -4.37919378e-01 6.00525022e-01 -3.55057389e-01 -1.01735461e+00 3.72420698e-02 -1.34136021e-01 6.28195465e-01 8.40633154e-01 2.78486848e-01 -7.68421292e-01 -3.02322417e-01 -2.79730082e-01 6.38413012e-01 4.16587412e-01 5.36700189e-01 4.55391586e-01 -1.01450098e+00 -6.21117115e-01 5.61062992e-03 4.41886604e-01 5.17480314e-01 -1.58987027e-02 4.40917403e-01 -1.20575607e+00 7.20400035e-01 -1.41996548e-01 -2.99871832e-01 -1.21189165e+00 4.97895926e-01 3.36614281e-01 -4.09923613e-01 -3.70157003e-01 1.14994872e+00 3.19082409e-01 -1.29995775e+00 3.46943080e-01 -1.22169209e+00 1.99637517e-01 -6.82284176e-01 6.37526333e-01 1.77487254e-01 2.82403585e-02 -1.74504504e-01 -2.65743643e-01 1.37460858e-01 -8.90493467e-02 4.08249170e-01 1.57917714e+00 5.54177701e-01 -6.35549486e-01 1.69318333e-01 1.06244588e+00 -1.63233265e-01 -5.33803344e-01 -2.54221678e-01 1.03849791e-01 -5.23279786e-01 -1.10387094e-01 -1.02341044e+00 -9.23217714e-01 9.33160543e-01 3.82312387e-02 -1.63600191e-01 1.00264645e+00 1.33101568e-01 6.95865512e-01 1.04459178e+00 2.15752468e-01 -5.83672404e-01 2.10001722e-01 1.09285367e+00 9.43041205e-01 -1.31439376e+00 -8.57704654e-02 -5.97814083e-01 -4.39681977e-01 1.37065363e+00 1.27876282e+00 -2.52921373e-01 -6.02380782e-02 5.11703193e-01 -8.07640553e-02 -3.29303265e-01 -9.01165009e-01 -3.36039923e-02 4.25026298e-01 3.76742303e-01 8.24115276e-01 2.57624760e-02 5.06069362e-02 9.28979218e-01 -6.60805047e-01 2.00933665e-01 6.16350830e-01 9.00615275e-01 -1.39095187e-01 -9.49451745e-01 -1.27146661e-01 5.18795669e-01 -3.80691171e-01 -4.05865699e-01 -2.45267883e-01 7.07728684e-01 1.28190045e-03 7.05581129e-01 1.67621985e-01 -1.78052247e-01 4.23450410e-01 2.26297095e-01 6.95191801e-01 -1.10422361e+00 -7.19742358e-01 -9.70212042e-01 3.07347983e-01 -7.93712318e-01 1.73281282e-01 -1.92644522e-01 -1.54957974e+00 -4.59813625e-01 6.14174679e-02 9.69478954e-03 1.60822928e-01 6.59431875e-01 2.35726953e-01 7.59600580e-01 -2.01521292e-01 -3.36903065e-01 -5.78849018e-01 -6.84787095e-01 -4.02416550e-02 5.18873274e-01 1.92239299e-01 -8.60196576e-02 2.96692103e-02 1.87421620e-01]
[9.565014839172363, 7.45976448059082]
42760db1-cddc-4231-98bb-a12f9eb17789
multi-view-bangla-sign-language-mv-bsl
2302.11559
null
https://arxiv.org/abs/2302.11559v2
https://arxiv.org/pdf/2302.11559v2.pdf
Word level Bangla Sign Language Dataset for Continuous BSL Recognition
An robust sign language recognition system can greatly alleviate communication barriers, particularly for people who struggle with verbal communication. This is crucial for human growth and progress as it enables the expression of thoughts, feelings, and ideas. However, sign recognition is a complex task that faces numerous challenges such as same gesture patterns for multiple signs, lighting, clothing, carrying conditions, and the presence of large poses, as well as illumination discrepancies across different views. Additionally, the absence of an extensive Bangla sign language video dataset makes it even more challenging to operate recognition systems, particularly when utilizing deep learning techniques. In order to address this issue, firstly, we created a large-scale dataset called the MVBSL-W50, which comprises 50 isolated words across 13 categories. Secondly, we developed an attention-based Bi-GRU model that captures the temporal dynamics of pose information for individuals communicating through sign language. The proposed model utilizes human pose information, which has shown to be successful in analyzing sign language patterns. By focusing solely on movement information and disregarding body appearance and environmental factors, the model is simplified and can achieve a speedier performance. The accuracy of the model is reported to be 85.64%.
['Ibrahim Elwarfalli', 'Sohaib Abdullah', 'Md Mahedi Hasan', 'Md Nur Hossain', 'A. J. M. Akhtarujjaman Joha', 'Md Shamimul Islam']
2023-02-22
null
null
null
null
['sign-language-recognition']
['computer-vision']
[-1.60626695e-01 -5.82906783e-01 5.15642986e-02 -2.97380865e-01 -1.66746974e-01 -2.27728069e-01 4.26836491e-01 -7.62464046e-01 -4.28642482e-01 4.62602913e-01 5.52062511e-01 1.10395432e-01 -5.89965796e-03 -2.54583806e-01 -1.87879935e-01 -7.51506686e-01 1.64279819e-01 -3.96337286e-02 4.58356217e-02 -2.61784196e-01 2.27922544e-01 6.91889167e-01 -1.68849826e+00 1.49828810e-02 5.41871548e-01 7.35985696e-01 8.56178999e-02 5.32546937e-01 -1.80667281e-01 6.32792294e-01 -7.91467726e-01 -3.99573892e-01 5.72751984e-02 -5.00145137e-01 -2.56108671e-01 2.86394268e-01 6.51024997e-01 -6.99725568e-01 -4.84891713e-01 7.09631503e-01 8.97879601e-01 1.43938109e-01 4.86329794e-01 -9.39182937e-01 -7.13368297e-01 8.36884661e-04 -5.18041670e-01 -2.16895550e-01 4.78702754e-01 2.91167587e-01 5.84153891e-01 -7.30987728e-01 5.94676614e-01 1.20357895e+00 4.81546193e-01 8.31280529e-01 -5.76551020e-01 -7.15062797e-01 3.60038877e-01 3.86281341e-01 -1.31617737e+00 -2.22140849e-01 1.00682354e+00 -3.73262465e-01 8.35216820e-01 2.57489592e-01 1.03937411e+00 1.30876243e+00 -3.69217135e-02 1.04607141e+00 1.10983670e+00 -5.67373872e-01 -1.49994522e-01 -1.86830595e-01 3.07980329e-01 5.64374447e-01 2.17177153e-01 -1.88237682e-01 -6.29585564e-01 2.23121494e-01 6.07156157e-01 2.54042566e-01 -4.13878322e-01 -2.56214976e-01 -1.19472980e+00 3.17174792e-01 3.17338586e-01 5.13916254e-01 -2.94113576e-01 2.97288075e-02 2.50431955e-01 1.19449355e-01 -6.35964945e-02 -9.82419625e-02 -1.47859231e-01 -5.53508222e-01 -5.55188894e-01 3.63928229e-02 6.43157721e-01 6.28835380e-01 -2.27218956e-01 2.85775304e-01 -4.91609648e-02 1.05923963e+00 5.48178613e-01 9.83380258e-01 5.44300675e-01 -4.75621760e-01 4.84201103e-01 6.03360772e-01 -1.71621647e-02 -1.24148786e+00 -6.22015774e-01 -9.40987617e-02 -9.30340111e-01 2.94901192e-01 5.60825288e-01 -1.91607863e-01 -1.21368563e+00 1.76267159e+00 2.17566386e-01 -4.71386731e-01 -2.43119016e-01 1.32582629e+00 1.03218961e+00 2.27148518e-01 9.84859169e-02 -1.72279671e-01 1.28645730e+00 -7.12340176e-01 -1.00086987e+00 -4.55147624e-02 3.27877760e-01 -8.07503343e-01 1.03646803e+00 5.35775602e-01 -7.04013526e-01 -4.25854832e-01 -9.25714016e-01 -5.15532978e-02 -4.02556241e-01 5.35267293e-01 7.66826510e-01 8.26847970e-01 -8.11713219e-01 1.26905441e-01 -8.52008641e-01 -7.79189408e-01 1.35023504e-01 3.18649858e-01 -3.49947155e-01 -1.32167786e-01 -8.58419597e-01 8.80812287e-01 -1.79023668e-01 7.24272311e-01 -2.08986960e-02 1.78138372e-02 -6.99190021e-01 -3.84565294e-01 1.68133914e-01 -2.58464068e-01 7.86748290e-01 -8.43752682e-01 -1.78992569e+00 7.45105863e-01 -3.67665768e-01 3.93507451e-01 8.80632758e-01 -5.14105201e-01 -7.89781570e-01 -1.15461104e-01 -4.80101079e-01 4.01332378e-01 8.38970721e-01 -9.49103177e-01 -3.25081259e-01 -5.60183585e-01 -2.17871860e-01 2.64111906e-01 -4.04717207e-01 4.09427047e-01 -7.29830801e-01 -7.54591763e-01 4.08431679e-01 -1.02484608e+00 2.24592939e-01 2.66162395e-01 -1.25868022e-01 -6.60756603e-02 9.65751708e-01 -1.19805896e+00 1.17731297e+00 -2.11248016e+00 2.96213448e-01 3.68594140e-01 -2.45303959e-02 6.35700405e-01 4.31107683e-03 2.73992956e-01 3.78556371e-01 -2.62626708e-01 4.25787456e-02 4.47765645e-03 6.15627058e-02 3.39733332e-01 3.13774385e-02 4.87479478e-01 4.51573133e-02 8.74879181e-01 -5.26943386e-01 -3.30983847e-01 4.78607118e-01 8.08232248e-01 -4.03907478e-01 -1.71482414e-02 2.90857136e-01 6.54199600e-01 -2.98317522e-01 1.18449450e+00 4.94833678e-01 -5.83908148e-02 2.04176202e-01 -1.92016885e-01 -8.43437985e-02 -2.23182127e-01 -1.35518157e+00 1.28760660e+00 -2.94172943e-01 8.85014176e-01 1.15530521e-01 -7.58645177e-01 9.55761850e-01 3.64599377e-01 4.81516510e-01 -9.25564826e-01 4.99991208e-01 2.89467156e-01 1.04710825e-01 -1.00136387e+00 2.59000987e-01 6.68369234e-02 2.41530947e-02 3.90679300e-01 -3.16761404e-01 1.98347792e-02 1.31777421e-01 -2.62451977e-01 8.17828774e-01 6.98846728e-02 1.60178497e-01 2.53213555e-01 5.11936784e-01 -4.70464349e-01 4.23799992e-01 3.91483903e-01 -4.72975671e-01 5.55161774e-01 8.62999484e-02 -5.43118238e-01 -6.80362344e-01 -8.75663042e-01 1.18623644e-01 8.25598419e-01 1.51397511e-01 -5.21829873e-02 -2.48378530e-01 -3.27454537e-01 2.62591727e-02 1.72106311e-01 -3.38190645e-01 -9.05163679e-03 -7.48408139e-01 -7.17466533e-01 5.48969507e-01 8.37409317e-01 9.56355453e-01 -1.10144639e+00 -7.51413405e-01 -6.50302023e-02 -2.15135083e-01 -1.07136893e+00 -5.72310269e-01 -4.49283183e-01 -4.68281388e-01 -1.09748721e+00 -1.23820257e+00 -8.46969962e-01 8.41137826e-01 1.26158014e-01 3.97372842e-01 1.23296358e-01 -5.92520475e-01 6.17570817e-01 -6.04079783e-01 -3.18016738e-01 4.72521409e-02 -4.12276715e-01 2.24111453e-01 1.27291799e-01 6.86140299e-01 -2.37795398e-01 -4.50726271e-01 4.97139335e-01 -5.02333641e-01 4.42918539e-02 6.32930934e-01 9.68893290e-01 1.11349873e-01 -4.44413990e-01 1.00764804e-01 3.67977917e-02 7.05974042e-01 1.46203190e-01 -2.30220169e-01 4.44022536e-01 -5.09491600e-02 -2.74175167e-01 1.88768387e-01 -8.49762738e-01 -1.18241215e+00 -2.81574521e-02 -9.86630321e-02 -1.96044100e-03 -3.74385625e-01 1.21962994e-01 -3.54439914e-01 -3.72294426e-01 9.05042067e-02 3.24528396e-01 2.49469504e-01 -4.72012341e-01 1.05021991e-01 1.12816572e+00 5.55723846e-01 -2.60815769e-01 5.02369165e-01 4.35061306e-01 7.76301026e-02 -1.49385238e+00 -2.58590788e-01 -4.64858383e-01 -8.86127353e-01 -7.18100905e-01 8.45603228e-01 -5.28756738e-01 -1.03501904e+00 1.19253850e+00 -9.94279623e-01 -8.05919617e-02 3.33635241e-01 8.93473744e-01 -9.79625508e-02 5.15378416e-01 -4.26892340e-01 -1.06084013e+00 -1.17476195e-01 -9.68866646e-01 8.08092415e-01 3.57765019e-01 -4.29083616e-01 -5.42091966e-01 -1.70575947e-01 6.64609671e-01 4.73515958e-01 3.71769488e-01 4.65287834e-01 -1.53140202e-01 -4.46886748e-01 -4.72697705e-01 -3.67955774e-01 4.65431631e-01 4.75191414e-01 -4.73333476e-03 -7.60541439e-01 -2.43659347e-01 -3.74990344e-01 -5.20178318e-01 6.19044960e-01 2.15269402e-01 7.81494141e-01 -4.47628722e-02 5.18550957e-03 5.33576787e-01 7.37644911e-01 4.91268754e-01 4.89369780e-01 7.92646259e-02 9.30675805e-01 6.78125620e-01 3.00569326e-01 4.72867846e-01 3.98006916e-01 9.28126097e-01 -9.70370844e-02 -1.17834724e-01 -4.48511213e-01 -3.19149345e-02 3.75366539e-01 1.16103351e+00 -6.52214646e-01 -8.22579041e-02 -8.24435174e-01 3.91919971e-01 -1.65190041e+00 -1.00407434e+00 -1.02190129e-01 1.88873577e+00 4.87416476e-01 -3.75063688e-01 6.76721931e-02 3.08284760e-01 3.55023682e-01 1.38180912e-01 -4.85783011e-01 -4.02640551e-01 -3.06608409e-01 4.31852750e-02 2.51409918e-01 2.34513357e-01 -1.08311152e+00 7.85043895e-01 6.27385902e+00 3.11396778e-01 -1.71367002e+00 -2.33032495e-01 -5.14403321e-02 -3.73157918e-01 1.75086111e-01 -7.26135492e-01 -7.25106120e-01 4.86861736e-01 2.07079545e-01 3.29533070e-01 3.13907325e-01 5.98339617e-01 4.10487711e-01 -8.00756291e-02 -8.02900314e-01 1.29044294e+00 7.13807344e-01 -5.69138348e-01 1.45778731e-02 6.93947971e-02 4.66083944e-01 -2.09326431e-01 -4.00083624e-02 1.62696689e-01 -5.38566299e-02 -8.72471631e-01 6.20482147e-01 5.20045400e-01 7.60516942e-01 -3.58111888e-01 7.47487724e-01 2.60681570e-01 -1.18219709e+00 -1.30252182e-01 1.93439201e-01 -3.96731049e-01 4.63852763e-01 -1.80203527e-01 -4.21134084e-01 1.04378074e-01 6.95347607e-01 5.54176509e-01 -3.56650978e-01 1.05445302e+00 -4.39470798e-01 3.48710090e-01 -6.34917736e-01 -6.24783576e-01 -2.90785078e-02 -4.49041352e-02 4.58975554e-01 1.19242823e+00 4.97366428e-01 2.64079839e-01 1.13868120e-03 2.72364408e-01 2.85618812e-01 3.55093032e-01 -5.44691145e-01 -2.43459210e-01 -9.64457616e-02 6.90800607e-01 -6.29945815e-01 -5.25437221e-02 -6.65164053e-01 1.20872867e+00 -1.34136109e-02 5.69742441e-01 -5.73762894e-01 -1.84264243e-01 8.12027276e-01 -1.50436983e-01 2.52384692e-01 -6.40035391e-01 -2.23273158e-01 -1.37166321e+00 4.88007993e-01 -9.22360957e-01 2.71605432e-01 -5.75706184e-01 -9.28352654e-01 2.20301136e-01 -7.98887759e-02 -1.29037178e+00 -2.20930651e-01 -1.05365002e+00 -4.52893585e-01 6.94371581e-01 -1.14889801e+00 -1.47729838e+00 -6.19672418e-01 6.34800494e-01 5.66412032e-01 -1.79400414e-01 7.48115957e-01 5.94711781e-01 -6.53019845e-01 8.21594894e-01 1.72923207e-02 3.73676896e-01 6.11068726e-01 -6.99979305e-01 -6.46880195e-02 9.10089850e-01 1.94819242e-01 7.88679481e-01 4.92142916e-01 -6.19543672e-01 -1.47153354e+00 -4.45571244e-01 1.05491817e+00 -3.16935450e-01 4.23563689e-01 -1.37735590e-01 -6.04796886e-01 3.13847184e-01 -3.05071682e-01 -1.35686070e-01 5.96668303e-01 -2.20415387e-02 -2.77434230e-01 -5.06862439e-02 -8.95744681e-01 9.69861448e-01 1.33490467e+00 -3.64869148e-01 -6.44176841e-01 -1.39141958e-02 -2.83313487e-02 -5.61021030e-01 -3.99352461e-01 3.57613742e-01 1.40729940e+00 -6.90862477e-01 8.57470691e-01 -4.30961430e-01 4.00430635e-02 -1.89836293e-01 -2.92463243e-01 -9.22251523e-01 -8.00026804e-02 -3.55371892e-01 -1.61245257e-01 1.11446726e+00 4.86583002e-02 -6.79962933e-01 6.07782960e-01 1.11041856e+00 2.51530677e-01 -4.92039472e-01 -9.31654692e-01 -8.15530598e-01 -3.78113538e-01 -4.13311660e-01 4.44054037e-01 6.28433466e-01 1.56609878e-01 -2.94184208e-01 -9.63692546e-01 -4.20394503e-02 5.50266504e-01 1.34743884e-01 1.01127112e+00 -1.09009945e+00 -1.58307537e-01 -6.60705209e-01 -7.12373972e-01 -1.13730121e+00 -4.81265299e-02 -2.80247748e-01 -4.10910882e-03 -1.52799416e+00 3.88288349e-02 8.68573561e-02 -9.05731022e-02 4.89707559e-01 5.40738553e-02 3.68495584e-01 4.49105918e-01 1.74206853e-01 -2.85940766e-01 5.86302340e-01 1.52914286e+00 -2.37619177e-01 -2.49713242e-01 7.82372952e-02 -2.02018976e-01 9.45109487e-01 5.91226339e-01 3.22218269e-01 -9.10298675e-02 -5.54302871e-01 -1.84702039e-01 -3.18789333e-01 4.51252490e-01 -8.65142703e-01 2.86867261e-01 -1.60010472e-01 5.84958315e-01 -6.39580727e-01 6.33338332e-01 -8.38725328e-01 4.37219329e-02 6.56654775e-01 3.59013304e-02 -1.44014403e-01 9.50714797e-02 3.33852857e-01 -2.33685285e-01 3.38888109e-01 4.26648736e-01 -2.65409774e-03 -1.18834388e+00 -7.04526901e-02 -3.55651170e-01 -2.06647649e-01 9.47742641e-01 -5.78474581e-01 -5.61207756e-02 -5.53988099e-01 -6.64945841e-01 2.26375699e-01 1.93007350e-01 8.52953315e-01 7.08198130e-01 -1.42788744e+00 -3.93536478e-01 6.63577735e-01 2.88811892e-01 -3.50622296e-01 4.98742282e-01 9.13673997e-01 -6.48821473e-01 5.72370291e-01 -4.40815300e-01 -4.63620573e-01 -1.89512444e+00 -7.34273121e-02 2.90226936e-02 2.92044371e-01 -9.25323784e-01 7.99053609e-01 -3.01436812e-01 -2.88656622e-01 7.06437409e-01 -4.75157022e-01 -3.68612170e-01 1.18054092e-01 6.66180789e-01 4.09976661e-01 -2.62306452e-01 -1.12508810e+00 -6.22952640e-01 1.16963041e+00 2.12069169e-01 2.90730433e-03 1.02263236e+00 -1.30635351e-01 2.10081771e-01 3.17970276e-01 8.63148689e-01 5.78244589e-02 -1.09763825e+00 -2.34153047e-01 -3.29368412e-01 -6.85660243e-01 -1.08584404e-01 -9.32330906e-01 -1.03619576e+00 9.04272974e-01 6.15156889e-01 -5.22722721e-01 1.00654113e+00 -1.81076035e-01 8.74475062e-01 5.13113976e-01 5.08515298e-01 -1.40551734e+00 1.40482366e-01 5.25664449e-01 1.17528367e+00 -1.42173088e+00 3.52087687e-03 -3.69830243e-02 -6.72943115e-01 1.12855017e+00 5.57849586e-01 3.78925264e-01 6.82418585e-01 1.08327635e-01 5.81403852e-01 5.52072823e-02 -1.27915695e-01 -3.50546956e-01 6.25615656e-01 6.39186502e-01 5.10264874e-01 2.87988365e-01 -6.42061353e-01 5.28447807e-01 -2.33283117e-01 2.42096648e-01 9.34174880e-02 1.13528740e+00 -1.10153548e-01 -9.53308105e-01 -5.58738649e-01 2.39422768e-01 -2.37341598e-01 4.41157252e-01 -6.88511550e-01 8.62984002e-01 1.69744506e-01 8.29557538e-01 -2.40258574e-01 -5.36476731e-01 4.62447077e-01 1.99633151e-01 6.89073563e-01 -7.71263242e-02 -7.36093745e-02 2.04741582e-02 1.23148099e-01 -4.92295146e-01 -5.65743446e-01 -8.40158761e-01 -1.12839043e+00 -2.76334405e-01 -6.69510216e-02 -5.85836172e-01 7.55392134e-01 1.14727581e+00 9.92334168e-03 4.08647329e-01 6.79482669e-02 -9.95416701e-01 -6.09422565e-01 -1.05312812e+00 -6.12910628e-01 7.12670803e-01 3.13487232e-01 -9.37386453e-01 -1.78549543e-01 -4.95300023e-03]
[9.110786437988281, -6.412359714508057]
08dc308f-1046-46fa-9d33-bc6e3de38838
deep-template-matching-for-pedestrian
2011.06798
null
https://arxiv.org/abs/2011.06798v1
https://arxiv.org/pdf/2011.06798v1.pdf
Deep Template Matching for Pedestrian Attribute Recognition with the Auxiliary Supervision of Attribute-wise Keypoints
Pedestrian Attribute Recognition (PAR) has aroused extensive attention due to its important role in video surveillance scenarios. In most cases, the existence of a particular attribute is strongly related to a partial region. Recent works design complicated modules, e.g., attention mechanism and proposal of body parts to localize the attribute corresponding region. These works further prove that localization of attribute specific regions precisely will help in improving performance. However, these part-information-based methods are still not accurate as well as increasing model complexity which makes it hard to deploy on realistic applications. In this paper, we propose a Deep Template Matching based method to capture body parts features with less computation. Further, we also proposed an auxiliary supervision method that use human pose keypoints to guide the learning toward discriminative local cues. Extensive experiments show that the proposed method outperforms and has lower computational complexity, compared with the state-of-the-art approaches on large-scale pedestrian attribute datasets, including PETA, PA-100K, RAP, and RAPv2 zs.
['Jianmin Li', 'Pengyuan Ren', 'Jiajun Zhang']
2020-11-13
null
null
null
null
['template-matching', 'pedestrian-attribute-recognition']
['computer-vision', 'computer-vision']
[-2.07159638e-01 -2.18434244e-01 -1.30792439e-01 -6.88623667e-01 -4.48768675e-01 -1.89323872e-01 5.38292408e-01 1.30924091e-01 -3.26237112e-01 7.57874370e-01 2.25905493e-01 2.40127012e-01 1.61075532e-01 -8.68136764e-01 -8.68593514e-01 -7.70242453e-01 2.10565835e-01 5.39629638e-01 6.23362601e-01 -1.56184703e-01 7.85741583e-02 3.39484990e-01 -1.63547206e+00 8.18259567e-02 7.47675657e-01 1.22530711e+00 1.37640566e-01 1.36393175e-01 9.71108153e-02 3.73171896e-01 -4.07929033e-01 -8.90433252e-01 3.18871588e-01 -1.76084355e-01 -4.93494809e-01 2.50935584e-01 7.66479194e-01 -4.55404490e-01 -5.79281747e-01 9.51890409e-01 6.59366310e-01 1.75373018e-01 6.20462179e-01 -1.49310219e+00 -3.49350810e-01 1.86719552e-01 -8.07133675e-01 9.26703140e-02 5.08982778e-01 1.42812520e-01 6.87065899e-01 -7.93671370e-01 2.86294639e-01 1.46602166e+00 9.24096882e-01 3.99374187e-01 -7.21479475e-01 -7.51349986e-01 5.07793725e-01 6.76245213e-01 -1.55906606e+00 -3.17426562e-01 8.91094267e-01 -2.23096281e-01 4.67307687e-01 5.66790290e-02 1.06251585e+00 1.25128794e+00 8.13946202e-02 1.20614696e+00 1.05543911e+00 -2.84018777e-02 -1.08902864e-01 2.81740502e-02 4.82186116e-02 9.04683709e-01 4.21309739e-01 -1.33116096e-01 -2.55994409e-01 -1.83178976e-01 7.11636007e-01 2.12634802e-01 -1.61932275e-01 -7.62614965e-01 -1.10342824e+00 5.84882557e-01 5.25357723e-01 -3.04738522e-01 -4.15411085e-01 -3.64790075e-02 5.19623458e-01 -2.23429799e-01 1.93515942e-01 -1.37031868e-01 -4.99867350e-01 -4.42184582e-02 -6.08520865e-01 3.35931480e-01 4.13470715e-01 1.33154976e+00 7.04855382e-01 -2.53975213e-01 -3.05153936e-01 7.25607693e-01 4.95689958e-01 6.27381325e-01 7.81351328e-02 -7.28314698e-01 6.11970782e-01 6.60525143e-01 2.17359751e-01 -1.12292218e+00 -3.49895984e-01 -3.56959611e-01 -9.43150401e-01 -1.07697941e-01 5.84432840e-01 7.57442117e-02 -8.40409994e-01 1.58496177e+00 6.54789865e-01 2.69901216e-01 -1.44164160e-01 1.26958716e+00 8.59291136e-01 4.71313179e-01 5.42725921e-01 1.45057753e-01 1.63662994e+00 -1.11464596e+00 -5.70038557e-01 -3.16200435e-01 5.05252108e-02 -7.81682491e-01 8.53558362e-01 2.36132532e-01 -6.81076288e-01 -9.29416060e-01 -9.03959572e-01 7.53946453e-02 -3.77196491e-01 4.34344053e-01 9.01132107e-01 7.54548490e-01 -6.60356462e-01 2.88895458e-01 -5.34712255e-01 -8.04418802e-01 8.15772116e-01 2.89967626e-01 -5.54936826e-01 -1.83766097e-01 -1.16451037e+00 8.09167266e-01 2.76609540e-01 1.80476353e-01 -1.10085607e+00 -2.79521376e-01 -9.68605220e-01 -1.03658848e-01 4.30997878e-01 -9.23053622e-01 8.51947784e-01 -7.53503501e-01 -1.30999172e+00 9.69645262e-01 -2.34681368e-01 -4.38990593e-01 6.54822111e-01 -6.18515909e-01 -3.04937124e-01 9.41556767e-02 1.55314758e-01 8.83692563e-01 7.18807399e-01 -1.02759302e+00 -8.50246727e-01 -6.17714465e-01 1.14406869e-01 2.71761507e-01 -1.83583215e-01 1.49809197e-01 -7.77792513e-01 -6.23420000e-01 5.24471104e-02 -8.26514423e-01 -3.20127517e-01 3.60150605e-01 -4.84083652e-01 -3.79102588e-01 8.99291575e-01 -7.13109732e-01 9.18667734e-01 -1.92736053e+00 -1.48143336e-01 6.58252509e-03 5.16876616e-02 4.34153289e-01 2.11881071e-01 7.47660697e-02 2.50325859e-01 -2.28562027e-01 -6.62429258e-02 -2.76345640e-01 -7.69679574e-03 2.85438657e-01 2.21139938e-02 7.98344135e-01 2.15614304e-01 7.80574501e-01 -6.46267235e-01 -1.10277641e+00 3.67606670e-01 5.93348324e-01 -3.13816398e-01 3.30807388e-01 7.39045516e-02 3.53743434e-01 -8.22404623e-01 1.07100213e+00 9.49706614e-01 1.80820540e-01 -3.14550221e-01 -5.87324619e-01 -1.15443528e-01 -3.01358223e-01 -1.21956980e+00 1.64605761e+00 -3.42404880e-02 3.26541007e-01 6.51278645e-02 -1.12624884e+00 1.06240213e+00 1.79751396e-01 3.86542141e-01 -3.03668797e-01 2.55934089e-01 -1.40051678e-01 -2.43446097e-01 -5.93879938e-01 4.11201775e-01 3.03105235e-01 -1.07345469e-01 -3.45337182e-01 -4.95254286e-02 4.50554073e-01 -8.65520444e-03 -1.10012956e-01 5.58818042e-01 6.05484247e-01 6.71581030e-01 -3.47737879e-01 1.02775180e+00 -5.23281656e-02 1.00970662e+00 6.61935508e-01 -8.44667137e-01 7.07769275e-01 2.58231133e-01 -8.48965585e-01 -1.12864482e+00 -9.19076800e-01 -3.49550575e-01 9.47677910e-01 7.94683218e-01 -3.30299556e-01 -9.43289638e-01 -8.90396833e-01 -3.44000459e-02 2.60048509e-01 -6.55432642e-01 -1.25245869e-01 -7.57348716e-01 -7.10250020e-01 4.86332268e-01 7.96757817e-01 1.27117801e+00 -9.84668016e-01 -6.43048763e-01 1.85044348e-01 -4.91353810e-01 -1.33747518e+00 -4.83957887e-01 -4.05424118e-01 -7.14806080e-01 -1.15527070e+00 -1.04554367e+00 -6.74261272e-01 7.29882777e-01 2.78403908e-01 1.02733290e+00 -9.74418595e-03 -1.76096752e-01 3.32175076e-01 -3.70408505e-01 -4.65090632e-01 2.00140342e-01 -8.16815533e-03 1.75033316e-01 3.25395495e-01 6.29705608e-01 -2.71507084e-01 -9.41264808e-01 8.45110774e-01 -8.99803117e-02 1.94081832e-02 1.05607486e+00 8.41062367e-01 7.56918967e-01 -2.66473949e-01 3.20351899e-01 -4.79127437e-01 -1.69230141e-02 -2.97091126e-01 -4.62356925e-01 4.13943976e-01 -2.09079891e-01 -7.07478896e-02 6.29746854e-01 -3.65518481e-01 -1.19119656e+00 4.30075526e-01 -1.57530308e-01 -3.47012073e-01 -7.68630147e-01 -2.50865787e-01 -9.07239079e-01 -7.50973746e-02 2.01981008e-01 3.32062125e-01 1.69875901e-02 -5.66494465e-01 3.28658335e-02 5.50903082e-01 6.17933154e-01 -9.30283010e-01 6.83340013e-01 5.24478137e-01 2.74434716e-01 -5.83014429e-01 -8.96053016e-01 -6.41887307e-01 -8.09849441e-01 -4.24706191e-01 1.09039164e+00 -1.02851665e+00 -7.87814081e-01 6.40865982e-01 -1.09703195e+00 2.42382035e-01 1.78769395e-01 5.24368644e-01 -6.45196021e-01 6.93623126e-01 -3.55551451e-01 -6.66975796e-01 -4.07818407e-01 -1.26609516e+00 1.33770585e+00 4.99186516e-01 1.52818710e-01 -4.73313063e-01 -4.08976316e-01 4.77921426e-01 3.05367231e-01 3.22032958e-01 3.33024830e-01 -5.79376936e-01 -6.87788606e-01 -3.38369668e-01 -4.27820772e-01 -5.87211661e-02 -5.86994365e-02 -1.52299821e-01 -9.50860441e-01 -2.03963146e-01 -5.44380069e-01 -2.50136852e-01 7.42979467e-01 5.62072217e-01 1.32859468e+00 -1.60874262e-01 -7.43269920e-01 7.48462677e-01 1.04279828e+00 3.32454219e-02 7.43550003e-01 5.94478011e-01 7.27674842e-01 5.64356267e-01 1.25836039e+00 6.08475447e-01 5.84745944e-01 1.04683971e+00 4.50663835e-01 -2.06867844e-01 -1.76300049e-01 -3.20357084e-01 2.58105248e-01 2.43242756e-01 -5.05385399e-01 -1.42701745e-01 -5.87334454e-01 4.69872952e-01 -2.07755280e+00 -1.16563272e+00 -1.28871620e-01 2.25162339e+00 4.97675121e-01 1.64601415e-01 4.26609218e-01 -8.44002590e-02 1.09786808e+00 1.13577284e-01 -3.46230537e-01 8.64673480e-02 -2.80571550e-01 -1.99078172e-01 4.50204402e-01 5.98951653e-02 -1.85029936e+00 1.11166108e+00 5.08940363e+00 9.38350976e-01 -4.70171750e-01 1.82355996e-02 9.16616976e-01 5.59247732e-01 4.02028024e-01 -1.06422022e-01 -1.14277101e+00 6.74898922e-01 3.52874309e-01 1.91069081e-01 -1.89165011e-01 1.29960501e+00 4.50096168e-02 2.13096123e-02 -8.91909838e-01 1.12069309e+00 1.66079015e-01 -7.17903256e-01 1.42743349e-01 -1.17717035e-01 2.65640736e-01 -5.51783323e-01 -9.83302519e-02 3.94130677e-01 -4.61458936e-02 -8.28824818e-01 7.16743827e-01 7.33534276e-01 5.17822862e-01 -9.49559152e-01 1.20016158e+00 1.48757935e-01 -1.70397806e+00 3.98442857e-02 -9.37316000e-01 1.14655621e-01 2.33987018e-01 1.13890462e-01 -4.42366660e-01 6.31337702e-01 1.07026255e+00 7.36758709e-01 -7.54560709e-01 1.48370385e+00 -3.43442053e-01 5.62588155e-01 -3.75866652e-01 -8.82334560e-02 1.80663362e-01 -1.78383291e-01 4.26931769e-01 1.26443732e+00 3.12123924e-01 3.32332373e-01 5.80792189e-01 3.75862956e-01 3.11262578e-01 2.48871729e-01 -4.89846349e-01 7.16004908e-01 5.34051657e-01 1.32476568e+00 -5.92798948e-01 -4.80503201e-01 -6.25532925e-01 1.00403094e+00 2.12418273e-01 1.22665532e-01 -1.19810963e+00 -2.01405063e-01 9.06000674e-01 3.01194459e-01 4.76873726e-01 -1.64325431e-01 1.10424988e-01 -1.01061678e+00 1.11088201e-01 -7.47711599e-01 5.42482138e-01 -5.65263152e-01 -1.29205561e+00 4.33131129e-01 1.14194125e-01 -1.50198364e+00 -5.08260494e-03 -5.27670979e-01 -5.25639236e-01 7.13827550e-01 -1.38121569e+00 -1.65456843e+00 -9.80190575e-01 7.73776889e-01 6.84161365e-01 -2.44261920e-01 5.81343770e-01 4.57734913e-01 -6.62634075e-01 8.72484148e-01 -4.53599095e-01 4.33395445e-01 9.56933379e-01 -9.44810808e-01 3.79980236e-01 8.26032281e-01 -2.13877946e-01 5.31686842e-01 7.96766639e-01 -6.94582999e-01 -1.20753002e+00 -1.09760785e+00 4.79922682e-01 -5.13357103e-01 8.22250545e-02 -2.61012673e-01 -6.89511657e-01 4.33362573e-01 2.26685241e-01 3.45204234e-01 3.84301811e-01 -7.04889074e-02 -1.48089454e-01 -4.33768958e-01 -1.21229017e+00 4.11056876e-01 1.39351988e+00 8.49048719e-02 -6.12855494e-01 7.43735284e-02 3.68165135e-01 -4.12377208e-01 -7.07369983e-01 6.21282041e-01 5.59928417e-01 -8.50746632e-01 1.39167583e+00 -5.54051399e-01 1.68196052e-01 -6.26363993e-01 -2.69981176e-01 -9.14961398e-01 -5.78662992e-01 -1.85727075e-01 -1.15098208e-01 1.58564794e+00 -2.18272582e-02 -3.40004891e-01 9.74987090e-01 6.48368776e-01 -2.96748966e-01 -8.39609385e-01 -9.17933524e-01 -7.09456861e-01 -3.51166815e-01 -3.28141171e-03 7.64225185e-01 5.82248926e-01 -4.87207592e-01 8.67446437e-02 -7.10453808e-01 4.83441263e-01 1.10584068e+00 1.45918459e-01 1.10212576e+00 -1.27301514e+00 4.26941551e-02 -2.96484917e-01 -1.24350417e+00 -1.20973980e+00 3.13354954e-02 -1.99862644e-01 -1.33382827e-01 -1.53259420e+00 4.96126026e-01 -5.29756784e-01 -2.82216340e-01 4.75107759e-01 -6.00110531e-01 8.53866935e-02 -4.94366102e-02 1.29150376e-01 -9.53394949e-01 8.60536039e-01 1.02442110e+00 -2.98330694e-01 2.93315351e-01 2.57872105e-01 -3.61700982e-01 8.27473819e-01 9.07409132e-01 -1.88219815e-01 -1.76032469e-01 -7.69748762e-02 -4.77094173e-01 -1.17133573e-01 6.37429178e-01 -1.56291604e+00 3.05418462e-01 -7.20049515e-02 9.45251346e-01 -8.73856544e-01 6.07072949e-01 -1.01443601e+00 -7.27877691e-02 3.57717842e-01 5.24373613e-02 2.88354427e-01 4.73162159e-02 7.57141232e-01 -3.27744722e-01 4.13403362e-02 8.03573012e-01 -1.69919252e-01 -1.32245255e+00 7.32627392e-01 -1.48937166e-01 7.26629794e-02 1.31124234e+00 -4.24941242e-01 -1.21068284e-01 -3.84261340e-01 -3.30805123e-01 3.64024371e-01 4.06826824e-01 4.19012010e-01 7.16980040e-01 -1.40018952e+00 -7.84577012e-01 6.93760961e-02 2.45599464e-01 -1.20714374e-01 3.52904677e-01 8.10448766e-01 -4.36689943e-01 3.64342511e-01 -6.15283191e-01 -7.78291285e-01 -1.57778060e+00 8.93776596e-01 2.01885253e-01 1.66430935e-01 -7.64565587e-01 7.38034189e-01 5.04963994e-01 -1.47592366e-01 2.73237884e-01 1.29605055e-01 -5.77784121e-01 -1.60459727e-01 3.15749377e-01 3.70069444e-01 -3.91877770e-01 -1.08359218e+00 -7.08077312e-01 1.10811806e+00 -8.28388408e-02 4.27639514e-01 8.50876212e-01 -1.36014670e-01 2.67921716e-01 -3.35659891e-01 8.03004563e-01 -1.17510103e-01 -1.62397838e+00 -2.70419508e-01 -2.43934661e-01 -7.53247678e-01 -3.77244234e-01 -4.74092394e-01 -1.15027463e+00 9.50149179e-01 8.33517909e-01 -4.90300864e-01 1.08520925e+00 5.77313304e-02 8.79877567e-01 3.85020971e-01 7.82619178e-01 -1.15230286e+00 -1.55124724e-01 1.01178318e-01 6.61690414e-01 -1.51365960e+00 2.80562043e-01 -7.16820002e-01 -7.78515458e-01 1.10367334e+00 1.27964568e+00 5.55762798e-02 4.35206622e-01 -4.09464873e-02 -4.71384898e-02 6.19540513e-02 -2.51182705e-01 -2.97889203e-01 3.32157880e-01 8.53329301e-01 3.53089720e-01 1.17154069e-01 -3.39808434e-01 8.00002396e-01 -1.20068416e-01 -2.85382330e-01 8.06974918e-02 6.87643886e-01 -5.48091173e-01 -1.01392806e+00 -6.51778817e-01 2.89056689e-01 -4.07822013e-01 1.36554897e-01 -1.73302546e-01 1.05968595e+00 4.56405193e-01 7.89729178e-01 -4.52784188e-02 -3.38498622e-01 4.09602880e-01 -8.43505487e-02 4.29318696e-01 8.18221420e-02 -2.39499226e-01 -1.13952912e-01 2.43675262e-01 -8.36472213e-01 -5.73281348e-01 -9.92360055e-01 -8.27976227e-01 -2.64493227e-01 -1.54321641e-01 1.20737001e-01 2.00488985e-01 7.10417390e-01 3.55109394e-01 1.80503204e-01 2.79136777e-01 -8.27168465e-01 -3.25296402e-01 -9.16624069e-01 -8.15017968e-02 6.48434401e-01 -1.22841947e-01 -1.17638540e+00 1.76804677e-01 2.53004171e-02]
[14.423880577087402, 0.9708338975906372]
051f3e2c-3491-405a-93af-489c011d509f
accurate-method-of-temporal-shift-estimation
null
null
https://ieeexplore.ieee.org/abstract/document/8478431
https://www.researchgate.net/profile/Aleksandr-Ploshkin-2/publication/328082698_ACCURATE_METHOD_OF_TEMPORAL-SHIFT_ESTIMATION_FOR_3D_VIDEO/links/5bc20f40458515a7a9e71cf2/ACCURATE-METHOD-OF-TEMPORAL-SHIFT-ESTIMATION-FOR-3D-VIDEO.pdf
ACCURATE METHOD OF TEMPORAL-SHIFT ESTIMATION FOR 3D VIDEO
Video synchronization is a fundamental computer-vision task that is necessary for a wide range of applications. A 3D video involves two streams, which show the scene from different angles concurrently, but many cases exhibit desynchronization between them. This paper investigates the problem of synchronizing the left and right stereoscopic views. We assume the temporal shift (time difference) and geometric distortion between the two streams are constant throughout each scene. We propose a temporal-shift estimation method with subframe accuracy based on a block-matching algorithm.
['Dmitriy Vatolin', 'Aleksandr Ploshkin']
2018-06-03
null
null
null
3dtv-conference-the-true-vision-capture
['video-synchronization', 'video-alignment']
['computer-vision', 'computer-vision']
[ 3.90754938e-01 -6.41651034e-01 -1.56132663e-02 -1.55268550e-01 -6.16776310e-02 -6.68963015e-01 7.10670710e-01 -4.33621377e-01 -2.67221302e-01 3.92369092e-01 -7.15443864e-02 -1.20760456e-01 3.30359012e-01 -2.87215650e-01 -5.90068877e-01 -6.91145420e-01 -4.16751504e-02 -2.49806512e-03 9.16169524e-01 -9.86808315e-02 4.75165784e-01 4.80406284e-01 -1.50744724e+00 1.58047184e-01 1.46903574e-01 8.33882689e-01 5.33947408e-01 9.75396872e-01 3.38040739e-01 5.70761263e-01 -3.03978026e-01 -1.51887804e-01 6.35889292e-01 -5.38209736e-01 -4.93278980e-01 3.94574165e-01 6.69847131e-01 -5.51762760e-01 -8.28337908e-01 1.13856840e+00 2.70480335e-01 5.43996766e-02 8.74858424e-02 -1.58484685e+00 2.09092021e-01 -2.20265910e-01 -1.04356861e+00 6.97473526e-01 9.28053439e-01 -1.29762694e-01 2.62212723e-01 -4.74810660e-01 1.03038096e+00 9.35696602e-01 4.66118276e-01 3.16041678e-01 -1.02133989e+00 -7.07343280e-01 -3.93272042e-02 7.02827334e-01 -1.44606149e+00 -6.42061889e-01 8.33734095e-01 -4.78057563e-01 7.28466868e-01 1.50256574e-01 1.04504323e+00 5.59148788e-01 5.95128834e-01 2.20823199e-01 9.51423287e-01 -4.90225166e-01 -1.24489509e-01 -1.81193560e-01 -2.71951526e-01 2.36504257e-01 3.11751932e-01 3.06883126e-01 -8.81855488e-01 1.89483888e-03 1.24451554e+00 4.33304042e-01 -9.21673834e-01 -7.22786963e-01 -1.60518122e+00 1.60794869e-01 -3.53242725e-01 2.81370938e-01 -2.76640151e-02 3.98941562e-02 1.98892176e-01 5.14601529e-01 9.86245796e-02 -2.44990319e-01 -3.48620601e-02 -1.61056057e-01 -8.74000072e-01 7.04084113e-02 6.77922249e-01 1.57144797e+00 5.35344779e-01 -7.64039382e-02 5.17362356e-01 1.64706856e-01 2.41729379e-01 7.23285556e-01 3.78494442e-01 -1.12075365e+00 5.90860307e-01 6.56924322e-02 2.06788465e-01 -1.47566271e+00 -4.99972366e-02 2.54558980e-01 -9.45947468e-01 3.71406704e-01 4.74391997e-01 1.76275313e-01 -2.19538897e-01 1.42478216e+00 6.62941635e-01 6.95634067e-01 -1.26100838e-01 9.78051245e-01 5.45726299e-01 8.33167732e-01 -7.30401874e-01 -8.86121929e-01 9.06766713e-01 -6.16248131e-01 -1.00475705e+00 -5.10813370e-02 1.07133687e-01 -1.21693218e+00 1.03656396e-01 5.31991839e-01 -1.46593606e+00 -6.84207082e-01 -1.27522409e+00 2.29740217e-02 2.71156818e-01 -5.72779894e-01 -3.23961228e-02 2.98975736e-01 -1.14340127e+00 3.83423209e-01 -7.93889821e-01 -4.86662686e-01 -4.50835526e-01 2.70258397e-01 -6.98577404e-01 5.49682528e-02 -8.46724033e-01 8.18394303e-01 7.00419843e-02 -4.53158580e-02 -2.93773949e-01 -3.02411646e-01 -7.89723754e-01 -2.46934399e-01 2.17111573e-01 -8.02219927e-01 1.38966203e+00 -1.04461944e+00 -1.45751464e+00 1.39241731e+00 -6.02197230e-01 -1.76729500e-01 7.14572430e-01 -5.12255803e-02 -6.75508857e-01 3.50283533e-01 -2.25764606e-02 1.84575379e-01 1.05973029e+00 -1.09469008e+00 -1.05414021e+00 -3.97537649e-01 -1.52099073e-01 7.81184912e-01 2.95424700e-01 1.69630885e-01 -9.88742232e-01 -4.31684166e-01 6.21018767e-01 -9.96503592e-01 -2.29879189e-02 1.59641907e-01 -4.26256992e-02 4.64805812e-01 1.18330014e+00 -3.27016950e-01 1.23376691e+00 -2.11769629e+00 2.60174990e-01 -6.54551014e-02 1.97564840e-01 5.70349433e-02 3.74621809e-01 4.95109141e-01 -3.85702282e-01 -5.89617610e-01 3.41316372e-01 -9.98053476e-02 -7.25289464e-01 6.64382800e-02 -5.26037395e-01 1.20268953e+00 -7.35825896e-01 1.02164216e-01 -8.42717826e-01 -5.29947817e-01 5.07648885e-01 2.30809644e-01 -2.16476887e-01 4.76752311e-01 5.12984037e-01 7.98714459e-01 -1.78863257e-01 1.48071110e-01 1.09636509e+00 -1.04297623e-01 3.34493190e-01 -3.88301820e-01 -5.95506728e-01 -1.75510749e-01 -1.52034843e+00 1.61984861e+00 -1.76453918e-01 1.34061968e+00 1.57409906e-01 -7.07336128e-01 5.24762094e-01 6.08836532e-01 7.24146605e-01 -8.00864100e-01 1.72822535e-01 2.28417795e-02 -1.93170354e-01 -6.35304272e-01 4.55193728e-01 -1.11860819e-01 3.16156328e-01 5.30597389e-01 -3.24144602e-01 -4.56214398e-01 2.94768780e-01 2.19549984e-01 7.80574024e-01 -5.80951460e-02 8.18984926e-01 -2.00886294e-01 8.23093712e-01 -2.44916499e-01 7.24133193e-01 3.62225443e-01 -3.65270287e-01 1.04402077e+00 2.98555940e-01 -6.29230797e-01 -1.33009624e+00 -8.70516598e-01 5.60457669e-02 6.36353195e-02 1.14298093e+00 -4.81603295e-01 -3.55547190e-01 -8.92027542e-02 -2.15487689e-01 1.42479837e-02 -2.14474380e-01 2.15190396e-01 -9.10716832e-01 2.95100987e-01 -1.88969553e-01 1.74678907e-01 5.85394621e-01 -1.77320838e-01 -1.21018136e+00 -6.95889071e-02 -4.61472809e-01 -1.54937720e+00 -1.04837763e+00 -4.39289331e-01 -1.01215732e+00 -1.52462769e+00 -8.03507984e-01 -8.92880142e-01 7.61907697e-01 1.43017638e+00 1.07969642e+00 1.44480661e-01 -9.11568291e-03 6.65639579e-01 -5.62408790e-02 -5.44119328e-02 -3.62696499e-01 -7.43345261e-01 3.37729871e-01 9.97914523e-02 1.57926619e-01 -6.84046686e-01 -6.86544538e-01 1.04943025e+00 -8.81848633e-01 6.47926331e-01 -1.52718514e-01 3.95254821e-01 5.40024042e-01 4.27875742e-02 -4.76976424e-01 -3.34728390e-01 -6.72778040e-02 -4.39910889e-02 -1.13568676e+00 2.34210044e-01 -4.61203698e-03 -4.79787618e-01 5.45521200e-01 -3.70561182e-01 -1.01510227e+00 6.88620582e-02 5.52805185e-01 -7.10216820e-01 -1.03344712e-02 -3.17152441e-01 -2.23844871e-01 -2.05456361e-01 2.55139798e-01 2.58086473e-01 5.25731556e-02 4.22557257e-02 -1.10756755e-01 4.72730160e-01 6.45157576e-01 6.27921149e-02 8.22887599e-01 1.01274526e+00 3.87559205e-01 -1.15050185e+00 -2.97773868e-01 -9.56166089e-01 -9.90628123e-01 -6.28584683e-01 7.93308735e-01 -1.03864777e+00 -9.26521063e-01 6.70716345e-01 -1.48040509e+00 6.76511601e-03 1.70728654e-01 8.58661056e-01 -8.06113124e-01 8.30148697e-01 -1.56707436e-01 -2.68607289e-01 1.52185798e-01 -1.14490235e+00 9.87055719e-01 3.58975947e-01 -8.01303536e-02 -9.85245347e-01 5.11831880e-01 -1.17928497e-01 -2.82734707e-02 1.65545225e-01 3.90117057e-02 2.08095998e-01 -1.02893233e+00 -1.16536655e-01 -3.55351791e-02 -2.55058277e-02 2.60285944e-01 2.85092235e-01 -6.62903428e-01 -3.71203661e-01 6.83849216e-01 5.27202487e-01 8.27493146e-02 7.16945827e-01 6.59470916e-01 -6.81165233e-02 -4.98497367e-01 9.14092302e-01 1.57634497e+00 8.56599569e-01 5.54966390e-01 4.03553754e-01 4.94320154e-01 5.09960711e-01 6.03926182e-01 4.64361310e-01 1.13825470e-01 1.18922234e+00 1.84626505e-01 1.10521361e-01 7.77747063e-03 -3.85145098e-02 2.65216768e-01 1.05327976e+00 -3.08030814e-01 -3.35166872e-01 -8.23138058e-01 1.63716704e-01 -1.88921404e+00 -1.42452943e+00 -5.91893554e-01 2.66353488e+00 4.00581658e-01 -4.93441988e-03 -3.35052848e-01 1.34793028e-01 1.19346321e+00 3.81568253e-01 -3.83632779e-01 -1.02692254e-01 -1.17290854e-01 -4.89321351e-01 6.78048134e-01 4.91645306e-01 -8.54501545e-01 3.95558149e-01 7.27121687e+00 2.78902918e-01 -1.20765245e+00 -1.64293408e-01 2.28694424e-01 -9.52644870e-02 4.95003862e-03 3.34628463e-01 -7.14670062e-01 6.03210449e-01 3.85090709e-01 -8.35367441e-01 2.02272147e-01 3.72938573e-01 2.70321488e-01 -7.28799880e-01 -1.42085207e+00 1.71271288e+00 4.28235263e-01 -1.29648221e+00 -2.10337147e-01 6.62363460e-03 1.02819872e+00 -2.64995217e-01 -6.50644228e-02 -7.53092825e-01 -2.83755302e-01 -2.70705312e-01 7.72561610e-01 5.36180854e-01 9.37851727e-01 -4.04755920e-01 4.27828342e-01 3.23829293e-01 -1.49697900e+00 3.53506714e-01 -2.43726030e-01 -9.64008048e-02 8.20794940e-01 3.81426930e-01 -2.72815853e-01 5.68540633e-01 8.54308963e-01 1.05075741e+00 -7.64334500e-02 1.14534879e+00 7.02736527e-02 -1.88485548e-01 -2.81506270e-01 5.16147196e-01 -2.47119978e-01 -7.12044537e-01 8.48642290e-01 6.13433123e-01 7.39476800e-01 6.09471262e-01 -1.25134185e-01 -2.11261883e-02 3.81284595e-01 -4.16713595e-01 -1.27101493e+00 7.45929301e-01 4.21318471e-01 6.90537095e-01 -6.87272429e-01 -4.91967589e-01 -8.24743986e-01 1.23688602e+00 -5.31232476e-01 2.91957110e-01 -8.29777658e-01 -3.26604545e-01 6.20504498e-01 2.96921164e-01 1.72889799e-01 -6.85351789e-01 1.09588094e-01 -1.56986177e+00 2.70484854e-02 -5.48494995e-01 2.45931044e-01 -1.23170590e+00 -6.07653975e-01 3.12693477e-01 2.21598014e-01 -2.30766559e+00 -3.71639639e-01 -1.94479629e-01 -6.45846725e-01 6.58759594e-01 -1.34719110e+00 -4.87051785e-01 -6.33816540e-01 1.13100171e+00 7.92179704e-01 -7.98712596e-02 1.72285557e-01 2.17112422e-01 -1.53895512e-01 -7.44076967e-02 4.02403623e-01 -2.59950399e-01 1.10887706e+00 -8.05840313e-01 2.86875069e-01 1.18288887e+00 -7.94971883e-02 3.90149683e-01 1.07786500e+00 -4.33962882e-01 -1.44244516e+00 -4.63182718e-01 1.01231241e+00 -4.29062128e-01 4.80629623e-01 -5.01631312e-02 -5.43996811e-01 8.30911577e-01 7.35103130e-01 7.25288764e-02 3.70411307e-01 -6.67221010e-01 1.50223757e-04 -4.21341598e-01 -6.70029342e-01 7.15180993e-01 1.10978413e+00 -5.28462291e-01 -5.26237071e-01 1.53528839e-01 3.43263716e-01 -8.94121945e-01 -4.08154875e-01 3.29253934e-02 8.54395986e-01 -1.70895982e+00 9.69833493e-01 1.41074076e-01 1.97638094e-01 -6.13835514e-01 -2.55006939e-01 -9.82484400e-01 -8.02667812e-02 -1.19142890e+00 -8.68089274e-02 6.74084187e-01 -5.58581352e-01 -5.27723312e-01 6.41690969e-01 4.27853793e-01 2.67409325e-01 1.31019428e-01 -1.19357860e+00 -8.60165179e-01 -8.86389375e-01 -1.90815717e-01 1.37636378e-01 9.18659747e-01 3.37543637e-01 2.66833067e-01 -5.99201262e-01 3.24322581e-01 8.22085321e-01 3.41561973e-01 1.19797599e+00 -9.85342383e-01 -6.93813190e-02 -3.27438325e-01 -8.62187028e-01 -1.46279514e+00 -3.03284913e-01 -2.44698092e-01 -1.34666428e-01 -9.30959404e-01 1.51417315e-01 2.33619928e-01 3.02090764e-01 -6.11502230e-01 2.38006353e-01 -2.91651208e-02 2.06537157e-01 5.04088402e-01 -5.13397157e-01 3.13016236e-01 1.21640301e+00 3.81433815e-01 -1.07453674e-01 2.81393170e-01 2.41173327e-01 9.63355362e-01 3.81493568e-01 -2.69091547e-01 -5.82113445e-01 -7.93537796e-01 1.92794308e-01 8.12136054e-01 1.54406771e-01 -1.17141044e+00 8.95912111e-01 -2.43841931e-01 2.40140110e-01 -9.17657316e-01 4.26582813e-01 -1.42252171e+00 8.35976839e-01 5.46522737e-01 1.17884062e-01 9.07475114e-01 -4.82822098e-02 7.71601319e-01 -5.58269560e-01 -7.11008790e-04 9.30090368e-01 -8.82802606e-02 -7.91808069e-01 5.49310088e-01 -4.09016311e-01 -1.51419520e-01 1.55695248e+00 -8.08027804e-01 -1.12257585e-01 -6.62367702e-01 -4.33563828e-01 -6.41785637e-02 9.96038675e-01 2.77585894e-01 7.58656502e-01 -1.48140383e+00 -1.74575597e-01 6.67900681e-01 -8.73387381e-02 -1.04455166e-01 7.15724170e-01 1.04372394e+00 -1.09532988e+00 5.00646591e-01 -4.44540888e-01 -1.25611436e+00 -2.03459048e+00 5.59499562e-01 2.86520183e-01 1.02835253e-01 -7.29418159e-01 4.09671634e-01 5.10606110e-01 4.36107308e-01 1.72396004e-01 -4.71470244e-02 -1.28422946e-01 -1.26689464e-01 8.84121060e-01 6.85834527e-01 -2.13815346e-01 -9.70066845e-01 -2.90037692e-01 1.29848444e+00 2.23396838e-01 -5.13445079e-01 8.69558036e-01 -9.11377549e-01 -8.24670494e-02 5.92459500e-01 1.33964097e+00 1.30175561e-01 -1.39807487e+00 -3.99785131e-01 -4.71304983e-01 -1.32035005e+00 -2.51329929e-01 3.93943429e-01 -9.67233419e-01 8.91207397e-01 6.96076751e-01 4.20708835e-01 1.33455837e+00 -2.16665968e-01 6.37419164e-01 2.20583290e-01 7.06026137e-01 -1.02209103e+00 -1.72772944e-01 3.90300512e-01 6.98289096e-01 -1.09294367e+00 4.12280560e-01 -4.80606258e-01 -3.93700868e-01 1.46595418e+00 5.19291639e-01 -3.36119048e-02 7.51585007e-01 2.04833284e-01 3.87047161e-03 1.26636297e-01 -1.00301230e+00 1.68349758e-01 4.10248265e-02 6.84009135e-01 3.02089661e-01 -5.67971587e-01 -2.18374059e-01 -5.06588876e-01 1.68932155e-01 -1.98642120e-01 8.83021712e-01 1.13520634e+00 -2.30482832e-01 -9.40643966e-01 -7.51475513e-01 -4.23901439e-01 -5.81790246e-02 2.76206613e-01 8.08235034e-02 8.61073196e-01 -9.08479765e-02 8.74503672e-01 5.18049300e-01 -2.13577345e-01 5.35747826e-01 -5.58206797e-01 8.46164823e-01 -2.74530292e-01 3.65980752e-02 4.80318457e-01 -3.21669191e-01 -9.72575665e-01 -1.17477655e+00 -8.83386433e-01 -7.58637488e-01 -7.32935727e-01 -1.49052203e-01 -1.17610306e-01 4.41197097e-01 5.82480133e-01 1.83283374e-01 -2.34155729e-02 1.08527720e+00 -1.01636922e+00 9.32247341e-02 -2.58056581e-01 -8.63425970e-01 4.60250825e-01 7.28739142e-01 -4.28011179e-01 -4.45951730e-01 7.75792181e-01]
[9.135103225708008, -2.3803653717041016]
4f1f926f-7d7c-45d4-9f9f-5fdadb6cd60c
minimal-solutions-for-panoramic-stitching
2012.00465
null
https://arxiv.org/abs/2012.00465v1
https://arxiv.org/pdf/2012.00465v1.pdf
Minimal Solutions for Panoramic Stitching Given Gravity Prior
When capturing panoramas, people tend to align their cameras with the vertical axis, i.e., the direction of gravity. Moreover, modern devices, such as smartphones and tablets, are equipped with an IMU (Inertial Measurement Unit) that can measure the gravity vector accurately. Using this prior, the y-axes of the cameras can be aligned or assumed to be already aligned, reducing their relative orientation to 1-DOF (degree of freedom). Exploiting this assumption, we propose new minimal solutions to panoramic image stitching of images taken by cameras with coinciding optical centers, i.e., undergoing pure rotation. We consider four practical camera configurations, assuming unknown fixed or varying focal length with or without radial distortion. The solvers are tested both on synthetic scenes and on more than 500k real image pairs from the Sun360 dataset and from scenes captured by us using two smartphones equipped with IMUs. It is shown, that they outperform the state-of-the-art both in terms of accuracy and processing time.
['Zuzana Kukelova', 'Daniel Barath', 'Yaqing Ding']
2020-12-01
null
http://openaccess.thecvf.com//content/ICCV2021/html/Ding_Minimal_Solutions_for_Panoramic_Stitching_Given_Gravity_Prior_ICCV_2021_paper.html
http://openaccess.thecvf.com//content/ICCV2021/papers/Ding_Minimal_Solutions_for_Panoramic_Stitching_Given_Gravity_Prior_ICCV_2021_paper.pdf
iccv-2021-1
['image-stitching']
['computer-vision']
[ 3.92518759e-01 -1.80210084e-01 -5.32503501e-02 6.95060790e-02 -7.57499039e-02 -8.16897869e-01 6.82148457e-01 -5.66279590e-01 -5.08905470e-01 3.45703334e-01 -2.62412410e-02 -1.32011753e-02 2.56519198e-01 -4.43521976e-01 -8.82220030e-01 -5.71127117e-01 4.65813577e-01 4.20427114e-01 -1.22933030e-01 1.08300589e-01 3.77026439e-01 2.99671292e-01 -1.47049236e+00 -5.81658125e-01 5.99758387e-01 7.40012169e-01 6.85825646e-02 9.84646976e-01 7.40637064e-01 3.71901184e-01 -5.11601746e-01 -4.85140860e-01 7.08553970e-01 8.71559605e-02 -2.62547135e-01 9.17755783e-01 1.06578124e+00 -6.84649885e-01 -6.10927284e-01 1.13441765e+00 2.24888816e-01 -1.56434283e-01 1.76266462e-01 -9.41746056e-01 -1.20847292e-01 -4.01295424e-01 -1.00805020e+00 -7.73776546e-02 8.00891221e-01 5.63614219e-02 6.13916278e-01 -5.40628850e-01 8.42486382e-01 9.05679226e-01 6.63096130e-01 2.78043061e-01 -1.13920891e+00 -2.10285977e-01 -3.00393581e-01 5.24874367e-02 -1.41194141e+00 -6.35183752e-01 6.97809756e-01 -3.92428309e-01 5.78822732e-01 4.40140903e-01 8.97024751e-01 9.80261564e-01 2.18793243e-01 3.06296408e-01 1.08629739e+00 -6.45219862e-01 7.44660664e-03 2.47697726e-01 9.27008837e-02 2.85196930e-01 7.26883948e-01 -3.38042118e-02 -4.00328249e-01 -1.44015878e-01 1.12357891e+00 4.06473815e-01 -6.44777179e-01 -8.25886071e-01 -1.72401285e+00 4.86077666e-01 -7.92720988e-02 -2.34332662e-02 -3.09120476e-01 -4.23926488e-02 -1.56291217e-01 1.28737584e-01 1.23868048e-01 2.00438634e-01 -1.34291247e-01 -2.14477986e-01 -6.34270489e-01 1.97953984e-01 6.90687120e-01 1.25004804e+00 7.04066455e-01 -2.71438062e-01 6.47544861e-01 4.95192975e-01 1.81238115e-01 1.08815742e+00 4.89874035e-01 -1.00576997e+00 7.66312718e-01 3.84331703e-01 5.25385678e-01 -1.37202263e+00 -4.38682526e-01 -1.34457976e-01 -9.67579365e-01 -3.35210823e-02 7.88959742e-01 -3.36215287e-01 -3.61457109e-01 1.43437326e+00 4.21922922e-01 6.15013361e-01 1.82204217e-01 1.18531132e+00 -3.61518562e-02 3.86950135e-01 -1.10862684e+00 -2.75641859e-01 1.57111537e+00 -8.85717213e-01 -6.38238907e-01 -4.40226823e-01 3.35348994e-01 -1.18625689e+00 8.75044286e-01 7.84163594e-01 -7.84324527e-01 -4.96402800e-01 -1.18418300e+00 8.05059746e-02 1.65136501e-01 5.59910834e-01 3.03296655e-01 9.72784281e-01 -7.23807812e-01 2.61414081e-01 -9.87854719e-01 -5.03315389e-01 -4.85794455e-01 7.98321292e-02 -5.82565546e-01 -2.06557855e-01 -8.01559746e-01 6.14702940e-01 -5.35007827e-02 9.32302773e-02 -4.01209742e-01 -2.55291283e-01 -6.65331185e-01 -2.15422064e-01 5.70614338e-01 -7.90164769e-01 1.27492225e+00 -8.30771089e-01 -1.73458672e+00 8.04092646e-01 -1.44953147e-01 -5.04439890e-01 7.56295919e-01 -8.53012681e-01 -3.60000104e-01 4.71778363e-01 -5.52323684e-02 3.24907571e-01 1.30290389e+00 -1.03290093e+00 -3.70027333e-01 -4.98487383e-01 2.15445831e-01 7.85692453e-01 -5.00914752e-01 -2.02425450e-01 -8.20998311e-01 -3.57702106e-01 3.21267039e-01 -1.71575689e+00 -1.64112255e-01 -1.12634376e-01 -7.55773365e-01 6.96444809e-01 1.07151234e+00 -7.06209779e-01 7.75763094e-01 -2.15086627e+00 3.03565919e-01 2.41949454e-01 4.28722240e-02 1.13589548e-01 5.25166810e-01 9.58411694e-02 -1.66355576e-02 -4.39592242e-01 4.95804846e-02 -6.02256000e-01 -3.66201788e-01 2.24562451e-01 -3.26383024e-01 9.34636176e-01 -6.96883559e-01 3.40632617e-01 -6.67711198e-01 -1.19099341e-01 7.13131785e-01 4.90756094e-01 -2.57221401e-01 1.44454494e-01 3.63823801e-01 6.28245294e-01 -1.16990447e-01 3.36646616e-01 9.59385455e-01 -1.22045100e-01 4.23669517e-01 -1.21203199e-01 -2.26897717e-01 7.86724091e-02 -1.64830482e+00 1.62658262e+00 -4.94333357e-01 8.78689766e-01 1.25540271e-01 -5.21616042e-01 6.19344950e-01 4.52339470e-01 3.87473911e-01 -2.69023895e-01 1.15358293e-01 -7.36044049e-02 -3.86931151e-01 -1.69346109e-01 7.24768937e-01 3.60007942e-01 1.37877002e-01 4.56185669e-01 -3.28990251e-01 -4.54847097e-01 2.04482958e-01 1.52203012e-02 5.83989203e-01 -1.77937910e-01 4.23195183e-01 -1.41071662e-01 5.85648894e-01 -3.86846989e-01 3.35056543e-01 4.54597265e-01 2.14221105e-01 1.11916924e+00 3.21293056e-01 -4.68460321e-01 -1.32015502e+00 -8.00875366e-01 -1.12708002e-01 -2.29830444e-02 4.82756704e-01 -6.88515902e-01 -1.11918759e+00 -2.14630105e-02 -3.17591697e-01 3.34660262e-01 -2.76182860e-01 2.05443904e-01 -5.26375771e-01 -7.23174036e-01 1.31819621e-01 2.22270805e-02 7.79904068e-01 -1.07049383e-01 -1.23244357e+00 -9.48568508e-02 -3.52931231e-01 -1.56819093e+00 -6.29604578e-01 -6.80877745e-01 -8.34290922e-01 -1.44912231e+00 -1.07323098e+00 -5.85093349e-02 9.62396920e-01 1.18583727e+00 9.23287392e-01 -1.86309487e-01 -4.15148698e-02 9.22488987e-01 -7.71177337e-02 1.04317106e-01 1.10280171e-01 -2.07390115e-01 5.45656621e-01 3.57727826e-01 -2.41759662e-02 -4.56965357e-01 -7.37343192e-01 7.97418177e-01 -9.39740360e-01 5.14333606e-01 3.14919591e-01 4.67773020e-01 4.22715724e-01 2.48333350e-01 -7.25540102e-01 -4.15559649e-01 7.03380164e-03 2.57014632e-02 -1.01776779e+00 1.20191656e-01 -3.60343158e-01 -4.45162386e-01 5.38657784e-01 -4.89377111e-01 -9.31134284e-01 2.04417944e-01 5.70826530e-01 -5.12898624e-01 -1.80513501e-01 -6.11549355e-02 -1.54566839e-01 -1.96539551e-01 4.05605197e-01 1.51824027e-01 -1.41558908e-02 -4.25334215e-01 3.34418476e-01 7.56804228e-01 8.89382780e-01 -2.72018254e-01 9.77515519e-01 9.64039445e-01 1.54152542e-01 -1.53957534e+00 -4.14778441e-01 -5.92346966e-01 -8.19029748e-01 -2.23710224e-01 7.66048014e-01 -1.08449948e+00 -6.29053295e-01 1.28999603e+00 -1.14651644e+00 9.90846083e-02 7.92383924e-02 8.53241801e-01 -5.17127156e-01 9.06610370e-01 -3.91145229e-01 -5.15900314e-01 -2.19040066e-01 -1.23213947e+00 1.27615702e+00 4.86856878e-01 -6.42026123e-03 -8.60786498e-01 2.28306070e-01 5.16581237e-01 4.51170988e-02 2.11685449e-01 -2.63161473e-02 2.53396034e-01 -5.94224095e-01 -5.40400326e-01 2.11944487e-02 3.49406630e-01 1.84826717e-01 2.17703253e-01 -7.25386560e-01 -4.33345109e-01 4.13535237e-01 2.19389841e-01 2.34759122e-01 4.38985586e-01 5.69866061e-01 -5.41984916e-01 -3.54628354e-01 9.00569737e-01 1.34987807e+00 -1.22831330e-01 7.67971992e-01 4.90919262e-01 8.60712647e-01 4.49632794e-01 4.36177880e-01 5.49837112e-01 4.60277587e-01 1.29906631e+00 4.22079712e-01 2.40414158e-01 2.37840891e-01 -7.02135563e-02 4.77260202e-01 5.45131624e-01 -4.18003827e-01 -1.43280879e-01 -6.71643257e-01 1.60813645e-01 -1.62309563e+00 -5.89923918e-01 -4.04257476e-01 3.02120662e+00 2.37065747e-01 1.04680151e-01 5.12035750e-03 3.02672684e-01 1.00941539e+00 2.52803206e-01 -2.34220117e-01 1.10355683e-01 -2.55080074e-01 -5.31694651e-01 9.56721306e-01 7.17433333e-01 -1.07881367e+00 5.09712338e-01 5.56372547e+00 2.25376412e-01 -1.38065886e+00 -2.11060241e-01 3.35932732e-01 -1.39669269e-01 2.36540020e-01 2.77743071e-01 -9.11004305e-01 6.23214245e-01 7.92645872e-01 -2.61019971e-02 6.68761730e-01 8.07443798e-01 -1.03589140e-01 -4.38734442e-01 -7.82955348e-01 1.38120878e+00 3.02485436e-01 -9.82007027e-01 -4.10065532e-01 4.53570008e-01 9.70428884e-01 -6.08107857e-02 1.10906594e-01 -6.34996295e-01 -1.37142912e-01 -3.99342477e-01 7.02972114e-01 5.59986532e-01 7.68738091e-01 -4.29639310e-01 6.95985615e-01 3.43915552e-01 -9.69784200e-01 3.00252497e-01 -6.03575468e-01 -4.33939636e-01 4.30570453e-01 7.86087453e-01 -6.70099676e-01 7.59323537e-01 6.43371165e-01 8.69933367e-01 -6.36141002e-01 7.49938726e-01 -4.22199011e-01 2.98828363e-01 -8.82368207e-01 5.46757519e-01 -1.17079116e-01 -9.63773370e-01 7.58577228e-01 5.71889937e-01 8.02994609e-01 4.18881476e-02 -2.32609078e-01 -1.27300443e-02 3.10723454e-01 -2.79464930e-01 -7.30018377e-01 4.39011127e-01 2.55355775e-01 1.25862908e+00 -7.15163708e-01 -4.78026301e-01 -6.74782276e-01 1.12737703e+00 -4.69284743e-01 3.13493520e-01 -6.99875534e-01 -1.87080309e-01 8.04948330e-01 2.66999334e-01 1.43476784e-01 -6.56467557e-01 -4.88244332e-02 -1.86935508e+00 3.46783072e-01 -9.81824458e-01 -1.06804445e-02 -9.20420706e-01 -4.77269113e-01 3.78562212e-01 9.03246924e-02 -1.67023218e+00 -4.54803616e-01 -7.25891471e-01 -4.87945348e-01 4.64429349e-01 -9.57717896e-01 -8.94247770e-01 -5.85249245e-01 7.84808695e-01 6.90692216e-02 6.63630441e-02 5.39892018e-01 1.67116612e-01 -5.30294180e-01 2.11557373e-01 4.78079110e-01 -6.76247999e-02 8.44138622e-01 -1.05750060e+00 6.15352750e-01 1.15500975e+00 4.52013999e-01 6.76608920e-01 1.00082183e+00 -2.79710740e-01 -1.81236255e+00 -5.67477703e-01 7.50235140e-01 -5.34564793e-01 3.85611266e-01 -5.44789314e-01 -3.83317620e-01 9.40578640e-01 1.56888232e-01 -3.48405875e-02 2.24913299e-01 -3.81246537e-01 -9.87481251e-02 -2.28488192e-01 -8.12246859e-01 6.83477938e-01 7.29620814e-01 -3.23866516e-01 -4.89706248e-01 5.14574111e-01 2.87512720e-01 -8.96263897e-01 -4.37100798e-01 3.01299710e-02 7.96018183e-01 -1.34939861e+00 1.25906396e+00 2.10270777e-01 -1.01380408e-01 -4.02979374e-01 -2.53853172e-01 -1.14490902e+00 2.44615078e-01 -1.05676603e+00 -1.74911261e-01 8.59062314e-01 -3.95251185e-01 -8.91554058e-01 7.97443986e-01 5.16405165e-01 4.16276067e-01 -1.60309017e-01 -9.69871044e-01 -6.54327154e-01 -6.57537937e-01 -3.84689093e-01 5.01271784e-01 7.15592206e-01 -9.88647491e-02 4.34641957e-01 -1.06902015e+00 5.16328216e-01 8.17112744e-01 3.39862928e-02 1.55609572e+00 -1.10599351e+00 -4.86889124e-01 -8.91490653e-02 -6.61236703e-01 -1.70231366e+00 -2.31749579e-01 1.58595115e-01 -6.00306690e-01 -7.65745521e-01 -3.91097590e-02 3.12884934e-02 5.44524491e-01 -1.97300121e-01 -8.31398666e-02 3.68322641e-01 2.61372745e-01 4.24302548e-01 -2.09021315e-01 2.74303198e-01 8.16830814e-01 1.89722329e-01 -1.82295397e-01 4.38329965e-01 -2.51101762e-01 1.17786205e+00 5.15685797e-01 -9.54132602e-02 -2.78805226e-01 -5.84385216e-01 5.19561827e-01 3.43831629e-01 6.19444847e-01 -1.45315635e+00 2.39437595e-01 -3.09845270e-03 3.70606691e-01 -6.37122989e-01 7.42973387e-01 -1.09424579e+00 5.41648090e-01 4.28105354e-01 2.50542194e-01 3.61546963e-01 -1.50157005e-01 4.66848463e-01 -7.96480924e-02 -1.75691813e-01 5.78770936e-01 7.17050135e-02 -2.51940012e-01 7.07067847e-02 -3.31771612e-01 -3.93284589e-01 1.00963271e+00 -3.72075438e-01 -3.79755974e-01 -8.88411343e-01 -2.20317453e-01 -2.05774635e-01 1.24431813e+00 2.74770170e-01 4.47390199e-01 -1.27001739e+00 -3.34283620e-01 4.63702977e-01 -8.37253258e-02 1.63537174e-01 3.68841946e-01 1.04600358e+00 -8.22377443e-01 7.05774069e-01 -1.39263570e-01 -1.00649107e+00 -1.52751076e+00 6.12835467e-01 2.07625732e-01 -2.11478740e-01 -6.89551532e-01 2.75001854e-01 3.19828898e-01 -4.16549832e-01 -1.78814277e-01 -3.67366910e-01 -1.03827469e-01 -2.67607301e-01 6.30996108e-01 6.47186279e-01 7.88251683e-02 -1.09440339e+00 -2.49869674e-01 1.40700519e+00 1.18747286e-01 -4.27583009e-01 8.07581663e-01 -5.97860098e-01 1.27639532e-01 1.58274509e-02 9.29078937e-01 5.53391814e-01 -1.55943596e+00 -3.02560240e-01 -4.26306456e-01 -1.01408815e+00 -3.63964260e-01 9.64318216e-02 -1.06116283e+00 8.65574777e-01 5.91500819e-01 8.77959281e-02 1.03481936e+00 -3.95469606e-01 6.22124493e-01 6.20397031e-01 4.57457840e-01 -7.90846050e-01 -1.34191304e-01 2.57428974e-01 4.83152092e-01 -9.59832966e-01 3.38829964e-01 -5.16572118e-01 -5.41746795e-01 1.18387926e+00 2.32701704e-01 -3.88569295e-01 3.16789925e-01 -8.66012275e-02 1.76078886e-01 3.12285393e-01 -2.58532822e-01 3.86681885e-01 2.54538029e-01 3.98101836e-01 1.28698751e-01 1.43078923e-01 -4.17628251e-02 -2.61863351e-01 -5.56096494e-01 -2.80814201e-01 1.03858078e+00 8.25510323e-01 -1.81732550e-01 -8.64232302e-01 -1.16382015e+00 -4.39359732e-02 -3.97110820e-01 1.60514832e-01 -2.36918285e-01 8.39909017e-01 -1.47118494e-01 1.05781353e+00 2.62248784e-01 -2.46713698e-01 2.84700066e-01 -4.88628775e-01 6.15613341e-01 -1.17486686e-01 2.73143172e-01 1.98162898e-01 -1.20533384e-01 -4.30626988e-01 -4.48271126e-01 -9.56106722e-01 -4.05292004e-01 -4.98057723e-01 -3.30101371e-01 4.09208722e-02 6.82394445e-01 7.65508890e-01 1.90986007e-01 -1.93607435e-01 8.67592335e-01 -1.24895418e+00 -4.90271807e-01 -9.78209674e-01 -6.37130141e-01 3.85318637e-01 4.27278310e-01 -5.17100751e-01 -5.39544344e-01 3.50893676e-01]
[8.063968658447266, -2.2695741653442383]
24367a40-1eff-4812-aa48-a03cfa4adffd
interactiveie-towards-assessing-the-strength
2305.14659
null
https://arxiv.org/abs/2305.14659v1
https://arxiv.org/pdf/2305.14659v1.pdf
InteractiveIE: Towards Assessing the Strength of Human-AI Collaboration in Improving the Performance of Information Extraction
Learning template based information extraction from documents is a crucial yet difficult task. Prior template-based IE approaches assume foreknowledge of the domain templates; however, real-world IE do not have pre-defined schemas and it is a figure-out-as you go phenomena. To quickly bootstrap templates in a real-world setting, we need to induce template slots from documents with zero or minimal supervision. Since the purpose of question answering intersect with the goal of information extraction, we use automatic question generation to induce template slots from the documents and investigate how a tiny amount of a proxy human-supervision on-the-fly (termed as InteractiveIE) can further boost the performance. Extensive experiments on biomedical and legal documents, where obtaining training data is expensive, reveal encouraging trends of performance improvement using InteractiveIE over AI-only baseline.
['Jordan Boyd-Graber', 'Benjamin Van Durme', 'Andrew Blair-Stanek', 'Francis Ferraro', 'Aparna Garimella', 'Anandhavelu N', 'Michelle Yuan', 'Ishani Mondal']
2023-05-24
null
null
null
null
['question-generation']
['natural-language-processing']
[ 6.69187367e-01 8.58274817e-01 -3.26019108e-01 -5.00285804e-01 -1.35059130e+00 -7.02182531e-01 8.47426474e-01 7.38223940e-02 -4.29515094e-01 9.65582490e-01 3.41329634e-01 -5.95299482e-01 -1.17386103e-01 -7.98944235e-01 -9.64863718e-01 -1.64763872e-02 4.75969791e-01 1.03538322e+00 4.35181946e-01 -4.91814584e-01 -1.16729438e-02 -1.88738644e-01 -1.27843380e+00 7.64522254e-01 1.08643842e+00 6.49885476e-01 1.49623742e-02 4.25460756e-01 -4.96547788e-01 6.83190286e-01 -7.07293391e-01 -5.90075016e-01 3.97407711e-01 -4.53117013e-01 -1.19448471e+00 3.15249175e-01 3.64602059e-01 -1.21326759e-01 3.88941146e-04 7.11120069e-01 1.02426417e-01 -2.19450518e-01 6.94591761e-01 -1.04994953e+00 -2.42131755e-01 6.67045176e-01 -7.72442967e-02 8.30911323e-02 7.63977110e-01 2.61667930e-02 1.26341522e+00 -7.65021145e-01 1.12889838e+00 1.03875709e+00 3.84143770e-01 5.94528198e-01 -1.34632611e+00 -5.15986681e-01 4.35866751e-02 -1.14359744e-02 -1.09123909e+00 -7.56799102e-01 6.10618949e-01 -2.18442202e-01 1.00515568e+00 2.51842707e-01 1.55997515e-01 1.16965950e+00 -4.13572080e-02 1.00023448e+00 8.71081829e-01 -7.19399691e-01 9.99858826e-02 4.62479889e-01 3.65938842e-01 5.08762121e-01 4.28772420e-01 -3.03656280e-01 -5.55653095e-01 -3.34246337e-01 4.84078318e-01 -3.77941161e-01 -2.92091936e-01 -3.08627814e-01 -1.14171457e+00 8.15098405e-01 -2.04786938e-02 1.61591306e-01 -3.59065354e-01 -3.02242726e-01 2.68705517e-01 5.76188445e-01 2.46786550e-01 9.94831562e-01 -7.92469919e-01 -3.08969710e-02 -1.10019147e+00 5.19066632e-01 1.08586979e+00 1.27299058e+00 9.22467887e-01 -4.80816901e-01 -2.29616627e-01 7.11322069e-01 -7.33943731e-02 3.34686041e-01 3.13736975e-01 -8.43111873e-01 9.06771362e-01 8.57364357e-01 5.18559217e-01 -5.26591182e-01 -3.73104483e-01 -1.80988207e-01 -2.52996773e-01 -3.59396011e-01 1.07084167e+00 -4.48301077e-01 -1.17558384e+00 1.58946538e+00 4.72576201e-01 -3.01714480e-01 1.72301725e-01 6.27735257e-01 6.59353256e-01 4.96604353e-01 6.77375793e-02 -6.04320597e-03 1.68239295e+00 -6.90317929e-01 -8.05625439e-01 -7.06294537e-01 7.92779863e-01 -5.43533683e-01 1.30080354e+00 4.18556660e-01 -8.44149292e-01 -8.82126540e-02 -9.98405755e-01 -2.49657229e-01 -2.86652118e-01 6.23114116e-04 6.94910645e-01 5.71859777e-01 -5.35890520e-01 1.37137294e-01 -5.38115501e-01 -3.61380935e-01 3.08207512e-01 2.35632971e-01 -4.74618971e-01 -2.51933396e-01 -1.41367090e+00 7.79074430e-01 3.31334502e-01 -3.95740658e-01 -6.61252320e-01 -8.39298964e-01 -8.63750219e-01 -9.77823511e-03 1.19745445e+00 -8.36384773e-01 1.49767280e+00 -7.96903849e-01 -1.06504047e+00 8.71555746e-01 -5.10123909e-01 -4.13722485e-01 2.87939787e-01 -2.82568455e-01 -1.06304124e-01 9.71469730e-02 3.06324422e-01 6.75041914e-01 7.44520545e-01 -1.18546641e+00 -5.07567644e-01 -2.58222967e-01 4.76410270e-01 1.00731403e-01 -7.54388347e-02 7.62269720e-02 -7.03451335e-01 -3.17332774e-01 5.88053092e-03 -7.18824089e-01 -2.42345378e-01 -3.27936500e-01 -5.48339069e-01 -5.58648705e-01 3.97581309e-01 -7.33929396e-01 1.16654360e+00 -1.84365463e+00 -4.03601915e-01 3.72069031e-01 7.96291307e-02 9.82707366e-03 -1.62508562e-01 5.27482629e-01 -4.91352081e-02 2.33001754e-01 -2.63108760e-01 1.90375000e-01 1.75503448e-01 2.23826304e-01 -4.94886845e-01 -2.22662270e-01 4.00928736e-01 8.88098836e-01 -8.52278531e-01 -8.35651338e-01 -4.70608115e-01 -5.49959093e-02 -9.55608785e-01 2.14683160e-01 -1.05566549e+00 -1.47975292e-02 -7.51330376e-01 5.49133956e-01 2.42732540e-01 -5.58013797e-01 4.42597717e-01 -8.96627381e-02 3.62631798e-01 1.00206935e+00 -1.13925683e+00 1.67994010e+00 -3.86664420e-01 3.89835954e-01 -5.77461980e-02 -9.33733642e-01 6.22200668e-01 5.98594368e-01 2.80519515e-01 -7.75961936e-01 -8.00314620e-02 1.01238675e-01 1.22229792e-01 -4.48319256e-01 4.85201001e-01 -2.11891502e-01 -2.85996675e-01 8.09311390e-01 5.47355227e-02 -2.61353791e-01 5.46271563e-01 4.49767619e-01 1.47074664e+00 -1.83602609e-02 2.06564978e-01 -1.06621683e-01 2.43411303e-01 6.29092693e-01 7.55530775e-01 8.74650598e-01 2.79570669e-01 5.61403036e-01 6.91630423e-01 -2.41533995e-01 -9.68579412e-01 -8.19386244e-01 -2.11478665e-01 1.01107812e+00 -2.19763324e-01 -5.74784458e-01 -9.92537737e-01 -1.15424037e+00 -1.82781845e-01 9.80949044e-01 -5.68391085e-01 2.25473791e-01 -6.27174258e-01 -6.20145977e-01 3.83047044e-01 3.75939280e-01 1.76899612e-01 -1.15749991e+00 -5.57624757e-01 5.64995944e-01 -5.54612517e-01 -1.34977055e+00 -4.92148191e-01 3.01977456e-01 -5.78272343e-01 -1.15632927e+00 -3.74077827e-01 -4.54448193e-01 8.21033001e-01 -5.27241603e-02 1.65374291e+00 8.77702162e-02 -1.68459609e-01 2.38978460e-01 -1.73462883e-01 -7.72905290e-01 -4.16479349e-01 3.87486666e-01 -4.31523979e-01 -3.83630693e-01 8.02834928e-01 -3.36188048e-01 -3.52345467e-01 2.28501648e-01 -1.10538292e+00 1.66804671e-01 6.25484884e-01 9.43293929e-01 3.82020473e-01 -2.10368887e-01 6.47438765e-01 -1.63923705e+00 8.66842091e-01 -2.98813522e-01 -5.30481160e-01 6.66086197e-01 -7.12097883e-01 5.09047270e-01 5.16789436e-01 -2.29662329e-01 -1.20096087e+00 8.02839641e-03 -9.03136581e-02 1.29554823e-01 -2.74656296e-01 6.17377937e-01 -5.43294489e-01 6.20939136e-01 1.00006068e+00 4.92995083e-02 -3.99358511e-01 -5.11210144e-01 4.56241757e-01 7.11622775e-01 3.54635686e-01 -9.98646736e-01 8.87071550e-01 2.12770164e-01 -5.08665681e-01 -4.89506721e-01 -1.42337489e+00 -4.44885522e-01 -4.53051180e-01 1.80739880e-01 6.69232011e-01 -7.23154068e-01 -4.18631762e-01 -3.27248514e-01 -1.34943306e+00 -4.06596273e-01 -4.15760875e-01 -6.92636520e-02 -4.42224294e-01 -7.21574202e-02 -2.84443289e-01 -4.83681679e-01 -5.24425149e-01 -9.29105580e-01 1.06010020e+00 1.13757938e-01 -6.21680498e-01 -6.97538793e-01 1.45670790e-02 6.76959395e-01 1.74761280e-01 -6.49279058e-02 1.26800787e+00 -1.20972061e+00 -8.49805176e-01 -2.28581190e-01 -2.25108728e-01 -1.08036548e-01 1.16281971e-01 -4.91747469e-01 -8.55221272e-01 1.92886576e-01 -7.21446499e-02 -4.59575981e-01 4.18543339e-01 -2.82627374e-01 8.96718144e-01 -6.24879360e-01 -5.55966496e-01 1.85116202e-01 1.14937675e+00 2.61633039e-01 4.80661184e-01 3.84298176e-01 2.86319226e-01 8.23243499e-01 7.42088616e-01 3.81375968e-01 6.72379434e-01 5.88149488e-01 -2.72907734e-01 1.26392702e-02 -9.11404192e-02 -4.00190055e-01 3.27232145e-02 5.40987611e-01 5.12325764e-01 -2.66021520e-01 -1.20224106e+00 8.52549911e-01 -1.55251086e+00 -7.57760227e-01 2.82768399e-01 1.97950745e+00 1.59198809e+00 4.99738753e-01 4.43733111e-02 1.31097540e-01 2.86754698e-01 -1.44937053e-01 -6.87109947e-01 -2.18657017e-01 1.31741196e-01 4.06477690e-01 2.07822517e-01 3.72341603e-01 -9.19712365e-01 1.08338284e+00 6.93399668e+00 6.25851214e-01 -8.92305017e-01 4.31390889e-02 6.18207932e-01 -1.34383340e-03 -7.22423673e-01 3.01049888e-01 -1.09221554e+00 2.12815315e-01 1.17030108e+00 -3.93634647e-01 2.19509467e-01 7.29253590e-01 -5.10009527e-02 -1.14227831e-01 -1.42220688e+00 5.44040561e-01 -2.78074574e-02 -1.34702170e+00 7.95063898e-02 9.14193466e-02 4.29653406e-01 -3.78535502e-02 -4.08217728e-01 4.44407642e-01 7.69617975e-01 -8.57876897e-01 4.78213757e-01 4.83810991e-01 6.22604072e-01 -4.88496542e-01 5.30755222e-01 6.86823368e-01 -5.61541796e-01 1.86360553e-01 -3.38262856e-01 3.20879370e-01 1.96807340e-01 7.53647566e-01 -1.42578304e+00 4.34248596e-01 2.84859776e-01 1.26054034e-01 -6.04300141e-01 8.09194922e-01 -4.10110712e-01 8.96621525e-01 -6.30919099e-01 -1.04033552e-01 1.18420586e-01 2.96447705e-02 2.81023234e-01 1.28065753e+00 2.15952750e-02 3.16253483e-01 2.04890013e-01 7.93807089e-01 -3.07751328e-01 1.17191568e-01 -6.19678378e-01 -2.47352511e-01 4.73804235e-01 1.05998313e+00 -4.90784109e-01 -5.14573276e-01 -4.75574583e-01 5.82763553e-01 2.05463409e-01 3.49860579e-01 -4.63687062e-01 -6.20171189e-01 4.15405780e-01 4.49394077e-01 4.32299048e-01 -7.91403949e-02 -5.37634313e-01 -1.12983596e+00 3.42344463e-01 -1.51277542e+00 5.76559663e-01 -5.57597816e-01 -1.03495312e+00 4.45149332e-01 1.63983315e-01 -9.76973116e-01 -8.75320256e-01 -3.84946197e-01 -3.80343199e-01 5.54345608e-01 -1.29946685e+00 -8.91125202e-01 1.47859445e-02 5.58412313e-01 6.20978951e-01 1.70333743e-01 8.36712599e-01 1.19841553e-01 -3.73740166e-01 8.96040022e-01 -2.62334973e-01 4.28563207e-01 7.91037321e-01 -1.28655219e+00 5.27964056e-01 6.86114609e-01 5.19914508e-01 1.04135787e+00 9.31022108e-01 -6.99492037e-01 -1.50583017e+00 -7.72556543e-01 1.19678855e+00 -8.51232111e-01 6.64551616e-01 -7.82199740e-01 -1.07197571e+00 7.21786499e-01 4.60013300e-01 -3.23554337e-01 6.74010992e-01 4.94387120e-01 -5.42783141e-01 -5.81765175e-02 -9.99648929e-01 6.92433536e-01 1.00795937e+00 -7.22603023e-01 -1.10958230e+00 6.49041414e-01 9.43994820e-01 -3.21467429e-01 -7.87114143e-01 2.86744326e-01 3.51495087e-01 -4.16519910e-01 7.92038500e-01 -8.43701899e-01 3.23352903e-01 -2.44321242e-01 1.67125180e-01 -9.42241907e-01 2.17082292e-01 -8.22407544e-01 1.69841260e-01 1.23267448e+00 1.12446380e+00 -4.00453269e-01 1.13470995e+00 1.40523553e+00 7.87677914e-02 -6.23793185e-01 -7.74193645e-01 -7.17391431e-01 1.54275894e-01 -5.66615641e-01 6.90532804e-01 7.91472018e-01 4.35453624e-01 7.47558475e-01 9.55555439e-02 -3.47572565e-02 4.50063348e-01 1.11757003e-01 1.04527581e+00 -1.11515236e+00 -3.17610830e-01 1.37606606e-01 2.38557816e-01 -1.19070005e+00 1.79787919e-01 -8.83736670e-01 3.03956777e-01 -1.66104984e+00 1.58591941e-01 -6.05287611e-01 -7.64053836e-02 8.64549279e-01 -4.24544007e-01 -3.60664606e-01 9.44783837e-02 4.33432758e-02 -8.57073963e-01 2.07090259e-01 1.17396367e+00 -1.75386712e-01 3.87360156e-02 -9.45597067e-02 -1.12105858e+00 5.37362635e-01 5.62110364e-01 -7.71013618e-01 -7.44893849e-01 -3.87803227e-01 3.24697703e-01 3.32657367e-01 -2.14890763e-01 -7.46272266e-01 4.98046517e-01 -2.52526075e-01 7.84416571e-02 -4.96736169e-01 2.89489299e-01 -6.02104366e-01 -2.28948891e-01 -6.70877844e-02 -5.16316772e-01 6.32360484e-03 8.46552104e-02 3.08282554e-01 -2.11221829e-01 -5.44000864e-01 2.79946893e-01 -2.71487385e-01 -3.03597838e-01 5.10182194e-02 -4.94444132e-01 8.05327892e-01 5.13377428e-01 -9.24851671e-02 -5.33541024e-01 -4.41408902e-01 -4.16394442e-01 1.53898388e-01 3.29853505e-01 2.27067649e-01 3.54639709e-01 -8.21458042e-01 -5.88457406e-01 6.92806840e-02 3.00454468e-01 2.15009391e-01 -4.14093375e-01 3.28464389e-01 6.58698529e-02 8.37787867e-01 2.42646202e-01 -3.78118515e-01 -9.99306560e-01 4.11304027e-01 1.17447726e-01 -8.09886634e-01 -4.34863985e-01 6.88457549e-01 3.75894099e-01 -6.25674605e-01 2.39056408e-01 -2.38234326e-01 -1.02189079e-01 4.93901968e-02 5.40269196e-01 -3.67587805e-01 3.87434721e-01 1.92018926e-01 -2.93345898e-01 -4.97236885e-02 -7.78268099e-01 -5.72195232e-01 1.33441341e+00 1.02730557e-01 2.17096999e-01 1.46428257e-01 7.15347946e-01 -6.02253266e-02 -9.54177320e-01 -5.80067873e-01 9.25483584e-01 -2.69608140e-01 -2.58049458e-01 -1.05625033e+00 -4.71285433e-01 5.98509729e-01 -2.67306156e-02 4.72131632e-02 8.99001360e-01 1.20430082e-01 1.03134561e+00 9.69996095e-01 5.26644886e-01 -1.19287932e+00 1.20574581e-02 6.20849073e-01 9.32524502e-01 -1.25063944e+00 2.84104459e-02 -5.92443466e-01 -6.12211287e-01 7.07507789e-01 7.78085470e-01 2.08918855e-01 5.20976126e-01 5.13647318e-01 2.17729956e-01 -3.42450976e-01 -1.43187153e+00 -2.75272727e-01 4.02282447e-01 4.90773290e-01 6.18031502e-01 -3.44049782e-01 -2.81098157e-01 8.14791143e-01 -4.69336689e-01 1.77387804e-01 4.94850606e-01 1.07791913e+00 -3.82339746e-01 -1.53895640e+00 -2.56363571e-01 8.38228405e-01 -7.32054710e-01 -2.84306616e-01 -6.19468570e-01 9.66461301e-01 -1.49292350e-01 1.12672567e+00 -1.03031434e-01 -1.24635249e-01 5.33500731e-01 5.60434818e-01 4.12141919e-01 -1.00499856e+00 -7.06963837e-01 2.11433358e-02 8.13225985e-01 -4.76182491e-01 -1.02004662e-01 -8.06921899e-01 -1.38519907e+00 2.04412282e-01 -4.23817545e-01 4.86514896e-01 5.31122327e-01 1.40412557e+00 4.58162069e-01 1.04127012e-01 2.05396861e-01 2.10848004e-02 -4.59505379e-01 -9.57231820e-01 -9.28825513e-03 5.95626175e-01 8.27616602e-02 -3.90483499e-01 -1.45734906e-01 3.10971469e-01]
[10.136137962341309, 8.528116226196289]
65a9b470-6dc5-40eb-824c-0e26c262d5ea
qmrnet-quality-metric-regression-for-eo-image
2210.06618
null
https://arxiv.org/abs/2210.06618v2
https://arxiv.org/pdf/2210.06618v2.pdf
QMRNet: Quality Metric Regression for EO Image Quality Assessment and Super-Resolution
Latest advances in Super-Resolution (SR) have been tested with general purpose images such as faces, landscapes and objects, mainly unused for the task of super-resolving Earth Observation (EO) images. In this research paper, we benchmark state-of-the-art SR algorithms for distinct EO datasets using both Full-Reference and No-Reference Image Quality Assessment (IQA) metrics. We also propose a novel Quality Metric Regression Network (QMRNet) that is able to predict quality (as a No-Reference metric) by training on any property of the image (i.e. its resolution, its distortions...) and also able to optimize SR algorithms for a specific metric objective. This work is part of the implementation of the framework IQUAFLOW which has been developed for evaluating image quality, detection and classification of objects as well as image compression in EO use cases. We integrated our experimentation and tested our QMRNet algorithm on predicting features like blur, sharpness, snr, rer and ground sampling distance (GSD) and obtain validation medRs below 1.0 (out of N=50) and recall rates above 95\%. Overall benchmark shows promising results for LIIF, CAR and MSRN and also the potential use of QMRNet as Loss for optimizing SR predictions. Due to its simplicity, QMRNet could also be used for other use cases and image domains, as its architecture and data processing is fully scalable.
['Katalin Takáts', 'Javier Marín', 'David Vilaseca', 'Clara Garcia-Moll', 'Laura Riordan-Chen', 'Eva Mohedano', 'Pau Gallés', 'David Berga']
2022-10-12
null
null
null
null
['no-reference-image-quality-assessment']
['computer-vision']
[ 2.96281189e-01 -3.17562968e-01 3.48563939e-01 -3.96688551e-01 -6.31689012e-01 -4.14354980e-01 5.60505331e-01 -1.36948943e-01 -3.99056971e-01 8.46698344e-01 1.61978081e-01 -6.42105117e-02 -7.30397403e-01 -9.58717942e-01 -2.20692098e-01 -6.47997618e-01 -6.39631212e-01 1.79678112e-01 3.85497361e-01 -4.76368725e-01 3.85336548e-01 1.00275934e+00 -2.02532220e+00 2.25931793e-01 1.02238607e+00 1.12898421e+00 5.78018248e-01 1.23520851e+00 3.98916245e-01 8.90816271e-01 -5.78554928e-01 2.05528423e-01 5.13990641e-01 -2.45895520e-01 -8.23830247e-01 -3.26872081e-01 6.66614234e-01 -3.43585193e-01 -2.63070583e-01 1.02317619e+00 8.55584502e-01 1.27724826e-01 5.76378047e-01 -7.25495696e-01 -5.19112945e-01 6.80564642e-02 -4.19122487e-01 9.32929814e-01 2.04380706e-01 8.67743492e-02 6.62931919e-01 -6.33609116e-01 4.85945374e-01 1.02038527e+00 5.58115125e-01 1.46145046e-01 -1.43743205e+00 -6.06696367e-01 -8.19915652e-01 5.02525926e-01 -1.48620141e+00 -6.99674964e-01 1.66159108e-01 -3.73154610e-01 9.45902824e-01 6.43058717e-01 1.07964322e-01 4.55121636e-01 3.58889878e-01 1.11861795e-01 1.56186843e+00 -3.30191612e-01 1.88632831e-01 1.30946010e-01 -1.74954847e-01 2.25739375e-01 9.08309594e-02 5.25485814e-01 -2.98811972e-01 2.06131130e-01 8.88871789e-01 -5.98703146e-01 -4.98026460e-01 6.59410506e-02 -9.95386899e-01 6.72233880e-01 5.65083861e-01 5.14657617e-01 -3.74566227e-01 -8.08108374e-02 1.26128629e-01 7.67038107e-01 5.59075892e-01 6.42911255e-01 -6.04422152e-01 -3.79283614e-02 -1.29547763e+00 3.07415009e-01 5.45224369e-01 5.46171010e-01 6.71479821e-01 1.36570022e-01 -5.87721050e-01 9.93740082e-01 6.22671880e-02 7.72977889e-01 4.28433746e-01 -1.35169697e+00 1.35479525e-01 2.65511096e-01 4.42452103e-01 -1.07706594e+00 -5.43364406e-01 -6.90196931e-01 -8.31624627e-01 6.35304213e-01 -9.48745012e-02 2.68547207e-01 -7.48621941e-01 1.19017589e+00 -2.29344275e-02 1.77295655e-01 3.15133184e-01 1.08544028e+00 1.13059831e+00 7.10862100e-01 -2.42277771e-01 -2.30275646e-01 1.30704236e+00 -5.55291533e-01 -4.72763360e-01 -1.55436456e-01 3.06967765e-01 -8.85011435e-01 7.44858265e-01 6.60263062e-01 -1.02502787e+00 -9.07688856e-01 -1.03608274e+00 9.66150016e-02 -3.29269230e-01 4.35333908e-01 2.01707557e-01 7.25082636e-01 -1.51895487e+00 1.00354791e+00 -5.12498200e-01 -3.75528902e-01 2.75508106e-01 3.36878717e-01 -3.40487570e-01 -2.47719474e-02 -1.08850002e+00 1.23011613e+00 4.13269669e-01 -8.98668543e-02 -9.70972955e-01 -7.01836467e-01 -6.10816240e-01 1.22668497e-01 -1.65174901e-02 -5.22093177e-01 7.28135169e-01 -9.53098178e-01 -1.45518529e+00 1.05049372e+00 1.89372554e-01 -7.46201754e-01 4.27987814e-01 -2.33877078e-01 -1.03133333e+00 3.95357370e-01 7.53782243e-02 4.41246539e-01 7.82036424e-01 -1.20359266e+00 -7.14318633e-01 -3.75599891e-01 -3.39296684e-02 1.88960984e-01 1.00114010e-01 4.37842488e-01 2.40226276e-02 -4.76076275e-01 8.05310756e-02 -4.00501788e-01 -1.49936192e-02 -9.34984758e-02 1.52375042e-01 2.37975761e-01 7.85462499e-01 -1.04439116e+00 1.22169363e+00 -1.99597538e+00 1.82153448e-01 7.48936906e-02 -7.51005933e-02 5.32842934e-01 -2.08496213e-01 8.67392793e-02 -2.27445677e-01 5.90253249e-02 -4.28807646e-01 8.22775587e-02 -4.68117267e-01 7.60727599e-02 2.78580282e-02 7.64916062e-01 2.41263032e-01 3.48772347e-01 -6.93268538e-01 -3.83625180e-01 6.31993651e-01 5.92259049e-01 -1.49439007e-01 4.27608699e-01 1.38626024e-01 6.58576727e-01 -1.23274468e-01 5.03607690e-01 1.13819432e+00 1.06224064e-02 -4.13232088e-01 -4.16685015e-01 -5.93788564e-01 -1.70264214e-01 -1.54361439e+00 1.41161799e+00 -8.92451942e-01 9.15010095e-01 8.05442259e-02 -6.94386959e-01 1.23944414e+00 9.99724120e-02 3.14052910e-01 -1.10854053e+00 -1.30674332e-01 2.57967502e-01 -1.92428634e-01 -8.10787261e-01 6.84715390e-01 -4.72469777e-02 6.42203867e-01 -3.05062793e-02 9.82833207e-02 -6.20883219e-02 2.24951044e-01 -1.67603925e-01 9.39398050e-01 1.07424378e-01 3.52484673e-01 -6.17942512e-01 1.06289649e+00 -1.40856147e-01 -8.72421544e-03 7.36888051e-01 -7.27967918e-02 9.47093844e-01 2.44955868e-02 -2.45098352e-01 -1.51796317e+00 -9.13030863e-01 -8.00704956e-01 8.52259755e-01 1.65984571e-01 4.78013866e-02 -4.37727958e-01 2.19800510e-02 -4.46351379e-01 7.18687117e-01 -4.69524592e-01 2.21963957e-01 -3.65944982e-01 -1.04991066e+00 4.19852674e-01 3.75259742e-02 8.20092082e-01 -1.01456928e+00 -1.03578746e+00 5.89968562e-02 -5.34951575e-02 -1.15271246e+00 3.06994677e-01 -2.20798597e-01 -9.92442250e-01 -9.72223103e-01 -7.58207023e-01 -1.43178850e-01 1.15479067e-01 3.33065033e-01 1.35742986e+00 1.18578188e-01 -5.39783478e-01 1.89431787e-01 -5.78528404e-01 6.78146482e-02 -4.54762369e-01 -2.74638206e-01 -2.33327791e-01 -2.63800435e-02 -1.18634015e-01 -4.74605292e-01 -9.54802215e-01 4.93990868e-01 -1.09484267e+00 -1.66332006e-01 5.52899837e-01 6.13175869e-01 3.20024610e-01 3.39096129e-01 1.83382183e-01 -5.06280720e-01 3.21537882e-01 -4.63328063e-01 -1.01387930e+00 2.37546787e-01 -7.98681021e-01 1.33602753e-01 4.44918960e-01 1.44783661e-01 -1.15303159e+00 -4.44181532e-01 -2.26681963e-01 -2.42597267e-01 -3.54109883e-01 3.11182648e-01 1.36532933e-01 -3.76298755e-01 1.16117513e+00 1.54550731e-01 -1.30067065e-01 -6.95244968e-01 1.48032773e-02 1.09504926e+00 6.37438416e-01 -3.63741890e-02 8.35715890e-01 6.42823339e-01 4.57944006e-01 -1.26160562e+00 -6.00544035e-01 -7.64618456e-01 -4.63030130e-01 -2.41627157e-01 7.95982480e-01 -1.11243498e+00 -4.05399740e-01 2.52427131e-01 -8.76530945e-01 -1.18851870e-01 -9.83903855e-02 5.70403874e-01 -5.22661030e-01 4.19612825e-01 -1.95330337e-01 -1.17433286e+00 -6.05992675e-01 -9.17876661e-01 1.08369327e+00 5.06636679e-01 3.72557431e-01 -7.60750353e-01 2.21602861e-02 2.20319495e-01 1.07957554e+00 3.07629764e-01 2.24599913e-01 -8.17775279e-02 -6.20113552e-01 4.32008393e-02 -7.51893044e-01 6.51439607e-01 -1.64190471e-01 -6.04553334e-02 -1.19184077e+00 -6.13677025e-01 1.53634146e-01 -7.57486895e-02 9.01281953e-01 6.43732131e-01 1.06409454e+00 -2.13096157e-01 1.71951145e-01 1.02459788e+00 2.13088155e+00 -9.54229534e-02 1.26273155e+00 9.14459348e-01 5.25869876e-02 6.01452053e-01 8.43048215e-01 5.51150143e-01 -1.10037856e-01 1.09533751e+00 7.07765937e-01 -1.57291725e-01 -2.47400492e-01 5.76673687e-01 4.16975528e-01 5.50971813e-02 -5.41500688e-01 -1.90710723e-01 -7.36054480e-01 4.57502723e-01 -1.28228056e+00 -1.13148117e+00 -6.20683908e-01 2.55370927e+00 4.31312233e-01 -1.56910673e-01 -9.78219211e-02 2.07254678e-01 5.56482136e-01 2.62284368e-01 -1.21528365e-01 -4.16226506e-01 -3.95604461e-01 5.85860491e-01 1.06941044e+00 4.82168138e-01 -1.16037631e+00 5.04857898e-01 5.82724857e+00 8.59160841e-01 -1.21521819e+00 2.96206921e-01 5.66855133e-01 1.53536096e-01 1.23189308e-01 -1.90630004e-01 -7.96250522e-01 4.23676789e-01 1.34803653e+00 9.41703096e-02 8.52733612e-01 6.09671474e-01 7.21403778e-01 -4.21296149e-01 -5.15525103e-01 1.07568991e+00 9.37838405e-02 -1.16131365e+00 -2.50221848e-01 -1.12530157e-01 7.18118429e-01 5.11912763e-01 -5.01323715e-02 -1.28041297e-01 -4.18673791e-02 -1.40625465e+00 6.32135928e-01 8.69621277e-01 1.24576902e+00 -5.87557554e-01 1.23272932e+00 1.00500636e-01 -9.90112722e-01 -2.71794021e-01 -6.70265913e-01 1.45874456e-01 -6.10738061e-02 5.43345809e-01 -3.13265473e-01 1.12827170e+00 1.25934339e+00 5.60666144e-01 -1.02823651e+00 1.36107552e+00 1.07982464e-01 2.49633893e-01 -3.29335213e-01 5.72567105e-01 6.86971545e-02 -2.01805294e-01 7.89020360e-01 1.45325553e+00 8.49274635e-01 2.99240261e-01 -5.02343357e-01 9.00139689e-01 4.32245016e-01 1.29251897e-01 -2.24212214e-01 5.92949331e-01 3.25861394e-01 1.43710947e+00 -5.98240495e-01 -1.29698977e-01 -1.90604120e-01 8.70620430e-01 -2.98039615e-01 2.08373636e-01 -6.64005101e-01 -3.60643566e-01 5.23433864e-01 2.81043917e-01 3.80261660e-01 1.91062987e-02 -2.85314083e-01 -1.05259275e+00 -1.76287919e-01 -8.57218742e-01 3.29684228e-01 -1.29549241e+00 -9.02938664e-01 1.01874197e+00 2.04652309e-01 -1.57666469e+00 4.97444235e-02 -7.23331988e-01 -3.75371844e-01 1.25663424e+00 -2.04725671e+00 -7.88307905e-01 -8.57543349e-01 3.40482444e-01 3.85310054e-01 -3.21971416e-01 5.71826398e-01 4.33832884e-01 -1.63348570e-01 9.37317461e-02 4.78982270e-01 -2.59133965e-01 5.81660271e-01 -1.32375300e+00 -1.24060782e-03 1.01179659e+00 -1.33072674e-01 1.04307964e-01 1.34001470e+00 -1.76207900e-01 -8.99524570e-01 -1.08360064e+00 5.94561934e-01 -3.25154722e-01 4.40858006e-01 2.03774691e-01 -9.18796003e-01 -3.88907176e-03 3.42654139e-02 2.43686393e-01 8.54619890e-02 -4.13850784e-01 9.72261578e-02 -5.84045887e-01 -1.52875769e+00 7.40630552e-03 7.69421339e-01 -3.07264626e-01 -3.89563322e-01 1.60763785e-01 3.72531205e-01 -4.16716963e-01 -1.28570080e+00 7.57468224e-01 3.69886488e-01 -1.69648659e+00 1.34575069e+00 -2.94563286e-02 7.02304006e-01 -7.91572928e-01 -3.67324531e-01 -1.14616048e+00 -4.41847771e-01 -8.95144790e-02 6.19147578e-03 9.68020678e-01 3.03184032e-01 -2.99517751e-01 1.56588346e-01 -8.43759105e-02 -3.94134894e-02 -1.38347030e-01 -9.27695274e-01 -9.49357390e-01 -4.42772061e-01 -1.75387904e-01 5.29798329e-01 7.56570995e-01 -9.53870416e-01 1.11480907e-01 -5.68088830e-01 7.37210035e-01 8.00992489e-01 2.56169736e-02 5.77562988e-01 -1.25329792e+00 -3.46344233e-01 -3.23094010e-01 -6.09477520e-01 -4.73302573e-01 -6.01967692e-01 -5.85887551e-01 -1.71752185e-01 -1.53251624e+00 7.33623728e-02 -5.08332253e-01 -2.71279246e-01 -1.50592566e-01 1.12206019e-01 5.94741583e-01 1.00345865e-01 4.18309242e-01 -2.87249953e-01 2.44505182e-01 1.00946128e+00 1.65078878e-01 -1.30348861e-01 -1.76024120e-02 -9.49937478e-02 1.74588904e-01 7.90157795e-01 -4.52726513e-01 5.65322042e-02 -3.59654754e-01 2.90060669e-01 2.62303531e-01 6.92565918e-01 -1.54461455e+00 -9.66909677e-02 5.49980672e-03 5.86974442e-01 -5.84719598e-01 8.84001106e-02 -9.03412879e-01 6.97254777e-01 3.93258840e-01 -7.42623061e-02 -5.04447892e-02 8.92992616e-02 1.37457520e-01 -2.45408341e-01 -5.02384841e-01 1.42128038e+00 -1.95661604e-01 -1.00679159e+00 -2.70957686e-02 1.91916436e-01 -2.59706259e-01 8.52207780e-01 -4.26029921e-01 -4.93217468e-01 -2.17040136e-01 -5.88713706e-01 -1.60816498e-02 6.72922492e-01 2.46392846e-01 5.36151409e-01 -8.08209896e-01 -1.37635601e+00 2.55416840e-01 1.84697464e-01 -2.52560943e-01 4.61796522e-01 9.04764235e-01 -1.11054182e+00 3.76996934e-01 -6.03849411e-01 -7.18182981e-01 -1.47046399e+00 5.26124835e-01 8.23166609e-01 -2.94085532e-01 -4.37612265e-01 4.12642777e-01 -2.33815968e-01 -2.19159231e-01 -1.37879789e-01 -1.32521037e-02 -8.37847352e-01 -1.67142332e-01 8.01504731e-01 8.40085030e-01 3.62179279e-01 -9.10690904e-01 -1.31724194e-01 7.53890634e-01 5.35818577e-01 7.58557841e-02 1.72017407e+00 -4.97467041e-01 -3.36719811e-01 1.26842067e-01 9.50390875e-01 -1.41005278e-01 -1.12948120e+00 -1.61770657e-02 5.44913150e-02 -8.46441507e-01 6.89971328e-01 -1.07380557e+00 -1.10963643e+00 6.11414373e-01 1.60243535e+00 3.49039912e-01 1.61196077e+00 -1.17641822e-01 1.40817538e-01 -7.04354048e-02 2.49131441e-01 -9.42920506e-01 -2.95972437e-01 3.24858248e-01 1.18371904e+00 -1.32208252e+00 4.47482139e-01 -1.26187369e-01 -4.12487358e-01 1.24637604e+00 1.65598541e-01 -1.68743134e-01 4.03704315e-01 5.92874587e-02 -1.25245616e-01 -2.35593170e-01 -5.21488309e-01 -3.99365336e-01 4.59317803e-01 6.54834270e-01 5.31290948e-01 -1.72364619e-02 -5.40928304e-01 2.49074027e-03 -1.22480094e-01 2.53394246e-01 7.09832966e-01 4.41078454e-01 -8.46213162e-01 -6.16962075e-01 -7.44247615e-01 6.34189188e-01 -7.04849243e-01 -3.07286650e-01 3.42791021e-01 4.88113105e-01 3.69716167e-01 1.03879881e+00 3.93896177e-02 -2.62631685e-01 4.92970020e-01 -6.42267168e-01 4.09514606e-01 -3.13378930e-01 -4.83117700e-01 -3.40503752e-01 2.60693818e-01 -7.43094087e-01 -8.45338643e-01 -6.39118314e-01 -5.96922815e-01 -3.83480728e-01 -4.06711489e-01 1.64800659e-02 8.32464039e-01 6.50935948e-01 1.23646095e-01 4.54575717e-01 8.36888313e-01 -9.10415471e-01 -3.23500872e-01 -1.36135983e+00 -7.85993755e-01 1.46607116e-01 5.93847752e-01 -5.76941490e-01 -5.83620727e-01 1.04861870e-01]
[10.730290412902832, -1.9642661809921265]
5d3a93b3-92ba-489c-86e3-0ac23254a7fc
large-language-models-fail-on-trivial
2302.08399
null
https://arxiv.org/abs/2302.08399v5
https://arxiv.org/pdf/2302.08399v5.pdf
Large Language Models Fail on Trivial Alterations to Theory-of-Mind Tasks
Intuitive psychology is a pillar of common-sense reasoning. The replication of this reasoning in machine intelligence is an important stepping-stone on the way to human-like artificial intelligence. Several recent tasks and benchmarks for examining this reasoning in Large-Large Models have focused in particular on belief attribution in Theory-of-Mind tasks. These tasks have shown both successes and failures. We consider in particular a recent purported success case, and show that small variations that maintain the principles of ToM turn the results on their head. We argue that in general, the zero-hypothesis for model evaluation in intuitive psychology should be skeptical, and that outlying failure cases should outweigh average success rates. We also consider what possible future successes on Theory-of-Mind tasks by more powerful LLMs would mean for ToM tasks with people.
['Tomer Ullman']
2023-02-16
null
null
null
null
['common-sense-reasoning']
['reasoning']
[-1.13696866e-01 6.79314792e-01 -2.50396460e-01 -4.18209016e-01 4.10841359e-03 -4.60895300e-02 6.05186522e-01 4.48728055e-01 -5.15141547e-01 3.64766300e-01 3.15807730e-01 -8.46316874e-01 -4.24864024e-01 -8.22004735e-01 -3.45052063e-01 -2.02113420e-01 1.88684881e-01 8.08533430e-01 -1.25290789e-02 -4.73917007e-01 7.38473296e-01 1.12921394e-01 -1.05470133e+00 2.18179539e-01 7.20912993e-01 1.45071715e-01 -9.84353051e-02 3.44350368e-01 2.20218599e-01 1.37001228e+00 2.38340497e-02 -9.85454440e-01 -1.28530756e-01 -3.73606980e-01 -1.22944963e+00 1.06973108e-02 4.06744987e-01 -4.51606572e-01 -6.38256073e-02 1.07377756e+00 1.48472026e-01 1.74134433e-01 6.69082224e-01 -1.33076608e+00 -1.16433203e+00 9.67696905e-01 -5.98389089e-01 2.57032365e-01 5.06683886e-01 5.97396791e-01 1.17049825e+00 -4.19755638e-01 3.24139684e-01 1.86876941e+00 8.29478860e-01 3.96188527e-01 -1.36631072e+00 -5.32772660e-01 2.59197444e-01 4.65796411e-01 -8.30195844e-01 -4.51291084e-01 4.37287450e-01 -6.08092725e-01 9.49688315e-01 1.89386476e-02 8.89619708e-01 9.24117863e-01 3.49192470e-01 5.31750262e-01 1.71138239e+00 -6.72551394e-01 3.35075110e-01 2.36045748e-01 9.23473179e-01 6.51547551e-01 1.12441432e+00 4.45262671e-01 -5.43123782e-01 -3.30217481e-01 1.08940399e+00 -1.72296226e-01 4.19736281e-02 -1.95252046e-01 -1.31507123e+00 1.19343269e+00 6.89760506e-01 2.87754506e-01 -6.25330269e-01 2.22347617e-01 2.64871955e-01 9.79332179e-02 1.91520471e-02 7.46094823e-01 -2.83188164e-01 1.37572428e-02 -7.06479549e-01 5.06568849e-01 6.51019871e-01 4.45594430e-01 4.01485592e-01 -7.18453974e-02 -9.72377509e-02 6.90052748e-01 6.89836442e-01 2.99239337e-01 6.39271080e-01 -1.29314613e+00 -5.48364408e-02 4.48949993e-01 2.63161451e-01 -1.25957239e+00 -8.89472842e-01 -3.96622062e-01 -4.90929216e-01 3.73326629e-01 3.93480629e-01 1.77329674e-01 -4.21940327e-01 1.91870368e+00 1.69809461e-01 -4.14157629e-01 -3.55694920e-01 8.33749354e-01 2.34024227e-01 -1.05842836e-01 6.48330629e-01 -1.95953012e-01 1.61719322e+00 -6.71110272e-01 -5.92792153e-01 -9.85236108e-01 7.52096236e-01 -5.84061444e-01 1.37134802e+00 5.00218511e-01 -1.26720333e+00 -5.57678938e-01 -9.97823775e-01 -3.15791756e-01 -7.08024949e-02 -3.82872283e-01 1.45127380e+00 9.13178384e-01 -1.06608880e+00 5.21004796e-01 -8.62951636e-01 -6.95528805e-01 3.54684025e-01 -3.72857526e-02 -8.03230107e-02 -8.08410719e-02 -1.07078326e+00 1.71528924e+00 5.92275441e-01 -7.80090457e-03 -6.23150647e-01 -3.48982632e-01 -6.45168841e-01 1.27224833e-01 4.44490850e-01 -1.17389965e+00 1.50276268e+00 -1.03073573e+00 -1.00066769e+00 1.33141720e+00 -2.01772809e-01 -6.64525867e-01 2.37778112e-01 -2.19041973e-01 -2.80428082e-01 1.59943365e-02 3.89694035e-01 5.50504625e-01 5.14230847e-01 -1.06538820e+00 -1.80451110e-01 -6.72730267e-01 3.25900525e-01 5.29351644e-02 1.59879476e-02 2.34188929e-01 4.87600714e-01 -3.85091543e-01 5.87768197e-01 -8.48465383e-01 -1.66791886e-01 7.53153414e-02 -8.57542977e-02 -4.83100802e-01 -1.26534238e-01 -2.04710841e-01 1.11786973e+00 -1.76539874e+00 -3.32792282e-01 -3.98244709e-02 6.05266809e-01 -3.05626750e-01 2.33416572e-01 2.72747517e-01 -3.53017807e-01 3.99040699e-01 1.46862298e-01 1.67572558e-01 6.32619262e-01 -9.08423960e-02 -3.10550064e-01 6.36504948e-01 -1.18630260e-01 1.21101820e+00 -9.04110909e-01 -6.52860463e-01 2.02681065e-01 -1.87025920e-01 -7.53929973e-01 -2.97290921e-01 5.12174927e-02 -3.81481469e-01 -1.79205358e-01 2.63172388e-01 6.53097987e-01 -8.08448851e-01 3.92251700e-01 8.27192143e-02 -8.89183022e-03 9.12540734e-01 -9.00738299e-01 1.12476039e+00 -4.43215035e-02 5.38981199e-01 -1.22405782e-01 -7.38959968e-01 3.42878163e-01 1.48992717e-01 -3.83508950e-01 -5.62842011e-01 2.12291896e-01 -8.97010975e-03 1.03506601e+00 -5.75443208e-01 3.63319695e-01 -1.24423075e+00 2.88552940e-01 8.93933773e-01 -1.58551201e-01 -5.09660602e-01 -9.14338902e-02 4.95898068e-01 6.22674167e-01 1.28879905e-01 8.36505353e-01 -8.09934735e-01 4.50008139e-02 2.55916357e-01 4.29989278e-01 1.08406091e+00 -5.44885814e-01 7.43639143e-03 5.17899513e-01 -5.32817364e-01 -9.25105572e-01 -8.21920574e-01 -4.12356019e-01 1.21826947e+00 -2.10187444e-03 -1.68283820e-01 -7.30464756e-01 -1.37282535e-01 3.01648513e-03 1.78696823e+00 -7.92737842e-01 -4.06596661e-01 7.47720748e-02 -9.71185803e-01 5.19914389e-01 5.26811302e-01 4.38227773e-01 -1.20543790e+00 -1.10680401e+00 9.50635970e-02 -1.33421272e-01 -1.06200635e+00 5.84598720e-01 3.03287096e-02 -1.07973659e+00 -1.04818690e+00 -4.47487980e-02 -2.47106850e-01 3.43722701e-01 6.59083068e-01 1.37439919e+00 7.75797546e-01 9.95679498e-02 5.08028328e-01 -1.55000523e-01 -8.50319505e-01 -4.70555007e-01 -5.46433568e-01 1.33135647e-01 -8.39884639e-01 1.14292514e+00 -3.62929106e-01 -4.65266049e-01 2.05706820e-01 -5.95365584e-01 3.98406714e-01 4.98249352e-01 7.33485579e-01 -2.87199140e-01 -6.62970990e-02 4.78483409e-01 -9.38385904e-01 8.88680816e-01 -6.50544226e-01 -1.34875283e-01 1.27992257e-01 -8.08784187e-01 -2.30803058e-01 1.03373028e-01 -1.35232851e-01 -1.22930992e+00 -1.06159818e+00 2.75475800e-01 3.69658172e-01 -2.99404770e-01 5.95588565e-01 3.71047884e-01 2.21592635e-01 1.18219686e+00 -2.90739924e-01 3.28027308e-02 -2.43575498e-02 2.45430529e-01 3.64896506e-01 5.42308055e-02 -1.17315602e+00 6.81221187e-01 4.37609315e-01 -1.47844836e-01 -7.55347073e-01 -1.30000210e+00 3.13834697e-02 -2.64783174e-01 -5.55489622e-02 6.96239829e-01 -1.02468216e+00 -1.06202710e+00 1.12902321e-01 -9.35954213e-01 -4.78722721e-01 -7.41022602e-02 6.85256183e-01 -8.56766999e-01 4.46345001e-01 -7.90069520e-01 -1.02541018e+00 -1.60267316e-02 -1.03781891e+00 4.86847103e-01 2.29955703e-01 -1.05640590e+00 -1.16707635e+00 -1.14464544e-01 7.48331964e-01 5.03181934e-01 -3.62650156e-01 1.30619299e+00 -8.30353916e-01 -2.17684522e-01 -5.28007075e-02 -2.69845605e-01 -8.84600356e-02 -3.12222749e-01 -1.70931146e-01 -1.14233589e+00 1.75166681e-01 7.98464477e-01 -7.84455955e-01 9.19615209e-01 5.50340593e-01 8.64177048e-01 -3.40953730e-02 -2.59803891e-01 -1.16754090e-02 1.26047122e+00 -1.29348099e-01 6.76563561e-01 7.01634884e-01 1.81301922e-01 6.62453473e-01 6.92041099e-01 3.55219156e-01 8.40916932e-01 3.55715781e-01 5.58771268e-02 1.15552813e-01 1.41178697e-01 -2.97192723e-01 2.77274907e-01 3.06279778e-01 -1.97069287e-01 1.26057625e-01 -1.15110815e+00 5.07694244e-01 -1.81018460e+00 -1.44685209e+00 -5.68520725e-01 2.38127208e+00 7.58916140e-01 6.78260982e-01 8.10992569e-02 -4.66780290e-02 6.14966154e-01 2.00392380e-02 -4.93044585e-01 -7.00392365e-01 1.18990421e-01 3.00435186e-03 -8.89433175e-02 6.31700277e-01 -6.64403498e-01 1.01352489e+00 7.43451977e+00 2.75685579e-01 -6.29724622e-01 2.09456861e-01 7.73460507e-01 5.51018342e-02 -4.61098820e-01 4.30485696e-01 -4.78450656e-01 2.29788236e-02 1.17716897e+00 -3.56032938e-01 3.67278576e-01 8.86394858e-01 3.49417210e-01 -6.38351202e-01 -1.36774004e+00 5.93074679e-01 -1.30531073e-01 -8.08086038e-01 -1.95825901e-02 7.04479143e-02 4.30077702e-01 -2.35569239e-01 -5.79440631e-02 5.67748010e-01 7.88430631e-01 -1.27692485e+00 1.04598069e+00 2.91432381e-01 1.14114136e-02 -1.00706838e-01 7.71042407e-01 5.72625101e-01 -1.55574441e-01 -1.13817029e-01 -9.43256855e-01 -1.09475434e+00 1.65762872e-01 5.82116544e-01 -7.69050300e-01 -1.35258153e-01 4.31812346e-01 3.95510584e-01 -5.84294319e-01 7.93480217e-01 -5.00899374e-01 5.61831713e-01 -2.16661334e-01 -1.44205287e-01 9.75044966e-02 -2.85480935e-02 9.19234455e-02 9.78191078e-01 -3.19117218e-01 3.14898521e-01 -2.44860575e-01 1.41764688e+00 3.09926391e-01 -1.10644870e-01 -4.81752008e-01 -2.41445214e-01 5.74652791e-01 1.06146431e+00 -1.00477505e+00 -6.92998230e-01 -4.50756758e-01 5.17733872e-01 5.37518203e-01 5.43958992e-02 -8.59023631e-01 4.73223686e-01 6.28265202e-01 6.54333159e-02 -9.65199172e-02 -4.25096713e-02 -1.09363008e+00 -1.23470259e+00 -3.14245850e-01 -1.20657778e+00 2.54326254e-01 -1.18908918e+00 -1.58558059e+00 -1.36313707e-01 1.48867533e-01 -4.20277387e-01 -1.52054697e-01 -9.47390258e-01 -5.35627306e-01 7.90858567e-01 -1.02363634e+00 -9.05654311e-01 -1.61725938e-01 2.90338129e-01 4.43995208e-01 5.58021307e-01 9.63750124e-01 -6.29795194e-01 -5.13256013e-01 1.79629326e-01 -3.93344820e-01 -3.15914936e-02 7.96063006e-01 -1.05748284e+00 6.14941418e-01 5.48913717e-01 2.77516041e-02 1.55053604e+00 1.00054932e+00 -5.47968984e-01 -1.15882874e+00 6.35393038e-02 6.12035275e-01 -8.92391264e-01 1.07216823e+00 8.35534781e-02 -9.65468943e-01 1.39744580e+00 3.99849772e-01 -6.66081131e-01 7.64172673e-01 8.66152406e-01 -7.03565061e-01 6.07591033e-01 -1.12950385e+00 8.77378225e-01 1.10173178e+00 -5.89427650e-01 -1.55023372e+00 5.64979494e-01 3.73422176e-01 3.95968817e-02 -7.01001644e-01 -2.15612464e-02 8.33101511e-01 -1.42363846e+00 1.15807927e+00 -1.05878234e+00 9.24009025e-01 7.08092079e-02 -6.18916340e-02 -1.26258647e+00 -1.06287277e+00 -1.73751444e-01 4.64529663e-01 7.41223276e-01 1.90602422e-01 -8.35195363e-01 2.98329741e-01 1.36604822e+00 1.48037612e-01 -2.22490460e-01 -5.02852321e-01 -4.93862987e-01 6.44780576e-01 -6.83622122e-01 2.97521889e-01 1.29985201e+00 7.42676437e-01 8.68200004e-01 2.73184717e-01 -2.29955390e-02 9.70396280e-01 5.33628091e-02 7.63211250e-01 -1.70220983e+00 -4.13312584e-01 -6.60990596e-01 -1.80459291e-01 -6.20696068e-01 7.29018822e-02 -7.07822084e-01 -2.60565370e-01 -1.63409424e+00 9.79951262e-01 -3.24981779e-01 -6.59130141e-02 5.04867971e-01 -6.31423175e-01 -2.91520804e-01 6.33944988e-01 1.44720823e-01 -4.80961531e-01 1.68198392e-01 1.13098717e+00 2.84215480e-01 3.36160183e-01 -4.53991622e-01 -1.76283026e+00 1.51292324e+00 8.95299911e-01 -4.87014413e-01 -4.21708584e-01 -3.29170614e-01 7.26769090e-01 2.40920838e-02 1.05413353e+00 -8.98435473e-01 8.78085494e-02 -8.07205141e-01 5.45256317e-01 2.40422804e-02 3.47935766e-01 -5.91524780e-01 5.30524664e-02 6.99407578e-01 -4.09394294e-01 1.85818270e-01 3.99539083e-01 2.70342261e-01 4.88760263e-01 -6.12104535e-01 8.80509377e-01 -7.81033993e-01 -6.62729919e-01 -5.51694632e-01 -2.80836642e-01 3.11698735e-01 5.80384195e-01 -3.02431285e-01 -8.34398746e-01 -4.22400177e-01 -6.55797005e-01 -9.22285169e-02 7.84013152e-01 4.70431633e-02 2.96625704e-01 -8.02261949e-01 -7.02959299e-01 -3.56204182e-01 6.12915792e-02 -7.96710074e-01 2.22842231e-01 1.19491696e+00 -3.60806465e-01 7.65590906e-01 -3.52932781e-01 -3.74283642e-02 -6.82493985e-01 9.01580632e-01 4.52249229e-01 -5.87031059e-02 -4.93157446e-01 9.66714621e-01 6.49770975e-01 -1.97039157e-01 -3.91737014e-01 -1.67557716e-01 5.07102609e-02 -1.28448650e-01 7.82652020e-01 4.18946415e-01 -3.07444423e-01 -2.81343579e-01 -3.63916308e-01 5.85869253e-02 -3.88652653e-01 -3.15079927e-01 1.35661113e+00 -1.59753591e-01 -6.14037216e-01 8.27990770e-01 2.78088719e-01 -1.21316858e-01 -5.37151873e-01 -9.20092408e-03 -5.05057201e-02 -6.15897536e-01 2.47968614e-01 -1.09315562e+00 -1.30833477e-01 9.43624198e-01 1.35940611e-01 3.75108600e-01 5.23423731e-01 6.69933110e-02 -8.17533508e-02 5.34170508e-01 7.73678780e-01 -1.03441823e+00 -1.52409017e-01 2.97722250e-01 9.27417934e-01 -1.51909208e+00 6.37926221e-01 -2.06750885e-01 -9.27448571e-01 9.28361475e-01 8.57612491e-01 -2.15279564e-01 4.10824865e-01 -3.26533794e-01 -2.73768872e-01 -7.61426091e-01 -1.12141538e+00 -7.58111700e-02 -2.04506993e-01 5.02177715e-01 1.11982393e+00 5.32109380e-01 -8.06575477e-01 7.89795458e-01 -7.80448675e-01 3.35380226e-01 8.56582582e-01 6.68386042e-01 -8.53266835e-01 -5.23737967e-01 -9.38087165e-01 5.29037476e-01 -4.08832043e-01 -4.69737411e-01 -5.30540884e-01 1.10483623e+00 -3.07561874e-01 1.26197433e+00 2.16941535e-02 4.12984472e-03 -3.32114846e-02 3.67728829e-01 6.52519345e-01 -6.37014687e-01 -5.93282521e-01 -1.96641892e-01 2.83000350e-01 -5.77844739e-01 -4.28295642e-01 -7.40671098e-01 -1.20817518e+00 -1.07760096e+00 -4.61269885e-01 -9.87115353e-02 7.42695481e-02 1.14328873e+00 1.41672641e-01 3.02703172e-01 -3.84325266e-01 -5.58180511e-01 -1.05638230e+00 -1.38221860e+00 -6.71810269e-01 3.67196262e-01 4.71118931e-03 -1.01483703e+00 -5.33614337e-01 -1.44610316e-01]
[9.653044700622559, 7.308392524719238]
8bbe27bc-0baf-437a-94e0-79ce6390a90b
scanpath-prediction-in-panoramic-videos-via
2305.02536
null
https://arxiv.org/abs/2305.02536v2
https://arxiv.org/pdf/2305.02536v2.pdf
Scanpath Prediction in Panoramic Videos via Expected Code Length Minimization
Predicting human scanpaths when exploring panoramic videos is a challenging task due to the spherical geometry and the multimodality of the input, and the inherent uncertainty and diversity of the output. Most previous methods fail to give a complete treatment of these characteristics, and thus are prone to errors. In this paper, we present a simple new criterion for scanpath prediction based on principles from lossy data compression. This criterion suggests minimizing the expected code length of quantized scanpaths in a training set, which corresponds to fitting a discrete conditional probability model via maximum likelihood. Specifically, the probability model is conditioned on two modalities: a viewport sequence as the deformation-reduced visual input and a set of relative historical scanpaths projected onto respective viewports as the aligned path input. The probability model is parameterized by a product of discretized Gaussian mixture models to capture the uncertainty and the diversity of scanpaths from different users. Most importantly, the training of the probability model does not rely on the specification of "ground-truth" scanpaths for imitation learning. We also introduce a proportional-integral-derivative (PID) controller-based sampler to generate realistic human-like scanpaths from the learned probability model. Experimental results demonstrate that our method consistently produces better quantitative scanpath results in terms of prediction accuracy (by comparing to the assumed "ground-truths") and perceptual realism (through machine discrimination) over a wide range of prediction horizons. We additionally verify the perceptual realism improvement via a formal psychophysical experiment and the generalization improvement on several unseen panoramic video datasets.
['Kede Ma', 'Kanglong Fan', 'Mu Li']
2023-05-04
null
null
null
null
['scanpath-prediction', 'data-compression']
['computer-vision', 'time-series']
[ 4.09770161e-01 2.29113385e-01 -3.21951747e-01 -1.65850133e-01 -7.13302493e-01 -4.85378027e-01 5.67032456e-01 -5.98186851e-01 1.38975844e-01 4.67898965e-01 -4.80655488e-03 -2.54834089e-02 -3.89723659e-01 -5.62215209e-01 -1.04664743e+00 -5.91675878e-01 -2.23056540e-01 6.07488930e-01 1.57783434e-01 1.20079694e-02 2.06159785e-01 5.39629340e-01 -1.69844687e+00 1.56472340e-01 9.43019807e-01 1.02936661e+00 4.69912082e-01 5.74951291e-01 5.44276893e-01 4.53373194e-01 -2.43210420e-01 -3.93140197e-01 6.88197732e-01 -4.18776453e-01 -4.44505572e-01 3.62986118e-01 3.26217979e-01 -6.86496377e-01 -4.20435756e-01 1.00320554e+00 9.25532952e-02 1.25083268e-01 8.53393674e-01 -1.28687048e+00 -5.43040819e-02 1.74538568e-02 -5.53277254e-01 -4.73736107e-01 5.73314011e-01 3.53982270e-01 8.21248233e-01 -5.95128119e-01 1.04197311e+00 1.17623699e+00 4.95611906e-01 2.97229201e-01 -1.46904695e+00 -6.77498817e-01 -2.38886073e-01 1.37194961e-01 -1.42090285e+00 -9.28979740e-02 5.73774397e-01 -6.30813479e-01 3.83287489e-01 3.46726656e-01 1.03515577e+00 1.34944844e+00 5.70728838e-01 6.57702744e-01 8.87720048e-01 -1.70007423e-01 3.89244765e-01 4.20513749e-01 -6.82986796e-01 6.60397768e-01 -5.90064973e-02 5.41891456e-01 -3.93746704e-01 -2.15143010e-01 1.40378129e+00 -2.40702540e-01 -4.70228672e-01 -1.10368395e+00 -1.24508786e+00 6.89149797e-01 5.02964631e-02 -1.98318943e-01 -5.10538220e-01 7.51496702e-02 -3.20512205e-02 1.86125219e-01 -6.88344380e-03 3.56481463e-01 -2.78090566e-01 -1.88940123e-01 -1.00316978e+00 3.39217842e-01 9.54496861e-01 1.31039405e+00 5.56633770e-01 8.04436952e-03 9.97745022e-02 4.87512618e-01 3.77229631e-01 8.26866388e-01 2.49096766e-01 -1.48553526e+00 4.96169716e-01 1.65295467e-01 3.41644526e-01 -1.07001579e+00 2.61748303e-02 -2.26124033e-01 -7.35415220e-01 5.60045302e-01 4.45116788e-01 1.06084444e-01 -7.69346714e-01 1.70768356e+00 2.58897692e-01 2.31534336e-02 -1.93886518e-01 1.09001434e+00 -1.18438527e-01 8.35342526e-01 -2.56830871e-01 -4.13214833e-01 9.19335961e-01 -5.28789997e-01 -4.07257020e-01 2.24895075e-01 1.48001879e-01 -7.49032557e-01 1.26063323e+00 8.23046386e-01 -9.73809779e-01 -5.03538311e-01 -9.02482748e-01 4.25233483e-01 3.64637733e-01 9.30243507e-02 1.72159508e-01 5.94810784e-01 -7.02091873e-01 7.60269880e-01 -8.56183052e-01 -3.17065060e-01 -1.43719814e-03 1.46566033e-01 -3.80489975e-01 -9.83083621e-02 -9.29909527e-01 7.28362381e-01 2.65252084e-01 -3.09313238e-01 -1.01736152e+00 -6.76579893e-01 -6.51602924e-01 1.70589623e-03 4.94354963e-01 -6.35384679e-01 1.07211232e+00 -1.18926001e+00 -1.81257820e+00 5.15453935e-01 1.69494227e-01 -2.88242429e-01 1.01753688e+00 -1.57262623e-01 -1.03872716e-01 3.45246792e-01 -2.11440802e-01 9.19874251e-01 1.22108626e+00 -1.56305957e+00 -4.39249367e-01 8.26030225e-02 -9.52451229e-02 5.55898368e-01 2.21725151e-01 -5.24933219e-01 -6.19929254e-01 -6.81000292e-01 3.08049917e-01 -1.18135726e+00 -1.29218236e-01 5.02938092e-01 -5.52515149e-01 3.84164214e-01 6.00982547e-01 -6.89258158e-01 7.67567813e-01 -2.03894043e+00 4.40164357e-01 5.49745202e-01 -2.97933280e-01 -2.08213836e-01 -6.32028058e-02 4.58580703e-01 9.30129588e-02 -1.12570077e-01 -1.58307657e-01 -9.75156203e-02 -2.53523700e-02 3.29529732e-01 -6.47882462e-01 5.40144622e-01 -8.92348140e-02 4.09220129e-01 -8.26192200e-01 -4.59837466e-01 3.69475365e-01 4.91621226e-01 -7.17242837e-01 4.66421485e-01 -5.29048383e-01 9.08230782e-01 -4.21808422e-01 5.82011521e-01 6.51734591e-01 -7.17772841e-02 2.92062581e-01 -3.27364087e-01 3.94424610e-02 -2.49006420e-01 -1.48241961e+00 1.69698071e+00 -2.69151419e-01 3.33745271e-01 -5.35492897e-02 -5.19293010e-01 6.63109064e-01 1.97375923e-01 5.14526010e-01 -4.83855128e-01 3.80935222e-02 1.79775491e-01 -3.75900939e-02 -6.80274844e-01 5.65863967e-01 -1.29333809e-01 -1.07641250e-01 4.94934082e-01 1.50493100e-01 -7.18994021e-01 -2.29986131e-01 6.42072856e-02 6.26878679e-01 6.24476612e-01 2.30024517e-01 -1.55544102e-01 1.95776701e-01 1.64867397e-02 5.50679862e-01 6.14234924e-01 1.27206650e-02 8.94691050e-01 5.70315123e-01 -7.83803314e-02 -1.58528090e+00 -1.41868424e+00 -1.63464606e-01 3.82931978e-01 5.50404549e-01 -1.05598569e-01 -7.66380608e-01 -2.97724485e-01 -2.18980685e-01 1.04115176e+00 -4.86601919e-01 -7.56770894e-02 -3.67732286e-01 -2.06007153e-01 3.43403518e-01 1.80921942e-01 1.87030658e-01 -7.02918589e-01 -1.03855407e+00 -9.09370854e-02 -2.80131668e-01 -9.84914660e-01 -4.43997979e-01 -2.07339749e-01 -9.32025611e-01 -1.15451217e+00 -6.38803840e-01 -2.38751099e-01 4.88610387e-01 -9.34682935e-02 7.53562689e-01 -4.97437686e-01 -2.65995920e-01 7.54854739e-01 -1.77967533e-01 2.33910996e-02 -7.63219953e-01 -4.69637811e-01 2.18624577e-01 5.40291928e-02 -3.39059651e-01 -6.01649225e-01 -6.79095268e-01 7.07996130e-01 -8.54913175e-01 5.45099497e-01 7.86991715e-01 7.92966604e-01 8.49572420e-01 7.43529350e-02 -1.31166339e-01 -3.57547253e-01 1.44035101e-01 -6.08618140e-01 -9.26196098e-01 1.56449899e-01 -4.30098951e-01 4.23110351e-02 6.82402134e-01 -8.43203962e-01 -1.14231193e+00 2.80728638e-01 2.68370569e-01 -9.40306067e-01 -2.21804619e-01 7.04654753e-02 -1.47367775e-01 4.16550739e-03 4.51878726e-01 4.83850420e-01 3.64783585e-01 -2.33807459e-01 5.53036332e-01 2.95473486e-01 5.76228201e-01 -6.95815802e-01 8.00379634e-01 6.05118811e-01 1.58210978e-01 -9.08777654e-01 -1.51281774e-01 -3.58125265e-03 -6.20884538e-01 -6.58164620e-01 7.06545472e-01 -7.77041078e-01 -7.49841273e-01 2.97048807e-01 -1.00488472e+00 -3.77725065e-01 -3.80737364e-01 8.25138390e-01 -1.43372774e+00 6.48778558e-01 -4.33889389e-01 -9.42953229e-01 1.34425282e-01 -1.32566822e+00 1.02385283e+00 5.18412888e-02 -2.54362226e-01 -6.58119440e-01 2.98431497e-02 1.71399713e-01 9.76774320e-02 3.92587692e-01 1.01937687e+00 -1.76356703e-01 -1.30503798e+00 -3.24952006e-01 -4.24839184e-03 3.58308077e-01 -2.62017965e-01 1.18016519e-01 -6.67216122e-01 -2.43487582e-01 2.20602959e-01 -3.13377678e-01 2.65307814e-01 5.24356008e-01 1.08367181e+00 -3.86009663e-01 -3.29200536e-01 7.08712876e-01 1.46600020e+00 2.50596017e-01 7.07566619e-01 -1.82120502e-02 5.99425077e-01 9.71465945e-01 9.62330699e-01 6.65551484e-01 5.88882156e-02 8.61866057e-01 8.59237790e-01 4.46817786e-01 2.39862964e-01 -7.29923964e-01 4.08579290e-01 4.48385954e-01 -1.94346458e-01 -3.92404228e-01 -6.78038239e-01 2.68747747e-01 -1.67032433e+00 -1.00543356e+00 8.05352777e-02 2.81696200e+00 4.67946351e-01 2.84392089e-02 1.00268520e-01 -1.29699633e-01 6.82128787e-01 -8.39716792e-02 -6.30776584e-01 -1.06072180e-01 1.86563507e-01 -2.17529491e-01 6.38550282e-01 3.71684611e-01 -7.82128632e-01 4.65300560e-01 6.39866400e+00 1.00482380e+00 -1.05685592e+00 -8.22578669e-02 5.07682562e-01 -1.45930529e-01 -4.23064739e-01 6.43399581e-02 -4.21024591e-01 6.40909016e-01 7.44885206e-01 -6.94884509e-02 6.38199925e-01 8.21045518e-01 2.91797161e-01 -3.71697128e-01 -1.19709623e+00 8.96382689e-01 -5.79057820e-02 -1.08074880e+00 1.86166272e-01 3.56083661e-01 7.48181760e-01 -1.10820472e-01 3.09134245e-01 -1.01131890e-02 3.56803415e-03 -9.37484801e-01 1.21322811e+00 8.47824633e-01 1.12749183e+00 -5.92164397e-01 2.83063442e-01 7.86568344e-01 -8.55238259e-01 -1.07318863e-01 -2.71306187e-01 3.16137522e-01 5.18185079e-01 1.24180563e-01 -7.14164555e-01 5.88561177e-01 5.06954730e-01 3.61200750e-01 8.91154557e-02 1.04718888e+00 -6.80950284e-02 4.33270276e-01 -6.07015312e-01 1.95000783e-01 2.77338233e-02 -4.62067962e-01 1.00755537e+00 7.48247087e-01 6.16019011e-01 7.71301463e-02 6.86641410e-02 1.19751227e+00 4.40555423e-01 3.05783493e-03 -6.40704036e-01 2.47315779e-01 4.53040004e-01 7.67340720e-01 -4.73039538e-01 -6.58324957e-02 -1.73028052e-01 9.24605608e-01 -2.21001133e-01 3.96769464e-01 -9.52004433e-01 1.20369680e-01 4.85562742e-01 4.68532056e-01 2.60056973e-01 -1.57814488e-01 -1.90406322e-01 -1.09133434e+00 1.07932709e-01 -7.52862394e-01 1.16767792e-03 -9.12022054e-01 -9.86534834e-01 5.58510065e-01 5.44869959e-01 -2.05918670e+00 -6.34329319e-01 -3.85313511e-01 -4.48217124e-01 7.34605730e-01 -9.15601492e-01 -1.09408665e+00 -2.78046221e-01 4.30741221e-01 5.71205258e-01 -1.00825049e-01 6.36943638e-01 -4.50230427e-02 3.30008157e-02 3.73180121e-01 2.16940552e-01 -4.35404837e-01 5.08702159e-01 -9.65290248e-01 6.52567763e-03 6.03066266e-01 -1.61140755e-01 2.73270309e-01 1.14575565e+00 -8.00443351e-01 -1.48474848e+00 -8.27860236e-01 1.49383157e-01 -4.52957302e-01 5.53938210e-01 -1.96140036e-01 -9.43353236e-01 6.62837327e-01 -1.43665329e-01 -2.97883719e-01 1.90250680e-01 -6.33520663e-01 -1.69348091e-01 2.22156659e-01 -1.26966739e+00 5.94691336e-01 8.86422217e-01 -3.30585122e-01 -3.71926337e-01 1.25229612e-01 5.20462871e-01 -6.66171014e-01 -8.94734681e-01 4.97318268e-01 9.97737050e-01 -1.17080748e+00 9.10227478e-01 -1.05803095e-01 6.87942266e-01 -1.29869580e-01 -3.99075925e-01 -1.15101814e+00 -2.75544841e-02 -5.30743718e-01 -8.80166516e-02 7.59071290e-01 -1.53876189e-02 -3.46650809e-01 8.90057981e-01 6.01358593e-01 1.10909723e-01 -8.67728353e-01 -1.05948949e+00 -1.08491862e+00 -1.17482096e-01 -5.73081732e-01 2.37323895e-01 6.07648671e-01 -6.51519224e-02 -2.15647966e-01 -7.69830048e-01 3.54124963e-01 1.06062770e+00 9.84601006e-02 9.44742799e-01 -9.17232573e-01 -7.98522592e-01 -2.48537749e-01 -4.76714998e-01 -1.25777829e+00 -5.81339411e-02 -5.09785652e-01 2.97431499e-01 -9.46323335e-01 1.78650960e-01 -5.17968893e-01 3.46425056e-01 -2.57722735e-01 4.18787003e-01 -4.38691527e-02 3.24125469e-01 6.16084337e-01 -1.97098136e-01 7.34604895e-01 1.35528386e+00 1.65449142e-01 -3.13999593e-01 3.03512752e-01 2.37025961e-01 7.74145305e-01 4.39146876e-01 -3.94931346e-01 -8.33723128e-01 -1.59785300e-01 2.59773850e-01 8.29774857e-01 6.29629791e-01 -1.03316998e+00 -1.00474834e-01 -4.42153871e-01 1.95073217e-01 -6.46881223e-01 7.33297825e-01 -1.07356215e+00 9.35828567e-01 5.24064958e-01 -1.99140623e-01 -3.29219729e-01 1.84208360e-02 1.05324697e+00 4.92103957e-02 -1.44851342e-01 8.06261897e-01 -1.51029518e-02 -5.75747132e-01 2.73730040e-01 -5.12908816e-01 -2.93059379e-01 1.11100924e+00 -5.68340361e-01 9.60536152e-02 -7.90144444e-01 -6.55197740e-01 2.87956912e-02 9.88180816e-01 4.24283296e-01 6.43975317e-01 -1.22717166e+00 -4.21356678e-01 4.88226086e-01 9.94341969e-02 -9.07933936e-02 3.76467854e-01 8.42654467e-01 -6.49058044e-01 2.19052017e-01 -4.45577532e-01 -9.91583705e-01 -9.35690999e-01 5.06311893e-01 3.43835741e-01 -8.64828080e-02 -6.71665251e-01 3.80267739e-01 4.90931958e-01 -4.00170833e-01 1.89000189e-01 -2.66475439e-01 1.40569761e-01 -4.32327121e-01 1.05016172e-01 5.31674206e-01 -6.23666465e-01 -7.61881292e-01 1.07496545e-01 7.75927544e-01 3.00401211e-01 -4.94954914e-01 9.52916384e-01 -3.25706184e-01 4.87526864e-01 4.76692468e-01 9.43415403e-01 -1.01569049e-01 -1.92085147e+00 3.59169990e-02 -4.05771971e-01 -7.86598206e-01 -3.46931338e-01 -6.87724888e-01 -6.71929181e-01 7.94516444e-01 6.83221817e-01 -1.40891239e-01 8.98454547e-01 -3.35800201e-02 5.73252201e-01 3.04614287e-02 9.44465816e-01 -9.03254926e-01 8.21306035e-02 6.26730025e-02 1.08371341e+00 -9.15996730e-01 -3.71851772e-02 -6.19406223e-01 -9.14498985e-01 1.08183932e+00 5.36681056e-01 -1.59326360e-01 5.22961140e-01 -4.44722511e-02 -1.52515382e-01 6.33151978e-02 -6.97037518e-01 4.47572619e-01 3.75777423e-01 6.83541358e-01 -2.59466261e-01 1.51244104e-01 -7.16303661e-02 4.77148205e-01 -1.51893765e-01 5.95919751e-02 7.01614797e-01 5.52789032e-01 -3.55367303e-01 -7.39347994e-01 -5.30503631e-01 3.27901602e-01 6.05682842e-02 3.61577719e-01 2.89008826e-01 9.40554440e-01 7.39675239e-02 4.94221687e-01 1.89512148e-01 -5.67222357e-01 3.23847204e-01 -2.74278253e-01 7.02107608e-01 -3.99521828e-01 1.50928706e-01 2.05481932e-01 -2.36410260e-01 -9.38149273e-01 -1.25110671e-01 -7.61231720e-01 -9.62695122e-01 -3.99132431e-01 -2.42409497e-01 -1.32997885e-01 7.06177533e-01 7.29825914e-01 2.26821035e-01 -2.26264950e-02 6.48760796e-01 -1.30806065e+00 -1.09941566e+00 -7.32685447e-01 -7.80025959e-01 4.89487082e-01 -4.25028652e-02 -7.92069376e-01 -3.94464195e-01 2.23640010e-01]
[9.005108833312988, -2.6192009449005127]
3275ad05-6550-48e8-9310-f646031f91b0
sjtu-nlp-at-semeval-2018-task-9-neural
1805.10465
null
http://arxiv.org/abs/1805.10465v1
http://arxiv.org/pdf/1805.10465v1.pdf
SJTU-NLP at SemEval-2018 Task 9: Neural Hypernym Discovery with Term Embeddings
This paper describes a hypernym discovery system for our participation in the SemEval-2018 Task 9, which aims to discover the best (set of) candidate hypernyms for input concepts or entities, given the search space of a pre-defined vocabulary. We introduce a neural network architecture for the concerned task and empirically study various neural network models to build the representations in latent space for words and phrases. The evaluated models include convolutional neural network, long-short term memory network, gated recurrent unit and recurrent convolutional neural network. We also explore different embedding methods, including word embedding and sense embedding for better performance.
['Jiangtong Li', 'Bingjie Tang', 'Zhuosheng Zhang', 'Hai Zhao']
2018-05-26
sjtu-nlp-at-semeval-2018-task-9-neural-1
https://aclanthology.org/S18-1147
https://aclanthology.org/S18-1147.pdf
semeval-2018-6
['hypernym-discovery']
['natural-language-processing']
[-4.09291908e-02 4.52270806e-01 -4.74101454e-01 -1.47793695e-01 -1.28809392e-01 -1.37009680e-01 5.78756094e-01 4.40151721e-01 -8.67549539e-01 5.01543820e-01 7.18683183e-01 -3.53263736e-01 -2.65008062e-01 -1.08145976e+00 -1.47918448e-01 -2.60044128e-01 -2.21464321e-01 9.05344665e-01 -1.67150244e-01 -5.73096991e-01 7.09325001e-02 1.10670030e-01 -1.59385991e+00 7.40226805e-02 5.41650712e-01 5.30075788e-01 1.11121617e-01 3.27398449e-01 -5.32077909e-01 4.43696827e-01 -4.39432472e-01 -4.62239027e-01 3.62803116e-02 1.34484515e-01 -1.20460808e+00 -7.65170038e-01 2.65424132e-01 1.14421561e-01 -7.00857520e-01 1.08507824e+00 5.56676626e-01 5.47166109e-01 7.44642496e-01 -1.31493306e+00 -1.22211075e+00 1.10569215e+00 1.55155554e-01 2.76175290e-01 4.22847807e-01 -2.43383020e-01 1.66105962e+00 -1.02843487e+00 9.92164969e-01 1.33361709e+00 4.13577110e-01 5.94836593e-01 -1.05386078e+00 -9.32696521e-01 -7.74705261e-02 5.03393114e-01 -1.44980657e+00 -3.67682949e-02 2.86588788e-01 -1.04711868e-01 2.06626225e+00 -3.61911245e-02 6.24090433e-01 1.49088335e+00 -1.88541636e-02 6.35599256e-01 2.62893260e-01 -6.85052693e-01 -1.16279639e-01 -7.59372711e-02 7.86032736e-01 6.53126478e-01 6.82430387e-01 7.02744303e-03 -3.40190232e-01 -5.63109159e-01 4.76110041e-01 1.48196116e-01 3.58578749e-02 -1.67320475e-01 -1.30501950e+00 1.03704834e+00 6.08416080e-01 8.00725400e-01 -4.47672576e-01 2.90665954e-01 6.78097427e-01 5.53254843e-01 4.50096101e-01 1.37438500e+00 -6.54062569e-01 1.41840562e-01 -8.37103009e-01 2.38842875e-01 1.01828051e+00 9.33527231e-01 6.93894207e-01 5.67370541e-02 -4.24093515e-01 9.92419481e-01 5.24309814e-01 4.94764596e-01 1.17142570e+00 -1.66486412e-01 5.07972777e-01 8.28596652e-01 -1.80871561e-01 -1.00137126e+00 -7.94401944e-01 2.33010799e-02 -6.64925337e-01 -5.32450616e-01 -6.21487498e-01 -1.12851813e-01 -1.27373612e+00 1.61287963e+00 2.29779463e-02 6.85030282e-01 5.59083223e-01 6.06877446e-01 1.56756783e+00 9.69683349e-01 5.82625031e-01 -1.36475284e-02 1.58009517e+00 -1.11136901e+00 -9.65058029e-01 -1.24011211e-01 1.12681627e+00 -4.13297623e-01 9.29209948e-01 -2.43661597e-01 -7.18167841e-01 -1.75247073e-01 -1.04902565e+00 -4.35670286e-01 -1.46185589e+00 9.69332978e-02 7.67938912e-01 1.41024962e-01 -9.18592513e-01 6.34708583e-01 -6.36233032e-01 -9.75631297e-01 3.33391577e-02 4.55316156e-01 -5.26678681e-01 3.07244152e-01 -2.14116573e+00 1.21861696e+00 1.14603901e+00 -4.51878011e-02 -5.51016867e-01 -6.20281696e-01 -1.39547873e+00 3.27166557e-01 1.45772416e-02 -8.94249737e-01 8.04426908e-01 -1.73763976e-01 -9.46302950e-01 1.12272274e+00 -1.60260439e-01 -9.89169538e-01 -8.21396828e-01 -3.08102548e-01 -1.00267744e+00 -2.15048760e-01 2.09585533e-01 7.68870831e-01 5.09590566e-01 -7.59136379e-01 -3.46303403e-01 3.05977445e-02 3.58537659e-02 9.84306335e-02 -7.64939189e-01 1.45027682e-01 -1.56260177e-01 -7.98041582e-01 1.02305599e-02 -9.11093295e-01 -4.81345057e-01 -8.02599251e-01 -6.24853134e-01 -9.37487841e-01 6.06955886e-01 -4.25807238e-01 1.65172911e+00 -1.72390854e+00 2.06452068e-02 3.30619067e-01 4.06590939e-01 4.66536611e-01 -5.96713185e-01 8.61151516e-01 -5.34416676e-01 3.28368038e-01 7.43868873e-02 -2.14228004e-01 1.02706425e-01 5.58915794e-01 -8.83911312e-01 -1.39246002e-01 -4.29879241e-02 1.35012937e+00 -1.16547751e+00 -3.23034316e-01 1.47319153e-01 3.62526208e-01 -2.37895310e-01 3.47744226e-01 -2.17092842e-01 -5.68391323e-01 -2.78123409e-01 5.92848003e-01 3.45582739e-02 -5.32980740e-01 2.49059930e-01 -2.01644659e-01 3.35925102e-01 7.94379652e-01 -9.55559969e-01 1.84351373e+00 -6.93369627e-01 5.93751729e-01 -7.75417089e-01 -6.70720041e-01 1.03511202e+00 9.05694187e-01 4.98629570e-01 -5.48541367e-01 6.21245615e-02 3.50619316e-01 -1.35802954e-01 -7.76454329e-01 1.02807438e+00 -1.96633026e-01 -1.84890389e-01 5.33756375e-01 7.84536958e-01 4.27083671e-01 1.74267709e-01 2.27195308e-01 1.22963047e+00 -3.00858319e-01 5.23912489e-01 -1.22651353e-01 1.09482370e-01 -1.83447093e-01 2.87595779e-01 5.38500071e-01 1.37521371e-01 3.12706053e-01 2.04379931e-01 -7.07329750e-01 -1.07896388e+00 -8.18750978e-01 -1.54893741e-01 1.42993796e+00 2.19603479e-01 -9.22686040e-01 1.06324218e-01 -5.43789446e-01 1.73521668e-01 9.47732449e-01 -7.67944455e-01 -5.23342669e-01 -3.94722223e-01 -6.19227827e-01 9.32867110e-01 4.89626676e-01 5.38203232e-02 -1.88797724e+00 -5.86801589e-01 2.47401983e-01 -9.66881067e-02 -1.13821971e+00 -1.84894606e-01 4.88224685e-01 -6.28124654e-01 -1.00102174e+00 -3.16202939e-01 -1.17514455e+00 3.65532219e-01 -1.17390631e-02 1.41956961e+00 1.20324120e-01 -4.74339068e-01 2.53251731e-01 -6.24030828e-01 -2.70019054e-01 2.64853358e-01 6.88537836e-01 3.85677785e-01 -5.84452629e-01 1.26942587e+00 -6.40976369e-01 -3.15078259e-01 -3.71050686e-01 -1.01172698e+00 -2.89837062e-01 3.65449458e-01 1.08978117e+00 3.25993419e-01 -4.09661651e-01 2.56199956e-01 -1.20108438e+00 1.26724291e+00 -9.12095964e-01 -2.55422682e-01 6.54910147e-01 -1.19731128e+00 5.78466296e-01 2.84045283e-02 -3.63601625e-01 -5.10147512e-01 -3.00363779e-01 -1.60459012e-01 -6.50416672e-01 6.78929687e-02 9.39895809e-01 9.15285796e-02 4.20748472e-01 7.44469821e-01 1.79116242e-02 -6.96415126e-01 -5.35054207e-01 9.98638988e-01 5.13210475e-01 3.68023634e-01 -4.22092527e-01 7.42420316e-01 1.15129501e-01 -2.72060335e-01 -6.85161769e-01 -8.98108840e-01 -1.04033256e+00 -8.10680032e-01 6.49884284e-01 9.62560177e-01 -9.20597970e-01 -3.03269029e-01 -4.69527155e-01 -1.59537470e+00 4.26307142e-01 -4.97019649e-01 6.85489476e-01 -1.19255662e-01 -5.93770482e-02 -5.13847888e-01 -5.13766468e-01 -1.12950635e+00 -7.65838563e-01 1.16127634e+00 1.79775566e-01 -6.88750029e-01 -1.37985528e+00 7.44568527e-01 -2.22221836e-01 4.98653591e-01 1.13654643e-01 1.30241048e+00 -1.56150222e+00 2.29236726e-02 -4.70197290e-01 -1.79157302e-01 -1.70408860e-01 5.20452410e-02 -1.40450463e-01 -9.70768332e-01 -1.94437951e-01 -6.66148722e-01 -5.27677894e-01 1.46827972e+00 2.84468919e-01 9.58485365e-01 -5.13700306e-01 -9.08476710e-01 8.81404638e-01 1.55454683e+00 -1.24332435e-01 5.19311488e-01 6.74151361e-01 8.75162363e-01 3.65113884e-01 2.10448951e-01 3.50071073e-01 5.36331058e-01 3.81895006e-01 3.86099666e-01 -3.42495888e-02 2.41342500e-01 -5.90674341e-01 5.16276620e-02 1.13003397e+00 3.71208936e-02 -4.30515796e-01 -1.06567109e+00 1.03080714e+00 -1.94789076e+00 -1.08491683e+00 2.18873784e-01 1.77203584e+00 7.76617825e-01 -2.01490998e-01 -2.12670505e-01 -2.64211267e-01 6.34856045e-01 5.36401391e-01 -3.07880014e-01 -7.90935457e-01 -2.51643836e-01 8.44819725e-01 6.07133567e-01 3.78426194e-01 -1.21752954e+00 1.73044014e+00 6.84105492e+00 6.72984004e-01 -8.13947976e-01 1.05373852e-01 -1.37934148e-01 -9.62676555e-02 -7.24659324e-01 2.04766989e-01 -9.99940693e-01 1.97935309e-02 1.27140117e+00 -4.75652933e-01 1.69050783e-01 8.94580781e-01 -6.12959862e-01 7.56582558e-01 -1.02157140e+00 1.10288155e+00 2.06415817e-01 -1.43943167e+00 5.78211129e-01 -1.20855749e-01 6.04852915e-01 6.18898451e-01 -1.37323856e-01 1.02799964e+00 5.85573137e-01 -1.63844562e+00 -3.06213886e-01 5.01329303e-01 8.50038230e-01 -5.14554441e-01 9.32261765e-01 -1.35188624e-01 -1.34263039e+00 3.79052497e-02 -8.33836973e-01 1.60089761e-01 1.24609195e-01 3.20290983e-01 -1.11185241e+00 3.31806093e-01 4.68680561e-01 9.84937131e-01 -4.99496460e-01 8.24225068e-01 -7.00927436e-01 5.50278902e-01 -2.48651937e-01 -2.78609067e-01 4.80935603e-01 1.59845844e-01 6.28097296e-01 1.56223404e+00 1.47137150e-01 -2.86235427e-03 4.26552184e-02 1.07365477e+00 -5.77972770e-01 4.45216984e-01 -9.53454614e-01 -6.72275782e-01 8.17068517e-01 1.57282329e+00 -3.85821283e-01 -3.38280261e-01 -1.50657594e-01 7.62337446e-01 4.35789734e-01 5.72310984e-01 -4.39349771e-01 -9.56632197e-01 9.55470204e-01 -4.52483594e-01 9.59834009e-02 -1.10984407e-01 -1.34772882e-01 -1.57540965e+00 -2.89009154e-01 -3.74555528e-01 9.75357354e-01 -6.37877643e-01 -1.60174668e+00 8.81439745e-01 1.38369665e-01 -1.00936878e+00 -4.66980159e-01 -7.96673357e-01 -8.95662010e-01 8.08365464e-01 -1.66737056e+00 -1.39600682e+00 7.30634779e-02 3.38741183e-01 3.58191103e-01 -7.48399854e-01 1.54676640e+00 2.23094419e-01 -3.17636669e-01 6.60255611e-01 5.38662709e-02 5.74576318e-01 6.08608007e-01 -1.36558402e+00 1.04515111e+00 3.91290039e-01 9.66587424e-01 1.24733472e+00 5.00487685e-01 -7.66625404e-01 -1.06215525e+00 -1.03323889e+00 1.75201082e+00 -5.80865085e-01 9.08118844e-01 -3.90213937e-01 -9.77916479e-01 9.10831392e-01 5.96308470e-01 8.28629881e-02 9.50380564e-01 8.76886070e-01 -7.67624736e-01 4.05749142e-01 -6.04979873e-01 5.52088737e-01 9.43144202e-01 -8.58072698e-01 -1.32068777e+00 4.11359489e-01 1.66272438e+00 -7.96282515e-02 -1.04267824e+00 6.60350323e-01 4.25337762e-01 1.02201678e-01 1.18346703e+00 -1.49470544e+00 3.34022582e-01 4.60689552e-02 -6.14787675e-02 -1.42659831e+00 -3.16543937e-01 -5.21527350e-01 -6.62904203e-01 9.84126091e-01 9.24120009e-01 -3.52142572e-01 6.95171237e-01 5.11021495e-01 2.90270984e-01 -9.66569304e-01 -8.84913802e-01 -6.30856454e-01 1.72296658e-01 -3.70900273e-01 8.43005180e-01 1.40818310e+00 5.50900519e-01 9.67601359e-01 -3.43619496e-01 1.24126300e-01 -4.20332104e-02 2.60429084e-01 1.48035243e-01 -1.23941255e+00 3.61034125e-01 -3.93631011e-01 -6.96547747e-01 -7.04393744e-01 7.80230999e-01 -1.48876834e+00 -3.64525884e-01 -1.85075247e+00 1.27814844e-01 -1.45447835e-01 -1.04924023e+00 9.59277213e-01 -2.12788641e-01 -2.66125113e-01 -3.08895539e-02 1.55411810e-01 -8.46854806e-01 9.79825079e-01 6.34532094e-01 -4.25075501e-01 -2.19550118e-01 -3.55025321e-01 -4.15032089e-01 1.91202328e-01 5.31832397e-01 -7.89101541e-01 -4.19977844e-01 -7.04898059e-01 9.21157122e-01 -4.79784995e-01 6.43884614e-02 -4.24827158e-01 5.07341266e-01 1.51298121e-01 6.44705966e-02 -5.38663089e-01 3.76736820e-01 -8.64767551e-01 -4.55696911e-01 3.84770423e-01 -9.85279620e-01 3.25742185e-01 1.50845557e-01 4.13690060e-01 -4.58972156e-01 -5.05588472e-01 6.28078133e-02 -1.58216998e-01 -1.00976038e+00 6.20163798e-01 -8.43002573e-02 1.82304144e-01 5.86212337e-01 9.96955484e-03 -2.65888870e-01 -1.07838184e-01 -7.81977057e-01 7.23921120e-01 -1.88256323e-01 1.14280474e+00 9.31472898e-01 -1.76798773e+00 -5.41521132e-01 -6.69927429e-03 7.97426403e-01 -4.21121031e-01 -3.14451694e-01 1.72186315e-01 -2.80226678e-01 8.07692528e-01 -1.24000974e-01 9.59109887e-02 -1.03826177e+00 7.75996387e-01 2.51314431e-01 -5.54367483e-01 -7.28045166e-01 1.18855000e+00 -2.97288954e-01 -9.69394505e-01 3.56289297e-01 -6.52969360e-01 -1.06024528e+00 1.63975805e-01 3.77335966e-01 2.84354806e-01 -1.88662499e-01 -5.67992330e-01 -3.53145152e-01 2.73398668e-01 -3.83214466e-02 -5.99898286e-02 1.50162494e+00 1.51526973e-01 -4.67173338e-01 7.02202797e-01 1.57300937e+00 -6.79178536e-01 2.63084650e-01 -6.68702543e-01 8.48401725e-01 1.48010284e-01 -7.93908685e-02 -3.39147866e-01 -7.56790042e-01 8.44276845e-01 6.25782371e-01 1.46583274e-01 5.98807812e-01 1.86416626e-04 1.35615253e+00 1.07330465e+00 4.78627905e-02 -1.18982375e+00 -2.37731829e-01 1.21732831e+00 5.66060066e-01 -1.32081950e+00 -8.64352584e-02 1.80233061e-01 -6.17944002e-01 1.51937401e+00 7.63817966e-01 -3.81844103e-01 1.16948712e+00 -2.10889086e-01 -1.29352182e-01 -9.26227391e-01 -1.25071204e+00 -7.79583156e-01 7.55337775e-01 3.15103143e-01 7.77038336e-01 -2.14529783e-02 -4.13195848e-01 7.42899358e-01 -4.75750387e-01 -3.83769423e-01 1.19309314e-01 4.27314490e-01 -4.35550719e-01 -1.03689301e+00 4.85430926e-01 5.64539492e-01 -1.80862218e-01 -8.12290549e-01 -3.91127616e-01 4.92016971e-01 2.82581359e-01 5.42026162e-01 6.93893433e-02 -5.61217725e-01 2.46656999e-01 4.83957589e-01 -1.06357001e-01 -1.29957783e+00 -6.89788938e-01 -5.50625265e-01 1.20906740e-01 -4.97647643e-01 -4.00865734e-01 -1.40642121e-01 -1.51376927e+00 2.70400405e-01 -6.60935819e-01 4.47705507e-01 5.52310646e-01 1.13978362e+00 4.36755210e-01 3.48060668e-01 1.39903978e-01 1.85434036e-02 -2.07408667e-01 -1.40396750e+00 -5.86300552e-01 5.10703266e-01 2.81963162e-02 -5.24077415e-01 -1.97284389e-02 -1.80536032e-01]
[10.0923433303833, 8.75131893157959]
2520446b-2c17-4951-a384-a820590ec5bb
robust-model-training-and-generalisation-with
2006.06599
null
https://arxiv.org/abs/2006.06599v2
https://arxiv.org/pdf/2006.06599v2.pdf
Robust model training and generalisation with Studentising flows
Normalising flows are tractable probabilistic models that leverage the power of deep learning to describe a wide parametric family of distributions, all while remaining trainable using maximum likelihood. We discuss how these methods can be further improved based on insights from robust (in particular, resistant) statistics. Specifically, we propose to endow flow-based models with fat-tailed latent distributions such as multivariate Student's $t$, as a simple drop-in replacement for the Gaussian distribution used by conventional normalising flows. While robustness brings many advantages, this paper explores two of them: 1) We describe how using fatter-tailed base distributions can give benefits similar to gradient clipping, but without compromising the asymptotic consistency of the method. 2) We also discuss how robust ideas lead to models with reduced generalisation gap and improved held-out data likelihood. Experiments on several different datasets confirm the efficacy of the proposed approach in both regards.
['Gustav Eje Henter', 'Simon Alexanderson']
2020-06-11
null
null
null
null
['normalising-flows']
['methodology']
[-3.31681073e-01 4.71231863e-02 -2.26113573e-01 -3.05205911e-01 -6.43559933e-01 -8.29008341e-01 7.72441983e-01 -2.12415427e-01 -3.35217029e-01 1.07810438e+00 2.99368322e-01 -5.49685717e-01 -6.10261679e-01 -8.51943791e-01 -6.00941420e-01 -7.61149228e-01 -3.97768110e-01 3.58617097e-01 2.63537139e-01 1.65858418e-01 2.76693493e-01 7.29810953e-01 -1.20516622e+00 -2.63662010e-01 1.02174044e+00 8.92083764e-01 -3.48612964e-01 7.58771420e-01 -2.88262814e-01 8.84781778e-01 -5.25838614e-01 -7.91231394e-01 3.96826804e-01 -2.00290186e-03 -5.40393412e-01 -1.91191465e-01 3.56756806e-01 -6.68562591e-01 -4.81937945e-01 8.08556318e-01 3.87659431e-01 3.12824517e-01 1.18717933e+00 -1.53278279e+00 -5.68535328e-01 5.73816359e-01 -4.15841967e-01 1.94507882e-01 -5.11753932e-02 2.98152953e-01 1.03295124e+00 -5.76498628e-01 2.28509352e-01 1.48497224e+00 8.76714706e-01 3.60115886e-01 -1.20462286e+00 -8.18050683e-01 3.52746882e-02 -3.05050611e-01 -1.33244145e+00 -4.67410833e-01 5.62895894e-01 -5.08660078e-01 5.98588109e-01 4.09349054e-02 1.90593377e-01 1.20024598e+00 -3.90936248e-03 9.90656972e-01 9.35044169e-01 -1.44909933e-01 3.80912334e-01 4.96500403e-01 2.92879399e-02 6.32379115e-01 4.58829403e-01 1.58864841e-01 -3.21627617e-01 -5.36130667e-01 7.63168275e-01 -3.02285925e-02 -1.99178547e-01 -6.18462682e-01 -7.30271280e-01 1.21606982e+00 1.85520753e-01 1.16254970e-01 -2.10182905e-01 4.96401727e-01 3.37536544e-01 7.29568908e-03 7.35065401e-01 7.14538544e-02 -4.78077680e-01 -3.70885879e-01 -1.21388340e+00 5.65595150e-01 1.09912407e+00 1.05000079e+00 8.43940377e-01 4.41026628e-01 -3.93747687e-01 6.09614074e-01 4.61556643e-01 6.41478181e-01 9.92930727e-04 -1.03712475e+00 5.87424755e-01 7.15145888e-03 3.69882941e-01 -9.64382052e-01 -1.52925968e-01 -6.48460329e-01 -7.83851385e-01 2.07817405e-02 8.53029788e-01 -5.84776402e-01 -7.70815790e-01 1.93380010e+00 4.84335795e-02 4.33464795e-01 -1.35717034e-01 4.16011453e-01 1.73266277e-01 6.82284653e-01 4.10838306e-01 1.36826977e-01 9.82886851e-01 -6.11591041e-01 -3.03067148e-01 1.23480879e-01 5.39414287e-01 -5.17639160e-01 8.42962801e-01 2.22182423e-01 -9.35146451e-01 -3.07979226e-01 -6.24450445e-01 1.69519171e-01 -2.88824201e-01 -2.64780521e-01 9.52187657e-01 1.38399148e+00 -1.34079099e+00 6.92488790e-01 -7.89352238e-01 -1.87096134e-01 9.92828190e-01 1.72842011e-01 -2.21489489e-01 8.79103541e-02 -1.16814792e+00 5.75154781e-01 1.56478256e-01 -2.05387160e-01 -1.01610363e+00 -1.15340137e+00 -7.89758325e-01 4.46275860e-01 2.12315917e-01 -8.50347698e-01 9.80939865e-01 -5.45530856e-01 -1.63349569e+00 3.62176865e-01 -2.51872897e-01 -7.12981939e-01 9.88866508e-01 -4.58819807e-01 9.42349881e-02 3.03077668e-01 3.70934345e-02 6.79780066e-01 9.31306481e-01 -9.67693508e-01 -6.51716173e-01 1.37752518e-01 1.45299003e-01 -2.72679359e-01 -6.53891623e-01 -6.39006719e-02 -1.17687628e-01 -6.57370865e-01 -5.60831368e-01 -7.08632946e-01 -2.69914269e-01 2.15042159e-01 -4.35985118e-01 -3.37438405e-01 7.50375390e-01 -3.95105541e-01 1.10757720e+00 -2.06466007e+00 -2.82325089e-01 4.21582282e-01 2.41792694e-01 4.51183528e-01 7.60823954e-03 5.83419621e-01 1.93838343e-01 5.65465629e-01 -2.94742495e-01 -4.95590746e-01 3.80406052e-01 8.25746059e-02 -7.21911669e-01 6.84953153e-01 4.01819140e-01 8.65822017e-01 -7.22996235e-01 -4.16035593e-01 3.64104062e-01 6.56844437e-01 -6.58656478e-01 1.83310658e-01 1.05089657e-01 2.59920597e-01 -4.54328924e-01 3.14621538e-01 8.27544153e-01 -6.37805462e-02 -3.22599500e-01 2.10767090e-01 1.03382736e-01 5.15200756e-02 -1.31309199e+00 1.13177192e+00 -3.82716179e-01 5.99297941e-01 7.57284462e-02 -1.11413527e+00 1.03128314e+00 1.74498931e-01 3.49007159e-01 -1.03141598e-01 6.64102146e-03 1.68374076e-01 -2.51844913e-01 -3.07134509e-01 2.89722979e-01 -5.61017215e-01 6.53359070e-02 4.85156894e-01 2.14524239e-01 1.51472697e-02 3.50271732e-01 3.27007920e-01 7.82186449e-01 2.81878084e-01 1.95005946e-02 -5.50300956e-01 3.95439476e-01 -5.70254207e-01 4.26392436e-01 1.37135088e+00 -4.44838464e-01 4.26029533e-01 9.32438433e-01 -1.55220568e-01 -1.00912511e+00 -1.52979028e+00 -2.79068023e-01 9.54927325e-01 -2.23807424e-01 -1.97472319e-01 -5.64596176e-01 -9.19490993e-01 2.38415599e-01 8.35333705e-01 -5.84496975e-01 -9.92063060e-02 -4.63742256e-01 -9.19507742e-01 9.69047606e-01 6.04396284e-01 3.81849706e-01 -6.70193315e-01 -4.46522832e-01 1.16235159e-01 1.31703794e-01 -8.93832445e-01 -1.88548759e-01 1.36216044e-01 -9.50078845e-01 -7.16189146e-01 -1.16315365e+00 -2.69653410e-01 1.89298943e-01 5.89593463e-02 1.12659907e+00 -2.57550269e-01 -5.29593788e-02 5.09845257e-01 -1.84951454e-01 -3.55620265e-01 -2.96394438e-01 3.54056090e-01 1.29756019e-01 5.76475859e-02 1.87376127e-01 -8.29759002e-01 -5.73721468e-01 1.90444991e-01 -1.03984869e+00 -6.11983120e-01 4.25761402e-01 5.13563156e-01 -1.73643783e-01 2.30336711e-01 9.72808659e-01 -9.24637318e-01 6.68548942e-01 -7.62323260e-01 -4.67737615e-01 3.32379341e-03 -4.97835785e-01 3.09231162e-01 8.12308192e-01 -2.99966931e-01 -1.20318389e+00 -4.23026472e-01 -9.05984864e-02 -4.90601480e-01 -4.77114618e-01 1.93230778e-01 -8.82832706e-02 7.86820054e-02 6.35043502e-01 1.02769174e-01 1.12449072e-01 -3.97753119e-01 7.08909750e-01 5.86158037e-01 2.86887050e-01 -9.41925704e-01 1.06399262e+00 7.78942823e-01 1.97172925e-01 -8.60933542e-01 -7.12760568e-01 -3.37878764e-01 -4.26917404e-01 2.72580832e-02 5.28027833e-01 -7.91011631e-01 -7.88438678e-01 4.95495141e-01 -7.61344016e-01 -3.48725349e-01 -4.78469878e-01 5.64381421e-01 -7.61672318e-01 5.37717283e-01 -8.08211446e-01 -1.34574425e+00 -1.13307483e-01 -9.23715234e-01 7.35446572e-01 4.22543794e-01 -1.43578440e-01 -1.63257194e+00 1.12118587e-01 4.30010818e-02 9.03323174e-01 4.71721776e-02 9.40464973e-01 -8.70394647e-01 -4.75686133e-01 -2.09010154e-01 -4.09468859e-01 5.46896577e-01 -8.28701816e-03 2.94600308e-01 -1.20247138e+00 -3.37711453e-01 -2.34086663e-01 -1.31521448e-01 1.05902457e+00 6.42602921e-01 9.14693534e-01 -2.63172597e-01 -2.16199279e-01 7.23784566e-01 1.30066812e+00 -2.20979705e-01 6.25243783e-01 1.87534124e-01 4.89163607e-01 6.91192806e-01 1.77150518e-01 6.82802439e-01 2.93460816e-01 1.29912719e-01 3.14951003e-01 1.52110785e-01 7.94661939e-02 -4.26578104e-01 4.69312698e-01 2.97975838e-01 2.13429198e-01 -4.36011195e-01 -7.75286615e-01 8.03615630e-01 -1.67105067e+00 -1.13216102e+00 -7.05006942e-02 2.11194777e+00 6.91773593e-01 3.53156954e-01 5.74697375e-01 -5.14106601e-02 6.76912010e-01 2.29668975e-01 -3.51990610e-01 -2.66501963e-01 -1.16930097e-01 3.91468734e-01 5.52881658e-01 5.99107206e-01 -1.18206346e+00 7.48275757e-01 6.99923086e+00 1.19769943e+00 -9.68621194e-01 -1.09796830e-01 8.89324009e-01 2.62883510e-02 -5.13529062e-01 1.73645571e-01 -9.47852075e-01 6.36918664e-01 1.11677361e+00 -2.21263140e-01 1.29321739e-01 8.85093629e-01 1.78085595e-01 -6.61286861e-02 -1.11662471e+00 7.09003508e-01 -1.75981045e-01 -1.27550352e+00 1.26772687e-01 2.07588851e-01 5.84434271e-01 -2.11279422e-01 4.52116370e-01 6.58617079e-01 6.44700587e-01 -1.13788176e+00 7.02346087e-01 7.50715017e-01 5.41362464e-01 -1.05021083e+00 7.56506622e-01 3.75436544e-01 -8.83230209e-01 -7.83266220e-03 -4.51535702e-01 -5.07107601e-02 2.73062170e-01 8.41043234e-01 -7.65610397e-01 6.29620552e-01 6.13513231e-01 5.71334779e-01 -4.78016019e-01 1.35223389e+00 -5.21915890e-02 1.11195409e+00 -7.24774182e-01 5.65082580e-02 4.45817441e-01 -2.34933957e-01 6.63294256e-01 1.59845483e+00 5.28443933e-01 -6.20987058e-01 -4.83153462e-02 1.10662174e+00 1.59978569e-01 -1.28806472e-01 -6.95075512e-01 4.72295210e-02 5.09065270e-01 1.19273782e+00 -6.67020142e-01 -2.68310457e-01 -3.67016137e-01 5.15277743e-01 3.17405939e-01 6.64841056e-01 -9.61697638e-01 -5.21938622e-01 6.20999873e-01 1.63463801e-01 7.07379222e-01 -2.05911100e-01 -3.05280983e-01 -1.16999876e+00 -1.76848099e-01 -3.46480757e-01 4.50983196e-01 -3.54295999e-01 -1.88498926e+00 2.72336960e-01 4.56379384e-01 -9.50942159e-01 -4.58844841e-01 -7.48345971e-01 -7.94300616e-01 1.04917550e+00 -1.84215784e+00 -1.03915048e+00 2.81642050e-01 5.71175754e-01 1.29331037e-01 -1.07777700e-01 4.79028851e-01 2.79343963e-01 -4.88085091e-01 8.03872228e-01 2.13418052e-01 1.84836268e-01 6.50241196e-01 -1.46382451e+00 2.39878833e-01 7.39167094e-01 2.27444634e-01 9.31121111e-01 8.03211153e-01 -3.34961832e-01 -8.01800489e-01 -1.10201824e+00 5.17826676e-01 -5.97193301e-01 7.89320886e-01 -2.44258672e-01 -8.20660651e-01 6.16680145e-01 -2.54934523e-02 1.29623311e-02 7.66829789e-01 2.11472169e-01 -5.67935228e-01 -8.29781443e-02 -1.35384154e+00 5.36685824e-01 5.76875925e-01 -3.41785342e-01 -4.17190045e-01 3.49430665e-02 4.14975315e-01 1.83177188e-01 -6.26761138e-01 8.74731019e-02 4.65768784e-01 -1.24521887e+00 9.79278386e-01 -8.41526628e-01 1.76456034e-01 -9.61567760e-02 -1.05406359e-01 -1.27042830e+00 -2.85131276e-01 -1.06242549e+00 -2.81358242e-01 1.56878495e+00 2.46976361e-01 -7.80481160e-01 9.76050258e-01 7.27560222e-01 2.33406559e-01 -6.29492998e-01 -1.09590662e+00 -1.00901318e+00 7.95815408e-01 -7.16969013e-01 5.30324221e-01 6.69571519e-01 -1.32672101e-01 -6.80967644e-02 -6.67501807e-01 -2.52007302e-02 8.40588629e-01 -2.41027579e-01 1.02203751e+00 -1.31390941e+00 -3.38390708e-01 -4.90572929e-01 -4.00564224e-01 -1.36244214e+00 4.89015400e-01 -7.64159679e-01 -1.01372659e-01 -1.14922440e+00 2.21355125e-01 -6.15662992e-01 -2.01044798e-01 2.11960584e-01 -3.41134280e-01 1.82048887e-01 3.23480427e-01 2.31366651e-03 -5.53777814e-01 7.45141149e-01 8.23099434e-01 3.47629786e-01 -6.49521202e-02 3.43280882e-01 -9.15085971e-01 7.33912826e-01 8.99568975e-01 -5.34674048e-01 -5.47446311e-01 -8.68748501e-02 7.53736794e-02 -9.59698632e-02 4.52103227e-01 -9.82045352e-01 1.91044994e-02 -1.60990804e-01 1.50745347e-01 -2.59422988e-01 1.94404483e-01 -7.55306721e-01 -2.84233272e-01 2.71713167e-01 -3.92115772e-01 -2.39689082e-01 3.19090575e-01 8.49662423e-01 1.08835876e-01 -3.73882115e-01 8.80755663e-01 1.33829433e-02 -1.15758650e-01 3.87598842e-01 -5.72821259e-01 3.47823322e-01 8.65276933e-01 -1.49926975e-01 -3.06780368e-01 -8.96869302e-01 -4.99243706e-01 8.42664763e-02 4.10275832e-02 9.51675922e-02 2.22499639e-01 -1.06288743e+00 -8.21462810e-01 1.06018960e-01 -3.81145179e-01 -1.82299092e-01 2.29487732e-01 8.18013668e-01 -4.62686598e-01 5.05334496e-01 1.44499373e-02 -6.90140247e-01 -4.21160221e-01 4.49614257e-01 2.60229766e-01 -3.18469137e-01 -3.66586089e-01 8.77246678e-01 3.59817088e-01 -5.12360454e-01 2.07230389e-01 -1.62875265e-01 1.34553492e-01 2.55499110e-02 4.16732758e-01 6.83478594e-01 -4.00380611e-01 -3.31717730e-01 -4.12563890e-01 3.07783961e-01 -2.33929679e-01 -3.08874905e-01 1.25894523e+00 -2.73844987e-01 2.22573593e-01 4.20941412e-01 1.21062577e+00 2.04675257e-01 -1.78095627e+00 -6.73459768e-02 4.61199926e-03 -5.99534094e-01 -2.13074669e-01 -5.06254375e-01 -1.03046620e+00 1.13757443e+00 3.07988733e-01 4.22426850e-01 6.32141054e-01 -1.12915553e-01 6.55475020e-01 1.94571152e-01 1.71934217e-01 -6.04730844e-01 -1.21238552e-01 3.64060938e-01 2.70881176e-01 -9.44062114e-01 -9.64152142e-02 -2.89554685e-01 -5.15868783e-01 1.16022134e+00 2.99371213e-01 -4.59637374e-01 9.26761925e-01 3.15447241e-01 -4.58887257e-02 1.88967288e-01 -6.07765138e-01 -1.91520244e-01 -1.53271174e-02 9.46187198e-01 3.40648890e-01 -2.00240880e-01 1.26780923e-02 4.67119038e-01 -2.60150552e-01 -3.27758342e-02 6.44993722e-01 6.58964515e-01 -4.10812467e-01 -8.77224147e-01 -1.73387542e-01 5.11177003e-01 -8.32602799e-01 -1.45002410e-01 2.34284759e-01 9.67417479e-01 -1.73484534e-01 1.01105964e+00 1.37543038e-01 1.46107644e-01 -5.26603358e-03 2.55973846e-01 7.03957528e-02 -2.59361714e-01 -3.16980064e-01 -4.18749033e-03 -2.02585265e-01 -2.75010556e-01 -2.73379683e-01 -5.82055926e-01 -7.15707242e-01 -6.52621508e-01 -2.81075388e-01 3.18720609e-01 2.78748125e-01 1.02045906e+00 3.89737695e-01 1.12077639e-01 5.48843026e-01 -6.51282132e-01 -1.11526322e+00 -8.87887776e-01 -8.11293840e-01 3.23492616e-01 5.63908458e-01 -7.46018052e-01 -9.53534663e-01 -7.45645016e-02]
[7.141428470611572, 3.8503663539886475]
dfed1901-667e-4056-b48e-04ef24a05cba
from-neural-re-ranking-to-neural-ranking
null
null
https://dl.acm.org/citation.cfm?id=3271800
https://ciir-publications.cs.umass.edu/getpdf.php?id=1302
From Neural Re-Ranking to Neural Ranking: Learning a Sparse Representation for Inverted Indexing
The availability of massive data and computing power allowing for effective data driven neural approaches is having a major impact on machine learning and information retrieval research, but these models have a basic problem with efficiency. Current neural ranking models are implemented as multistage rankers: for efficiency reasons, the neural model only re-ranks the top ranked documents retrieved by a first-stage efficient ranker in response to a given query. Neural ranking models learn dense representations causing essentially every query term to match every document term, making it highly inefficient or intractable to rank the whole collection. The reliance on a first stage ranker creates a dual problem: First, the interaction and combination effects are not well understood. Second, the first stage ranker serves as a “gate-keeper” or filter, effectively blocking the potential of neural models to uncover new relevant documents. In this work, we propose a standalone neural ranking model (SNRM) by introducing a sparsity property to learn a latent sparse representation for each query and document. This representation captures the semantic relationship between the query and documents, but is also sparse enough to enable constructing an inverted index for the whole collection. We parameterize the sparsity of the model to yield a retrieval model as efficient as conventional term based models. Our model gains in efficiency without loss of effectiveness: it not only outperforms the existing term matching baselines, but also performs similarly to the recent re-ranking based neural models with dense representations. Our model can also take advantage of pseudo-relevance feedback for further improvements. More generally, our results demonstrate the importance of sparsity in neuralIR models and show that dense representations can be pruned effectively, giving new insights about essential semantic features and their distributions.
['Erik Learned-Miller', 'W. Bruce Croft', 'Mostafa Dehghani', 'Hamed Zamani', 'and Jaap Kamps']
2018-10-22
null
null
null
27th-acm-international-conference-on
['ad-hoc-information-retrieval']
['natural-language-processing']
[ 3.49009156e-01 -1.55922174e-01 -6.08325124e-01 -2.94828564e-01 -1.08223212e+00 -6.39290214e-01 7.50512779e-01 1.99481517e-01 -3.34004343e-01 3.64249915e-01 6.96841359e-01 -1.69677183e-01 -6.25817895e-01 -8.16523910e-01 -7.78953075e-01 -4.18369740e-01 -2.44923756e-01 8.39029908e-01 1.47003978e-01 -3.90641838e-01 4.71260130e-01 3.46133649e-01 -1.95729554e+00 6.50825262e-01 6.99545681e-01 8.48125696e-01 4.42973584e-01 3.98173511e-01 -1.89682096e-01 7.88801551e-01 -4.97113138e-01 -1.18630059e-01 2.99275368e-01 -1.88792516e-02 -8.29504192e-01 -5.55800915e-01 7.22329438e-01 -7.92558372e-01 -7.76827216e-01 8.26229513e-01 4.83498037e-01 4.86807615e-01 7.12171853e-01 -7.57912338e-01 -1.07133985e+00 8.80783617e-01 -5.47713578e-01 2.45125890e-01 2.58869112e-01 -6.48608267e-01 1.68658102e+00 -1.02942967e+00 5.86295784e-01 1.23050451e+00 3.76139283e-01 4.97052014e-01 -1.05285144e+00 -6.10178590e-01 3.34436893e-01 1.81858942e-01 -1.29292119e+00 -4.68957692e-01 6.24284923e-01 -8.92445818e-02 1.04065216e+00 4.15588319e-01 4.68866408e-01 8.76049519e-01 -1.18929595e-01 1.12264597e+00 4.92058158e-01 -3.87190878e-01 8.95968303e-02 -6.53299317e-02 6.48266494e-01 6.27119005e-01 3.32325488e-01 2.35750765e-01 -6.51685357e-01 -4.19717044e-01 6.35902882e-01 6.11524582e-01 -3.64426613e-01 -2.38595709e-01 -8.16890061e-01 1.03915024e+00 7.69953847e-01 5.11168599e-01 -3.27135652e-01 3.93428743e-01 2.68073350e-01 5.09606659e-01 3.87404859e-01 7.92070746e-01 -4.18822348e-01 1.80518284e-01 -1.30192351e+00 3.09506893e-01 5.56299031e-01 5.92871249e-01 8.53603601e-01 -2.16814071e-01 -6.60422921e-01 1.22186351e+00 2.85234690e-01 2.92012215e-01 7.90210843e-01 -9.30720866e-01 2.90798336e-01 6.73566580e-01 -1.34993851e-01 -1.25220823e+00 -2.87164778e-01 -8.41756999e-01 -6.82481587e-01 -3.31635326e-01 -1.18375331e-01 5.73063910e-01 -1.13806129e+00 1.82232034e+00 -4.24596637e-01 -3.57825123e-02 -9.67574492e-02 8.77074659e-01 8.06404233e-01 8.93592477e-01 -1.83825746e-01 4.64258566e-02 1.21027994e+00 -1.08625627e+00 -4.49830353e-01 -5.09991109e-01 6.18942857e-01 -5.04602432e-01 1.07850933e+00 3.32149416e-01 -1.07927644e+00 -2.94817448e-01 -8.83201063e-01 -3.90369833e-01 -5.04318655e-01 9.50273424e-02 1.08365929e+00 1.02715388e-01 -1.47064352e+00 6.21368051e-01 -5.07464111e-01 -3.33376884e-01 2.77613908e-01 6.96526706e-01 -2.33836114e-01 -6.92238748e-01 -1.35726821e+00 7.02422082e-01 2.31452137e-01 1.58603206e-01 -9.34958160e-01 -6.13208890e-01 -6.54261827e-01 4.82596725e-01 2.41703078e-01 -7.68932760e-01 1.23089910e+00 -7.53460705e-01 -9.98470724e-01 6.32246315e-01 -4.78791595e-01 -3.35098296e-01 -1.26286700e-01 -5.63975096e-01 -1.58264160e-01 1.62515551e-01 1.28602102e-01 7.23246872e-01 5.89866996e-01 -1.28355801e+00 -5.89474082e-01 -4.16897148e-01 2.27982014e-01 4.80505407e-01 -8.49121630e-01 -8.45929701e-03 -1.08852184e+00 -6.91550791e-01 2.50457406e-01 -7.53823519e-01 -2.28031471e-01 -4.16377753e-01 -1.80802271e-01 -3.05590898e-01 4.04767752e-01 -4.28816617e-01 1.47925806e+00 -1.93646765e+00 1.33469300e-02 4.59279329e-01 4.38982397e-01 2.17196986e-01 -7.67241716e-01 4.46060359e-01 2.27953885e-02 1.75904959e-01 2.05476284e-01 -2.40966842e-01 -1.87004313e-01 1.71933606e-01 -7.73021936e-01 -4.83869165e-02 -1.60700064e-02 1.29668152e+00 -9.54956949e-01 -1.57368094e-01 -3.00060689e-01 6.41839445e-01 -8.09890032e-01 1.39858380e-01 -3.37856486e-02 -2.75857598e-01 -6.24539256e-01 6.72855794e-01 2.51226425e-01 -7.04593956e-01 3.52476686e-02 -2.40319714e-01 2.18344346e-01 6.39370382e-01 -8.33685279e-01 1.72557521e+00 -5.25192797e-01 5.31637907e-01 -4.09533940e-02 -1.10981464e+00 8.00067306e-01 1.28616303e-01 5.64390063e-01 -1.15562356e+00 -1.94588467e-01 3.94980073e-01 -2.77340144e-01 4.54019196e-02 9.26288366e-01 8.68262351e-02 5.70897534e-02 7.21211970e-01 4.91064303e-02 3.23903918e-01 3.31807673e-01 6.89241230e-01 1.33820605e+00 -2.35397384e-01 -2.63802052e-01 -1.03641555e-01 4.12013456e-02 2.50177775e-02 1.64868295e-01 1.35435545e+00 5.19102037e-01 6.96432352e-01 6.95340857e-02 -3.14927250e-01 -6.78386390e-01 -8.73477876e-01 -4.41932119e-03 1.87107182e+00 1.28942415e-01 -3.74682546e-01 -1.00426391e-01 -3.92678112e-01 1.90913171e-01 2.97851801e-01 -6.64859176e-01 -6.37376606e-01 -6.06255770e-01 -8.33933234e-01 3.34177613e-01 5.48928142e-01 -2.35018637e-02 -1.03907108e+00 -5.32738194e-02 2.08634943e-01 -3.03717971e-01 -5.65652549e-01 -4.69580114e-01 7.63878524e-01 -1.25431073e+00 -8.05737138e-01 -9.38931823e-01 -7.98262477e-01 8.39156926e-01 8.19725037e-01 1.54616284e+00 4.25102949e-01 -1.29933968e-01 3.57487082e-01 -3.63058031e-01 -7.23915931e-04 1.13826483e-01 4.20294464e-01 -4.45585232e-03 -2.86695361e-01 4.33740407e-01 -5.19249082e-01 -8.57889712e-01 2.19219342e-01 -1.16785264e+00 -3.05590004e-01 9.41640794e-01 1.03932118e+00 4.97744650e-01 -3.90387559e-03 7.07791567e-01 -1.03007841e+00 9.80091751e-01 -6.16205692e-01 -4.56033498e-01 3.82068872e-01 -1.05101836e+00 5.08499444e-01 3.92913282e-01 -4.51368183e-01 -6.81445777e-01 -2.08429411e-01 1.21840410e-01 -3.65834594e-01 5.10695219e-01 1.02068460e+00 3.77569616e-01 2.18141854e-01 7.36509681e-01 3.03951174e-01 -2.58511335e-01 -7.60084450e-01 4.63141233e-01 5.45467257e-01 4.86317039e-01 -6.10458672e-01 7.73454905e-01 3.63942921e-01 -2.67562926e-01 -3.47061068e-01 -1.19498527e+00 -9.34350073e-01 -1.23544998e-01 1.99253425e-01 8.70207250e-02 -1.22046101e+00 -3.60694945e-01 -2.30247639e-02 -9.83305812e-01 1.66590177e-02 -3.66372377e-01 3.99154246e-01 -2.34469585e-02 1.40402272e-01 -8.31832707e-01 -5.17464340e-01 -5.73035836e-01 -8.72434020e-01 1.20749927e+00 4.71233316e-02 -7.48334900e-02 -8.40026557e-01 2.74815321e-01 3.54787409e-01 7.82574832e-01 -6.63410366e-01 1.20083642e+00 -9.57132518e-01 -7.28755713e-01 -5.51660776e-01 -5.65113485e-01 1.00816146e-01 -5.71907833e-02 -5.08514404e-01 -1.00565553e+00 -4.66781706e-01 -3.53808194e-01 -5.86683989e-01 1.68746924e+00 4.59322095e-01 1.18629968e+00 -5.01636922e-01 -4.45811957e-01 4.94936138e-01 1.28025448e+00 9.30391066e-03 5.34226298e-01 3.02940071e-01 7.06507802e-01 5.35797656e-01 3.23670805e-01 1.28587022e-01 3.11313778e-01 5.74470639e-01 3.36962879e-01 -2.06045806e-01 -9.05786455e-02 -5.20565569e-01 4.01737273e-01 9.97066259e-01 5.68366684e-02 -3.87900680e-01 -7.00237632e-01 6.49999082e-01 -1.92466807e+00 -9.71519589e-01 3.35091442e-01 2.49946046e+00 9.01846826e-01 -1.98648930e-01 -2.92087108e-01 -6.45672604e-02 4.80214119e-01 2.16222882e-01 -5.91699660e-01 -9.20566469e-02 -1.08585536e-01 3.68886709e-01 3.69915336e-01 5.93093753e-01 -8.56542945e-01 9.28485453e-01 7.10332155e+00 7.90131688e-01 -9.73143637e-01 -2.01791689e-01 5.93555570e-01 -5.70729136e-01 -8.39978456e-01 -9.42014828e-02 -1.05566275e+00 9.40005705e-02 9.12135601e-01 -2.09776536e-01 8.58070076e-01 8.32482636e-01 -1.24845728e-01 9.80109274e-02 -1.30221355e+00 9.29702222e-01 3.38408470e-01 -1.34912813e+00 6.76582813e-01 2.83719420e-01 7.12415278e-01 4.32585955e-01 2.67694890e-01 7.35147655e-01 5.27495325e-01 -1.26382136e+00 3.23385090e-01 5.25550902e-01 6.19662583e-01 -6.22211695e-01 7.28336394e-01 2.42104366e-01 -1.06924891e+00 -4.52870011e-01 -6.38831556e-01 1.03346273e-01 -2.02379614e-01 7.07134366e-01 -6.16535664e-01 2.87581265e-01 6.34023666e-01 7.41301298e-01 -7.40957201e-01 1.03885865e+00 7.01481700e-02 4.63408083e-01 -4.52708751e-01 2.30395026e-03 2.58644551e-01 5.89217618e-02 1.88022196e-01 1.11892867e+00 4.52561051e-01 -1.40604690e-01 1.55789867e-01 5.53340316e-01 -4.68603462e-01 1.04036510e-01 -7.20089078e-01 -3.21652114e-01 5.55588782e-01 1.03932357e+00 -4.21359330e-01 -3.79857630e-01 -3.26644540e-01 9.99413729e-01 7.08882749e-01 6.79739118e-01 -2.25310937e-01 -2.71020114e-01 4.11170870e-01 1.60275042e-01 2.65596449e-01 1.57558069e-01 -3.70180570e-02 -1.22925258e+00 4.88555469e-02 -8.78905714e-01 6.49318874e-01 -5.50658643e-01 -1.22628880e+00 5.02568424e-01 -3.42209116e-02 -8.56616676e-01 -6.22243345e-01 -4.92564380e-01 -2.15965807e-01 8.88520181e-01 -1.92891383e+00 -9.81996715e-01 -4.84688580e-02 5.65537870e-01 3.30034524e-01 -3.14328343e-01 8.61083329e-01 5.91865003e-01 -2.62168258e-01 7.35116899e-01 5.49809694e-01 4.14576977e-02 6.48547232e-01 -1.01062524e+00 6.33376315e-02 5.26985049e-01 6.01275265e-01 1.39908051e+00 1.58260927e-01 -5.03233492e-01 -1.58684778e+00 -9.50141788e-01 1.16752601e+00 -4.57934350e-01 4.39838260e-01 -2.39261329e-01 -1.01488733e+00 4.75169599e-01 -3.24754953e-01 -1.20054133e-01 7.58626938e-01 8.85402799e-01 -7.75728047e-01 -3.11627388e-01 -4.83296037e-01 5.26553631e-01 1.02975070e+00 -8.48827958e-01 -6.57204032e-01 3.84458154e-01 7.98178434e-01 2.13189408e-01 -4.05421048e-01 5.28802574e-01 8.61187816e-01 -7.05525339e-01 1.36473751e+00 -6.14511967e-01 5.82097650e-01 -1.10432804e-01 -3.03091198e-01 -1.04600024e+00 -6.50971293e-01 -2.78427273e-01 -7.21414089e-01 9.24342453e-01 5.55819631e-01 -3.91038388e-01 8.33208144e-01 6.68654382e-01 2.11659297e-02 -8.48212183e-01 -5.68373919e-01 -6.34423733e-01 -7.42877251e-04 -3.15054208e-01 4.33695704e-01 7.86820650e-01 -1.28249422e-01 6.26089573e-01 -3.70222121e-01 -6.49933219e-02 2.94384003e-01 3.24987143e-01 2.74053246e-01 -1.64556348e+00 -4.41679746e-01 -7.33192921e-01 3.89569774e-02 -1.65594411e+00 9.89908576e-02 -1.24859607e+00 5.70762418e-02 -1.91987860e+00 8.19721162e-01 -5.58221102e-01 -1.10902560e+00 7.26773620e-01 -2.84401804e-01 4.56090093e-01 -4.96967100e-02 8.13020527e-01 -8.52580726e-01 4.76081699e-01 9.86561120e-01 -3.12715590e-01 -3.47291797e-01 -6.26141727e-02 -1.34065008e+00 3.36423099e-01 4.23201531e-01 -5.80578148e-01 -7.19625115e-01 -8.92122328e-01 8.24954391e-01 -1.25134408e-01 2.22218707e-01 -5.93879044e-01 5.11432946e-01 2.34821394e-01 3.81648064e-01 -5.82217276e-01 3.77771854e-01 -7.24831939e-01 -3.05228502e-01 2.51294762e-01 -8.52739751e-01 9.63837653e-02 -4.96040389e-04 7.35996485e-01 -4.69836682e-01 -3.98086101e-01 2.58508533e-01 -2.49306753e-01 -6.26016796e-01 5.40714324e-01 -1.42831683e-01 -3.62683460e-02 4.99045551e-02 -6.07413575e-02 -3.24859172e-01 -6.06132805e-01 -2.51693994e-01 2.77607858e-01 2.90313929e-01 6.53813243e-01 7.54547834e-01 -1.31778026e+00 -6.56751812e-01 1.06723920e-01 3.53545547e-01 -4.88191061e-02 -1.75711550e-02 2.39059582e-01 4.47439170e-03 8.89014184e-01 3.00043494e-01 -2.05266476e-01 -8.57661247e-01 5.24644017e-01 -7.51446038e-02 -8.64649355e-01 -4.47022289e-01 9.46096599e-01 5.38231969e-01 -5.27966738e-01 5.86585641e-01 -6.81124851e-02 -4.80850279e-01 2.54371881e-01 7.90989161e-01 4.62305620e-02 2.70842999e-01 -2.58975476e-01 -2.47944444e-01 4.91924196e-01 -6.43382609e-01 -2.24727541e-01 1.48839080e+00 1.09896876e-01 -3.30137402e-01 2.90188015e-01 1.52650654e+00 -8.58919844e-02 -5.73942423e-01 -5.81844568e-01 1.82756215e-01 -3.32270354e-01 5.55163205e-01 -1.03201807e+00 -1.16298187e+00 7.27449119e-01 4.28001672e-01 -8.27352181e-02 1.16391671e+00 2.17362955e-01 8.26375782e-01 1.02504277e+00 2.31295824e-01 -8.86572957e-01 2.57181197e-01 8.70448411e-01 8.40655625e-01 -1.16068208e+00 1.64539590e-01 1.33292943e-01 -2.30525896e-01 8.37573946e-01 3.45791280e-01 -1.64251134e-01 5.18254638e-01 -4.23797257e-02 -8.21237937e-02 -5.26435018e-01 -1.01554751e+00 -2.44937047e-01 8.60811412e-01 3.06274176e-01 7.05988288e-01 -2.63586253e-01 -1.45697579e-01 5.12287557e-01 1.28132175e-03 -2.86339340e-03 -1.48004264e-01 8.40668261e-01 -6.95430696e-01 -1.19685757e+00 -1.57202423e-01 9.58361268e-01 -4.50028986e-01 -7.74063647e-01 -4.35110480e-01 2.97530025e-01 -5.64868271e-01 8.91648412e-01 1.88871264e-01 -4.90662694e-01 9.99877006e-02 8.16525146e-02 1.17019027e-01 -8.89063835e-01 -6.63809896e-01 4.78127934e-02 -1.79955184e-01 -7.02725232e-01 -7.45517015e-02 -2.27764979e-01 -9.96272206e-01 -8.59822985e-03 -5.22835910e-01 4.44569409e-01 5.82321048e-01 7.53219962e-01 7.83535242e-01 3.84222001e-01 7.15201437e-01 -7.41532445e-01 -7.40764737e-01 -8.62286985e-01 -5.15563071e-01 3.22261751e-01 4.61631835e-01 -5.68530977e-01 -4.23477590e-01 -3.87949288e-01]
[11.440435409545898, 7.579082489013672]
5e16e900-6547-43e8-b073-70c9a83deee3
imitating-task-and-motion-planning-with
2305.16309
null
https://arxiv.org/abs/2305.16309v1
https://arxiv.org/pdf/2305.16309v1.pdf
Imitating Task and Motion Planning with Visuomotor Transformers
Imitation learning is a powerful tool for training robot manipulation policies, allowing them to learn from expert demonstrations without manual programming or trial-and-error. However, common methods of data collection, such as human supervision, scale poorly, as they are time-consuming and labor-intensive. In contrast, Task and Motion Planning (TAMP) can autonomously generate large-scale datasets of diverse demonstrations. In this work, we show that the combination of large-scale datasets generated by TAMP supervisors and flexible Transformer models to fit them is a powerful paradigm for robot manipulation. To that end, we present a novel imitation learning system called OPTIMUS that trains large-scale visuomotor Transformer policies by imitating a TAMP agent. OPTIMUS introduces a pipeline for generating TAMP data that is specifically curated for imitation learning and can be used to train performant transformer-based policies. In this paper, we present a thorough study of the design decisions required to imitate TAMP and demonstrate that OPTIMUS can solve a wide variety of challenging vision-based manipulation tasks with over 70 different objects, ranging from long-horizon pick-and-place tasks, to shelf and articulated object manipulation, achieving 70 to 80% success rates. Video results at https://mihdalal.github.io/optimus/
['Dieter Fox', 'Ruslan Salakhutdinov', 'Ankur Handa', 'Caelan Garrett', 'Ajay Mandlekar', 'Murtaza Dalal']
2023-05-25
null
null
null
null
['robot-manipulation', 'motion-planning']
['robots', 'robots']
[-2.05358073e-01 -1.26731303e-03 -2.36254916e-01 -1.15186602e-01 -6.91199064e-01 -7.67411649e-01 5.80940902e-01 -3.79949510e-01 -4.46073681e-01 8.22934628e-01 -2.73940355e-01 -3.53262812e-01 4.13070954e-02 -4.00230914e-01 -1.26441324e+00 -5.00121176e-01 -5.28765880e-02 1.00693500e+00 3.80188704e-01 -3.73598188e-01 3.38047057e-01 5.34627378e-01 -1.64333427e+00 8.35980996e-02 9.40628648e-01 4.57502574e-01 9.49239314e-01 9.27874506e-01 3.56864095e-01 9.40570295e-01 -5.95918655e-01 2.97391236e-01 4.02770579e-01 -1.63649693e-01 -7.46360302e-01 -1.11170486e-01 1.36300266e-01 -6.90723062e-01 -5.21199942e-01 6.11295998e-01 3.94940525e-01 1.46895230e-01 6.39246047e-01 -1.91109955e+00 -4.16531146e-01 6.13568246e-01 -6.91080838e-02 -1.61205903e-01 4.44656551e-01 1.03720641e+00 6.99060082e-01 -5.88768601e-01 9.18122351e-01 1.46240580e+00 4.39963490e-01 7.13430703e-01 -1.14604759e+00 -6.93622530e-01 -1.41585752e-01 3.45605373e-01 -8.66389275e-01 -2.41477206e-01 4.79529947e-01 -6.01265311e-01 1.23680365e+00 -2.29090258e-01 7.45399415e-01 1.60195446e+00 3.53912443e-01 1.20529246e+00 1.08929622e+00 -1.52954072e-01 1.39248967e-01 -3.08298916e-01 -2.45239422e-01 1.03980505e+00 -1.83488116e-01 4.80257779e-01 -3.79598051e-01 9.88375247e-02 1.18956757e+00 2.04763422e-03 -1.87974095e-01 -8.73217583e-01 -1.71307445e+00 6.43196106e-01 5.30911148e-01 -1.27700299e-01 -4.16737407e-01 7.65577614e-01 4.03712958e-01 6.44978404e-01 -5.19844472e-01 8.79436910e-01 -6.05098724e-01 -4.93569493e-01 -1.04874603e-01 6.87268496e-01 1.00489759e+00 1.57043982e+00 6.63781047e-01 1.66155219e-01 -9.09503549e-02 6.32929981e-01 2.26685420e-01 7.04535604e-01 4.66164768e-01 -1.62559736e+00 5.19224167e-01 2.34477878e-01 4.12807107e-01 -4.88653332e-01 -4.40015674e-01 3.80632520e-01 -2.15599343e-01 8.77615213e-01 5.19459844e-01 -2.50274003e-01 -1.01941490e+00 1.59075272e+00 4.25514907e-01 -9.70881730e-02 6.06162883e-02 9.77868438e-01 5.55586755e-01 5.74689388e-01 -1.24356434e-01 2.79642105e-01 9.58712637e-01 -1.60612571e+00 -2.92310983e-01 -2.33305708e-01 5.65133750e-01 -5.35547912e-01 1.30161655e+00 3.98283362e-01 -9.94992077e-01 -5.43636262e-01 -8.44499946e-01 -1.69084623e-01 -1.72916070e-01 8.18862244e-02 5.11219144e-01 -3.26060981e-01 -1.01672363e+00 8.80057752e-01 -1.33292949e+00 -5.05316913e-01 4.85414863e-01 3.90134007e-01 -4.48529005e-01 -7.19036087e-02 -5.88174641e-01 1.38106966e+00 5.88760972e-01 -1.94938347e-01 -1.93026304e+00 -4.72503424e-01 -9.56696451e-01 -9.32663977e-02 7.15741277e-01 -6.60637736e-01 1.94056964e+00 -4.37020451e-01 -1.94327986e+00 4.25128400e-01 1.96498260e-01 -4.81695622e-01 6.85981572e-01 -3.51433694e-01 4.15888697e-01 2.40612283e-01 2.83371240e-01 1.09961462e+00 1.05990803e+00 -1.25011885e+00 -6.12382889e-01 1.88723892e-01 2.62917876e-01 2.56752759e-01 3.09629709e-01 3.13560478e-02 -2.95527428e-01 -3.24789345e-01 -4.45537865e-01 -1.33314574e+00 -2.01966465e-01 3.36660236e-01 -3.29056203e-01 -5.07489562e-01 1.04343736e+00 -4.78658110e-01 2.63606131e-01 -1.80388594e+00 6.99741900e-01 -3.05227667e-01 7.26687834e-02 3.32540810e-01 -4.47736651e-01 8.54130507e-01 4.31575805e-01 -2.69648135e-01 -1.44976690e-01 -1.85097843e-01 4.62640226e-01 6.97606385e-01 -2.39986837e-01 2.34964520e-01 2.14928538e-01 1.33322108e+00 -1.31575608e+00 -4.51531976e-01 6.08243108e-01 -2.56175399e-02 -5.56633890e-01 5.42956650e-01 -8.02301705e-01 9.61359322e-01 -4.70491201e-01 7.82297909e-01 -2.32820679e-02 -1.28229916e-01 -2.38530189e-02 2.36389935e-01 -1.25577003e-01 2.54849046e-01 -6.03022516e-01 1.96000886e+00 -6.83860362e-01 8.14060450e-01 4.09700483e-01 -1.05897403e+00 7.42093205e-01 2.40430251e-01 2.44932562e-01 -3.66200864e-01 1.61570236e-01 3.74776840e-01 7.25877509e-02 -8.95251572e-01 3.15397918e-01 1.71507016e-01 -2.47206286e-01 3.59529704e-01 3.05049419e-01 -1.17137587e+00 4.56007689e-01 1.14163291e-02 1.31807685e+00 8.34001541e-01 2.13800833e-01 8.48413259e-02 -6.48646355e-02 6.87499344e-01 4.23829496e-01 8.85852158e-01 -2.86802918e-01 2.80140549e-01 5.05905688e-01 -2.05761716e-01 -1.45055246e+00 -1.06634188e+00 3.80260050e-01 1.03558803e+00 1.41175240e-01 -1.95610434e-01 -6.31615698e-01 -5.30975521e-01 3.87966573e-01 7.36288786e-01 -2.88216382e-01 -3.10267252e-03 -8.88179421e-01 2.31489360e-01 5.52335858e-01 6.09512687e-01 4.62179691e-01 -1.86853957e+00 -1.08186603e+00 1.83120400e-01 -5.14461212e-02 -1.10351241e+00 -3.92851382e-01 1.54877186e-01 -6.29198611e-01 -1.34885275e+00 -6.85006917e-01 -1.13093054e+00 6.58627748e-01 3.51326495e-01 9.80169654e-01 3.08755022e-02 -3.97516787e-01 6.89711988e-01 -4.46634471e-01 -5.93916476e-01 -9.75586414e-01 4.75607216e-02 2.40765348e-01 -1.13471675e+00 -2.07466573e-01 -7.25484252e-01 -2.75318623e-01 5.71834624e-01 -5.16799569e-01 3.09384406e-01 9.14274096e-01 1.19754326e+00 3.57716143e-01 -3.44408035e-01 4.47517127e-01 -2.12640002e-01 7.24398553e-01 -2.75351346e-01 -9.75272834e-01 5.30821793e-02 -3.26817483e-01 8.40430930e-02 8.78523409e-01 -8.02461326e-01 -6.08672798e-01 1.99284390e-01 2.61907652e-02 -1.01078403e+00 -3.64060342e-01 2.66217440e-01 1.80405259e-01 -1.76203132e-01 7.13649035e-01 3.76222610e-01 5.02193272e-01 -2.47463927e-01 5.12167990e-01 5.04825056e-01 6.38462901e-01 -9.72229660e-01 9.70001578e-01 6.07816055e-02 -1.09334454e-01 -6.41827464e-01 -2.03471348e-01 -1.46446168e-01 -6.62431657e-01 -2.46663362e-01 7.58862615e-01 -6.98736131e-01 -1.14321136e+00 6.89353168e-01 -1.07140458e+00 -1.46224308e+00 -2.83102036e-01 4.62218344e-01 -1.32756317e+00 1.05173372e-01 -7.82797635e-01 -2.86371917e-01 -1.11933857e-01 -1.65564251e+00 1.18022561e+00 1.99536130e-01 -3.16381484e-01 -5.24478018e-01 -8.55901092e-02 2.61441857e-01 3.49654913e-01 3.10977101e-01 6.10515893e-01 -3.72539818e-01 -1.02694619e+00 3.46811190e-02 -2.72986200e-02 1.97225630e-01 2.73869447e-02 1.85005758e-02 -4.41846669e-01 -5.21903574e-01 -4.37386990e-01 -1.02881515e+00 3.48533899e-01 1.41918644e-01 1.09823692e+00 -2.48455584e-01 -4.50328350e-01 4.75944757e-01 9.46920753e-01 2.10791558e-01 2.72826672e-01 6.34361327e-01 7.63964713e-01 3.64784598e-01 1.06235850e+00 2.29797453e-01 4.11583215e-01 7.99969852e-01 7.62441099e-01 3.82346094e-01 -2.07393337e-02 -5.47911227e-01 6.35592341e-01 4.71437871e-01 -2.10315771e-02 5.08190803e-02 -9.43591416e-01 6.06361389e-01 -2.11815882e+00 -9.04630184e-01 1.61591262e-01 1.77639520e+00 8.53799105e-01 3.12000373e-03 2.03760669e-01 -3.90475422e-01 3.67653728e-01 -1.49297521e-01 -9.38016415e-01 -3.40172619e-01 4.56361443e-01 5.40518984e-02 4.71300662e-01 4.68811303e-01 -8.66350114e-01 1.38511240e+00 6.12558794e+00 6.17064953e-01 -1.02144969e+00 -4.37967181e-02 -3.53489459e-01 -1.18984081e-01 2.00764537e-01 7.29840919e-02 -4.57479984e-01 4.41478699e-01 6.18632019e-01 -2.39494205e-01 9.54530597e-01 1.28748822e+00 4.01040703e-01 -2.09992692e-01 -1.43435240e+00 8.80496800e-01 -3.38517249e-01 -1.20783806e+00 -3.22006404e-01 -9.67746004e-02 5.76940715e-01 5.67614138e-01 -1.77346915e-01 8.75751317e-01 1.11323309e+00 -1.02445197e+00 8.96411598e-01 2.07368299e-01 5.64339101e-01 -3.41052949e-01 2.29412168e-01 9.07763541e-01 -8.55741024e-01 -3.96692425e-01 -4.18292075e-01 -1.39058426e-01 3.78378332e-01 -2.80336022e-01 -1.30762815e+00 2.10237324e-01 7.14345157e-01 8.04949939e-01 4.76293899e-02 9.22030687e-01 -8.90133798e-01 2.38369644e-01 -3.62595618e-01 -3.50672811e-01 3.28128219e-01 -1.55602589e-01 7.57647336e-01 8.46974432e-01 2.35641286e-01 -1.38197064e-01 5.92981756e-01 1.01919079e+00 -2.00580023e-02 -5.63611150e-01 -9.99378145e-01 -1.24763012e-01 5.50480485e-01 1.13874304e+00 -2.99742341e-01 -4.66279685e-01 -2.14344468e-02 1.00873053e+00 7.06560075e-01 3.27999711e-01 -1.09223497e+00 -3.54089737e-01 7.92914808e-01 -3.82104278e-01 5.63517392e-01 -8.17168891e-01 2.27864131e-01 -1.10653353e+00 1.67227685e-01 -1.31175733e+00 -2.52678096e-01 -1.19577479e+00 -8.87039304e-01 1.38500884e-01 2.59350657e-01 -1.32952368e+00 -5.84641278e-01 -9.13673937e-01 -6.24660254e-01 6.31276786e-01 -1.42713714e+00 -1.02394950e+00 -5.55497944e-01 4.21297431e-01 1.04533577e+00 -2.64595002e-01 7.08038867e-01 -1.88895717e-01 -3.91977638e-01 9.04029980e-02 1.31372690e-01 1.04449250e-01 6.29935920e-01 -1.30408621e+00 5.21494329e-01 3.23758364e-01 -1.39774546e-01 4.87639487e-01 9.25539732e-01 -5.17520070e-01 -1.91259313e+00 -9.42666590e-01 5.63806891e-02 -6.42216802e-01 9.12949860e-01 -2.89370149e-01 -6.20719790e-01 1.07408082e+00 2.07520604e-01 -5.01362495e-02 -2.78883576e-01 -3.41845125e-01 -1.18883513e-01 3.34119499e-01 -9.98979568e-01 9.34089720e-01 1.20280850e+00 -4.18867141e-01 -9.15434301e-01 6.56491995e-01 7.68442333e-01 -9.67660427e-01 -9.20240521e-01 3.11127514e-01 6.31518006e-01 -6.58882976e-01 8.94184351e-01 -6.42662644e-01 7.52406716e-01 -3.84487689e-01 1.88184947e-01 -1.77014256e+00 -1.40171155e-01 -8.13409388e-01 -1.67729899e-01 6.14584804e-01 2.69959748e-01 -7.41974771e-01 5.42242050e-01 3.37208956e-01 -5.21094441e-01 -6.95485115e-01 -6.39823735e-01 -1.10623527e+00 1.40468374e-01 -1.93481922e-01 3.16007316e-01 6.49400830e-01 3.13777000e-01 2.48942643e-01 -2.92537332e-01 7.86847249e-02 3.93290102e-01 1.49111554e-01 1.58595312e+00 -7.39376485e-01 -4.70217854e-01 -4.76905823e-01 -1.51010647e-01 -1.39342082e+00 5.50875127e-01 -9.39893782e-01 7.44021356e-01 -1.72385645e+00 -1.38357341e-01 -6.09275877e-01 3.76489192e-01 8.14518094e-01 9.19944569e-02 -3.71479899e-01 5.07760406e-01 5.31932771e-01 -5.68983495e-01 8.28442395e-01 1.78867507e+00 -2.11229578e-01 -2.41259649e-01 -9.53733549e-02 -6.13329075e-02 6.97800756e-01 1.05552113e+00 -3.63872617e-01 -4.38068241e-01 -7.85615921e-01 -3.20351839e-01 2.92279691e-01 6.28602862e-01 -1.10005128e+00 1.52823299e-01 -5.41153073e-01 2.34646630e-02 -3.53232175e-01 5.17763019e-01 -7.21680462e-01 -1.26463190e-01 7.61719942e-01 -3.26783687e-01 2.77234018e-01 2.64326125e-01 4.95557666e-01 4.27673049e-02 -2.73239374e-01 5.90030909e-01 -5.65641165e-01 -1.01637006e+00 1.85333386e-01 -6.46120727e-01 -7.47452080e-02 1.34221029e+00 2.08412483e-01 -5.68534017e-01 -3.42979550e-01 -5.16371012e-01 9.23350453e-01 9.08078671e-01 6.64127469e-01 5.78892589e-01 -9.79882717e-01 -5.80276370e-01 -1.31617948e-01 6.90924078e-02 4.88047123e-01 -2.07094461e-01 8.10470641e-01 -8.20959926e-01 4.03219819e-01 -6.64795697e-01 -8.90099287e-01 -1.22579467e+00 6.85294092e-01 2.55270362e-01 -1.05432704e-01 -1.05503500e+00 5.67951560e-01 -8.94872565e-03 -1.01381123e+00 1.75191775e-01 -6.70171082e-01 2.45814905e-01 -6.37815833e-01 9.42037627e-02 2.57989407e-01 -5.52563369e-01 -1.55560240e-01 -8.53408687e-03 2.65777051e-01 1.06704876e-01 -2.13559434e-01 1.30724013e+00 3.11020821e-01 1.08731408e-02 3.86723757e-01 8.03303242e-01 -6.50468707e-01 -1.89831364e+00 7.53031820e-02 -7.77956918e-02 -3.17982078e-01 -6.67995453e-01 -6.73471749e-01 -4.83904123e-01 8.04003358e-01 -1.26782674e-02 -1.56617865e-01 4.04621840e-01 1.06828421e-01 7.82903075e-01 1.21509135e+00 9.95278358e-01 -1.26937199e+00 5.18410504e-01 9.33344960e-01 1.39661598e+00 -1.44587159e+00 -2.60477751e-01 -1.33409902e-01 -8.21629465e-01 1.04601395e+00 9.36897218e-01 -4.71720129e-01 5.79275750e-03 3.43938470e-01 6.11836463e-02 -3.16391774e-02 -9.78634536e-01 -9.53284800e-02 -3.06322366e-01 9.87222195e-01 -2.80080169e-01 7.63968155e-02 1.08427428e-01 -1.60648569e-01 -4.01464999e-01 3.52873385e-01 6.21288300e-01 1.50599790e+00 -5.46599746e-01 -1.05514908e+00 -3.31841081e-01 2.66042084e-01 2.34784603e-01 3.28598946e-01 -1.65539294e-01 1.05754185e+00 -4.13032264e-01 6.87042236e-01 -2.54583180e-01 -2.58235723e-01 3.27261984e-01 5.59852310e-02 8.79531324e-01 -7.03967631e-01 -3.25491220e-01 -3.82756770e-01 3.22504729e-01 -8.52705002e-01 -1.26106456e-01 -6.91429317e-01 -1.49604118e+00 -1.26760811e-01 5.91156334e-02 -8.30508620e-02 7.77220309e-01 9.13011312e-01 3.82005036e-01 5.76035798e-01 3.62297595e-01 -1.68554759e+00 -1.08392835e+00 -1.19637537e+00 -2.57458687e-02 3.83400023e-01 4.16509658e-01 -1.05705976e+00 -1.44624099e-01 -2.84781381e-02]
[4.572278022766113, 0.8057027459144592]
5e486e28-8c28-4147-ae6b-147f6dc208ee
location-aware-single-image-reflection
2012.07131
null
https://arxiv.org/abs/2012.07131v2
https://arxiv.org/pdf/2012.07131v2.pdf
Location-aware Single Image Reflection Removal
This paper proposes a novel location-aware deep-learning-based single image reflection removal method. Our network has a reflection detection module to regress a probabilistic reflection confidence map, taking multi-scale Laplacian features as inputs. This probabilistic map tells if a region is reflection-dominated or transmission-dominated, and it is used as a cue for the network to control the feature flow when predicting the reflection and transmission layers. We design our network as a recurrent network to progressively refine reflection removal results at each iteration. The novelty is that we leverage Laplacian kernel parameters to emphasize the boundaries of strong reflections. It is beneficial to strong reflection detection and substantially improves the quality of reflection removal results. Extensive experiments verify the superior performance of the proposed method over state-of-the-art approaches. Our code and the pre-trained model can be found at https://github.com/zdlarr/Location-aware-SIRR.
['Rynson W. H. Lau', 'Weiwei Xu', 'Hujun Bao', 'Yin Yang', 'Ke Xu', 'Zheng Dong']
2020-12-13
null
http://openaccess.thecvf.com//content/ICCV2021/html/Dong_Location-Aware_Single_Image_Reflection_Removal_ICCV_2021_paper.html
http://openaccess.thecvf.com//content/ICCV2021/papers/Dong_Location-Aware_Single_Image_Reflection_Removal_ICCV_2021_paper.pdf
iccv-2021-1
['reflection-removal']
['computer-vision']
[ 2.42396042e-01 9.09599140e-02 1.07112683e-01 -1.48477823e-01 -7.06827939e-01 7.40283867e-03 4.91424650e-01 -3.89936537e-01 -7.14874268e-02 2.38545880e-01 5.02294004e-01 -4.32539493e-01 9.20386165e-02 -9.33032155e-01 -5.87829053e-01 -9.18946981e-01 1.55275449e-01 -1.73848301e-01 4.21045542e-01 -1.92042395e-01 3.94130886e-01 4.69308048e-01 -9.05274630e-01 4.59124058e-01 9.35076356e-01 8.96506071e-01 7.44860843e-02 6.18918836e-01 2.84626484e-01 8.89926434e-01 -3.09606642e-01 5.12384586e-02 3.98760229e-01 -3.48556966e-01 -1.09251253e-01 -4.39444005e-01 1.81518093e-01 -4.44479495e-01 -7.71800876e-01 7.19908774e-01 6.55171692e-01 -4.24903184e-02 7.23846734e-01 -6.86901987e-01 -8.53944182e-01 6.34167492e-01 -9.93102968e-01 1.45051435e-01 4.19419445e-02 -6.09447435e-02 8.11762393e-01 -1.08749628e+00 1.75314788e-02 1.04891050e+00 8.72253120e-01 1.42371342e-01 -9.39503014e-01 -8.84724617e-01 2.00158864e-01 -9.67308600e-03 -1.59068179e+00 -6.80473506e-01 1.19632864e+00 -1.38360247e-01 7.11654127e-01 1.72786161e-01 4.93451148e-01 8.19693983e-01 3.42563808e-01 8.02900195e-01 5.81873417e-01 -5.36707401e-01 -9.01418850e-02 9.61335897e-02 -3.82318422e-02 9.92407441e-01 1.93285063e-01 -1.28249517e-02 -4.84326065e-01 -7.65255392e-02 1.02083564e+00 3.26281756e-01 -5.46460032e-01 -4.37827446e-02 -8.18011165e-01 6.35199487e-01 8.61550212e-01 2.14380741e-01 -4.23096299e-01 4.26819324e-01 -9.44933221e-02 1.80155322e-01 8.24469984e-01 1.28507599e-01 -1.00663096e-01 4.49397653e-01 -8.50793719e-01 -2.95421004e-01 6.09658718e-01 5.35258770e-01 9.04921949e-01 1.18346684e-01 -4.61643070e-01 1.09435713e+00 5.33599436e-01 6.11606240e-01 -1.88110963e-01 -8.14792037e-01 2.50579655e-01 7.30538964e-01 8.33031610e-02 -1.02517545e+00 -3.54044765e-01 -8.38703275e-01 -1.03795612e+00 2.98114121e-01 -1.97880536e-01 -3.20890307e-01 -1.09132552e+00 1.31166148e+00 8.32754448e-02 6.50156796e-01 -1.61567912e-01 1.00958192e+00 7.88615823e-01 7.23639607e-01 -4.43919837e-01 1.18517615e-01 8.80547404e-01 -1.22246194e+00 -3.52176398e-01 -5.10225035e-02 4.12776053e-01 -9.22874153e-01 8.08235765e-01 3.34216058e-01 -9.32513058e-01 -3.14767420e-01 -1.07950890e+00 -4.36707959e-02 8.45351666e-02 5.50595164e-01 4.27995801e-01 5.21674693e-01 -1.08963382e+00 2.24766850e-01 -9.19406891e-01 8.85035768e-02 5.62450051e-01 -1.62503123e-02 3.42508793e-01 -2.81885773e-01 -1.02209985e+00 5.18034339e-01 -5.14800608e-01 5.48904240e-01 -9.72715020e-01 -9.13638830e-01 -5.82224309e-01 -4.79906518e-03 2.50255078e-01 -4.61903602e-01 1.03421700e+00 -7.12819099e-01 -1.51830506e+00 4.84122336e-01 -3.66865903e-01 -1.27366379e-01 6.70181215e-01 -5.34553289e-01 -3.58171642e-01 2.95217991e-01 -1.57693833e-01 1.04493521e-01 1.11039233e+00 -1.69821858e+00 -5.33205450e-01 6.18379749e-03 -1.04572669e-01 3.04735273e-01 -1.92517921e-01 -1.89148292e-01 -8.49891543e-01 -4.90362823e-01 3.00160676e-01 -7.88730443e-01 -2.66264141e-01 4.71446291e-02 -8.37369561e-01 1.14729099e-01 7.17381716e-01 -3.95409167e-01 1.21041834e+00 -2.16965938e+00 -4.25147474e-01 4.67117041e-01 4.66584027e-01 2.54685968e-01 -3.96619439e-01 4.26987529e-01 -2.86234543e-02 7.71474391e-02 -1.89380184e-01 -3.55572253e-01 -2.01908812e-01 -5.97760320e-01 -4.55844790e-01 8.13830733e-01 1.60348937e-01 7.23376870e-01 -5.80581784e-01 1.10734608e-02 2.54975021e-01 1.35688305e+00 -4.43936855e-01 1.02866024e-01 2.28561729e-01 3.28448087e-01 -7.11840749e-01 4.31562364e-01 9.43996847e-01 -2.53129780e-01 -7.03737289e-02 -7.22593129e-01 -4.39659119e-01 3.39508057e-01 -8.65120649e-01 1.25799179e+00 -8.14242423e-01 6.99300885e-01 -1.81300193e-02 -6.03205919e-01 1.18714750e+00 7.84460977e-02 5.67289948e-01 -1.01465619e+00 4.69509289e-02 -1.19470902e-01 -1.88763574e-01 -1.81727439e-01 4.06167179e-01 3.05746377e-01 3.09755951e-01 7.15875208e-01 -6.83998227e-01 2.47945681e-01 -5.22078037e-01 2.28981301e-01 1.58266819e+00 1.06422700e-01 -2.88004011e-01 -9.92946699e-02 5.49585819e-01 -4.29973066e-01 6.27262056e-01 8.58055651e-01 2.78010190e-01 1.07720339e+00 2.94021398e-01 -2.66936928e-01 -7.52897739e-01 -1.39168096e+00 -1.79295260e-02 1.12533641e+00 4.51909453e-01 -1.46467373e-01 -3.61824274e-01 -3.10659707e-01 -2.24500418e-01 6.71607256e-01 -5.46480000e-01 -5.57682753e-01 -7.30550766e-01 -7.49662697e-01 3.72185916e-01 2.82826632e-01 6.97388530e-01 -8.93192410e-01 -4.76665586e-01 4.87985276e-02 -2.53047854e-01 -7.80840039e-01 -4.39406693e-01 6.06442317e-02 -6.95786476e-01 -9.61588383e-01 -8.65661442e-01 -8.11286211e-01 9.40176964e-01 8.33553433e-01 1.00495756e+00 5.52491128e-01 -6.39624894e-01 3.74321669e-01 -4.60723460e-01 -2.73443252e-01 -7.14339316e-02 1.30134851e-01 -5.05000114e-01 1.67318210e-01 1.49815843e-01 -7.39077628e-01 -1.46880364e+00 4.01604116e-01 -5.10190666e-01 1.37614101e-01 8.51112485e-01 4.91188973e-01 5.08599043e-01 1.98404506e-01 2.78523207e-01 -9.91079330e-01 6.84656382e-01 -4.13239807e-01 -4.41045523e-01 2.65038073e-01 -3.69735241e-01 -1.17735527e-01 4.72044528e-01 -9.50467214e-02 -1.37730670e+00 -4.75154668e-02 -9.22215357e-02 -2.68821269e-01 9.18834955e-02 1.84836537e-01 1.82263210e-01 -1.99068666e-01 5.35390794e-01 2.05395654e-01 -5.00922978e-01 -4.56935912e-01 3.84775549e-01 5.69923341e-01 2.35842109e-01 -2.67725736e-01 9.95932937e-01 7.79603899e-01 -2.22289801e-01 -1.13474226e+00 -9.57347274e-01 -5.60140193e-01 -4.55428362e-01 -3.44761878e-01 4.76994097e-01 -1.21016908e+00 -7.06328869e-01 6.13305569e-01 -9.32282686e-01 -8.31429958e-01 1.27436340e-01 2.56194711e-01 -1.54071093e-01 -7.42065348e-03 -7.65853465e-01 -1.15345562e+00 -8.17001104e-01 -8.28989923e-01 1.04595625e+00 3.84565324e-01 2.23763585e-01 -9.41407859e-01 2.84643471e-01 1.54610693e-01 6.22569919e-01 -1.93105310e-01 7.07681179e-01 2.56704092e-02 -9.16656971e-01 -1.15549967e-01 -6.69304609e-01 1.80255890e-01 2.19091326e-01 8.26804414e-02 -1.16172874e+00 -2.78326511e-01 -1.67908683e-01 -5.21259643e-02 1.65549660e+00 5.84649920e-01 1.12045884e+00 -6.00778498e-02 -4.33492661e-01 8.76984596e-01 1.49192417e+00 -9.87363979e-02 1.12452447e+00 9.84039605e-02 8.22177112e-01 2.08356500e-01 3.88920873e-01 5.78673005e-01 4.30998772e-01 4.00695950e-01 4.51967120e-01 -8.31852853e-01 -4.32872117e-01 -1.67963102e-01 4.02400494e-01 7.11196423e-01 -1.01062909e-01 -4.91349399e-01 -6.65537417e-01 4.23436821e-01 -1.80400288e+00 -8.78878176e-01 -1.18288077e-01 2.07477689e+00 6.28311098e-01 1.27210692e-01 -3.24823618e-01 -9.04354304e-02 5.04706204e-01 5.03202796e-01 -4.86662686e-01 -4.73950505e-02 1.65345728e-01 1.98750645e-01 5.63513100e-01 9.55373228e-01 -9.65277076e-01 9.65382218e-01 5.61368036e+00 5.00539422e-01 -1.35210657e+00 -7.44930431e-02 5.86318612e-01 -2.79191464e-01 -7.04076707e-01 -2.69057989e-01 -6.45968795e-01 5.87182418e-02 3.55076820e-01 4.54014868e-01 3.37853998e-01 2.31369808e-01 7.66709030e-01 -2.94070005e-01 -5.69984317e-01 7.36370742e-01 1.96838871e-01 -1.14100361e+00 -6.13954626e-02 -2.27188870e-01 6.65600419e-01 5.35259604e-01 3.44350994e-01 -1.02187442e-02 5.53965330e-01 -8.39967370e-01 4.16639715e-01 9.24703598e-01 7.11851060e-01 -8.87169898e-01 3.35877061e-01 -1.27960294e-01 -1.34278178e+00 6.54432625e-02 -5.27278602e-01 3.17473590e-01 9.49092656e-02 1.13289070e+00 -6.96453571e-01 3.59422296e-01 7.55823851e-01 9.53786075e-01 -2.73392916e-01 1.19969022e+00 -7.01310575e-01 8.49047005e-01 -3.38080943e-01 3.58970881e-01 -6.13581296e-03 -3.76291543e-01 4.72451746e-01 1.39555895e+00 3.44217360e-01 1.18740104e-01 1.15501024e-01 9.83994603e-01 -1.27667531e-01 -2.70775884e-01 -4.36817795e-01 5.63973963e-01 5.29817641e-01 1.44004059e+00 -6.81106329e-01 1.49764776e-01 -4.64893758e-01 1.08144104e+00 2.37989113e-01 9.24677134e-01 -9.13389981e-01 -6.01749897e-01 7.36600339e-01 3.52169633e-01 4.79675740e-01 -1.97381198e-01 -3.21247816e-01 -1.14775944e+00 -9.22909826e-02 -4.06485587e-01 3.19299139e-02 -8.47766459e-01 -1.02925849e+00 5.89189827e-01 -5.25819719e-01 -1.06826484e+00 5.73576272e-01 -2.68671155e-01 -1.18746376e+00 8.64219546e-01 -2.15731049e+00 -1.15850890e+00 -6.38455272e-01 6.15208149e-01 2.46940255e-01 -4.69370149e-02 3.34852040e-01 4.96415019e-01 -8.11848164e-01 7.22778499e-01 2.34429434e-01 3.31149518e-01 8.85106623e-01 -7.31618583e-01 2.99790323e-01 1.06638539e+00 4.35943045e-02 6.08992457e-01 5.29223263e-01 -6.51338220e-01 -1.36571598e+00 -1.32368588e+00 2.98145264e-01 -2.36690063e-02 4.37793195e-01 -3.73010010e-01 -8.60906839e-01 5.20536363e-01 1.20677158e-01 -1.78016782e-01 4.92402166e-01 1.60003826e-01 -5.58517873e-01 -4.56848413e-01 -7.35353172e-01 8.82665455e-01 1.11303067e+00 -5.04056633e-01 -6.02930859e-02 2.69301891e-01 6.30383432e-01 -1.98301002e-01 -4.64976400e-01 3.59315217e-01 5.57366252e-01 -1.20029473e+00 1.16867185e+00 4.47906405e-01 5.08577585e-01 -3.05034667e-01 1.65853992e-01 -1.36944902e+00 -5.65109432e-01 -6.02592647e-01 -2.01107040e-02 8.42936099e-01 6.56895280e-01 -8.04654956e-01 8.17184925e-01 1.78651229e-01 -3.61704350e-01 -6.84634089e-01 -4.83903259e-01 -2.26027772e-01 -2.19563365e-01 -4.98201400e-01 2.01702923e-01 5.66051602e-01 -4.26936209e-01 2.87941009e-01 -4.39911872e-01 5.67208648e-01 9.16033387e-01 2.92708665e-01 7.20106959e-01 -9.38026309e-01 -1.29722264e-02 -4.43098158e-01 1.96579188e-01 -1.39953387e+00 -8.72163028e-02 -7.03888655e-01 3.95149022e-01 -1.95056009e+00 1.40215695e-01 -7.19836414e-01 -6.70292914e-01 7.09888756e-01 -1.10567071e-01 7.01089382e-01 -7.94747546e-02 2.14485034e-01 -8.30146074e-01 8.81257236e-01 1.27372038e+00 -6.18129261e-02 -6.60499632e-01 2.52247930e-01 -9.82309759e-01 8.12466562e-01 1.12720704e+00 -4.89515424e-01 -4.26764905e-01 -7.50695944e-01 4.02908891e-01 -3.32392544e-01 5.41436791e-01 -9.05999660e-01 4.07000422e-01 1.28324836e-01 5.26945949e-01 -6.71909392e-01 4.13776934e-01 -7.70212173e-01 -2.50840396e-01 4.77858365e-01 -3.62282246e-01 -5.70157945e-01 -5.75908041e-03 5.74801266e-01 1.75827309e-01 3.17301810e-01 9.04468179e-01 9.40827802e-02 -4.25183505e-01 4.43205416e-01 -3.53695005e-01 -8.15009847e-02 4.86682862e-01 -3.45282070e-02 -5.61742246e-01 -7.16472030e-01 -2.56095171e-01 2.14510158e-01 3.27337891e-01 3.54316831e-01 1.03333926e+00 -9.59880829e-01 -9.55829918e-01 3.09705496e-01 -1.01409219e-02 -8.23424608e-02 2.92866588e-01 1.04852438e+00 -5.01000285e-01 -5.92023842e-02 3.20240676e-01 -4.47553575e-01 -1.10830355e+00 -1.86392412e-01 5.40541112e-01 -5.45601062e-02 -1.21948731e+00 8.10775042e-01 5.06325841e-01 -2.06846893e-01 2.52902210e-01 -4.83238138e-02 -1.69631973e-01 -4.03398275e-01 7.52318680e-01 5.79736948e-01 -1.13635242e-01 -2.24132359e-01 -3.21070015e-01 7.63479650e-01 -2.19850555e-01 -1.61021370e-02 1.66154718e+00 -4.22255009e-01 -1.90430373e-01 2.19951674e-01 1.18357277e+00 3.66910458e-01 -1.53611863e+00 -5.99709511e-01 -6.62145555e-01 -3.33108902e-01 6.03855133e-01 -8.79783332e-01 -1.57830870e+00 7.89987862e-01 5.18365085e-01 -1.33420303e-01 1.27507782e+00 -1.36905730e-01 7.60044098e-01 4.59040403e-01 7.28937089e-02 -8.05077136e-01 2.93857723e-01 7.11084247e-01 1.01162684e+00 -1.08962226e+00 3.24757725e-01 -4.25352901e-01 -3.59181732e-01 9.78404403e-01 5.82572639e-01 -5.21719813e-01 1.09568667e+00 7.28290081e-01 5.37467539e-01 -2.86705166e-01 -6.27915561e-01 -1.68852247e-02 2.65171826e-01 5.68689108e-01 6.19648695e-01 -2.26885363e-01 1.67860955e-01 1.23140931e-01 1.07025146e-01 -2.10357904e-01 3.59732330e-01 5.56385934e-01 -6.91321790e-01 -6.23799980e-01 -2.19248399e-01 4.27741170e-01 -2.02145040e-01 -4.16746676e-01 -2.76200473e-01 3.26392531e-01 -3.61904532e-01 1.09725475e+00 6.82871323e-03 -4.41635042e-01 2.35110492e-01 -5.74863553e-01 2.04160452e-01 -4.42264259e-01 -4.36858028e-01 4.28521603e-01 -1.50001347e-01 -7.53938079e-01 -2.30343595e-01 -1.90335751e-01 -1.38160563e+00 -2.00904235e-01 -3.05934042e-01 -1.77877042e-02 4.44546014e-01 5.85673273e-01 5.46778798e-01 9.48931038e-01 1.09838128e+00 -9.60315049e-01 -5.31630330e-02 -7.50125945e-01 -4.02163982e-01 -4.19523232e-02 6.55954242e-01 -3.04506868e-01 -5.50559938e-01 -3.14504981e-01]
[10.682731628417969, -2.9113402366638184]
1e0c3e92-3745-42bd-97a8-ec6246685418
asfm-net-asymmetrical-siamese-feature
2104.09587
null
https://arxiv.org/abs/2104.09587v3
https://arxiv.org/pdf/2104.09587v3.pdf
ASFM-Net: Asymmetrical Siamese Feature Matching Network for Point Completion
We tackle the problem of object completion from point clouds and propose a novel point cloud completion network employing an Asymmetrical Siamese Feature Matching strategy, termed as ASFM-Net. Specifically, the Siamese auto-encoder neural network is adopted to map the partial and complete input point cloud into a shared latent space, which can capture detailed shape prior. Then we design an iterative refinement unit to generate complete shapes with fine-grained details by integrating prior information. Experiments are conducted on the PCN dataset and the Completion3D benchmark, demonstrating the state-of-the-art performance of the proposed ASFM-Net. Our method achieves the 1st place in the leaderboard of Completion3D and outperforms existing methods with a large margin, about 12%. The codes and trained models are released publicly at https://github.com/Yan-Xia/ASFM-Net.
['Uwe Stilla', 'Kailang Cao', 'Rui Song', 'Wei Li', 'Yan Xia', 'Yaqi Xia']
2021-04-19
null
null
null
null
['point-cloud-completion']
['computer-vision']
[-1.94946036e-01 3.06041986e-02 6.15292341e-02 -3.07681948e-01 -9.10287201e-01 -2.93104321e-01 6.47919416e-01 -4.80538815e-01 -5.27773835e-02 3.21635336e-01 1.19539164e-01 1.18432216e-01 -2.97439657e-02 -6.83664799e-01 -1.03685582e+00 -4.43454295e-01 2.83839643e-01 7.98948586e-01 -5.98841347e-03 4.45364751e-02 2.29281202e-01 8.63092721e-01 -1.37134993e+00 -9.83675718e-02 9.13513780e-01 1.04025102e+00 5.51727653e-01 3.46655816e-01 -1.06113054e-01 2.47736320e-01 -9.83034596e-02 -3.24898660e-01 6.41207874e-01 2.56058127e-01 -6.04224801e-01 2.77544081e-01 3.87492597e-01 -5.11367381e-01 -6.31408632e-01 1.00374377e+00 2.40553886e-01 1.29710317e-01 7.26903021e-01 -1.29557037e+00 -9.74827528e-01 7.77562782e-02 -7.50870347e-01 -4.50098962e-01 2.37797856e-01 1.89489499e-01 8.58324587e-01 -1.59391272e+00 7.36886203e-01 1.30568433e+00 7.13315368e-01 3.73012096e-01 -1.11193812e+00 -9.42691386e-01 -4.01516259e-02 -2.67363966e-01 -1.75991833e+00 -3.01347673e-01 9.27823424e-01 -4.37225163e-01 7.90277541e-01 -6.53629601e-02 6.71249866e-01 6.64336503e-01 3.48843262e-02 8.31903100e-01 5.90107858e-01 -5.37292613e-03 1.79965049e-02 -4.77285475e-01 -4.28788453e-01 6.95636451e-01 2.48765305e-01 2.33125716e-01 -2.91290611e-01 -3.49461317e-01 1.42433071e+00 6.88695848e-01 -1.14553608e-01 -7.11375594e-01 -1.41654944e+00 8.29694688e-01 8.20134640e-01 1.83473900e-02 -6.46708846e-01 2.82822847e-01 -4.39447761e-02 -6.30465336e-03 7.13062406e-01 2.13045865e-01 -3.44859242e-01 9.78059620e-02 -1.00374031e+00 5.39513886e-01 4.89430040e-01 1.70339513e+00 1.04991698e+00 -1.20717056e-01 -3.62908803e-02 6.79912865e-01 6.44194901e-01 8.38103414e-01 -8.13949481e-03 -1.43314695e+00 5.94923615e-01 7.36319840e-01 2.37007901e-01 -7.93858290e-01 -5.54944128e-02 -4.14165378e-01 -1.03933752e+00 3.51706237e-01 -1.78182378e-01 6.55847117e-02 -1.05416203e+00 1.34717202e+00 6.09829426e-01 6.09518290e-01 -9.52263176e-02 9.87168610e-01 8.46288681e-01 6.88982010e-01 -3.15645695e-01 2.97817707e-01 1.13027906e+00 -1.13639402e+00 -4.02660638e-01 6.14182539e-02 2.57516533e-01 -8.61750245e-01 9.61017489e-01 1.57686308e-01 -1.21498764e+00 -6.44810081e-01 -1.00583994e+00 -4.20366317e-01 1.65152326e-01 3.39827001e-01 6.11969769e-01 -3.07364017e-01 -9.09806371e-01 8.55085313e-01 -1.20190895e+00 4.35308479e-02 9.29517806e-01 3.09994847e-01 -5.82118630e-01 -4.84692067e-01 -5.05047619e-01 3.28962892e-01 1.04799785e-01 9.45430174e-02 -1.06621504e+00 -1.11633003e+00 -8.66633654e-01 -8.57617799e-03 7.06285518e-03 -1.13067508e+00 1.27538621e+00 -2.57239550e-01 -1.51341391e+00 8.29722643e-01 -2.11524263e-01 -4.71294560e-02 5.62561691e-01 -4.33569729e-01 5.74354827e-02 9.48158279e-02 4.92978424e-01 9.88436878e-01 8.85963738e-01 -1.29388297e+00 -5.08254826e-01 -3.73892933e-01 -1.90828696e-01 2.14177534e-01 1.17750660e-01 -2.77974516e-01 -9.42084908e-01 -7.99551964e-01 5.96760929e-01 -1.14311421e+00 -3.77781153e-01 4.37574029e-01 -3.17411333e-01 -5.61668396e-01 8.05180609e-01 -5.23357749e-01 6.50899708e-01 -2.17713284e+00 2.96296239e-01 1.18763529e-01 6.12448454e-01 -4.03032601e-02 -3.25714231e-01 4.08870071e-01 -1.71806086e-02 -1.46693438e-01 -5.70026815e-01 -1.08446884e+00 2.61858881e-01 1.74825788e-01 -3.58996779e-01 6.41410470e-01 3.49681944e-01 1.15236151e+00 -7.53120899e-01 -1.75784186e-01 2.66098350e-01 6.86485767e-01 -6.52677715e-01 3.79265308e-01 -2.52726883e-01 5.23497045e-01 -5.79357088e-01 7.43830919e-01 1.26725543e+00 -6.23019755e-01 -4.31081533e-01 -1.64577991e-01 -1.52528480e-01 -1.53470477e-02 -1.12722564e+00 2.62673330e+00 -2.96333700e-01 3.23303193e-01 4.69002649e-02 -4.85183507e-01 1.23290396e+00 1.51920304e-01 6.71473145e-01 -3.18281054e-01 7.14189000e-03 4.11746949e-01 -4.27825928e-01 3.04879360e-02 5.11808872e-01 -7.62713477e-02 1.10511594e-01 3.09328884e-01 1.53786466e-01 -5.95659316e-01 -1.61654443e-01 2.56599516e-01 9.41166401e-01 6.21549845e-01 -8.63535106e-02 -1.97428033e-01 4.13082600e-01 -5.25649488e-02 6.64346516e-01 2.92643845e-01 1.46142408e-01 1.12672544e+00 5.47874719e-02 -3.80344063e-01 -1.40189791e+00 -1.27847064e+00 -7.91317448e-02 3.23069900e-01 2.86467671e-01 -3.70028585e-01 -4.40430909e-01 -4.63241339e-01 3.63126308e-01 4.75661397e-01 -3.66108775e-01 9.76274814e-03 -5.35053492e-01 1.77625388e-01 2.46683955e-01 6.58801913e-01 4.15761709e-01 -9.69989896e-01 -5.77200353e-02 1.29674286e-01 -7.52661526e-02 -1.22950757e+00 -6.96099699e-01 -2.55606860e-01 -1.26638615e+00 -9.66591537e-01 -1.10489309e+00 -9.20115292e-01 9.90465045e-01 4.79001284e-01 1.09160924e+00 1.82572544e-01 -6.78296536e-02 2.20850796e-01 -2.27389768e-01 -2.83312261e-01 -1.83584727e-02 1.39314771e-01 5.05146682e-02 -7.64461756e-02 3.23051095e-01 -1.01730669e+00 -8.12825918e-01 2.77774692e-01 -8.47267628e-01 2.48777762e-01 7.97485828e-01 6.18878782e-01 1.09138453e+00 -3.21439773e-01 1.57626852e-01 -4.77002800e-01 2.54085660e-01 -4.99888927e-01 -8.10663462e-01 -1.72675595e-01 -4.53512341e-01 5.58362603e-02 3.97625238e-01 -1.43753499e-01 -8.45780373e-01 3.77652675e-01 -2.58233458e-01 -1.48551309e+00 -1.75681800e-01 1.78337798e-01 -2.14549527e-01 -2.02560380e-01 1.44498765e-01 2.66762555e-01 1.40656501e-01 -8.99948061e-01 4.41614151e-01 3.23942989e-01 7.15341330e-01 -7.62594998e-01 1.28472006e+00 8.31003606e-01 7.80392140e-02 -4.07082498e-01 -7.62733400e-01 -6.15794182e-01 -8.01792562e-01 1.35789126e-01 7.94188976e-01 -1.29844499e+00 -6.62389159e-01 4.93649989e-01 -1.53610551e+00 -1.83652937e-01 -4.46035385e-01 5.53364575e-01 -8.82436156e-01 3.46762329e-01 -6.37966335e-01 -2.79483348e-01 -5.84157646e-01 -1.13394952e+00 1.54385591e+00 6.16259426e-02 1.77205443e-01 -6.67223513e-01 2.37894699e-01 2.62286603e-01 1.31088495e-01 3.32076937e-01 4.02917594e-01 -3.12615126e-01 -1.11326087e+00 -1.39333203e-01 -4.23922002e-01 3.09632450e-01 2.53488049e-02 -1.24344654e-01 -7.04730153e-01 -4.46347237e-01 -1.69273317e-02 -1.71808735e-01 7.64244139e-01 3.19532007e-01 1.27167439e+00 -7.47768059e-02 -4.19946492e-01 1.17147326e+00 1.51153839e+00 -2.31989145e-01 7.08718121e-01 2.39482000e-02 8.88033867e-01 1.79158583e-01 6.78731084e-01 6.37718976e-01 5.60289502e-01 5.06339729e-01 7.43675113e-01 -4.07918580e-02 -1.86402678e-01 -7.90773273e-01 -9.20162946e-02 1.23975968e+00 -2.06977278e-01 1.85427859e-01 -9.18219447e-01 5.64180434e-01 -1.89088094e+00 -4.92412508e-01 -1.06008053e-01 1.94130206e+00 4.68813151e-01 -5.59041463e-02 -2.76554853e-01 -3.09225351e-01 7.40171373e-01 7.21933320e-02 -6.08341455e-01 3.63803238e-01 8.63655433e-02 3.42845678e-01 3.31711590e-01 5.95887721e-01 -1.01602757e+00 1.06788278e+00 5.34802771e+00 1.01394808e+00 -7.83800483e-01 2.22560331e-01 1.93077073e-01 -6.75130859e-02 -5.40803611e-01 2.20124096e-01 -6.75794184e-01 3.88343692e-01 2.95221746e-01 -7.49818236e-02 4.42864448e-01 9.58135307e-01 -3.05263251e-02 4.57002491e-01 -1.03614938e+00 1.33335781e+00 -6.24080487e-02 -1.72502327e+00 1.21753141e-01 2.69061595e-01 1.06733894e+00 5.62037289e-01 -9.21056792e-02 2.19522819e-01 3.91787618e-01 -8.80682170e-01 7.97580600e-01 1.00586033e+00 1.08790779e+00 -7.94480443e-01 3.96630883e-01 3.58465672e-01 -1.51809359e+00 2.69410223e-01 -7.02463210e-01 4.55686860e-02 2.74966955e-01 6.41359866e-01 -3.54382008e-01 8.64058077e-01 7.71339059e-01 1.21749806e+00 -2.01404229e-01 1.16500866e+00 -3.16613257e-01 1.94486886e-01 -5.22615373e-01 3.82205814e-01 1.80637658e-01 -5.07508576e-01 7.19261527e-01 6.38730824e-01 7.18724370e-01 2.34241217e-01 2.07430989e-01 1.45343864e+00 -3.49982619e-01 -2.77602375e-01 -5.55436850e-01 9.85983759e-02 6.39290214e-01 1.40638244e+00 -4.48419064e-01 -2.19328880e-01 -3.90780956e-01 1.06320405e+00 4.93389577e-01 3.28663439e-01 -6.66526496e-01 -4.32320058e-01 8.33269238e-01 -8.99658166e-03 6.31219029e-01 -4.59410369e-01 -3.70250583e-01 -1.24852526e+00 2.01054186e-01 -3.90895784e-01 -2.10403562e-01 -1.09848273e+00 -1.52049315e+00 5.56427419e-01 -1.07054211e-01 -1.63223255e+00 1.42590597e-01 -4.73667115e-01 -7.43059874e-01 1.00600266e+00 -1.57297730e+00 -1.49460828e+00 -6.41988873e-01 6.91279948e-01 5.06581604e-01 -2.44836673e-01 5.77996790e-01 3.75766069e-01 -6.99921325e-02 3.10288340e-01 2.14917600e-01 1.17361881e-01 4.08705324e-01 -9.40982103e-01 8.98319304e-01 6.36703908e-01 3.50305662e-02 6.06854498e-01 1.82424515e-01 -9.08796966e-01 -1.50127971e+00 -1.35969460e+00 7.53894925e-01 -4.92561936e-01 3.79571140e-01 -4.35613632e-01 -9.16964710e-01 7.94535756e-01 -4.82427627e-02 3.41612726e-01 1.51521191e-01 -2.14119837e-01 -3.76828015e-01 4.44449335e-02 -1.03676772e+00 4.53971386e-01 1.38645613e+00 -5.18574059e-01 -7.11289704e-01 3.76694143e-01 1.36287975e+00 -7.69400239e-01 -1.15642524e+00 5.16785204e-01 3.51068974e-01 -5.80942631e-01 1.04135096e+00 -3.23725998e-01 8.25821757e-01 -5.20734012e-01 -3.61087263e-01 -1.11652863e+00 -7.75943816e-01 -6.82343364e-01 -3.27431321e-01 1.03986621e+00 1.09996036e-01 -5.12056172e-01 1.06378877e+00 3.50220025e-01 -6.77016854e-01 -1.10070753e+00 -9.07153070e-01 -6.76584601e-01 1.86489865e-01 -5.04993618e-01 1.18130779e+00 7.68006742e-01 -7.04851389e-01 1.18901081e-01 -2.31798753e-01 1.90987349e-01 9.59628761e-01 4.46960539e-01 1.11233151e+00 -1.33653510e+00 6.81496635e-02 -1.86894745e-01 -3.83025646e-01 -1.62167835e+00 3.12141448e-01 -1.19235480e+00 -6.89976811e-02 -1.75353968e+00 1.60208389e-01 -6.95642054e-01 -1.93011649e-02 4.32792783e-01 3.58026735e-02 3.33350152e-01 4.39412624e-01 5.85025847e-01 -6.00349963e-01 1.25481677e+00 1.70303476e+00 -9.69372764e-02 3.84572591e-03 8.88346359e-02 -5.20148277e-01 6.74625039e-01 5.48898518e-01 -6.10285461e-01 -1.87893987e-01 -7.29951620e-01 5.59210479e-02 1.20125733e-01 5.88811576e-01 -1.02933919e+00 4.67817307e-01 -1.40258700e-01 5.13134480e-01 -1.29351282e+00 7.08184183e-01 -1.00039804e+00 5.07150412e-01 2.97302425e-01 -4.07480150e-02 1.43437967e-01 1.13397568e-01 7.19144642e-01 -1.86675355e-01 1.10353716e-02 4.83280063e-01 -5.88528030e-02 -4.39670295e-01 1.28261018e+00 4.82457608e-01 8.19285493e-03 8.87550116e-01 -1.34883597e-01 -7.34898401e-03 -1.28757641e-01 -6.29485428e-01 4.42857742e-01 8.50566030e-01 5.57670832e-01 1.05195022e+00 -1.98495090e+00 -9.64675665e-01 5.04395187e-01 2.47891799e-01 8.28906417e-01 3.83124471e-01 6.53170824e-01 -7.49298334e-01 4.10961181e-01 -1.69055387e-01 -8.85919869e-01 -6.49344087e-01 4.39786613e-01 1.26648799e-01 -4.87441421e-02 -1.10485876e+00 8.38724315e-01 4.06751096e-01 -9.35062647e-01 2.58984510e-02 -2.94720143e-01 3.26374948e-01 -6.21169567e-01 1.81614384e-01 3.59705120e-01 -5.12728915e-02 -6.69648230e-01 -2.38326773e-01 8.54882658e-01 4.94562015e-02 8.56671482e-02 1.66546869e+00 9.00470242e-02 -2.77582496e-01 9.57753956e-02 1.52380979e+00 -1.18667781e-01 -1.76979780e+00 -6.07201159e-01 -3.43112260e-01 -7.38437057e-01 -4.08622883e-02 -1.60820350e-01 -1.20832753e+00 8.06343615e-01 3.30285847e-01 -5.13646185e-01 8.52904260e-01 2.10567489e-01 9.98195171e-01 2.40687668e-01 4.51730967e-01 -6.48194313e-01 1.04819283e-01 6.58400595e-01 1.39587998e+00 -1.14304245e+00 1.85051635e-01 -4.03493255e-01 -4.49107885e-01 9.22049105e-01 6.01719737e-01 -9.02652562e-01 9.46003973e-01 1.36552319e-01 -3.11419189e-01 -4.06756252e-01 -6.36797130e-01 3.02741919e-02 4.44205701e-01 5.41431844e-01 -4.59709801e-02 1.07987359e-01 4.75823693e-02 6.62690043e-01 -2.89346844e-01 2.41021767e-01 -9.48100165e-03 7.65764773e-01 -1.83896750e-01 -1.01413667e+00 -3.23297232e-01 4.63884562e-01 -2.93726418e-02 3.58119421e-02 -1.55987553e-02 6.21492565e-01 6.22308739e-02 3.94242734e-01 2.23099008e-01 -4.37630743e-01 4.00450647e-01 -3.04506570e-01 3.09589386e-01 -6.79116607e-01 -1.38115659e-01 1.69460058e-01 -5.65321922e-01 -8.20981503e-01 -3.13544959e-01 -7.63879120e-01 -1.44005895e+00 -3.93876135e-01 -2.29152873e-01 7.70247877e-02 6.16279542e-01 5.91977596e-01 8.00824940e-01 3.39440495e-01 7.81277120e-01 -1.52929413e+00 -6.17787719e-01 -9.87598896e-01 -5.64318419e-01 5.00382125e-01 3.47639322e-01 -7.45755672e-01 -3.60430270e-01 -1.26453653e-01]
[8.31541919708252, -3.5319738388061523]
42f0334b-827e-49a3-bef2-b1b5b2833ec9
kernel-embedding-of-maps-for-sequential
1805.11380
null
http://arxiv.org/abs/1805.11380v1
http://arxiv.org/pdf/1805.11380v1.pdf
Kernel embedding of maps for sequential Bayesian inference: The variational mapping particle filter
In this work, a novel sequential Monte Carlo filter is introduced which aims at efficient sampling of high-dimensional state spaces with a limited number of particles. Particles are pushed forward from the prior to the posterior density using a sequence of mappings that minimizes the Kullback-Leibler divergence between the posterior and the sequence of intermediate densities. The sequence of mappings represents a gradient flow. A key ingredient of the mappings is that they are embedded in a reproducing kernel Hilbert space, which allows for a practical and efficient algorithm. The embedding provides a direct means to calculate the gradient of the Kullback-Leibler divergence leading to quick convergence using well-known gradient-based stochastic optimization algorithms. Evaluation of the method is conducted in the chaotic Lorenz-63 system, the Lorenz-96 system, which is a coarse prototype of atmospheric dynamics, and an epidemic model that describes cholera dynamics. No resampling is required in the mapping particle filter even for long recursive sequences. The number of effective particles remains close to the total number of particles in all the experiments.
['Peter Jan vanLeeuwen', 'Manuel Pulido']
2018-05-29
null
null
null
null
['sequential-bayesian-inference']
['time-series']
[-3.49163532e-01 -4.23047543e-01 5.09967029e-01 -6.64132833e-02 -6.51159212e-02 -2.33215272e-01 9.40734446e-01 8.87164250e-02 -9.20563638e-01 1.10778260e+00 -1.32676259e-01 -1.58776209e-01 -1.62202835e-01 -1.04514754e+00 -4.43804592e-01 -8.03757906e-01 -6.64463162e-01 6.39431953e-01 4.82417226e-01 -2.67049491e-01 8.95611569e-02 5.58045208e-01 -1.62565458e+00 -5.99444091e-01 9.05842066e-01 6.67302608e-01 5.17552316e-01 1.10514593e+00 4.23528142e-02 3.11321199e-01 -5.03376067e-01 1.94145720e-02 2.47509927e-01 -7.66616523e-01 -3.28869253e-01 -1.42031997e-01 -2.92428643e-01 -1.77900925e-01 4.86315191e-02 1.43140638e+00 3.25653464e-01 5.68026006e-01 1.00405908e+00 -7.47080326e-01 -2.02404857e-01 1.24828123e-01 6.67492114e-03 4.24233347e-01 5.34128249e-02 -8.83531645e-02 5.06529450e-01 -8.18844557e-01 5.22548735e-01 1.15512478e+00 8.82952452e-01 3.52116525e-01 -1.46939814e+00 -2.09293559e-01 -4.43376899e-01 -1.81416586e-01 -1.39802670e+00 -1.42621016e-02 1.16775312e-01 -7.92553723e-01 7.14938521e-01 2.51749247e-01 1.16955364e+00 5.82096159e-01 6.91962242e-01 7.29806796e-02 1.20519066e+00 -4.00503457e-01 8.37377429e-01 4.03356642e-01 -3.08432691e-02 7.27398634e-01 4.76665318e-01 4.75374669e-01 -1.99577436e-02 -7.25235403e-01 8.15019727e-01 2.03201294e-01 -2.83830941e-01 -3.03615540e-01 -1.00855958e+00 1.14943171e+00 1.24664053e-01 4.14737374e-01 -6.56211495e-01 -7.42071196e-02 3.58992582e-03 2.40802705e-01 6.53354585e-01 3.58083248e-01 -1.43373996e-01 -1.52771011e-01 -9.92947876e-01 6.50176942e-01 1.39202273e+00 3.41997594e-01 8.18627954e-01 -6.26983121e-02 -6.90406784e-02 4.37043786e-01 6.02093935e-01 1.22134936e+00 2.91293383e-01 -7.47665703e-01 -8.89514163e-02 1.03485145e-01 7.92527676e-01 -7.32626498e-01 -1.49121150e-01 -4.87245172e-01 -9.36156034e-01 5.48712254e-01 5.26180208e-01 -5.04226804e-01 -3.67109984e-01 1.66207063e+00 6.20119631e-01 5.78911722e-01 1.82140708e-01 6.81190431e-01 -3.24401051e-01 1.16071570e+00 -2.78079659e-01 -5.99929214e-01 1.34346867e+00 -3.63456070e-01 -7.90493846e-01 3.84977981e-02 2.28767321e-01 -6.73917472e-01 9.10983145e-01 -1.04046397e-01 -1.07325041e+00 -4.81008559e-01 -1.21491480e+00 7.39061415e-01 -4.77420807e-01 -5.88285774e-02 -7.49394000e-02 7.42073774e-01 -1.03429401e+00 1.16714621e+00 -1.26644194e+00 -3.15412402e-01 -2.03843310e-01 6.99102059e-02 2.04163253e-01 4.72204596e-01 -1.42017555e+00 1.03194749e+00 3.51766199e-01 1.54800802e-01 -7.15238512e-01 -6.39262855e-01 -4.32982743e-01 3.14396136e-02 -4.76676941e-01 -7.04702973e-01 9.73574102e-01 -2.91449785e-01 -1.88949120e+00 3.39234710e-01 -1.40218407e-01 -7.26932824e-01 7.42463052e-01 -1.59538463e-01 -3.69016677e-01 -4.00074460e-02 1.06837109e-01 -6.46162033e-03 1.07692778e+00 -8.12162578e-01 -5.54039240e-01 -1.04619227e-01 -4.47718889e-01 2.41704181e-01 -2.06746861e-01 -2.72948325e-01 1.39141083e-01 -3.84646177e-01 -1.99995726e-01 -1.00943065e+00 -3.63046527e-01 -3.70591581e-01 7.79154897e-02 -2.31451672e-02 6.93025887e-01 -4.46357757e-01 1.24183869e+00 -1.93119788e+00 1.91832915e-01 3.20652604e-01 1.65542308e-03 2.71346331e-01 2.43509024e-01 7.72053361e-01 4.38827515e-01 -3.19837362e-01 -5.37236989e-01 -2.75478363e-01 2.55972836e-02 1.59452148e-02 -6.41682088e-01 9.35062647e-01 -6.21192018e-03 2.50142455e-01 -1.18151367e+00 -1.95336297e-01 4.05718058e-01 7.28346109e-01 -4.62252051e-01 2.53490239e-01 -1.56858385e-01 4.97019500e-01 -5.84516227e-01 -4.68752921e-01 8.84483457e-01 -4.10140604e-01 -2.57706702e-01 2.22843498e-01 -5.33836484e-01 3.71452868e-02 -1.34734666e+00 1.07062018e+00 -4.26409900e-01 3.95968854e-01 1.64618537e-01 -6.35350227e-01 9.29972768e-01 2.02058464e-01 2.32082710e-01 -7.14095961e-03 9.34504122e-02 3.00219357e-01 -2.89326876e-01 -1.11069769e-01 4.85693216e-01 -5.59733927e-01 1.46584243e-01 6.75612092e-01 -3.44389379e-01 -4.43235874e-01 6.05689824e-01 5.41714877e-02 7.86398292e-01 -1.54172450e-01 5.37306845e-01 -9.16892111e-01 8.05252790e-01 -6.25275895e-02 2.87974954e-01 8.94083977e-01 1.07928049e-02 1.45353347e-01 1.23014085e-01 -4.37047750e-01 -1.25721943e+00 -1.38051701e+00 -6.03487730e-01 3.70085955e-01 2.28904903e-01 -1.94632143e-01 -9.69401896e-01 -3.44274053e-03 3.66749689e-02 6.54040515e-01 -5.63460350e-01 -1.29521936e-01 -4.23340231e-01 -1.17139339e+00 2.58394659e-01 -2.46057823e-01 6.62831783e-01 -8.93518984e-01 -9.43968713e-01 5.18119633e-01 1.39798075e-01 -6.99708223e-01 -3.63106996e-01 -2.23323599e-01 -1.13084817e+00 -9.47963834e-01 -9.05465424e-01 -5.06884098e-01 6.07440650e-01 -2.86481470e-01 8.39405775e-01 -3.17377061e-01 -2.61236072e-01 1.88893050e-01 9.54248160e-02 -2.97763526e-01 -9.58875835e-01 -2.91851491e-01 4.20136690e-01 1.07412010e-01 3.40792477e-01 -4.56387848e-01 -5.29898942e-01 2.83607513e-01 -6.65956497e-01 -2.93901175e-01 5.43847494e-02 8.86130691e-01 5.06293058e-01 4.46506470e-01 3.47730488e-01 -3.66355896e-01 1.01264417e+00 -3.79722953e-01 -1.40471900e+00 4.71495762e-02 -4.39109772e-01 3.84813219e-01 9.90339994e-01 -4.07864153e-01 -8.29610169e-01 -9.97493565e-02 -2.61045191e-02 1.02115851e-02 9.70474035e-02 1.26704603e-01 6.81345463e-01 1.16366930e-01 7.51647711e-01 5.75531781e-01 2.46891424e-01 -5.10066330e-01 2.29670659e-01 6.36114359e-01 3.62974793e-01 -2.43968517e-01 7.26294696e-01 8.15454960e-01 1.79671764e-01 -1.26685345e+00 -6.33468926e-01 -2.96945840e-01 -3.40709656e-01 -1.14443496e-01 8.57439160e-01 -5.84688663e-01 -1.00175750e+00 6.44041657e-01 -1.03128374e+00 -3.34852099e-01 -8.68542016e-01 1.16318190e+00 -7.92862654e-01 2.64636695e-01 -8.94847989e-01 -1.22604287e+00 -2.17319578e-01 -8.39989662e-01 6.39640033e-01 4.05953169e-01 -6.12071417e-02 -1.41805708e+00 9.56694782e-01 -7.08901525e-01 6.16567254e-01 1.36674508e-01 5.48263609e-01 -3.17329794e-01 -2.50577807e-01 -4.76897180e-01 1.56502247e-01 4.35083002e-01 1.56431675e-01 -1.96106732e-02 -5.92392623e-01 -7.46723413e-01 8.49208891e-01 3.55727792e-01 6.66531682e-01 7.59968519e-01 1.30550906e-01 -2.04952762e-01 -3.77748758e-01 4.95671839e-01 1.44726324e+00 2.67159551e-01 2.33059838e-01 -2.38626916e-02 4.84725721e-02 2.86250591e-01 2.98791289e-01 6.71560228e-01 5.16488589e-02 2.88444430e-01 -2.34261472e-02 2.47811303e-01 4.27048594e-01 -2.85242163e-02 4.24839884e-01 1.15933585e+00 -4.02569138e-02 6.25001416e-02 -8.12640071e-01 2.97421873e-01 -1.70907772e+00 -1.17617977e+00 4.64039445e-02 2.71636915e+00 7.26960123e-01 -2.70512700e-02 2.47771144e-02 -1.28194806e-03 1.02709031e+00 -1.17744198e-02 -3.63051146e-01 -1.00189134e-01 2.77567267e-01 1.48660690e-01 5.71474314e-01 1.17230809e+00 -1.09632337e+00 4.89292592e-01 7.16800070e+00 5.31865895e-01 -8.86184692e-01 2.30082124e-01 -1.01180486e-01 2.40831688e-01 1.66710779e-01 -7.87854418e-02 -1.09266210e+00 9.52637792e-01 1.34151804e+00 -4.75416064e-01 6.74391091e-01 5.10525525e-01 4.99241710e-01 -3.62422615e-01 -6.48154140e-01 6.65627480e-01 -3.75501156e-01 -1.41335535e+00 -3.14991176e-01 3.05858463e-01 7.85667777e-01 3.05227429e-01 -3.98703180e-02 -3.65127256e-04 5.84729671e-01 -6.03564739e-01 4.63982344e-01 9.66078818e-01 3.33753884e-01 -8.30743432e-01 7.65924513e-01 6.97279572e-01 -1.17668164e+00 4.51062471e-02 -7.77498603e-01 -2.81395733e-01 5.96603692e-01 1.10732770e+00 -7.08762765e-01 -6.75632358e-02 4.57041383e-01 5.61296582e-01 1.52901188e-01 1.12789297e+00 1.26479134e-01 5.77938378e-01 -8.97080183e-01 -6.35166883e-01 2.39920884e-01 -9.18274462e-01 1.01487887e+00 1.16937363e+00 6.81488335e-01 -4.19398472e-02 1.51797444e-01 1.02164078e+00 4.58120942e-01 2.26489753e-02 -5.46095431e-01 -1.57049656e-01 5.74841082e-01 8.28678966e-01 -1.03835618e+00 -5.29399157e-01 3.13262343e-02 8.05927575e-01 -1.14651978e-01 5.02471924e-01 -5.48002541e-01 -6.29970729e-01 7.32103527e-01 6.06295615e-02 4.59317058e-01 -3.45871150e-01 3.83576304e-01 -1.15922499e+00 -4.14538145e-01 -1.55477360e-01 5.21414466e-02 -2.58598506e-01 -1.37418067e+00 7.06991792e-01 2.46419132e-01 -1.11758244e+00 -6.98350906e-01 -3.82286012e-01 -5.11932969e-01 1.35246170e+00 -9.79271650e-01 7.35466555e-02 6.34602830e-02 4.36280072e-01 2.20639892e-02 -2.82980978e-01 1.03959000e+00 4.61968295e-02 -2.08787724e-01 -2.94688553e-01 9.47090685e-01 -3.00457895e-01 1.41511194e-03 -1.24126983e+00 6.94050968e-01 8.00672352e-01 -2.04002932e-01 7.22739816e-01 1.37379110e+00 -9.15844798e-01 -1.03368485e+00 -8.06359351e-01 8.77404034e-01 -2.10971221e-01 8.01228702e-01 -3.24796051e-01 -8.74779463e-01 3.08409274e-01 -9.17171463e-02 1.18115038e-01 2.21848086e-01 -4.16713983e-01 4.21505988e-01 -1.15679856e-02 -1.34180391e+00 5.27159035e-01 2.92486578e-01 -4.81826574e-01 -4.97011781e-01 5.16336560e-01 2.10247219e-01 -1.38974413e-01 -7.69425809e-01 -4.94921021e-02 3.97379816e-01 -1.04795039e+00 9.25373137e-01 -2.03930482e-01 -3.74024659e-01 -6.71504855e-01 -2.66049174e-03 -1.67054200e+00 -3.11732978e-01 -8.88399243e-01 -1.22604899e-01 5.35350561e-01 2.70589422e-02 -1.18912315e+00 5.73162854e-01 -1.87409922e-01 4.91631001e-01 -4.67198551e-01 -9.66814458e-01 -1.03377748e+00 1.05300628e-01 1.37831848e-02 6.03551745e-01 4.31754202e-01 -2.05239400e-01 1.07467413e-01 -3.06100696e-01 3.74274492e-01 1.31130385e+00 -2.35769507e-02 4.28824008e-01 -1.46406639e+00 -5.72741389e-01 -2.52830386e-01 -4.03278232e-01 -1.04431427e+00 -3.80994678e-02 -7.89402723e-01 2.36626804e-01 -1.36910081e+00 -7.55711496e-02 -3.57198745e-01 4.04517502e-02 -5.84533274e-01 -3.56065445e-02 -1.23244770e-01 -5.97140603e-02 3.75980645e-01 -4.14277799e-02 7.73476422e-01 9.54523146e-01 4.09608960e-01 -4.21571165e-01 5.22254407e-01 2.61013418e-01 8.36987376e-01 7.27966964e-01 -7.77969003e-01 -5.21592140e-01 1.77060589e-01 2.14128911e-01 1.62566453e-01 2.63270825e-01 -1.26616561e+00 2.53576219e-01 -4.48466390e-02 6.40028790e-02 -6.81889653e-01 4.79585260e-01 -6.05871022e-01 5.05672872e-01 1.00533819e+00 -6.05971366e-02 1.91126794e-01 -8.39757249e-02 8.72710764e-01 -1.23563722e-01 -5.26327133e-01 1.23331773e+00 -7.72131383e-02 -6.66507259e-02 1.26247957e-01 -6.86383367e-01 2.77761072e-01 9.48030293e-01 3.80442999e-02 2.73383725e-02 -3.54806840e-01 -8.59670460e-01 -1.35020707e-02 6.40190661e-01 -2.40629181e-01 3.53446752e-01 -1.22639871e+00 -8.48588347e-01 5.79919815e-01 -4.49933946e-01 -5.61342001e-01 7.50416815e-02 7.67395020e-01 -9.57796097e-01 2.97118694e-01 -1.44209400e-01 -6.63796723e-01 -6.52824402e-01 2.05246314e-01 7.38852799e-01 -4.05484706e-01 -9.19090331e-01 5.77837825e-01 -6.49264604e-02 -4.35057372e-01 -1.03311487e-01 -3.57458383e-01 -7.56942928e-02 -1.08628199e-01 1.00416529e+00 8.75369489e-01 -2.99723744e-01 -4.67820555e-01 -3.09669495e-01 6.30127370e-01 2.96648353e-01 -6.95088565e-01 1.20476723e+00 -2.19939828e-01 -2.87375748e-01 8.52082372e-01 1.25247276e+00 -5.35978600e-02 -1.56918657e+00 7.21007064e-02 -1.08591497e-01 -3.74487162e-01 -2.22170129e-02 -1.11154139e-01 -3.87246221e-01 7.87616849e-01 9.25702274e-01 8.82576346e-01 5.27020931e-01 -3.67645413e-01 7.05285072e-01 3.76281410e-01 4.14941847e-01 -9.25228536e-01 -4.88710165e-01 7.50647962e-01 4.20699745e-01 -6.52039886e-01 4.48515937e-02 6.03753738e-02 -1.74027801e-01 9.40433443e-01 -3.74428749e-01 -7.09482074e-01 1.26084554e+00 5.45017302e-01 -2.58322984e-01 2.42904038e-03 -6.10548019e-01 -1.05975926e-01 -5.78757524e-02 3.99027973e-01 8.63658711e-02 2.44441345e-01 -5.37956238e-01 -6.07775114e-02 -3.57829422e-01 1.42646521e-01 5.63777745e-01 8.02173555e-01 -9.21046674e-01 -7.57417500e-01 -5.26789188e-01 3.74663949e-01 -3.31800342e-01 8.95087868e-02 4.98946548e-01 4.21959907e-01 -3.63330007e-01 8.42620850e-01 3.39200586e-01 1.89930767e-01 2.01172054e-01 8.97419155e-02 3.58325809e-01 -2.97264576e-01 -1.85470670e-01 -9.52093974e-02 -3.53174984e-01 -2.58865088e-01 -2.15109363e-01 -8.50813508e-01 -1.26113248e+00 -4.48399097e-01 -3.64623547e-01 9.77849782e-01 8.89297783e-01 8.25325012e-01 6.26465827e-02 5.77919669e-02 6.82417214e-01 -1.01492739e+00 -1.10645831e+00 -8.77363503e-01 -1.19561577e+00 1.17448092e-01 5.00534177e-01 -5.74055254e-01 -9.40470576e-01 -1.08073808e-01]
[6.518038272857666, 3.6991515159606934]
c267105c-a40d-4222-9f42-f2066cfcb71a
data-free-quantization-through-weight
1906.04721
null
https://arxiv.org/abs/1906.04721v3
https://arxiv.org/pdf/1906.04721v3.pdf
Data-Free Quantization Through Weight Equalization and Bias Correction
We introduce a data-free quantization method for deep neural networks that does not require fine-tuning or hyperparameter selection. It achieves near-original model performance on common computer vision architectures and tasks. 8-bit fixed-point quantization is essential for efficient inference on modern deep learning hardware. However, quantizing models to run in 8-bit is a non-trivial task, frequently leading to either significant performance reduction or engineering time spent on training a network to be amenable to quantization. Our approach relies on equalizing the weight ranges in the network by making use of a scale-equivariance property of activation functions. In addition the method corrects biases in the error that are introduced during quantization. This improves quantization accuracy performance, and can be applied to many common computer vision architectures with a straight forward API call. For common architectures, such as the MobileNet family, we achieve state-of-the-art quantized model performance. We further show that the method also extends to other computer vision architectures and tasks such as semantic segmentation and object detection.
['Max Welling', 'Mart van Baalen', 'Tijmen Blankevoort', 'Markus Nagel']
2019-06-11
data-free-quantization-through-weight-1
http://openaccess.thecvf.com/content_ICCV_2019/html/Nagel_Data-Free_Quantization_Through_Weight_Equalization_and_Bias_Correction_ICCV_2019_paper.html
http://openaccess.thecvf.com/content_ICCV_2019/papers/Nagel_Data-Free_Quantization_Through_Weight_Equalization_and_Bias_Correction_ICCV_2019_paper.pdf
iccv-2019-10
['data-free-quantization', 'data-free-quantization']
['computer-vision', 'methodology']
[ 3.16802800e-01 6.20621592e-02 -2.03980282e-01 -6.97885513e-01 -7.28863895e-01 -6.10515237e-01 4.71808434e-01 1.75390705e-01 -9.78789687e-01 3.17026228e-01 -3.95544618e-01 -7.15383530e-01 2.23444894e-01 -7.00515985e-01 -9.01244104e-01 -5.45021832e-01 2.24332158e-02 4.51294243e-01 5.90790749e-01 -1.01686850e-01 2.09506229e-01 6.02791548e-01 -1.45124638e+00 9.56592187e-02 3.34714830e-01 1.43883729e+00 1.25576943e-01 1.11345541e+00 -9.82728321e-03 4.86736566e-01 -6.56076670e-01 -4.14749950e-01 5.21081984e-01 -1.07057849e-02 -8.03984165e-01 -1.58533216e-01 9.20199156e-01 -6.52297199e-01 -2.69269466e-01 1.42481339e+00 3.62778217e-01 -1.46566592e-02 5.73525727e-01 -1.18619227e+00 -3.38821024e-01 4.91354138e-01 -3.41528505e-01 3.20651233e-01 -5.89755714e-01 1.66979238e-01 1.10469007e+00 -5.69948554e-01 2.34542266e-01 1.51579881e+00 9.21399653e-01 5.42527616e-01 -1.35879517e+00 -7.00989783e-01 5.30749224e-02 2.11661458e-01 -1.34846842e+00 -6.44331753e-01 8.45992789e-02 -3.37475806e-01 1.32244015e+00 -5.78650348e-02 6.83957815e-01 3.46600354e-01 2.18943790e-01 5.68126976e-01 5.90888381e-01 -4.77171093e-01 6.93822682e-01 -2.26087853e-01 1.48314983e-01 8.66483986e-01 3.76252741e-01 -2.99699455e-01 -1.30978420e-01 3.28357108e-02 1.19331491e+00 -1.46219760e-01 -5.77776767e-02 -2.54627705e-01 -1.04559505e+00 1.09217596e+00 6.91383123e-01 -1.23071484e-01 -1.69498369e-01 9.76130962e-01 6.52063906e-01 2.50346780e-01 5.46526909e-03 3.40442091e-01 -5.28202593e-01 -3.03199768e-01 -1.20200324e+00 3.10147464e-01 8.06558490e-01 9.48326051e-01 9.48480606e-01 2.91197121e-01 1.88512772e-01 6.85118318e-01 4.62229073e-01 3.52106839e-01 5.44076741e-01 -1.57235181e+00 2.44852141e-01 2.50083387e-01 -1.98537305e-01 -6.48621619e-01 -3.57653320e-01 -2.34685197e-01 -8.52054119e-01 5.38428783e-01 5.42215884e-01 -7.61832073e-02 -1.26111829e+00 1.68593323e+00 2.52656192e-01 5.29392585e-02 -5.17499298e-02 8.34761918e-01 4.25143749e-01 5.47479808e-01 7.15682730e-02 2.39115089e-01 1.51130021e+00 -7.82399952e-01 -3.27242345e-01 -3.99891704e-01 6.78385496e-01 -5.02842724e-01 1.02274668e+00 5.66994667e-01 -1.13078296e+00 -4.71556813e-01 -1.51266491e+00 -6.31570399e-01 -3.53747755e-01 -2.00643763e-01 7.20268667e-01 8.42576444e-01 -1.41469324e+00 7.93698251e-01 -1.34557605e+00 -1.83572739e-01 6.84209287e-01 8.91275227e-01 4.10978794e-02 2.45284379e-01 -9.74056065e-01 7.48640060e-01 6.90607131e-01 -1.12561755e-01 -5.87046564e-01 -6.62379384e-01 -7.78770268e-01 2.16883749e-01 6.82742074e-02 -6.14996314e-01 1.93830359e+00 -1.17318988e+00 -1.64519334e+00 6.09924316e-01 -1.29958928e-01 -1.00395644e+00 2.62126505e-01 1.13663990e-02 1.22694097e-01 2.86156952e-01 -1.98036045e-01 1.40446234e+00 1.03361857e+00 -5.57486236e-01 -7.98951924e-01 -2.53758818e-01 1.17074803e-01 9.93636902e-03 -6.71522379e-01 -2.68599898e-01 -7.67084420e-01 -5.14401674e-01 2.42198497e-01 -1.02703953e+00 -4.20210838e-01 6.72748446e-01 -2.92363018e-02 -1.89327911e-01 8.79247129e-01 -4.19232845e-01 9.18252289e-01 -2.05947757e+00 -3.36094648e-01 3.23885739e-01 3.28982353e-01 4.78917122e-01 4.30228971e-02 -2.84053952e-01 2.73055673e-01 2.09205121e-01 -2.98284203e-01 -3.77053350e-01 2.60596573e-01 5.07937849e-01 -3.32140446e-01 5.51571667e-01 3.55701894e-01 8.28378737e-01 -6.48607671e-01 -5.59185922e-01 2.27457523e-01 6.17783070e-01 -9.63121772e-01 -2.32132286e-01 -3.28532219e-01 -3.05340588e-01 -5.20583689e-02 3.16222161e-01 4.14809018e-01 -5.12005150e-01 1.18122496e-01 -3.43539417e-01 7.35049546e-02 6.03729963e-01 -1.22747648e+00 1.70751667e+00 -4.03225183e-01 1.03276145e+00 3.80830020e-01 -1.00597072e+00 5.86747706e-01 1.19104803e-01 2.00850982e-02 -5.79574525e-01 2.39257842e-01 2.67736137e-01 1.66587643e-02 1.85649082e-01 5.94149709e-01 6.06819727e-02 2.21312493e-01 1.91005677e-01 1.69236347e-01 -4.89716947e-01 2.42241189e-01 3.98690924e-02 8.53226483e-01 -3.17529023e-01 1.71059951e-01 -4.07282233e-01 -1.24079194e-02 1.55937225e-01 4.64012176e-01 9.18128371e-01 -2.72068143e-01 4.57596481e-01 4.60449070e-01 -4.08620894e-01 -1.37234914e+00 -8.96035314e-01 -3.88615251e-01 1.30701947e+00 -1.73486888e-01 -2.74171501e-01 -1.17953312e+00 -1.32811397e-01 -6.90496191e-02 3.78969967e-01 -2.92247087e-01 -8.46869871e-02 -5.13294995e-01 -5.91912150e-01 9.94009137e-01 9.06549513e-01 7.67618179e-01 -6.85441554e-01 -1.13677955e+00 4.43187177e-01 3.42717826e-01 -1.21944308e+00 -4.62251067e-01 6.94638669e-01 -1.22878027e+00 -7.15185225e-01 -6.07414365e-01 -9.39409137e-01 4.21751469e-01 2.75546964e-02 1.05570138e+00 3.93438637e-02 -3.36896986e-01 2.92432234e-02 2.34885663e-01 -4.79743063e-01 -4.18291569e-01 2.88897574e-01 5.87868877e-02 -4.35374260e-01 4.78052974e-01 -3.39427352e-01 -6.83086693e-01 3.71556021e-02 -9.30682957e-01 -7.07015917e-02 5.18852472e-01 9.12731290e-01 8.53946269e-01 6.88993111e-02 2.66364187e-01 -5.22093058e-01 4.89211828e-01 3.06586176e-02 -1.13030303e+00 -8.40369686e-02 -7.14955091e-01 4.23465163e-01 6.49743259e-01 -4.36400294e-01 -4.67103124e-01 3.23374450e-01 -3.73851031e-01 -5.87207735e-01 -2.61307806e-02 1.93580642e-01 1.59449354e-01 -3.47870439e-01 8.35097611e-01 -2.02614993e-01 1.82034239e-01 -2.36884385e-01 6.23687267e-01 8.02014828e-01 8.41515839e-01 -2.42521420e-01 3.66251618e-01 4.71445590e-01 1.25800177e-01 -9.50250566e-01 -3.81805301e-01 -3.23948950e-01 -5.16378582e-01 4.12146479e-01 1.10088849e+00 -9.88693297e-01 -8.82510662e-01 4.23753053e-01 -1.26905262e+00 -7.70731866e-01 -1.57802492e-01 3.25122774e-01 -5.82969606e-01 1.77972734e-01 -8.11893404e-01 -4.88029599e-01 -5.31571865e-01 -1.51350307e+00 1.05357945e+00 2.13659763e-01 -1.72405556e-01 -1.06623697e+00 -3.75185162e-01 -1.10626869e-01 5.02728283e-01 -1.58050537e-01 9.66476381e-01 -4.65836138e-01 -5.19356906e-01 4.90735546e-02 -5.28286874e-01 6.14953518e-01 -2.35498160e-01 1.37585193e-01 -1.08266711e+00 -3.25911969e-01 -1.72327951e-01 -6.05776727e-01 1.07172024e+00 4.90925074e-01 1.45240831e+00 -3.60556066e-01 -4.59946021e-02 1.00241899e+00 1.32656705e+00 -3.04257106e-02 3.66662711e-01 4.32219714e-01 7.63612509e-01 1.53008133e-01 1.26116723e-01 2.10389301e-01 3.40696335e-01 5.89568734e-01 6.13721967e-01 -2.44037315e-01 -1.23526506e-01 1.26568109e-01 4.77342382e-02 5.15043795e-01 3.88032675e-01 5.48017137e-02 -1.11849761e+00 5.19064784e-01 -1.60985792e+00 -7.19805241e-01 4.65865396e-02 2.08471775e+00 1.09732521e+00 5.41042387e-01 -3.68204620e-03 3.20004612e-01 5.64103544e-01 -6.24550842e-02 -8.77847254e-01 -9.25624549e-01 2.63244689e-01 5.83186448e-01 1.34255087e+00 5.77351809e-01 -1.22685325e+00 1.08748400e+00 7.29606724e+00 9.30966854e-01 -1.40024567e+00 9.35566425e-02 8.46591175e-01 -1.28099069e-01 1.30009055e-01 -3.50254357e-01 -1.13321137e+00 1.19455218e-01 1.30942678e+00 3.13275605e-01 6.49977207e-01 1.26987052e+00 -2.70622037e-02 1.69697881e-01 -1.28085113e+00 1.32485545e+00 -3.15155536e-01 -1.56632876e+00 5.09660132e-02 8.02600905e-02 6.15458429e-01 5.50417483e-01 2.07158908e-01 1.81719229e-01 4.13849503e-01 -1.17414212e+00 9.00488675e-01 -2.21070677e-01 1.19594944e+00 -8.35403919e-01 4.78712261e-01 1.75822511e-01 -1.08474410e+00 -9.80146602e-02 -7.41900206e-01 -1.60480961e-02 -2.28822932e-01 3.25244248e-01 -1.09237015e+00 -5.27502537e-01 8.03355992e-01 2.85509288e-01 -5.63405752e-01 9.27350760e-01 -5.92239089e-02 7.82279074e-01 -7.21915960e-01 -1.53134584e-01 6.40443325e-01 1.81257278e-01 -1.29752293e-01 1.42221558e+00 5.01459986e-02 -1.42512411e-01 -1.05296187e-01 6.84915841e-01 -2.90327340e-01 -3.48186940e-01 -2.41499826e-01 -3.21221501e-02 8.88445795e-01 1.04032123e+00 -9.59217370e-01 -6.90117478e-01 -3.88255715e-01 9.10611272e-01 3.14570338e-01 2.58789837e-01 -7.63828814e-01 -7.58806825e-01 8.56178164e-01 -7.04407990e-02 8.20850670e-01 -4.46896851e-01 -6.33319676e-01 -7.59397805e-01 -1.79251939e-01 -9.53876197e-01 3.06218164e-04 -4.59533185e-01 -7.63420939e-01 3.56009901e-01 -5.10499887e-02 -6.99622691e-01 -6.55910850e-01 -1.10835075e+00 -2.67086715e-01 8.08660567e-01 -1.55407310e+00 -5.69277406e-01 -2.00288832e-01 6.43737018e-01 4.92107540e-01 1.17618777e-02 8.39963436e-01 2.86452532e-01 -2.55485982e-01 8.82475197e-01 8.54854658e-02 2.48264626e-01 4.56232011e-01 -1.49273157e+00 1.05716622e+00 8.05745363e-01 1.76213086e-01 6.54731870e-01 6.50072575e-01 -4.05722037e-02 -1.49710643e+00 -1.29515302e+00 4.68808979e-01 5.98599464e-02 7.35803962e-01 -4.39760327e-01 -8.98188233e-01 7.84634948e-01 9.32405796e-03 2.28706837e-01 3.16187888e-01 -1.04428940e-01 -5.96418977e-01 -2.36660779e-01 -9.98915970e-01 7.80812562e-01 7.09045112e-01 -6.26982510e-01 -3.53908509e-01 2.72801399e-01 7.99832225e-01 -5.22881329e-01 -8.01269770e-01 3.47300768e-02 6.04687095e-01 -6.60352886e-01 9.39101756e-01 -2.91275889e-01 6.67739585e-02 -1.61366686e-01 -3.89761299e-01 -9.87331569e-01 -3.52450877e-01 -7.35147476e-01 -2.29749456e-01 5.43252528e-01 3.04417938e-01 -6.84713006e-01 9.49568629e-01 8.45969260e-01 -2.02404395e-01 -6.47865832e-01 -1.06683898e+00 -6.55185819e-01 2.64509737e-01 -5.63684046e-01 5.37070394e-01 5.23650885e-01 -4.66504574e-01 2.17886999e-01 3.85741949e-01 2.83272833e-01 7.62270451e-01 -4.72614855e-01 5.14337361e-01 -1.11797643e+00 -5.28625965e-01 -9.67177927e-01 -8.15898597e-01 -1.65906346e+00 -5.91244660e-02 -6.99611843e-01 1.83799550e-01 -1.29489481e+00 -3.82630438e-01 -5.10187924e-01 -1.87078685e-01 7.75287092e-01 1.39741912e-01 7.69472241e-01 1.26354158e-01 1.05989330e-01 -5.99561334e-01 1.08671710e-01 8.41020644e-01 -1.01135038e-01 -1.21939898e-01 -3.70835662e-01 -4.96302903e-01 9.90751028e-01 8.70752633e-01 -4.21476245e-01 -5.19361794e-01 -9.45890725e-01 1.06042430e-01 -2.86528170e-01 5.64969480e-01 -1.22001612e+00 4.17868763e-01 7.56790712e-02 4.04527396e-01 -3.55844647e-01 5.00851989e-01 -6.72906280e-01 -2.75414824e-01 6.30263031e-01 -3.95041198e-01 2.12447882e-01 4.75869894e-01 3.71349394e-01 -1.06366612e-01 -4.29528922e-01 1.21320307e+00 -1.01914085e-01 -9.03494358e-01 2.88436323e-01 -3.43173206e-01 1.17097050e-01 6.00391090e-01 -4.37413156e-01 -1.93975389e-01 -1.94233179e-01 -3.85968387e-01 6.35649040e-02 5.55199623e-01 6.44183829e-02 4.40899462e-01 -1.12582278e+00 -3.10467899e-01 3.02184612e-01 -2.59466588e-01 3.50099832e-01 -3.31885636e-01 4.23264205e-01 -1.10824716e+00 6.04715824e-01 -9.33996290e-02 -8.86453986e-01 -1.16586411e+00 1.79856792e-01 5.94059706e-01 1.53901339e-01 -4.94477779e-01 1.14480186e+00 4.35695723e-02 2.03608181e-02 6.89228654e-01 -9.15362835e-01 3.08536470e-01 -2.44698763e-01 7.10961342e-01 1.64449751e-01 4.41991240e-01 -3.29497635e-01 -3.47003728e-01 4.28521693e-01 -2.61013925e-01 -4.96073008e-01 1.00012183e+00 1.49446636e-01 5.98887689e-02 3.89327347e-01 1.47586524e+00 -8.70830238e-01 -1.70833409e+00 -8.92661735e-02 -1.50457084e-01 2.79720873e-02 7.40553737e-01 -3.75528306e-01 -1.06196094e+00 1.29393053e+00 8.73843610e-01 1.78929836e-01 1.01802015e+00 -3.80542159e-01 8.33746731e-01 1.06358552e+00 3.06045592e-01 -1.24004042e+00 -1.02334715e-01 7.10693002e-01 3.53793234e-01 -1.20696568e+00 -7.95827284e-02 -3.70078906e-02 -1.27352595e-01 1.27066636e+00 3.44845772e-01 -3.61478865e-01 6.81653738e-01 4.23241138e-01 1.05249971e-01 1.32707164e-01 -7.43817925e-01 1.59029230e-01 8.95070434e-02 4.91024733e-01 3.74594003e-01 -4.31681313e-02 -1.07106371e-02 1.76270995e-02 -5.02733469e-01 -1.07787542e-01 3.57616037e-01 9.79305029e-01 -8.92587364e-01 -7.89219737e-01 -3.44408810e-01 5.34535944e-01 -5.62393904e-01 -4.40285861e-01 5.26401661e-02 5.97722948e-01 1.36907259e-02 7.27569878e-01 6.15900099e-01 -2.87840087e-02 -8.00209343e-02 6.70220628e-02 4.74440843e-01 -5.71699023e-01 -5.06023169e-01 3.34668197e-02 -1.70391023e-01 -6.40290082e-01 2.24491372e-03 -1.86812773e-01 -1.71463263e+00 -5.44816136e-01 -3.61732602e-01 -2.65562207e-01 1.20662642e+00 6.86467052e-01 3.87957305e-01 5.16208649e-01 -5.92856035e-02 -1.06509209e+00 -1.12562835e+00 -6.97101116e-01 -3.73324424e-01 1.17041491e-01 5.99809766e-01 -4.37331200e-01 -1.31405383e-01 3.24254125e-01]
[8.622089385986328, 3.0249826908111572]
6c07e8d7-16fb-466b-aa98-17b1286daadb
nanonet-real-time-polyp-segmentation-in-video
2104.11138
null
https://arxiv.org/abs/2104.11138v1
https://arxiv.org/pdf/2104.11138v1.pdf
NanoNet: Real-Time Polyp Segmentation in Video Capsule Endoscopy and Colonoscopy
Deep learning in gastrointestinal endoscopy can assist to improve clinical performance and be helpful to assess lesions more accurately. To this extent, semantic segmentation methods that can perform automated real-time delineation of a region-of-interest, e.g., boundary identification of cancer or precancerous lesions, can benefit both diagnosis and interventions. However, accurate and real-time segmentation of endoscopic images is extremely challenging due to its high operator dependence and high-definition image quality. To utilize automated methods in clinical settings, it is crucial to design lightweight models with low latency such that they can be integrated with low-end endoscope hardware devices. In this work, we propose NanoNet, a novel architecture for the segmentation of video capsule endoscopy and colonoscopy images. Our proposed architecture allows real-time performance and has higher segmentation accuracy compared to other more complex ones. We use video capsule endoscopy and standard colonoscopy datasets with polyps, and a dataset consisting of endoscopy biopsies and surgical instruments, to evaluate the effectiveness of our approach. Our experiments demonstrate the increased performance of our architecture in terms of a trade-off between model complexity, speed, model parameters, and metric performances. Moreover, the resulting model size is relatively tiny, with only nearly 36,000 parameters compared to traditional deep learning approaches having millions of parameters.
['Pål Halvorsen', 'Thomas de Lange', 'Dag Johansen', 'Håvard D. Johansen', 'Michael A. Riegler', 'Sharib Ali', 'Nikhil Kumar Tomar', 'Debesh Jha']
2021-04-22
null
null
null
null
['instrument-recognition']
['audio']
[-1.66190177e-01 1.60578396e-02 -1.43281907e-01 -1.22901157e-01 -5.53339124e-01 -8.01852047e-01 -2.44566262e-01 5.11282980e-01 -4.43319201e-01 1.44848034e-01 -2.85246164e-01 -7.04638898e-01 -3.74044552e-02 -8.49645674e-01 -5.70062160e-01 -6.72611892e-01 -4.06542808e-01 3.13806355e-01 3.90806049e-01 2.78782308e-01 -1.60744280e-01 3.31168741e-01 -9.17490184e-01 3.80857050e-01 1.04152846e+00 1.03071773e+00 3.22757721e-01 8.57115567e-01 1.90214202e-01 3.18287045e-01 -4.07280862e-01 -1.41273111e-01 3.47521603e-01 -2.33812645e-01 -5.47986984e-01 -3.40221310e-03 7.42297396e-02 -4.78252590e-01 -2.16264993e-01 1.21337020e+00 5.22321284e-01 -1.79042533e-01 1.87226593e-01 -4.94569749e-01 -7.04529360e-02 6.79326713e-01 -4.14594382e-01 1.92801520e-01 1.21078581e-01 2.41620824e-01 4.87120539e-01 -2.97842510e-02 3.29990268e-01 7.24575341e-01 8.30008566e-01 5.46319842e-01 -1.04056001e+00 -3.19054782e-01 3.85596976e-02 -2.18428418e-01 -1.11450291e+00 9.51442197e-02 2.54315495e-01 -4.30468768e-01 5.98921239e-01 2.70217419e-01 1.14555621e+00 7.51173019e-01 4.61837769e-01 8.21380854e-01 5.90014935e-01 -2.14891449e-01 4.04806376e-01 5.74392118e-02 1.58373844e-02 9.69473183e-01 8.27977300e-01 4.06846777e-02 2.47772396e-01 -1.99108288e-01 1.14443350e+00 5.27312458e-01 -6.01792932e-01 -3.39361072e-01 -1.46468759e+00 7.54840910e-01 8.20358515e-01 4.93469357e-01 -3.19060266e-01 2.58534700e-01 5.32031238e-01 2.24401541e-02 -1.01103887e-01 6.93858445e-01 -3.19604069e-01 -6.24449998e-02 -8.42579126e-01 -3.44393969e-01 1.17783403e+00 8.78196657e-01 6.82935491e-02 -2.52725571e-01 1.94312930e-01 3.57832968e-01 2.86625624e-01 1.82646558e-01 9.86691773e-01 -5.23084581e-01 1.40406881e-02 9.78846371e-01 1.94051370e-01 -7.49822974e-01 -9.30041730e-01 -5.26560128e-01 -1.10307693e+00 -5.93173541e-02 3.03199738e-01 -2.73565739e-01 -1.19857407e+00 1.15898371e+00 4.32534099e-01 2.02431560e-01 3.86451706e-02 1.15805745e+00 1.03719008e+00 3.54861528e-01 3.27622145e-02 1.77196786e-01 1.67078602e+00 -1.15382850e+00 -3.58605206e-01 -2.66941071e-01 1.10146844e+00 -6.48200631e-01 9.15440202e-01 3.71430188e-01 -1.01040983e+00 -3.22381198e-01 -1.14522135e+00 -7.24329278e-02 -1.20858364e-01 4.16360885e-01 9.41415846e-01 7.41746247e-01 -9.66581285e-01 4.69931155e-01 -1.64543366e+00 -3.83213252e-01 3.42308611e-01 8.47048283e-01 -3.70195769e-02 9.63712931e-02 -6.88904047e-01 3.75410467e-01 5.50354302e-01 8.26381296e-02 -7.26445258e-01 -8.50444913e-01 -8.94354403e-01 2.14425281e-01 1.81812808e-01 -1.08517659e+00 1.40823805e+00 -7.99680293e-01 -1.49555171e+00 8.68394077e-01 3.03416461e-01 -7.56950080e-01 4.40723360e-01 5.12689305e-03 -1.29498854e-01 4.43361670e-01 -4.54873204e-01 5.61617374e-01 3.36690515e-01 -7.18729913e-01 -7.89490104e-01 -4.27645981e-01 5.41162848e-01 9.14708078e-02 -3.94642830e-01 -4.28029269e-01 -7.24982023e-01 -3.36755872e-01 2.14390680e-01 -1.34996009e+00 -8.26412737e-01 3.52856517e-01 -2.90712088e-01 3.70944589e-01 5.45179665e-01 -7.69047797e-01 1.21269095e+00 -2.32555556e+00 -2.08921239e-01 1.95287153e-01 4.88486350e-01 6.87066317e-01 1.61956608e-01 -2.70328641e-01 3.90633315e-01 1.67200729e-01 -6.80932254e-02 2.75644541e-01 -4.03859794e-01 -4.30206805e-02 3.34124833e-01 6.36098802e-01 -3.59942019e-01 1.10499334e+00 -9.71497476e-01 -6.06209576e-01 6.45824492e-01 5.55742264e-01 -7.55042315e-01 1.88041300e-01 -1.97619975e-01 5.36217451e-01 -7.47676075e-01 6.87979877e-01 4.44061637e-01 -7.89525867e-01 5.76811016e-01 -5.56585550e-01 -4.50184196e-02 1.36236727e-01 -9.06324744e-01 2.03838205e+00 -7.81564534e-01 3.24628413e-01 5.53830683e-01 -7.57013559e-01 5.90675116e-01 5.22180438e-01 7.24258125e-01 -5.33591568e-01 4.26536113e-01 5.37604034e-01 3.15515339e-01 -6.06010258e-01 5.24312556e-02 1.91317767e-01 7.25187883e-02 1.34468690e-01 -3.62089425e-01 -1.60431102e-01 2.50080734e-01 -2.99610168e-01 1.04971623e+00 -1.01546012e-01 5.50818563e-01 -5.11819065e-01 3.25885475e-01 3.89935941e-01 3.76884371e-01 4.30241793e-01 -3.64997178e-01 3.29511166e-01 2.28954509e-01 -7.62166500e-01 -8.27764392e-01 -8.17903161e-01 -2.13974446e-01 3.36840540e-01 7.93649971e-01 -3.05117927e-02 -1.02488196e+00 -5.55661023e-01 -1.60966918e-01 1.70591056e-01 -3.75924230e-01 -8.26369002e-02 -8.68315041e-01 -9.65602100e-01 2.48078614e-01 4.97315794e-01 4.26790953e-01 -6.69159591e-01 -1.30702817e+00 4.75021124e-01 -1.09587744e-01 -1.12625921e+00 -4.81566608e-01 -1.52068725e-02 -1.40792298e+00 -1.31841969e+00 -7.36532986e-01 -1.49367976e+00 1.03498316e+00 4.75613713e-01 1.06654370e+00 2.54595637e-01 -7.84232318e-01 4.79978882e-02 -1.54361829e-01 -1.75784379e-01 -4.77480024e-01 3.13958973e-01 -4.46111381e-01 -4.81662959e-01 2.68678397e-01 -2.25073606e-01 -1.55658245e+00 4.07147884e-01 -1.09728014e+00 2.27323949e-01 7.51546681e-01 9.92121100e-01 8.39785516e-01 -1.91501081e-01 3.26300375e-02 -7.74780869e-01 3.66274089e-01 -3.04900885e-01 -9.08693731e-01 3.12676817e-01 -3.26520175e-01 -2.08672851e-01 8.85420620e-01 -5.31103492e-01 -7.35411763e-01 2.34888390e-01 -1.55792266e-01 -1.97746694e-01 1.18770674e-02 6.87419713e-01 5.74147582e-01 -4.07871574e-01 6.94431961e-01 -1.82243556e-01 1.97922915e-01 -3.29986155e-01 1.73449427e-01 7.03057468e-01 3.58245641e-01 -1.11932106e-01 9.77730975e-02 7.69158065e-01 -1.71519339e-01 -6.69254243e-01 -5.80922544e-01 -8.10825944e-01 -3.17814738e-01 1.45397693e-01 7.36237943e-01 -1.06331897e+00 -1.05182862e+00 4.93641570e-03 -9.04094517e-01 -3.70139450e-01 -2.50942171e-01 9.48325336e-01 -3.24163437e-01 3.49868476e-01 -1.22915828e+00 -1.51808307e-01 -9.55142617e-01 -1.61536109e+00 9.18016315e-01 5.69757521e-01 -1.31776080e-01 -1.31986749e+00 -2.91407138e-01 4.22760658e-02 4.49578196e-01 6.93164468e-01 8.44623446e-01 -5.21807790e-01 -8.50921512e-01 -5.47428608e-01 -2.55872130e-01 -3.13013755e-02 2.12082058e-01 -1.78391650e-01 -4.31514710e-01 -7.27367282e-01 3.59732389e-01 -1.98852681e-02 7.11595774e-01 9.32557881e-01 1.39858770e+00 -8.56536776e-02 -8.90614688e-01 1.15276909e+00 1.66930628e+00 4.93526757e-01 2.20292538e-01 3.48064154e-01 4.29970741e-01 2.19729081e-01 5.45337558e-01 3.30715984e-01 1.03581734e-01 4.15708810e-01 6.45997226e-01 -7.20570207e-01 -9.98968259e-02 1.93936139e-01 -7.53921196e-02 1.12862909e+00 2.34419703e-01 -2.77541995e-01 -9.56257701e-01 7.03502774e-01 -1.77151155e+00 -3.48490566e-01 -4.06375527e-03 2.33625221e+00 7.00451493e-01 -3.57955359e-02 -1.43337280e-01 -2.60733902e-01 6.31909609e-01 -4.52343345e-01 -7.80706108e-01 -1.44898653e-01 4.12022740e-01 7.81830326e-02 6.46325588e-01 2.20976174e-01 -1.26428008e+00 4.50791001e-01 5.92706728e+00 5.30760169e-01 -1.51259601e+00 -1.22513734e-02 7.91750252e-01 -3.04145664e-01 4.72119115e-02 -4.32548493e-01 -4.90211517e-01 3.81911635e-01 7.73687601e-01 -1.23526901e-01 2.47756436e-01 9.08448756e-01 8.29888284e-02 -1.55241042e-02 -1.22533751e+00 9.83411908e-01 -2.51218766e-01 -1.47324002e+00 -2.41096646e-01 3.78414541e-02 7.85750389e-01 2.23249525e-01 -8.26848820e-02 -3.27091515e-02 6.97963908e-02 -8.46214890e-01 1.48022130e-01 -1.21050850e-01 8.26139748e-01 -4.10156369e-01 9.87046301e-01 1.94038823e-01 -1.24564433e+00 -4.36832905e-02 -2.12278813e-01 4.16086972e-01 5.13930283e-02 6.06750607e-01 -1.13013756e+00 2.97109991e-01 6.07063711e-01 5.09609640e-01 -1.14843465e-01 1.75780737e+00 1.20647706e-01 4.58372176e-01 -5.19447505e-01 -2.87344873e-01 4.84440088e-01 -2.62529403e-01 2.86676407e-01 1.29475403e+00 6.38841808e-01 -4.48930636e-02 5.13390660e-01 7.08742738e-01 -1.13556243e-01 1.72891214e-01 -2.41276205e-01 9.61698070e-02 2.20868811e-01 1.53477907e+00 -1.20208597e+00 -3.76218319e-01 -5.27494848e-01 7.96498775e-01 -1.74454346e-01 9.93670598e-02 -1.04388082e+00 -4.44680482e-01 4.17343855e-01 1.50838360e-01 1.07833430e-01 -1.37636840e-01 -3.25115174e-01 -1.15642262e+00 1.20258071e-01 -7.23972142e-01 3.70659530e-01 -2.73271948e-02 -8.45576048e-01 8.36273730e-01 -6.76541269e-01 -1.43770373e+00 -7.40761608e-02 -8.74233842e-01 -3.81464481e-01 4.84457433e-01 -1.63722181e+00 -1.05338049e+00 -7.80250311e-01 3.34252983e-01 4.59593147e-01 3.93409222e-01 1.01130605e+00 4.87243116e-01 -4.99729544e-01 4.66689289e-01 3.98201138e-01 2.85016626e-01 3.50242883e-01 -1.26778448e+00 4.16275531e-01 4.89948809e-01 -1.35747433e-01 7.67744303e-01 2.56385326e-01 -4.26093280e-01 -1.55573642e+00 -1.31495893e+00 5.97744733e-02 8.92858058e-02 4.62678879e-01 -6.46097213e-02 -5.15446901e-01 5.89350343e-01 -1.14031918e-01 2.39335090e-01 8.84542286e-01 -3.16349775e-01 2.59099215e-01 -6.06776820e-03 -1.31694436e+00 7.97090828e-01 6.94743991e-01 -3.89041826e-02 -1.48355484e-01 6.28350854e-01 9.73900080e-01 -1.08698785e+00 -1.34990454e+00 4.95742738e-01 6.06011271e-01 -8.61817956e-01 1.05798364e+00 -1.61067128e-01 1.53386965e-01 -2.05513149e-01 5.41426480e-01 -1.06217861e+00 -1.79413155e-01 -7.55147278e-01 -5.46795428e-02 2.78754056e-01 4.61378008e-01 -7.36352921e-01 1.14451599e+00 4.81832147e-01 -5.15037477e-01 -1.14528310e+00 -6.79435611e-01 -5.27998686e-01 -1.88912898e-01 1.39013439e-01 5.55743814e-01 7.21820772e-01 1.87669411e-01 -3.02287400e-01 3.39168131e-01 2.98232138e-01 3.56873900e-01 6.30931556e-01 3.21622014e-01 -9.83935356e-01 -2.80250996e-01 -4.91377562e-01 -5.36620736e-01 -1.25059772e+00 -6.22877121e-01 -8.29667926e-01 -7.72677585e-02 -1.92694700e+00 8.91998038e-02 -5.42963624e-01 -3.13069999e-01 2.36694887e-01 -8.91367048e-02 1.99054584e-01 -1.69958830e-01 2.80111730e-01 -6.27872407e-01 -1.68403864e-01 1.65992332e+00 -1.55070424e-01 -5.99947035e-01 3.02909493e-01 -4.08181369e-01 9.87905085e-01 8.63947749e-01 -2.09870994e-01 -1.83079273e-01 -5.61995566e-01 -1.66494861e-01 3.03998977e-01 2.84920007e-01 -1.07285845e+00 4.97406006e-01 2.60913789e-01 2.52618313e-01 -2.65091121e-01 5.09232245e-02 -9.88008559e-01 1.55471191e-01 1.42939460e+00 -6.49621189e-02 -2.87329972e-01 3.98343503e-01 4.13269520e-01 -5.52133858e-01 -2.21124187e-01 8.83526683e-01 -5.70460439e-01 -4.28770691e-01 4.08389151e-01 -2.76189268e-01 -6.49369657e-02 1.36827338e+00 -3.48660439e-01 -1.82645425e-01 1.98211730e-01 -7.19903350e-01 2.54691154e-01 6.27823770e-01 1.15126923e-01 5.63169181e-01 -8.75746787e-01 -4.01592314e-01 2.61435211e-01 4.54033762e-02 6.10049307e-01 5.16414762e-01 1.21030843e+00 -1.50760770e+00 7.90851355e-01 3.46044265e-02 -9.27311301e-01 -1.02406168e+00 5.77535272e-01 6.84185863e-01 -5.22606909e-01 -9.43085670e-01 7.45877326e-01 3.70247722e-01 -2.28711724e-01 3.03380907e-01 -1.11469233e+00 2.61524064e-03 -5.07450104e-01 5.39583862e-01 1.42202362e-01 2.95108378e-01 2.19328806e-01 -1.82153702e-01 4.99299020e-01 -9.36427936e-02 6.13524556e-01 9.50492263e-01 -7.07558170e-02 2.27073058e-02 -1.51613176e-01 1.00100017e+00 -2.69683272e-01 -1.13080156e+00 -8.24053586e-02 -7.76097849e-02 -2.00689629e-01 4.32242095e-01 -8.73560071e-01 -1.37847054e+00 7.40471840e-01 9.50440943e-01 3.52474272e-01 1.25482976e+00 -2.62937754e-01 1.40439785e+00 1.68985769e-01 6.43827796e-01 -6.65608823e-01 -2.14588270e-01 -2.47913375e-01 3.53292048e-01 -1.31083071e+00 -1.48266926e-01 -7.58000731e-01 -1.49449900e-01 1.30820251e+00 6.04013085e-01 -1.87368497e-01 6.60840452e-01 4.93324846e-01 2.46101558e-01 -1.73100948e-01 -2.19460994e-01 1.32241890e-01 2.50956476e-01 3.14577252e-01 6.51414752e-01 3.96206766e-01 -2.93799371e-01 5.15843213e-01 2.10855771e-02 2.91012228e-01 3.39860857e-01 9.69692528e-01 -3.47736567e-01 -7.71334529e-01 -1.32648587e-01 6.04487062e-01 -8.85772586e-01 -8.79325122e-02 2.65677840e-01 8.25156808e-01 -5.70146553e-02 9.34160173e-01 8.36053770e-03 -3.70944701e-02 2.66811728e-01 -7.05640435e-01 4.29658830e-01 -5.60139477e-01 -1.03805971e+00 4.07257497e-01 -1.03001676e-01 -6.39335990e-01 -2.87602931e-01 -4.07499336e-02 -1.51908922e+00 -8.18398297e-02 -4.22484249e-01 1.60545200e-01 1.01097882e+00 3.72620434e-01 5.62284589e-01 8.03138912e-01 3.36224467e-01 -5.66418767e-01 -7.00676978e-01 -6.17811978e-01 -4.18237209e-01 4.02963936e-01 2.59203553e-01 -2.85549536e-02 -2.42586866e-01 1.13978811e-01]
[14.438115119934082, -2.934734582901001]
4c173503-1d80-4473-9ab0-b9350373e7f2
using-offline-data-to-speed-up-reinforcement
2304.09825
null
https://arxiv.org/abs/2304.09825v1
https://arxiv.org/pdf/2304.09825v1.pdf
Using Offline Data to Speed-up Reinforcement Learning in Procedurally Generated Environments
One of the key challenges of Reinforcement Learning (RL) is the ability of agents to generalise their learned policy to unseen settings. Moreover, training RL agents requires large numbers of interactions with the environment. Motivated by the recent success of Offline RL and Imitation Learning (IL), we conduct a study to investigate whether agents can leverage offline data in the form of trajectories to improve the sample-efficiency in procedurally generated environments. We consider two settings of using IL from offline data for RL: (1) pre-training a policy before online RL training and (2) concurrently training a policy with online RL and IL from offline data. We analyse the impact of the quality (optimality of trajectories) and diversity (number of trajectories and covered level) of available offline trajectories on the effectiveness of both approaches. Across four well-known sparse reward tasks in the MiniGrid environment, we find that using IL for pre-training and concurrently during online RL training both consistently improve the sample-efficiency while converging to optimal policies. Furthermore, we show that pre-training a policy from as few as two trajectories can make the difference between learning an optimal policy at the end of online training and not learning at all. Our findings motivate the widespread adoption of IL for pre-training and concurrent IL in procedurally generated environments whenever offline trajectories are available or can be generated.
['Javier Del Ser', 'Stefano V. Albrecht', 'Esther Villar-Rodriguez', 'Lukas Schäfer', 'Alain Andres']
2023-04-18
null
null
null
null
['offline-rl']
['playing-games']
[-2.38444790e-01 -1.50609594e-02 -1.21495627e-01 1.13312483e-01 -7.05712378e-01 -1.03768539e+00 8.51415098e-01 3.98051649e-01 -9.18763578e-01 1.01388705e+00 8.14314261e-02 -5.90841711e-01 -1.04266062e-01 -7.71033585e-01 -1.03428614e+00 -6.97540760e-01 -6.49166346e-01 6.98085666e-01 1.40769929e-01 -1.15078084e-01 1.70901373e-01 8.73034596e-01 -1.66236365e+00 -1.70741171e-01 9.80318964e-01 4.75838065e-01 4.97981101e-01 9.07553494e-01 1.80268794e-01 8.96393716e-01 -5.01285553e-01 5.05596459e-01 7.57209241e-01 -4.90404516e-01 -3.75871420e-01 1.60194755e-01 -1.51804820e-01 -7.23774552e-01 -5.54897964e-01 6.66360974e-01 5.91875970e-01 7.43409395e-01 4.22456294e-01 -1.15230501e+00 -9.37417373e-02 5.00594735e-01 -1.95969597e-01 3.17776084e-01 2.14959845e-01 1.03018761e+00 5.43015718e-01 -2.99929321e-01 7.10565984e-01 1.03051221e+00 4.05960649e-01 2.94330776e-01 -1.30161655e+00 -5.10535657e-01 4.59953576e-01 -2.26046100e-01 -9.21562970e-01 -5.80002785e-01 9.95471478e-02 -4.83377665e-01 1.08505738e+00 -2.63718665e-01 8.13818574e-01 9.22811449e-01 8.92699063e-02 5.61475277e-01 1.29763281e+00 -1.78050935e-01 7.98451424e-01 1.33503703e-02 -6.09358847e-01 7.31698096e-01 1.28535956e-01 8.54330003e-01 -2.32026473e-01 -3.33418846e-01 1.21374214e+00 -2.27775708e-01 -3.68798338e-02 -4.30118680e-01 -1.24914527e+00 7.57265747e-01 4.13261324e-01 -4.21403274e-02 -5.73602021e-01 3.93106848e-01 4.61188346e-01 6.07761085e-01 2.28436328e-02 1.02281034e+00 -3.43524575e-01 -5.51600575e-01 -6.98176622e-01 7.63717055e-01 7.74796486e-01 9.34392512e-01 8.49195957e-01 2.43542045e-01 -2.19191208e-01 3.73221904e-01 -1.32954761e-01 6.29573226e-01 3.78281921e-01 -1.44029033e+00 6.35242403e-01 1.99466690e-01 7.67714918e-01 -4.13753808e-01 -3.75727236e-01 -3.10217947e-01 -8.44822451e-02 5.14631093e-01 7.62069106e-01 -9.17461634e-01 -6.97088361e-01 1.64916134e+00 4.63335723e-01 3.13384563e-01 2.92226225e-01 8.65980923e-01 -2.02386957e-02 7.31639981e-01 -6.53579086e-02 -3.50278556e-01 4.50712204e-01 -1.04411936e+00 -1.75482154e-01 -2.38238260e-01 9.64823604e-01 -4.19424683e-01 1.08370125e+00 3.04381549e-01 -1.12602007e+00 -4.59665030e-01 -6.83635294e-01 4.36994165e-01 -2.33355060e-01 4.91605960e-02 5.32355964e-01 1.99684143e-01 -1.01326239e+00 1.17100322e+00 -1.05936873e+00 -3.31662744e-01 2.89721996e-01 4.83041227e-01 -5.84466048e-02 -1.25450522e-01 -5.76444983e-01 9.34404135e-01 2.64676660e-01 -1.58086628e-01 -1.51195216e+00 -6.99970424e-01 -4.64512557e-01 7.36256540e-02 7.47285485e-01 -4.35198575e-01 1.55804789e+00 -1.23295021e+00 -1.97523093e+00 7.91984797e-03 1.85184762e-01 -5.30624151e-01 8.42040777e-01 -1.67670757e-01 1.76065654e-01 6.87477961e-02 5.14019392e-02 6.73579812e-01 7.16439962e-01 -1.34030843e+00 -7.52920866e-01 -1.25696436e-01 4.89082128e-01 7.64298022e-01 2.66929209e-01 -4.70014632e-01 -9.23844054e-02 -1.69727132e-01 -5.74256361e-01 -1.29820132e+00 -6.30781531e-01 -2.62367606e-01 1.69607073e-01 -5.17313555e-02 5.66570640e-01 -4.05469269e-01 4.80565608e-01 -1.92262864e+00 3.48503888e-01 3.24658394e-01 -1.44621655e-01 1.17603973e-01 -4.66173619e-01 8.51239800e-01 5.33972502e-01 -1.43571600e-01 -4.30535823e-02 -2.04738170e-01 8.82500336e-02 5.94288945e-01 -4.28456277e-01 4.57382500e-01 -1.02319263e-01 7.77475774e-01 -1.46516359e+00 -2.81153843e-02 3.30775797e-01 -3.97988893e-02 -7.08678722e-01 6.39967918e-01 -6.60102308e-01 1.17573798e+00 -6.06679678e-01 1.78548247e-01 1.17583655e-01 -1.41641885e-01 4.66671944e-01 6.42106235e-01 -6.04717910e-01 3.41964573e-01 -1.07171071e+00 1.42087483e+00 -7.69591689e-01 5.13538778e-01 3.16376418e-01 -7.38946378e-01 4.92964745e-01 1.72245547e-01 6.18242383e-01 -8.52688611e-01 -4.53146920e-02 2.10275173e-01 1.73487321e-01 -5.25171399e-01 5.08382678e-01 8.32481086e-02 2.00441793e-01 7.91865528e-01 -1.22104309e-01 -2.95122266e-01 3.97184044e-01 1.69053704e-01 1.32818472e+00 4.66404766e-01 4.16979231e-02 -2.09228143e-01 -1.19476475e-01 3.14120471e-01 3.86942327e-01 1.29659104e+00 -1.07284673e-01 -2.79959291e-02 5.08328676e-01 -2.18257859e-01 -1.27869642e+00 -9.67870593e-01 3.81910384e-01 1.40629017e+00 6.40414506e-02 -1.06268965e-01 -3.25037658e-01 -8.39033842e-01 3.72281969e-01 7.67652631e-01 -4.46561426e-01 8.38506669e-02 -7.64008343e-01 -3.55029762e-01 2.21445695e-01 4.18396562e-01 4.18929636e-01 -1.38400757e+00 -1.21928513e+00 4.38258052e-01 3.17418963e-01 -9.92049336e-01 -4.77132082e-01 2.80523092e-01 -8.77555966e-01 -9.90596533e-01 -5.97948015e-01 -1.63199082e-01 8.61551881e-01 3.27991992e-01 9.06901062e-01 1.45733953e-01 1.24125645e-01 9.07507420e-01 -4.34607536e-01 -9.00783166e-02 -5.40090919e-01 1.78609952e-01 2.74779111e-01 -5.18647671e-01 -5.12481987e-01 -6.91697419e-01 -4.95766550e-01 1.66709900e-01 -6.76649272e-01 -2.77610924e-02 6.39689565e-01 6.15230560e-01 3.92533839e-01 -7.03481212e-03 7.53424883e-01 -7.44292140e-01 8.48439872e-01 -7.07012355e-01 -1.12779641e+00 6.04402870e-02 -5.40347278e-01 4.18381184e-01 1.10804236e+00 -6.96256161e-01 -8.13389659e-01 -4.74595167e-02 2.11335108e-01 -5.61474383e-01 -1.18719205e-01 4.52551246e-01 4.84205186e-01 -1.90665722e-01 5.47843874e-01 1.62089363e-01 1.73552796e-01 -1.31411731e-01 4.87232119e-01 1.95892751e-01 1.17625691e-01 -1.10716009e+00 5.10425568e-01 3.27400506e-01 -1.12194315e-01 -7.78120756e-01 -3.06500256e-01 -2.77037084e-01 -2.81803161e-01 -4.18566704e-01 4.31649536e-01 -8.51927459e-01 -9.82028663e-01 2.77992517e-01 -4.48071182e-01 -1.54586983e+00 -6.41778827e-01 5.45191944e-01 -9.17316973e-01 1.19116582e-01 -3.56559902e-01 -9.04344201e-01 1.59096211e-01 -1.36888885e+00 5.52889347e-01 3.81730020e-01 2.15581104e-01 -9.34033453e-01 3.99498284e-01 -2.51242429e-01 6.33183181e-01 2.14466721e-01 5.19796252e-01 -3.76337975e-01 -8.21728349e-01 3.58302623e-01 5.42697385e-02 -1.42891422e-01 4.55692038e-02 -1.57936856e-01 -5.41557610e-01 -8.68979812e-01 -4.22393411e-01 -7.66467690e-01 5.22313535e-01 3.33243996e-01 8.80854666e-01 -6.42038941e-01 -3.68576169e-01 3.58569503e-01 1.37568629e+00 3.73744965e-01 2.85364240e-01 4.80874479e-01 3.53977650e-01 4.39597934e-01 7.75627136e-01 7.96797276e-01 3.89196664e-01 5.49217880e-01 3.12276810e-01 2.52603233e-01 3.44102919e-01 -6.00463688e-01 7.04775691e-01 4.23014164e-01 -1.38289735e-01 2.55024359e-02 -7.97450542e-01 5.50835788e-01 -2.13374639e+00 -9.67910826e-01 6.57914400e-01 2.60182190e+00 7.59802759e-01 -1.30918836e-02 7.19866455e-01 -5.76124668e-01 1.67965814e-01 -2.42232401e-02 -1.05700636e+00 -4.06122208e-01 4.15702850e-01 9.43628028e-02 9.93891954e-01 7.00446069e-01 -6.63740039e-01 1.00111198e+00 6.24657726e+00 5.28270483e-01 -1.28756487e+00 -3.97205316e-02 5.41198254e-01 -5.31942427e-01 -3.93631794e-02 2.33516425e-01 -6.45046115e-01 5.42083383e-01 1.15112484e+00 -1.46319255e-01 1.35575426e+00 7.49521494e-01 6.69786215e-01 -5.66841543e-01 -1.15903986e+00 4.50532317e-01 -7.04707980e-01 -1.41210413e+00 -3.72547150e-01 2.54559755e-01 9.86213505e-01 4.16241646e-01 5.40380143e-02 8.81621480e-01 1.13246977e+00 -1.19726431e+00 6.40627563e-01 4.99918312e-01 6.12103581e-01 -9.50773239e-01 3.76571387e-01 8.66910934e-01 -1.07428384e+00 -4.00587082e-01 -2.72754163e-01 -4.08358872e-01 -7.67434016e-02 2.67667347e-03 -1.09360838e+00 3.94238412e-01 4.52468783e-01 5.89264572e-01 -2.14854285e-01 9.75950122e-01 -1.05868950e-01 6.25993788e-01 -6.85766578e-01 -1.11668669e-01 7.39435196e-01 -5.10788798e-01 5.20934522e-01 7.17368603e-01 2.64939487e-01 2.63932824e-01 7.73899555e-01 8.79652321e-01 2.83940166e-01 -1.34813949e-01 -8.85966122e-01 -3.26247394e-01 7.59043813e-01 8.56927752e-01 -7.40703821e-01 -3.16440970e-01 -7.06182420e-02 5.94076693e-01 6.98495328e-01 5.92248797e-01 -6.26288891e-01 1.18925817e-01 5.18714070e-01 -2.14912631e-02 5.02929449e-01 -7.40224898e-01 1.74379095e-01 -8.89595628e-01 -3.78746748e-01 -9.44175839e-01 1.03177214e-02 -4.97437775e-01 -9.51788306e-01 1.17586881e-01 9.06338692e-02 -1.01179445e+00 -4.95782882e-01 -3.65789086e-02 -5.95102668e-01 5.45258939e-01 -1.48710549e+00 -4.37363237e-01 -2.79295463e-02 3.49586070e-01 5.71622670e-01 -1.64455801e-01 5.06120086e-01 -1.16404206e-01 -4.74826604e-01 1.77970245e-01 6.94040656e-01 -2.77996719e-01 4.31154221e-01 -1.29755723e+00 1.66226804e-01 4.77362037e-01 5.63242100e-02 4.26894873e-01 7.36600041e-01 -7.56484449e-01 -1.63551557e+00 -1.03275406e+00 -2.39250347e-01 -8.37952048e-02 4.51634377e-01 -1.69583529e-01 -6.78773582e-01 7.93400884e-01 1.60907298e-01 -1.39746040e-01 -3.32380482e-03 1.35594178e-02 2.05922186e-01 1.33985683e-01 -1.10830605e+00 8.66826594e-01 8.49076331e-01 -2.12671861e-01 -9.90775153e-02 2.98532635e-01 5.61256230e-01 -6.33998513e-01 -7.21391499e-01 5.66061959e-02 3.70547235e-01 -1.00166953e+00 7.38542318e-01 -5.25012910e-01 1.56921670e-01 -1.02973402e-01 1.38209894e-01 -1.82551086e+00 4.29678708e-02 -9.70963717e-01 -9.39911529e-02 4.90596294e-01 2.55420744e-01 -8.38178337e-01 6.91003978e-01 4.37323868e-01 -1.73245836e-02 -8.69536757e-01 -7.10569620e-01 -8.88580322e-01 3.59176129e-01 1.88784786e-02 4.59929854e-01 6.60152316e-01 9.75244155e-04 -1.08971104e-01 -2.54599750e-01 2.56908536e-01 4.89130616e-01 1.93801135e-01 1.20854676e+00 -5.24154067e-01 -8.23987544e-01 -2.65403777e-01 4.83296752e-01 -1.34604299e+00 1.56367451e-01 -7.12800980e-01 2.87306190e-01 -1.43608582e+00 -1.43336445e-01 -1.10976708e+00 1.25043094e-01 3.54950517e-01 -7.05191959e-03 -7.71392763e-01 5.65707266e-01 4.50444132e-01 -6.91666126e-01 7.87484050e-01 1.47256410e+00 4.23071384e-01 -7.78729558e-01 1.20339483e-01 -6.06448166e-02 3.98630112e-01 9.04096305e-01 -4.14152920e-01 -6.57839775e-01 -3.16835910e-01 2.45597109e-01 6.07298791e-01 2.43819520e-01 -1.01779389e+00 1.72418714e-01 -6.27608895e-01 6.80702627e-02 -2.54394293e-01 2.12073326e-01 -6.90728784e-01 -1.25065863e-01 5.70263743e-01 -4.72430348e-01 3.57717127e-01 4.78296041e-01 8.48655045e-01 4.63627279e-01 -3.20341557e-01 5.54571271e-01 -5.63249588e-01 -5.40277362e-01 2.34148428e-01 -8.76937151e-01 4.82796073e-01 1.09067047e+00 -5.97761571e-03 -1.87649146e-01 -5.41665971e-01 -7.20657945e-01 7.20894575e-01 7.43890882e-01 2.36692391e-02 3.10247272e-01 -7.74637938e-01 -3.53857726e-01 1.90295815e-01 -4.29198146e-01 1.68128520e-01 -8.19774345e-02 8.30663919e-01 -4.49386328e-01 2.80167758e-01 -2.94346213e-01 -4.12874103e-01 -7.02855527e-01 4.15102303e-01 5.83463550e-01 -5.82866311e-01 -8.18535447e-01 4.15382892e-01 -1.48567632e-01 -7.05552101e-01 3.71197999e-01 -4.13092881e-01 2.04546928e-01 -3.48758668e-01 1.30554169e-01 5.26828408e-01 -3.91902685e-01 5.30330874e-02 1.40048429e-01 -5.95322391e-03 -8.27200189e-02 -6.86899066e-01 1.32691538e+00 1.58956945e-01 4.06902373e-01 5.57229817e-01 6.22003257e-01 1.45513145e-02 -2.25756693e+00 -6.53666332e-02 -1.94350526e-01 -5.89729548e-01 4.06878702e-02 -7.37042606e-01 -8.57586145e-01 4.44104850e-01 3.53203416e-01 4.06988002e-02 5.46391010e-01 -3.77130479e-01 6.28279328e-01 7.29311228e-01 8.01786363e-01 -1.32751715e+00 3.64182204e-01 7.18898177e-01 6.97481334e-01 -1.17703485e+00 5.51996902e-02 3.93267632e-01 -8.88193846e-01 9.32853341e-01 6.25109613e-01 -6.35334790e-01 2.32092947e-01 2.58415967e-01 -1.45083919e-01 -1.23277754e-01 -1.07512653e+00 -4.05474961e-01 -3.68876606e-01 5.22077382e-01 -2.41993055e-01 1.63199887e-01 1.97102532e-01 -9.61245373e-02 -3.51737104e-02 6.90071005e-03 7.74118841e-01 1.31733263e+00 -5.50207913e-01 -9.07095909e-01 -1.91136569e-01 5.92465878e-01 -9.54871532e-03 3.74039710e-01 -1.07925065e-01 8.86171281e-01 -8.35813954e-02 8.78221214e-01 1.20066471e-01 4.91107069e-02 9.45084095e-02 -2.24700660e-01 7.27344155e-01 -7.76579022e-01 -9.14817691e-01 -9.11817625e-02 2.14465022e-01 -7.11414158e-01 -1.15261503e-01 -7.65014052e-01 -1.49961627e+00 -4.86480385e-01 -1.16361506e-01 3.41111571e-01 4.31407064e-01 1.13775384e+00 6.07478321e-01 3.80909979e-01 7.29598105e-01 -1.29257452e+00 -9.80186343e-01 -7.54225373e-01 -2.58800387e-01 3.13698947e-02 5.42626977e-01 -9.49635386e-01 -4.55885440e-01 -4.28072840e-01]
[4.095732688903809, 1.8401966094970703]
099b07eb-64a1-4e31-95b0-db7ea7ea6a69
hold-on-honey-men-at-work-a-semi-supervised
null
null
https://aclanthology.org/2021.acl-srw.19
https://aclanthology.org/2021.acl-srw.19.pdf
``Hold on honey, men at work'': A semi-supervised approach to detecting sexism in sitcoms
Television shows play an important role inpropagating societal norms. Owing to the popularity of the situational comedy (sitcom) genre, it contributes significantly to the over-all development of society. In an effort to analyze the content of television shows belong-ing to this genre, we present a dataset of dialogue turns from popular sitcoms annotated for the presence of sexist remarks. We train a text classification model to detect sexism using domain adaptive learning. We apply the model to our dataset to analyze the evolution of sexist content over the years. We propose a domain-specific semi-supervised architecture for the aforementioned detection of sexism.Through extensive experiments, we show that our model often yields better classification performance over generic deep learn-ing based sentence classification that does not employ domain-specific training. We find that while sexism decreases over time on average,the proportion of sexist dialogue for the most sexist sitcom actually increases. A quantitative analysis along with a detailed error analysis presents the case for our proposed methodology
['Zeerak Waseem', 'Arijit Ghosh Chowdhury', 'Tanvi Anand', 'Smriti Singh']
2021-08-01
null
null
null
acl-2021-5
['sentence-classification']
['natural-language-processing']
[ 1.30804449e-01 4.70237255e-01 -3.00989211e-01 -9.02557373e-01 -7.59372354e-01 -6.92771554e-01 1.16854310e+00 5.83161175e-01 -3.08956891e-01 7.39496291e-01 6.23545647e-01 -3.07334840e-01 7.02511147e-02 -8.21884811e-01 -8.15476418e-01 -5.36317050e-01 2.09455475e-01 7.88596928e-01 -1.84063271e-01 -8.21286380e-01 4.22642142e-01 -1.46877915e-01 -1.18084860e+00 5.58194458e-01 9.01546836e-01 9.49629128e-01 -5.35765290e-01 6.77639723e-01 -1.90883070e-01 7.77587175e-01 -9.79302287e-01 -9.21520829e-01 -1.13691047e-01 -7.06018150e-01 -1.06118274e+00 3.02974790e-01 9.41013873e-01 -3.52442503e-01 -2.67017722e-01 8.70522439e-01 3.31543922e-01 -1.80168554e-01 7.85852134e-01 -9.59449351e-01 -2.25664496e-01 1.43297100e+00 -3.61381650e-01 3.78369600e-01 3.52979273e-01 -2.37831920e-01 1.28184617e+00 -2.98987687e-01 9.40829098e-01 1.31487930e+00 6.04452610e-01 3.83155257e-01 -1.09146309e+00 -6.72072053e-01 1.00006610e-01 -1.27486035e-01 -8.43090415e-01 -4.80777830e-01 1.09886849e+00 -4.93925482e-01 4.29962158e-01 3.59921813e-01 8.48683655e-01 1.70539951e+00 1.70919463e-01 1.02652895e+00 1.00542414e+00 -3.36877137e-01 1.01110704e-01 4.58832890e-01 2.32234120e-01 5.89657485e-01 -5.81934005e-02 -6.04403317e-01 -6.88701391e-01 -1.69839129e-01 -7.73730800e-02 -4.60750043e-01 3.23833823e-01 2.09234888e-03 -9.25244927e-01 1.18430734e+00 6.78869262e-02 5.21350205e-01 8.56011808e-02 -3.86851951e-02 1.04440486e+00 7.22405910e-01 1.14247489e+00 5.75537264e-01 -4.84845340e-01 -6.52189076e-01 -1.14293087e+00 5.96068919e-01 1.16142559e+00 6.78438246e-01 1.60073698e-01 -9.12946463e-02 -5.52139059e-02 1.22479570e+00 -1.18172310e-01 3.36430669e-01 2.55510330e-01 -8.30782115e-01 7.00311482e-01 8.54778349e-01 -2.27932185e-01 -1.03867364e+00 -6.01757169e-01 -5.49209058e-01 -6.06407046e-01 -5.70071995e-01 8.23411703e-01 -4.45354670e-01 -3.42230380e-01 1.69097602e+00 2.21504360e-01 -6.58982456e-01 -1.84678599e-01 3.58933598e-01 8.80299449e-01 7.24065006e-01 -8.48374143e-02 -1.87982023e-01 1.38036990e+00 -4.27734852e-01 -6.56284511e-01 -3.08327675e-02 7.86972880e-01 -6.24900162e-01 1.01166928e+00 4.39780116e-01 -9.37550426e-01 -1.12074882e-01 -1.08285320e+00 -1.50774091e-01 -4.37716275e-01 4.64681238e-02 5.18683314e-01 9.40165520e-01 -5.45519531e-01 4.98096049e-01 -4.22268808e-01 -8.72504354e-01 3.77244145e-01 1.93994105e-01 -3.16888988e-02 5.03699124e-01 -1.21466827e+00 6.98020160e-01 2.53713608e-01 -3.47664803e-01 -5.79449356e-01 -5.14372468e-01 -7.92153835e-01 -1.06083043e-01 4.44222182e-01 -1.55537486e-01 1.46762872e+00 -1.29297614e+00 -1.56064665e+00 1.44719219e+00 7.49687478e-02 -7.54564226e-01 7.16335893e-01 -1.63107648e-01 -3.67209911e-01 1.06357731e-01 -6.43351814e-03 3.48507345e-01 7.85940766e-01 -1.00595665e+00 -7.04342902e-01 -3.60279649e-01 4.41170156e-01 -4.82437536e-02 -9.35817540e-01 3.17591280e-01 2.00004518e-01 -5.93114197e-01 -6.76012710e-02 -9.91226733e-01 4.01119947e-01 -5.35710812e-01 -7.08434939e-01 -5.25868118e-01 8.40369940e-01 -6.71129525e-01 1.35684180e+00 -2.18213654e+00 9.17522609e-02 5.82150705e-02 3.94272506e-01 -2.17476577e-01 3.63120079e-01 6.50077105e-01 2.13978425e-01 7.05484524e-02 -1.89346284e-01 -3.63414735e-01 1.51502207e-01 1.41307339e-01 -4.05278921e-01 4.31896627e-01 -1.13722868e-01 5.50318599e-01 -8.95430923e-01 -5.44289470e-01 -1.33725390e-01 3.02252686e-03 -7.35354424e-01 1.00366203e-02 -5.40823221e-01 4.23049867e-01 -2.10745394e-01 6.73761368e-01 4.90858912e-01 -1.27320603e-01 5.96943021e-01 5.67270629e-02 -2.51709044e-01 7.13065565e-01 -3.07903320e-01 1.35956228e+00 -4.26933616e-01 1.15272534e+00 2.49416456e-01 -1.11360228e+00 9.33974266e-01 6.33540526e-02 3.49615186e-01 -7.43787408e-01 7.38326073e-01 2.68367618e-01 3.36447299e-01 -5.01666963e-01 8.97166550e-01 -9.92314741e-02 -8.49487185e-01 3.97307575e-01 3.20753813e-01 -3.77894551e-01 5.71227908e-01 5.30860662e-01 8.91018510e-01 -3.64781886e-01 3.04806739e-01 -5.09260774e-01 6.03813231e-01 7.13738948e-02 3.40436339e-01 6.09206021e-01 -2.26193696e-01 3.10884327e-01 1.22050083e+00 -6.71670973e-01 -1.19183695e+00 -7.38144040e-01 -4.25546110e-01 1.63603628e+00 -1.76318184e-01 -3.46739829e-01 -8.43412817e-01 -8.98389578e-01 -2.98059024e-02 9.18194830e-01 -8.88760030e-01 1.18855573e-02 -6.98822141e-01 -9.11195040e-01 6.58899367e-01 1.13143502e-02 8.75892699e-01 -7.01314270e-01 -2.88983941e-01 1.49922833e-01 -3.29520851e-01 -1.13481534e+00 -2.04220757e-01 1.53748125e-01 -6.23960197e-01 -9.60216224e-01 -6.62614763e-01 -6.42559707e-01 3.12943578e-01 -5.72516024e-01 1.13406527e+00 -2.36193106e-01 2.22872496e-01 3.18311125e-01 -4.28768903e-01 -5.44420421e-01 -1.15909791e+00 8.07203531e-01 -6.22564293e-02 1.28540292e-01 3.12032431e-01 -5.97504735e-01 -4.06684130e-01 7.55782276e-02 -5.77564716e-01 -1.31638452e-01 2.89102923e-03 7.27612317e-01 -5.84372580e-01 -2.90622503e-01 5.06709874e-01 -1.45851624e+00 9.63281631e-01 -6.77297235e-01 -3.31299573e-01 -1.13510936e-01 -4.09334332e-01 -2.11602956e-01 6.33988023e-01 -2.42515713e-01 -1.04776645e+00 -4.40854132e-01 -3.45776767e-01 5.96805513e-01 9.22854245e-02 3.49443227e-01 1.09613732e-01 3.91658068e-01 8.36630881e-01 1.52882800e-01 -1.76502794e-01 -3.02958310e-01 1.17500067e-01 1.09491885e+00 2.07480937e-01 -5.25395811e-01 6.02878809e-01 3.93561900e-01 -4.47595835e-01 -1.21590018e+00 -1.07639754e+00 -9.34834480e-02 -3.98986965e-01 -5.26333690e-01 8.13797057e-01 -7.26862311e-01 -8.14690471e-01 5.43605030e-01 -9.67764497e-01 -2.93911725e-01 8.14562142e-02 3.62142473e-02 -3.97680372e-01 1.45545900e-01 -7.63143122e-01 -9.28533852e-01 -3.23064089e-01 -5.85674822e-01 1.00118828e+00 8.06635246e-02 -7.54532218e-01 -1.13323784e+00 1.40641123e-01 7.69796908e-01 2.52238810e-01 3.78782272e-01 1.18914258e+00 -1.27664697e+00 2.07897708e-01 -1.52456269e-01 1.27583817e-01 3.26922417e-01 -7.88999945e-02 2.25737885e-01 -8.49802971e-01 2.41167583e-02 -1.27755940e-01 -5.32532930e-01 7.52873898e-01 2.31797114e-01 9.62089598e-01 -6.29997969e-01 -1.95204224e-02 1.14527017e-01 8.11503232e-01 4.65222187e-02 1.41065344e-01 5.10852516e-01 3.83822083e-01 8.38427544e-01 4.69550818e-01 7.37529814e-01 7.45515525e-01 4.82242465e-01 3.02945614e-01 1.43004060e-01 2.67025888e-01 -3.10494095e-01 5.22961915e-01 8.26033294e-01 7.92793706e-02 -4.75193709e-01 -1.05010259e+00 6.93548322e-01 -1.60759556e+00 -1.00463128e+00 -2.49001473e-01 1.66810834e+00 9.72336471e-01 5.79234779e-01 6.46176934e-01 3.09791565e-01 5.82723558e-01 5.25646210e-01 -2.83667952e-01 -1.04717541e+00 -2.36944452e-01 -1.90805376e-01 3.21520299e-01 2.64005810e-01 -1.41555667e+00 7.93635368e-01 6.74741936e+00 6.46427155e-01 -1.25742304e+00 3.61113176e-02 9.45014417e-01 -1.67717382e-01 -1.82690352e-01 -4.41177189e-01 -7.03946829e-01 7.12139785e-01 1.12758493e+00 -2.50381142e-01 1.09601818e-01 9.14563298e-01 2.75882393e-01 -1.70123816e-01 -1.23094451e+00 6.48581684e-01 2.93918699e-01 -1.44851828e+00 -1.93473577e-01 8.15322101e-02 7.53462613e-01 -8.23150054e-02 1.78106964e-01 5.33657968e-01 2.49092430e-01 -4.00587618e-01 9.04839575e-01 -9.62276757e-02 3.88720453e-01 -7.23169446e-01 7.53047705e-01 3.91743749e-01 -2.01874897e-01 -3.15123618e-01 3.64529230e-02 -2.94824153e-01 1.44709805e-02 6.83448076e-01 -1.12826657e+00 1.66936755e-01 5.78368723e-01 7.61222482e-01 -5.87205589e-01 3.34595084e-01 -7.97687192e-03 1.10999012e+00 -3.14660549e-01 -3.68782967e-01 3.12771350e-01 -9.90024880e-02 7.35751987e-01 1.39771521e+00 2.04680767e-02 -3.07600707e-01 -1.05475836e-01 4.95027333e-01 -6.05193853e-01 3.23569357e-01 -4.93034780e-01 -4.84108001e-01 2.12182403e-01 1.11611402e+00 -8.25629056e-01 -6.22020602e-01 -2.03545645e-01 8.48505795e-01 1.21088997e-01 -9.72223878e-02 -7.86278188e-01 -2.64623404e-01 4.35894519e-01 5.64851046e-01 2.96845827e-02 -9.57078114e-02 -5.41029215e-01 -1.03678548e+00 -2.45384067e-01 -1.12097609e+00 4.44004446e-01 -1.31923199e-01 -1.29489243e+00 4.26421046e-01 1.56566635e-01 -8.54060292e-01 -4.53419954e-01 -1.90923750e-01 -5.76330125e-01 -7.95444623e-02 -7.92999506e-01 -1.17505634e+00 -6.70923516e-02 1.06442213e-01 8.81937206e-01 -3.38034451e-01 4.93510216e-01 3.59642863e-01 -5.27571082e-01 7.68281043e-01 2.09819064e-01 4.18209016e-01 8.34925354e-01 -1.42909837e+00 2.84559786e-01 3.64656299e-01 -1.42289788e-01 4.62892771e-01 1.32007575e+00 -4.67922419e-01 -9.36849892e-01 -6.90917373e-01 1.17430651e+00 -5.51782608e-01 1.04602420e+00 -1.04181397e+00 -3.21511894e-01 7.05055296e-01 5.87582529e-01 -7.97439516e-01 7.82175541e-01 6.57716811e-01 -4.29249823e-01 -3.26770335e-01 -1.18105519e+00 5.01583755e-01 9.15937483e-01 -5.18625677e-01 -8.39840293e-01 6.63864493e-01 5.78600168e-01 -4.40425992e-01 -7.46376812e-01 -5.34979925e-02 6.64034903e-01 -1.03652680e+00 2.69014984e-01 -5.25186121e-01 1.18659723e+00 5.39255202e-01 3.11109400e-03 -1.22964966e+00 2.93916106e-01 -5.90785086e-01 8.95667225e-02 1.69674110e+00 7.05034614e-01 -4.95515287e-01 9.03896928e-01 6.22420847e-01 -6.41595051e-02 -3.61492962e-01 -1.07667208e+00 -5.26657701e-01 5.12680113e-01 -1.94050536e-01 2.44131565e-01 1.14609134e+00 3.49741757e-01 7.04195201e-01 -5.14233589e-01 -4.57603961e-01 4.89263415e-01 7.97238573e-02 9.22149062e-01 -1.32931578e+00 -7.29092062e-02 -4.82257336e-01 -3.95045638e-01 -9.58234131e-01 1.53337866e-01 -8.52618277e-01 -6.75025135e-02 -1.10677850e+00 3.98213506e-01 6.61254153e-02 3.25400978e-01 4.95907590e-02 4.14068401e-01 2.79682219e-01 -6.60768673e-02 -1.96463361e-01 -7.13055730e-01 4.58886117e-01 9.04739738e-01 -4.30660218e-01 -1.92906618e-01 9.59829241e-02 -9.20068324e-01 8.45999479e-01 8.30940902e-01 -4.71651405e-01 -1.82700306e-01 -2.09410295e-01 7.76006222e-01 -2.32491270e-01 -1.20441802e-01 -8.20140600e-01 -3.19378465e-01 1.41714558e-01 1.77225560e-01 -5.21732271e-01 2.76823848e-01 -5.33604264e-01 -6.26669168e-01 4.87835795e-01 -9.12593365e-01 -3.37800413e-01 -3.66337411e-02 3.06651682e-01 -3.12590182e-01 2.55658422e-02 7.79166520e-01 -9.37717333e-02 1.05620492e-02 -2.61850446e-01 -9.00950551e-01 3.08116585e-01 8.33640158e-01 3.74180861e-02 -3.89526039e-01 -8.42751861e-01 -7.22417712e-01 2.70271510e-01 2.63986260e-01 6.06195152e-01 -6.89142123e-02 -7.81617224e-01 -8.60585392e-01 -1.99272767e-01 1.93907216e-01 -5.61372042e-01 7.29528964e-02 8.22638094e-01 -4.53858674e-01 2.15986356e-01 -3.74069661e-02 -6.22296989e-01 -1.43818378e+00 8.16153549e-03 2.14133903e-01 -2.79062629e-01 -4.06329542e-01 8.38960409e-01 -5.02665527e-02 -6.03947103e-01 2.36757845e-01 -5.17132521e-01 -3.36277604e-01 7.23873734e-01 2.65126169e-01 4.61580545e-01 5.24527654e-02 -6.02167606e-01 -2.45018408e-01 -7.46912695e-03 -4.00638163e-01 -1.19020894e-01 1.52491927e+00 -2.79777259e-01 -1.31313458e-01 8.77857327e-01 1.35641646e+00 2.80816197e-01 -7.51304269e-01 6.99002072e-02 1.10770755e-01 -2.20345333e-01 -1.43550098e-01 -8.90712142e-01 -6.85824037e-01 6.62319601e-01 2.06728548e-01 7.81557977e-01 5.86205423e-01 2.00902194e-01 9.36166048e-01 3.75625014e-01 4.01822291e-02 -1.53180242e+00 1.18966185e-01 8.03798079e-01 8.60152483e-01 -1.36583710e+00 1.70315549e-01 -2.88419902e-01 -6.46543741e-01 1.14102280e+00 4.38271552e-01 -1.12524025e-01 4.59958196e-01 -5.33052422e-02 3.87720764e-02 -3.97297740e-01 -6.93515122e-01 3.21836531e-01 -6.45116046e-02 9.60548595e-02 7.08618581e-01 -1.08272145e-02 -8.76835465e-01 4.41834331e-01 -8.58071387e-01 -3.96613449e-01 7.70756841e-01 5.96959591e-01 -5.32660723e-01 -9.99330103e-01 -1.05687000e-01 6.24637008e-01 -7.62261808e-01 8.27624947e-02 -1.13983727e+00 8.46816361e-01 5.94194010e-02 1.01707602e+00 3.29126984e-01 -4.50335383e-01 1.10975698e-01 3.80177289e-01 4.57550734e-01 -3.79291296e-01 -1.17994058e+00 -6.29524738e-02 9.78581846e-01 -1.13725416e-01 -4.81524616e-01 -8.32982898e-01 -8.77738237e-01 -7.75709391e-01 1.40192956e-01 2.15827405e-01 7.96077132e-01 1.07179594e+00 -4.60763499e-02 3.08299094e-01 7.61222184e-01 -3.46554518e-01 -4.09465104e-01 -1.23698914e+00 -7.17819571e-01 5.91046035e-01 3.68114859e-01 -3.57195854e-01 -4.87971812e-01 -9.99555364e-02]
[8.785465240478516, 10.351993560791016]
e564c319-e6c8-4f6f-8f12-e44cbded7dab
an-optimization-based-deep-equilibrium-model
2306.06378
null
https://arxiv.org/abs/2306.06378v1
https://arxiv.org/pdf/2306.06378v1.pdf
An Optimization-based Deep Equilibrium Model for Hyperspectral Image Deconvolution with Convergence Guarantees
In this paper, we propose a novel methodology for addressing the hyperspectral image deconvolution problem. This problem is highly ill-posed, and thus, requires proper priors (regularizers) to model the inherent spectral-spatial correlations of the HSI signals. To this end, a new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network. To tackle this problem, an effective solver is proposed using the half quadratic splitting methodology. The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium (DEQ) framework, resulting in an interpretable architecture, with clear explainability to its parameters and convergence properties with practical benefits. The proposed model is a first attempt to handle the classical HSI degradation problem with different blurring kernels and noise levels via a single deep equilibrium model with significant computational efficiency. Extensive numerical experiments validate the superiority of the proposed methodology over other state-of-the-art methods. This superior restoration performance is achieved while requiring 99.85\% less computation time as compared to existing methods.
['Kostas Berberidis', 'Dimitris Ampeliotis', 'Alexandros Gkillas']
2023-06-10
null
null
null
null
['image-deconvolution']
['computer-vision']
[ 4.51510429e-01 -1.83250234e-01 3.59618694e-01 -7.24490033e-03 -5.29718459e-01 -1.31891906e-01 1.58272654e-01 -2.78552115e-01 -2.11821333e-01 1.07028341e+00 -5.69158196e-02 2.09366786e-03 -6.64302886e-01 -4.53015983e-01 -4.55568463e-01 -1.29758871e+00 6.31374121e-02 -1.45912796e-01 -3.43221843e-01 -1.32776052e-01 1.78941086e-01 4.54337686e-01 -1.36787593e+00 -3.02814037e-01 1.70982778e+00 1.08082390e+00 4.88475293e-01 3.20650876e-01 2.86583155e-01 7.11247206e-01 -2.88537532e-01 3.08015831e-02 4.14886117e-01 -4.79332566e-01 -5.90104461e-01 5.83519578e-01 2.27379367e-01 -3.13058883e-01 -2.42193475e-01 1.48621202e+00 4.97687012e-01 4.86914247e-01 6.08072519e-01 -7.79744446e-01 -7.55641341e-01 1.38306007e-01 -8.63635600e-01 5.73850237e-02 -9.85910445e-02 8.54258016e-02 7.52501249e-01 -1.17612720e+00 1.01165064e-01 7.97996938e-01 7.31010497e-01 -1.04017064e-01 -1.41247535e+00 -2.65368015e-01 1.13939866e-02 2.37615883e-01 -1.59560704e+00 -1.87721834e-01 9.90314543e-01 -5.57091236e-01 3.45925063e-01 3.76690954e-01 5.03935397e-01 6.13292396e-01 6.27477691e-02 3.07092220e-01 1.58195472e+00 -4.11865830e-01 1.65662244e-01 5.92900738e-02 4.00642067e-01 5.55452526e-01 5.29643297e-01 -1.95807926e-02 -3.38030785e-01 -3.02940663e-02 6.93862677e-01 -3.25867645e-02 -9.37134564e-01 -1.63255125e-01 -7.61650741e-01 6.72427297e-01 7.34549582e-01 3.72962564e-01 -7.52172232e-01 -2.40199357e-01 3.08046155e-02 -1.77305833e-01 6.52424097e-01 3.82906526e-01 -1.17835052e-01 5.12924790e-01 -1.11634648e+00 1.08695395e-01 6.60219133e-01 5.56149304e-01 9.18606639e-01 5.23469985e-01 -2.17035592e-01 8.44651639e-01 5.40815771e-01 4.45523292e-01 2.03223348e-01 -7.88654387e-01 1.81081876e-01 4.14785773e-01 3.90805751e-01 -1.35401416e+00 -3.52823377e-01 -1.25094187e+00 -1.40607059e+00 5.06686032e-01 8.40508491e-02 -2.92102516e-01 -5.59657335e-01 1.45738983e+00 3.22632462e-01 4.74149495e-01 2.83036798e-01 1.21011770e+00 5.79840064e-01 1.06900549e+00 -1.11811295e-01 -6.99819744e-01 1.36070788e+00 -8.97274435e-01 -1.00527191e+00 -2.79709935e-01 -3.87661085e-02 -8.56158435e-01 8.74923468e-01 5.99515855e-01 -1.04368687e+00 -5.78036308e-01 -1.22347355e+00 1.07828379e-01 -1.98404714e-02 6.74549460e-01 3.44743460e-01 4.35394645e-01 -1.07516086e+00 6.50133967e-01 -5.67355037e-01 -1.34428442e-01 1.93065867e-01 2.39927530e-01 1.01809323e-01 6.03388958e-02 -8.64035785e-01 8.20103407e-01 6.50085151e-01 9.67466831e-01 -5.51836550e-01 -8.07915270e-01 -5.82683861e-01 1.56213030e-01 3.42853010e-01 -7.82035649e-01 7.85086811e-01 -1.23702979e+00 -1.81617868e+00 4.41480130e-01 -2.07483888e-01 -4.45158221e-02 4.36802149e-01 -4.95776862e-01 -3.41379434e-01 3.05324942e-01 -1.41966432e-01 -2.10241884e-01 1.22956634e+00 -1.67379320e+00 -1.40487611e-01 -3.49302500e-01 -2.87823826e-02 3.96327853e-01 -4.46794689e-01 -1.40961215e-01 -6.76884502e-02 -7.46102750e-01 2.65083522e-01 -8.07774603e-01 -3.38061094e-01 3.42574641e-02 -5.92836440e-01 3.64083469e-01 5.78085661e-01 -1.18012297e+00 1.09247637e+00 -2.07685804e+00 5.17997324e-01 1.60154447e-01 1.49313748e-01 4.62544352e-01 1.42046601e-01 3.72096062e-01 -3.27542812e-01 -4.19371277e-01 -9.13106680e-01 -3.45143735e-01 -1.81100577e-01 -7.02969581e-02 -1.78004354e-01 8.32316816e-01 1.64145827e-01 4.09105748e-01 -6.42852664e-01 -1.01707987e-01 3.45970958e-01 8.55384350e-01 -3.48502934e-01 5.24955332e-01 -2.54241768e-02 6.64167702e-01 -4.94086623e-01 4.50326860e-01 1.35203123e+00 -3.76394570e-01 1.44549847e-01 -7.86989093e-01 -6.36624515e-01 -5.21283329e-01 -1.50623608e+00 1.46933818e+00 -5.22317111e-01 4.81466949e-01 9.26285982e-01 -1.52289760e+00 9.82643723e-01 1.57576963e-01 3.22755337e-01 -2.13147894e-01 1.48869708e-01 4.22751218e-01 -3.29039425e-01 -7.56003261e-01 3.85828584e-01 -4.59854245e-01 7.20650911e-01 -9.39958021e-02 -1.29722431e-01 -5.71538471e-02 -4.40933034e-02 -2.70313978e-01 5.01797259e-01 1.32648721e-01 3.35735232e-01 -7.42217422e-01 1.13187933e+00 -5.08602895e-02 4.86545950e-01 5.35045028e-01 1.97703376e-01 5.23615897e-01 1.47366151e-01 -6.08716644e-02 -6.89538300e-01 -5.08574724e-01 -3.68141413e-01 3.31673205e-01 3.19092989e-01 2.07757682e-01 -8.27113807e-01 1.48517251e-01 -3.06114167e-01 6.41351223e-01 -2.77150005e-01 6.31101280e-02 -4.55624819e-01 -1.39739120e+00 1.15942836e-01 8.56818724e-03 1.01771080e+00 -5.73892236e-01 -4.98598307e-01 2.43913531e-01 -2.35585570e-01 -1.07692659e+00 4.79445048e-02 1.87577814e-01 -9.84525621e-01 -9.91860032e-01 -1.02825916e+00 -8.01156521e-01 7.44366586e-01 5.85912466e-01 6.68222547e-01 -1.26634151e-01 -2.82722771e-01 1.97162509e-01 -2.09211588e-01 9.87605751e-02 -1.34683147e-01 -3.20458770e-01 -1.30177557e-01 7.12295949e-01 -4.06118959e-01 -7.14225590e-01 -8.59039724e-01 8.24809223e-02 -1.22583878e+00 2.38992244e-01 8.72470737e-01 1.23103321e+00 4.76303160e-01 4.84360278e-01 4.52862322e-01 -5.62909842e-01 6.71714664e-01 -5.48475981e-01 -9.80495095e-01 2.31636584e-01 -7.25222588e-01 -9.54236239e-02 9.48986530e-01 -3.47257964e-02 -1.74535525e+00 9.16435868e-02 1.63684562e-01 -2.74045289e-01 -5.74303307e-02 9.81883943e-01 -2.46710047e-01 -5.95255315e-01 5.01331151e-01 7.36358643e-01 2.77461976e-01 -7.14348137e-01 2.44253114e-01 6.11179113e-01 5.92093110e-01 -6.02840960e-01 1.19564366e+00 5.18042088e-01 2.95597583e-01 -1.20358300e+00 -9.16606009e-01 -5.03236711e-01 -4.16911036e-01 -3.47915053e-01 8.11519623e-01 -9.74357843e-01 -7.48908460e-01 8.60003948e-01 -1.28458965e+00 -1.22141495e-01 5.48455603e-02 5.98085880e-01 -3.75648379e-01 8.17311704e-01 -6.31758392e-01 -9.23990309e-01 -4.67986286e-01 -1.22516084e+00 7.12359309e-01 5.47610700e-01 5.04990160e-01 -1.09896517e+00 -8.81106332e-02 5.25843859e-01 5.20481825e-01 4.68430668e-01 7.70982623e-01 1.33247316e-01 -7.86785901e-01 2.20892578e-01 -7.10207045e-01 8.28634441e-01 5.61252907e-02 -1.64086103e-01 -1.03714705e+00 -5.31206369e-01 7.99666703e-01 -3.92594039e-02 6.76460147e-01 6.64564788e-01 1.16361463e+00 -4.31265682e-01 8.78156647e-02 1.05879927e+00 2.21077514e+00 6.95547163e-02 4.85302448e-01 3.58797461e-01 5.70313692e-01 4.99005049e-01 4.14613873e-01 7.27761507e-01 -1.06016397e-01 5.59056103e-01 7.89054811e-01 -6.19782925e-01 4.99886759e-02 4.79170471e-01 1.42117634e-01 8.98164809e-01 -4.09643769e-01 -2.69911468e-01 -6.50502920e-01 2.74230033e-01 -1.90142810e+00 -7.26967454e-01 -5.85594893e-01 2.01216960e+00 6.88426077e-01 -4.59577799e-01 -4.69121307e-01 2.49489859e-01 7.47845232e-01 4.32279468e-01 -5.45117021e-01 1.10338755e-01 -2.90603578e-01 2.42763892e-01 4.71163154e-01 5.45184314e-01 -1.07548332e+00 4.13253278e-01 5.64316559e+00 7.28184879e-01 -1.24278390e+00 4.17562090e-02 5.83664000e-01 4.53519523e-01 -4.52148169e-02 -9.20737162e-02 -3.68173867e-01 3.44430119e-01 4.61550325e-01 -1.43341288e-01 7.33112276e-01 3.67625952e-01 7.52247870e-01 -2.03947052e-01 -4.61852163e-01 1.14474392e+00 2.51241505e-01 -1.00034702e+00 -1.22621171e-01 -5.27455881e-02 8.08499455e-01 -3.76937240e-01 2.62255251e-01 -2.35626847e-01 -4.03075457e-01 -9.88035679e-01 4.92271721e-01 9.77347851e-01 6.12837553e-01 -5.01750529e-01 8.15892041e-01 3.44713569e-01 -9.08549011e-01 -2.46562660e-01 -4.77349102e-01 -2.79900014e-01 1.22094586e-01 1.13195372e+00 -2.12339982e-01 1.26871932e+00 3.82950395e-01 1.02440655e+00 -2.10246146e-01 1.28717208e+00 -1.86293095e-01 6.80049717e-01 -3.44225280e-02 3.79136950e-01 3.19127262e-01 -1.07308817e+00 8.88380885e-01 1.08587492e+00 7.95073748e-01 5.65431654e-01 2.75021307e-02 1.22624564e+00 1.90345928e-01 2.32400134e-01 -2.95640469e-01 2.45415539e-01 -4.27932367e-02 1.51799512e+00 -4.12315965e-01 -9.30123851e-02 -4.91496235e-01 9.26209211e-01 -3.21411528e-03 8.95776212e-01 -8.16199839e-01 -2.62876570e-01 5.46767473e-01 -1.23359203e-01 2.12928474e-01 -1.43382639e-01 -2.89072752e-01 -1.39057720e+00 2.56641120e-01 -9.61844027e-01 1.19936071e-01 -9.98437285e-01 -1.28909385e+00 7.23703086e-01 -1.27344057e-01 -1.40253854e+00 3.65493357e-01 -9.26773787e-01 -5.36326706e-01 1.27869785e+00 -2.20677018e+00 -1.08898759e+00 -9.48282123e-01 5.14934242e-01 4.07212228e-01 1.60561781e-02 6.25338256e-01 2.87302136e-01 -1.11515450e+00 -8.24861676e-02 6.88869298e-01 -4.37423348e-01 3.61231744e-01 -1.13441515e+00 -6.68898761e-01 1.39549220e+00 -6.98947668e-01 5.77096939e-01 8.76447380e-01 -3.71114522e-01 -1.55193186e+00 -1.04578865e+00 2.36116990e-01 5.70063651e-01 7.33023345e-01 1.91875726e-01 -1.15907383e+00 2.53636867e-01 6.09780371e-01 4.62846793e-02 5.64180255e-01 -3.22488219e-01 1.33160427e-01 -5.05096614e-01 -1.08831918e+00 3.13565850e-01 6.10299468e-01 -3.58957767e-01 -4.38930035e-01 5.02870440e-01 4.45518315e-01 -3.42545182e-01 -7.85351872e-01 4.58800405e-01 4.91855480e-02 -1.10817599e+00 1.13227558e+00 -9.49074849e-02 5.61740398e-01 -6.62178218e-01 -2.54644323e-02 -1.47205865e+00 -5.47947466e-01 -9.02737617e-01 -1.53995246e-01 1.13462508e+00 4.41376977e-02 -8.68369937e-01 3.38281393e-01 4.60145026e-01 -4.36892927e-01 -6.57664299e-01 -7.55731702e-01 -7.00939655e-01 -3.34861726e-01 7.73767903e-02 9.85853970e-02 9.93352115e-01 -2.93472975e-01 4.96754572e-02 -6.06837630e-01 8.82120669e-01 1.16607583e+00 1.83059901e-01 3.21377337e-01 -1.12193096e+00 -3.80976915e-01 -3.09469253e-01 -4.23016138e-02 -1.08317685e+00 1.92592710e-01 -7.47768462e-01 2.58307248e-01 -1.45350480e+00 1.63517833e-01 -2.08988070e-01 -3.25321436e-01 -9.51831974e-03 -3.99503708e-01 7.71789923e-02 8.22031945e-02 2.63532519e-01 7.58960992e-02 9.47826445e-01 1.35356104e+00 -2.09993199e-01 -1.27141744e-01 5.20066209e-02 -7.16798604e-01 6.91219449e-01 7.25527942e-01 -3.68325152e-02 -5.12522399e-01 -6.51311398e-01 7.83168077e-02 2.93574482e-01 7.57964432e-01 -1.30285251e+00 3.16079229e-01 -1.52668938e-01 1.28480554e-01 -3.66286606e-01 5.34954607e-01 -1.03332293e+00 4.47720110e-01 3.66622627e-01 -8.92005712e-02 -4.99809444e-01 2.33189896e-01 6.21597290e-01 -5.11692941e-01 -5.25933027e-01 1.11788964e+00 4.47264593e-03 -5.59807301e-01 7.22847879e-02 -3.17895293e-01 -2.74820805e-01 9.38130915e-01 -2.33584806e-01 -2.03434169e-01 -7.56399259e-02 -6.98005855e-01 -1.25030309e-01 1.47453427e-01 -4.71151918e-01 5.05096912e-01 -9.42618549e-01 -8.77676666e-01 2.93686949e-02 -2.46767029e-01 -3.28549258e-02 6.69962466e-01 1.07792938e+00 -7.73180842e-01 5.97985946e-02 -1.70171693e-01 -5.06345391e-01 -8.59649062e-01 2.62948811e-01 7.03542173e-01 -2.33252540e-01 -6.12447500e-01 6.90597236e-01 1.81437731e-01 -1.58514246e-01 5.23427268e-03 -2.05845982e-01 -3.78037184e-01 4.46186215e-02 3.25392216e-01 7.47395098e-01 2.06333678e-02 -7.32674897e-01 -8.56038406e-02 8.17336798e-01 5.73447585e-01 6.56404123e-02 1.61848176e+00 -1.90796897e-01 -6.47555530e-01 4.77862880e-02 1.17388141e+00 2.22897623e-02 -1.42793310e+00 -1.89507917e-01 -2.70258248e-01 -5.93350232e-01 5.45436978e-01 -6.85190022e-01 -1.14451063e+00 6.10960364e-01 6.67031109e-01 2.43703544e-01 1.53130937e+00 -7.70861506e-01 6.24769032e-01 2.43388027e-01 3.75705361e-02 -8.28566015e-01 -7.30257556e-02 2.95272350e-01 1.17780352e+00 -1.16768718e+00 2.31367886e-01 -7.66559541e-01 -1.77892178e-01 1.36115718e+00 4.74047422e-01 -1.08496949e-01 5.73346436e-01 -1.35791227e-01 -6.73013553e-02 -9.60329622e-02 1.03674941e-01 -1.10641979e-01 3.10790598e-01 3.00122648e-01 4.04691875e-01 9.21207573e-03 -6.32014871e-01 5.01302004e-01 4.30673391e-01 1.49003088e-01 6.77415013e-01 4.70031321e-01 -3.59927446e-01 -6.13829434e-01 -7.62636125e-01 4.48319986e-02 -2.12365434e-01 -1.52802348e-01 2.82884419e-01 5.17616034e-01 1.24786042e-01 1.10707331e+00 -5.56332886e-01 1.75731406e-01 2.67388552e-01 -1.10239252e-01 6.75716475e-02 -3.72432679e-01 -3.31811309e-01 2.79784828e-01 -1.96202785e-01 -2.75207281e-01 -8.30051839e-01 -5.30762970e-01 -8.26832414e-01 1.53415337e-01 -4.20193851e-01 2.71198213e-01 5.03828943e-01 8.74086618e-01 2.27927104e-01 7.28267491e-01 8.28774512e-01 -1.10920811e+00 -8.68907511e-01 -8.47304523e-01 -9.57096756e-01 1.07093565e-01 5.10654032e-01 -6.65705323e-01 -7.31067300e-01 7.20699131e-02]
[10.52873706817627, -2.176647186279297]
135f9817-4be5-4065-abd9-aa725cee69a6
adaptive-video-highlight-detection-by
2007.09598
null
https://arxiv.org/abs/2007.09598v1
https://arxiv.org/pdf/2007.09598v1.pdf
Adaptive Video Highlight Detection by Learning from User History
Recently, there is an increasing interest in highlight detection research where the goal is to create a short duration video from a longer video by extracting its interesting moments. However, most existing methods ignore the fact that the definition of video highlight is highly subjective. Different users may have different preferences of highlight for the same input video. In this paper, we propose a simple yet effective framework that learns to adapt highlight detection to a user by exploiting the user's history in the form of highlights that the user has previously created. Our framework consists of two sub-networks: a fully temporal convolutional highlight detection network $H$ that predicts highlight for an input video and a history encoder network $M$ for user history. We introduce a newly designed temporal-adaptive instance normalization (T-AIN) layer to $H$ where the two sub-networks interact with each other. T-AIN has affine parameters that are predicted from $M$ based on the user history and is responsible for the user-adaptive signal to $H$. Extensive experiments on a large-scale dataset show that our framework can make more accurate and user-specific highlight predictions.
['Yang Wang', 'Mahesh Kumar Krishna Reddy', 'Mrigank Rochan', 'Linwei Ye']
2020-07-19
null
https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/3702_ECCV_2020_paper.php
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123660256.pdf
eccv-2020-8
['highlight-detection']
['computer-vision']
[ 2.03020945e-01 -3.44364822e-01 -9.30229127e-02 -5.75287521e-01 -5.59889555e-01 -4.30691242e-01 2.33663604e-01 4.48717969e-03 -5.07893145e-01 2.73268640e-01 1.90152630e-01 1.06350094e-01 3.07050824e-01 -6.44160032e-01 -8.22757900e-01 -5.83612502e-01 -5.32433093e-01 -5.34311473e-01 5.32720268e-01 -1.84261822e-03 3.15408438e-01 2.46324107e-01 -1.50125813e+00 5.89098811e-01 5.91358662e-01 1.28998423e+00 3.89144689e-01 8.49447310e-01 2.51813084e-01 1.10044909e+00 -6.93745017e-01 -1.46408811e-01 5.07985651e-01 -6.22597694e-01 -3.25328380e-01 -3.27447942e-03 5.82947731e-01 -5.37325621e-01 -6.51263475e-01 8.69202971e-01 6.95815086e-01 5.79744697e-01 1.90578192e-01 -1.25966084e+00 -3.49753797e-01 8.67469132e-01 -6.24537468e-01 7.45604515e-01 8.55642781e-02 3.43672842e-01 9.97914910e-01 -8.31514299e-01 9.95520234e-01 9.55385983e-01 6.84278369e-01 2.62203395e-01 -9.04617548e-01 -9.48448718e-01 5.24787426e-01 5.23493648e-01 -1.38279593e+00 -2.51533300e-01 1.17943788e+00 -4.75105762e-01 5.69620728e-01 1.48954555e-01 7.50497341e-01 7.49120474e-01 3.48269157e-02 8.55034113e-01 7.29156733e-01 -5.77238724e-02 1.67691171e-01 -1.16164591e-02 -3.42184901e-01 7.10772574e-01 -4.13731277e-01 -9.76234078e-02 -1.00750113e+00 1.43109679e-01 8.46724153e-01 8.15998465e-02 -4.82233286e-01 -3.46542537e-01 -1.32471716e+00 6.51191294e-01 5.32737732e-01 1.84505031e-01 -4.17537153e-01 3.25955242e-01 7.39875913e-01 3.25110853e-01 5.03532887e-01 4.35450852e-01 -4.22572583e-01 -2.29176342e-01 -1.26749682e+00 2.96583802e-01 4.39679772e-01 1.02390909e+00 8.02179456e-01 4.60629873e-02 -5.23903847e-01 5.88959992e-01 -3.07303637e-01 2.57472456e-01 3.17381740e-01 -8.60774219e-01 2.78691620e-01 4.60796744e-01 2.52958655e-01 -1.12669075e+00 -2.30380982e-01 -5.69454670e-01 -3.91965061e-01 3.00128967e-01 1.83614492e-01 -3.46297145e-01 -8.13888609e-01 1.97389174e+00 1.14607692e-01 6.89029098e-01 -4.53338623e-01 1.10508943e+00 7.05580473e-01 8.25283647e-01 1.38511673e-01 -1.73021749e-01 1.07491660e+00 -1.13528574e+00 -6.27822340e-01 1.14990743e-02 2.84310013e-01 -8.28636825e-01 1.09632468e+00 3.63083959e-01 -1.20105243e+00 -7.28179991e-01 -1.12164700e+00 -2.17178881e-01 -2.90607899e-01 2.84389287e-01 4.58413601e-01 1.48830220e-01 -1.03419960e+00 5.96513093e-01 -3.24833423e-01 -3.20199996e-01 3.59238148e-01 2.96002030e-01 -6.74257055e-02 3.13579023e-01 -1.15733433e+00 5.02650082e-01 3.76268685e-01 4.16241176e-02 -9.56694007e-01 -8.79219592e-01 -8.22847128e-01 2.51664996e-01 8.13706398e-01 -4.65939581e-01 1.36296451e+00 -1.37770438e+00 -1.41039801e+00 7.34749496e-01 -2.20086083e-01 -4.69696403e-01 6.76360428e-01 -3.56500804e-01 -5.49543798e-01 4.16592032e-01 4.88218665e-02 6.60421968e-01 1.12037909e+00 -1.12063265e+00 -1.19965994e+00 1.53914735e-01 3.03532839e-01 2.12933168e-01 -2.74627447e-01 2.51521319e-01 -1.15285349e+00 -1.00941563e+00 -3.60891432e-01 -7.24433482e-01 4.02924530e-02 2.28988409e-01 -3.07876915e-01 1.33147016e-01 1.15114927e+00 -7.35015273e-01 1.77884495e+00 -2.28243160e+00 1.06946468e-01 3.29660416e-01 3.36008638e-01 1.55144721e-01 -2.31865868e-01 3.27187836e-01 -9.06264186e-02 -2.16547549e-01 -2.59564891e-02 -3.04343551e-01 -7.09498823e-02 -3.03690404e-01 -3.75966132e-01 2.03097343e-01 2.93029517e-01 6.21208966e-01 -1.11685908e+00 -5.41319907e-01 1.79742351e-01 5.87034404e-01 -6.92977905e-01 5.15475333e-01 -3.15703481e-01 2.18388170e-01 -2.07149178e-01 6.26586676e-01 4.39682603e-01 -2.73230791e-01 2.15965435e-01 -5.15042305e-01 -5.36308527e-01 -1.57066584e-01 -1.20270562e+00 1.69837546e+00 -1.35364965e-01 1.04330599e+00 -6.41733781e-02 -6.24864280e-01 6.70645714e-01 1.51956394e-01 6.33015037e-01 -6.64045930e-01 2.52570838e-01 -3.98249850e-02 -2.57820189e-02 -6.69820666e-01 8.60151231e-01 2.93465316e-01 1.07620537e-01 4.03433502e-01 -1.33413941e-01 2.93573439e-01 4.85797405e-01 3.13212097e-01 1.28129649e+00 1.63121209e-01 1.50222719e-01 4.39193891e-03 5.43184340e-01 -4.87223685e-01 7.45629847e-01 6.23114288e-01 -4.31252152e-01 6.72858834e-01 5.66656172e-01 -5.57948709e-01 -1.01994216e+00 -9.72804964e-01 4.12708044e-01 1.59226668e+00 2.84008354e-01 -5.69013774e-01 -6.75338209e-01 -6.53713167e-01 -4.03605439e-02 3.41508687e-01 -8.96196723e-01 -8.29381719e-02 -9.52866256e-01 -8.59113038e-02 1.24876253e-01 5.46818793e-01 5.67274809e-01 -1.37783039e+00 -1.06085336e+00 2.25932971e-01 -2.18180493e-01 -1.01542163e+00 -1.30615330e+00 -3.36132348e-02 -4.91224378e-01 -1.04274940e+00 -9.06347096e-01 -7.83783019e-01 5.73423028e-01 4.07602608e-01 9.28483784e-01 1.48382649e-01 -2.34895021e-01 3.48474950e-01 -3.81264538e-01 -4.58112508e-01 5.71173839e-02 1.34616554e-01 -2.39490092e-01 3.72744441e-01 1.68421999e-01 -5.06536365e-01 -1.00128984e+00 1.88720435e-01 -1.10699737e+00 2.37379104e-01 5.07382333e-01 6.23743951e-01 6.70159280e-01 2.15729281e-01 2.67769605e-01 -9.86293435e-01 4.38886464e-01 -3.43641877e-01 -2.52840787e-01 8.13432336e-02 -2.90151298e-01 -1.26638427e-01 6.47151887e-01 -6.90693021e-01 -9.29079533e-01 -9.72437486e-03 2.50008464e-01 -8.27229798e-01 4.05882448e-01 5.50874114e-01 -2.37182096e-01 3.58093679e-02 3.56359720e-01 -3.85201611e-02 -4.51765418e-01 -2.71593571e-01 4.05577749e-01 8.45524967e-02 8.89475107e-01 -2.38774031e-01 7.99215734e-01 3.87531340e-01 -2.70873815e-01 -5.54331541e-01 -7.42472589e-01 -5.90078712e-01 -6.42654538e-01 -7.16446817e-01 5.41426063e-01 -9.74499822e-01 -7.15818584e-01 5.70847750e-01 -8.54914188e-01 -7.45441794e-01 -3.78508717e-01 1.77121788e-01 -5.54484963e-01 2.19392970e-01 -3.76820415e-01 -6.26920581e-01 -4.09784198e-01 -1.05856168e+00 9.36411917e-01 6.00341558e-01 -1.83981493e-01 -6.45293534e-01 -1.34185478e-01 -3.15475374e-01 4.46251780e-01 5.46910524e-01 7.30145931e-01 -9.84340832e-02 -8.55857193e-01 -2.13666379e-01 -5.33268034e-01 2.29811370e-01 3.72614600e-02 3.32965583e-01 -1.09179282e+00 -2.76489139e-01 -3.64543021e-01 1.80993259e-01 9.72890079e-01 6.34040594e-01 1.35362613e+00 -4.27210361e-01 -2.14982957e-01 7.63043046e-01 1.49662781e+00 5.30963838e-01 5.99634409e-01 4.27172184e-01 6.97005570e-01 2.80019730e-01 7.43106246e-01 7.71225214e-01 2.75659621e-01 7.14739621e-01 4.02618349e-01 -2.54196286e-01 7.21057458e-03 -1.66848764e-01 4.64387953e-01 4.88453716e-01 -4.03245151e-01 -1.85111195e-01 -4.74622220e-01 4.93041337e-01 -1.91817153e+00 -1.56106269e+00 4.22619402e-01 2.25742626e+00 8.54656816e-01 5.16392529e-01 5.35095572e-01 -8.47827345e-02 8.51936221e-01 5.69348156e-01 -7.48280287e-01 -1.91656947e-01 -1.26456574e-01 2.20957205e-01 3.33411038e-01 2.43775725e-01 -1.31810749e+00 8.35756242e-01 5.79955196e+00 6.24647856e-01 -1.64948583e+00 3.84470150e-02 6.82841897e-01 -5.76258183e-01 -8.37181807e-02 -1.92258686e-01 -3.86352271e-01 7.55922556e-01 7.31319785e-01 -3.59345019e-01 2.65739650e-01 8.12857568e-01 6.38282776e-01 -2.41147459e-01 -1.13598335e+00 1.12089097e+00 1.37598619e-01 -1.53406203e+00 2.67808908e-04 -3.29499543e-01 7.38868594e-01 -2.39982277e-01 4.03766811e-01 3.37302446e-01 -1.69501677e-01 -5.11325479e-01 1.07664680e+00 8.18282366e-01 8.95992339e-01 -1.05376720e+00 3.39869648e-01 -1.64019138e-01 -1.72043407e+00 -2.95729458e-01 1.26246307e-02 3.28760110e-02 2.35979095e-01 4.17947561e-01 -5.75043678e-01 1.33761227e-01 9.21920657e-01 9.19055045e-01 -5.28304100e-01 1.28166628e+00 -1.28023058e-01 4.27208424e-01 6.17710277e-02 2.47873276e-01 1.78224102e-01 6.20530583e-02 4.78261948e-01 1.70518088e+00 4.13572490e-01 1.59466088e-01 3.00483733e-01 6.26296043e-01 -3.51759583e-01 2.25205004e-01 -2.01171488e-01 -2.09498946e-02 3.78179163e-01 1.42687631e+00 -7.73956358e-01 -6.08000636e-01 -4.64061677e-01 1.24387312e+00 2.36724198e-01 3.89596909e-01 -1.19190741e+00 -6.29028320e-01 6.75259173e-01 1.89575985e-01 5.28104305e-01 -1.71536937e-01 1.03305846e-01 -1.02425194e+00 5.29095307e-02 -8.19353878e-01 4.99304622e-01 -1.02272296e+00 -9.91078913e-01 6.47878587e-01 -2.57390797e-01 -1.44714940e+00 -8.57408810e-03 -4.19597358e-01 -9.37799215e-01 8.16628456e-01 -1.48131454e+00 -9.42099035e-01 -5.18814147e-01 5.89876473e-01 8.38765979e-01 1.62799999e-01 2.24091113e-01 4.62452531e-01 -7.05843091e-01 6.67100132e-01 -1.96293145e-01 3.03029537e-01 1.20510745e+00 -1.21499157e+00 3.36216778e-01 1.17129838e+00 -1.20901436e-01 5.70671558e-01 8.98735404e-01 -7.43641436e-01 -1.08127248e+00 -1.16038382e+00 8.19660842e-01 -6.50928989e-02 6.75659537e-01 -2.22304657e-01 -7.36199021e-01 6.94917858e-01 2.46010080e-01 8.65718443e-03 7.21713126e-01 -1.50580436e-01 -4.41384435e-01 -3.13314885e-01 -8.41497600e-01 6.95832312e-01 1.12903738e+00 -8.24867368e-01 -1.47746950e-02 -1.30497843e-01 6.06900692e-01 -6.94840133e-01 -7.24225879e-01 2.65411854e-01 8.55936170e-01 -1.00097215e+00 9.20287728e-01 -3.78690600e-01 6.03422344e-01 -4.54990268e-01 4.57750857e-02 -1.07589865e+00 -3.31799358e-01 -9.21554387e-01 -3.66779923e-01 1.03630674e+00 1.15918964e-01 1.39553443e-01 6.60692036e-01 7.24494457e-01 -2.47512177e-01 -8.64591181e-01 -5.39289355e-01 -4.27859485e-01 -7.79795349e-01 -4.42958862e-01 5.09382069e-01 9.95584369e-01 5.99753894e-02 3.87276597e-02 -7.70064354e-01 2.26646662e-01 2.80055493e-01 2.66365349e-01 9.32915866e-01 -9.45713937e-01 -3.19142997e-01 -6.34058237e-01 -2.34193832e-01 -9.69035149e-01 -2.81153202e-01 -4.35370833e-01 1.96754888e-01 -1.06642187e+00 4.56945986e-01 -1.11027084e-01 -8.25035512e-01 2.72456378e-01 -5.30827641e-01 2.85451144e-01 3.37751150e-01 9.55248401e-02 -8.79106760e-01 2.31074244e-01 1.25145006e+00 -1.31359205e-01 -6.08156323e-01 -1.33979857e-01 -5.38599133e-01 8.20134103e-01 4.93602157e-01 -1.10218957e-01 -5.37758470e-01 -2.36974299e-01 1.78232819e-01 -5.18720150e-02 2.97898740e-01 -1.20795512e+00 2.50970840e-01 -1.75747111e-01 5.92254758e-01 -6.57914400e-01 2.22316101e-01 -6.53876126e-01 4.80672605e-02 1.17795467e-01 -5.95737815e-01 3.28550965e-01 2.40918338e-01 4.23478514e-01 -2.01578960e-01 1.55088931e-01 8.67588222e-01 -5.26909456e-02 -1.26168239e+00 7.49267340e-01 -1.83168575e-01 -6.48490191e-02 8.50097537e-01 -1.32437408e-01 -1.66970283e-01 -6.49275601e-01 -5.91480076e-01 1.22247986e-01 4.71847504e-01 4.54752266e-01 5.85578203e-01 -1.29559541e+00 -3.82497519e-01 -8.85161683e-02 1.73248395e-01 -2.63611555e-01 6.34246945e-01 6.34812593e-01 -4.02376533e-01 -9.76324752e-02 -3.35590035e-01 -2.40683571e-01 -1.32823718e+00 7.33729243e-01 2.30697736e-01 -1.67466685e-01 -7.54605532e-01 9.76243138e-01 3.83442372e-01 5.10290563e-01 4.66167957e-01 -6.49489045e-01 -1.86917767e-01 3.85812849e-01 8.69527698e-01 4.30455387e-01 -4.93051887e-01 -7.43512750e-01 3.28238085e-02 3.79190683e-01 -3.04557055e-01 -2.67689396e-02 1.27338910e+00 -2.52274483e-01 3.14059347e-01 5.44325888e-01 1.18896329e+00 2.05742136e-01 -1.83999300e+00 -4.92919534e-01 -1.93536296e-01 -6.48156941e-01 -1.07610822e-01 -6.46661878e-01 -1.39825690e+00 6.14474177e-01 5.92453778e-01 5.95396459e-02 1.69465446e+00 -3.36315215e-01 9.26165938e-01 1.78878590e-01 2.27750748e-01 -1.54851246e+00 4.30078417e-01 3.41746539e-01 8.05929482e-01 -1.08394086e+00 -1.00583889e-01 -3.67364496e-01 -6.68809056e-01 1.19749951e+00 7.58165658e-01 -9.69531611e-02 5.24666250e-01 1.15842178e-01 2.75106996e-01 -1.41425252e-01 -5.80703616e-01 -3.05107176e-01 5.11344492e-01 3.22067380e-01 5.19604445e-01 -3.84093598e-02 -9.82106701e-02 5.97565234e-01 -1.25718847e-01 1.83291271e-01 4.75727618e-01 8.86478901e-01 -5.49010336e-01 -8.43271196e-01 -7.34149516e-02 4.07165885e-01 -4.52641666e-01 -8.21942315e-02 -9.50343311e-02 8.90337348e-01 4.32798088e-01 5.52212894e-01 1.67793438e-01 -5.77495754e-01 3.57052445e-01 8.86195228e-02 1.96695656e-01 -4.93206292e-01 -8.15383196e-01 3.46129090e-01 -2.34892711e-01 -7.91974902e-01 -5.02338409e-01 -7.04370201e-01 -1.36483181e+00 -3.59504104e-01 2.53077224e-02 4.81033884e-02 2.48656288e-01 5.40584207e-01 3.41091931e-01 7.83976853e-01 7.57701755e-01 -9.88360107e-01 2.54274547e-01 -6.84082925e-01 -7.90575385e-01 6.66101694e-01 4.08787787e-01 -5.64286888e-01 -1.70393825e-01 6.33521974e-01]
[10.117919921875, 0.4479760527610779]
0601c22a-3cf9-41db-a94a-d3382e2d618e
intrinsic-image-transfer-for-illumination
2107.00704
null
https://arxiv.org/abs/2107.00704v2
https://arxiv.org/pdf/2107.00704v2.pdf
Intrinsic Image Transfer for Illumination Manipulation
This paper presents a novel intrinsic image transfer (IIT) algorithm for illumination manipulation, which creates a local image translation between two illumination surfaces. This model is built on an optimization-based framework consisting of three photo-realistic losses defined on the sub-layers factorized by an intrinsic image decomposition. We illustrate that all losses can be reduced without the necessity of taking an intrinsic image decomposition under the well-known spatial-varying illumination illumination-invariant reflectance prior knowledge. Moreover, with a series of relaxations, all of them can be directly defined on images, giving a closed-form solution for image illumination manipulation. This new paradigm differs from the prevailing Retinex-based algorithms, as it provides an implicit way to deal with the per-pixel image illumination. We finally demonstrate its versatility and benefits to the illumination-related tasks such as illumination compensation, image enhancement, and high dynamic range (HDR) image compression, and show the high-quality results on natural image datasets.
['Haihui Wang', 'Qianying Zhang', 'Michael Ruzhansky', 'Junqing Huang']
2021-07-01
null
null
null
null
['intrinsic-image-decomposition']
['computer-vision']
[ 1.23551106e+00 -1.19675383e-01 1.45959765e-01 -3.26403618e-01 -4.11962062e-01 -2.83417851e-01 5.49670875e-01 -4.63088959e-01 -3.94342273e-01 6.88018441e-01 -8.29816461e-02 1.19081654e-01 -3.25547814e-01 -7.36577690e-01 -8.75911653e-01 -1.22206688e+00 5.09479225e-01 -2.04789206e-01 -2.59255528e-01 -3.12512249e-01 3.52390051e-01 6.96839511e-01 -1.99796653e+00 3.51230614e-02 1.07745433e+00 1.12204206e+00 1.97861567e-01 5.88867188e-01 -1.06642274e-02 4.58561242e-01 -2.04329520e-01 -3.68441045e-01 4.45892155e-01 -5.63081324e-01 -5.45607090e-01 5.03084838e-01 7.14408517e-01 -4.15346622e-01 -8.45487118e-02 1.15600753e+00 4.26741809e-01 1.44714072e-01 5.65416932e-01 -9.41813767e-01 -7.14493155e-01 -2.51623243e-01 -7.60519445e-01 -4.66782779e-01 3.36482704e-01 1.22749597e-01 7.21372843e-01 -8.57893407e-01 6.21493995e-01 1.07732427e+00 5.10155737e-01 4.20757711e-01 -1.53389966e+00 -1.29693404e-01 -8.74098465e-02 7.18155280e-02 -1.20941854e+00 -5.49002349e-01 9.21466231e-01 -2.02478588e-01 5.50090075e-01 5.62906921e-01 5.38285434e-01 5.58626473e-01 6.01693848e-03 3.52303386e-01 1.63553691e+00 -8.93651187e-01 -6.97550923e-02 2.11812377e-01 3.21916863e-02 4.44453448e-01 2.74094731e-01 2.86331743e-01 -4.78875220e-01 1.72609329e-01 9.46039379e-01 -3.19334567e-02 -7.66582191e-01 -3.45410556e-01 -1.09036350e+00 2.68261731e-01 4.36541736e-01 1.98656872e-01 -3.87235224e-01 2.73286980e-02 1.27748176e-01 1.72751606e-01 5.34346700e-01 2.03611001e-01 -1.62867889e-01 3.75569582e-01 -6.60481334e-01 -3.21987458e-02 5.54417670e-01 9.07057226e-01 1.20776761e+00 8.19928348e-02 -2.20928311e-01 8.66256654e-01 2.46599600e-01 8.92659068e-01 1.05538890e-01 -1.20948458e+00 1.50240555e-01 2.32315019e-01 4.40270931e-01 -1.11987686e+00 1.25521244e-02 -4.45497066e-01 -1.03471506e+00 6.11037493e-01 3.98562431e-01 3.49314064e-01 -6.78383410e-01 1.84090078e+00 4.10303921e-01 -7.39531144e-02 8.29297826e-02 9.31887209e-01 3.51185590e-01 6.24854863e-01 -3.50509405e-01 -7.22375095e-01 1.26593649e+00 -8.35249484e-01 -1.08828986e+00 2.10969254e-01 -3.00796833e-02 -9.25074100e-01 1.33459198e+00 7.67343998e-01 -1.55413127e+00 -5.72334349e-01 -1.04263926e+00 -6.16690040e-01 -2.62532741e-01 2.42004603e-01 4.21374530e-01 8.75177801e-01 -1.18625581e+00 5.90296209e-01 -3.70092094e-01 -2.97215998e-01 4.19537760e-02 1.87084660e-01 -2.16706291e-01 -1.11283764e-01 -8.31612587e-01 8.82768571e-01 -1.46432752e-02 5.49243867e-01 -5.27107775e-01 -7.17581213e-01 -6.13404989e-01 -6.03072383e-02 2.09923491e-01 -8.37557077e-01 6.01016521e-01 -1.33818412e+00 -2.12582946e+00 1.27538490e+00 -4.06556487e-01 -1.16720125e-01 7.47248352e-01 -2.11174130e-01 -2.07783058e-01 2.22540349e-01 -4.33811605e-01 2.52797604e-01 1.41916454e+00 -1.71009898e+00 -7.50619024e-02 -2.94369519e-01 -5.66214137e-02 4.56794113e-01 -4.09760088e-01 4.94704768e-02 -5.18860340e-01 -4.86100405e-01 1.56646550e-01 -6.65379703e-01 4.16119993e-02 4.82572317e-01 -4.11087006e-01 6.72175467e-01 7.14443803e-01 -7.18752921e-01 9.53053355e-01 -2.10492659e+00 4.13376212e-01 8.73567611e-02 -6.34699017e-02 2.96143800e-01 -3.57071400e-01 3.05496335e-01 -2.32303113e-01 -2.07488775e-01 -6.47211790e-01 -4.99171168e-01 -3.95560674e-02 2.48899832e-01 -4.47402418e-01 6.87347412e-01 6.07471280e-02 8.00357163e-01 -5.35600543e-01 -2.26838276e-01 5.62015176e-01 1.12618196e+00 -4.79098171e-01 2.74973154e-01 -7.70494416e-02 7.21776307e-01 3.74663435e-02 3.27224582e-01 1.25325179e+00 1.88386589e-01 1.07531056e-01 -7.05099761e-01 -5.19716620e-01 -1.54736221e-01 -1.07678998e+00 1.65527809e+00 -7.78530061e-01 3.82365435e-01 5.48665762e-01 -9.12032008e-01 9.12457764e-01 2.17039343e-02 4.89397764e-01 -7.80001402e-01 1.22993514e-01 3.17809433e-01 -5.76684535e-01 -4.32666302e-01 4.66376603e-01 -1.30167022e-01 4.46403861e-01 3.27265531e-01 -2.51277775e-01 -2.89779544e-01 1.06976330e-02 -3.00749660e-01 5.10582983e-01 3.92441154e-01 1.30404830e-01 -3.42690349e-01 1.07176530e+00 -4.92227107e-01 2.59126812e-01 4.65100139e-01 1.18659802e-01 9.12113070e-01 1.14073709e-01 -2.08711028e-01 -1.13373911e+00 -9.84019637e-01 -4.87155527e-01 6.24843419e-01 3.42625290e-01 9.19429883e-02 -1.00183702e+00 1.21285111e-01 -3.50650370e-01 4.96882081e-01 -4.28339422e-01 5.72228208e-02 -4.91066515e-01 -9.42336798e-01 1.15436919e-01 -1.94939271e-01 9.27770317e-01 -8.56711626e-01 -5.99338412e-01 -1.36523217e-01 -4.65242475e-01 -1.14468753e+00 -3.80661130e-01 -1.51561216e-01 -7.51377404e-01 -9.37182486e-01 -9.98976588e-01 -5.14636815e-01 9.92626905e-01 5.48634827e-01 1.09397137e+00 1.38305187e-01 -6.62549853e-01 8.00282001e-01 1.49858948e-02 -4.97181974e-02 -3.58991832e-01 -4.01311368e-01 -1.15127720e-01 7.46396303e-01 -1.78188518e-01 -7.36108124e-01 -7.44522572e-01 4.19841945e-01 -1.21405864e+00 3.02255064e-01 4.68797326e-01 9.53939855e-01 9.38604951e-01 1.91248223e-01 2.31952548e-01 -7.65680015e-01 1.85395256e-01 2.15160772e-01 -8.72286558e-01 3.82412225e-01 -7.15135813e-01 -9.16037150e-03 5.25009513e-01 -2.26875111e-01 -1.77310061e+00 1.01527125e-01 2.14968603e-02 -2.53422678e-01 -2.36866534e-01 -1.22258671e-01 -6.16378129e-01 -7.70249426e-01 4.38564211e-01 5.62191486e-01 1.43444344e-01 -5.18478632e-01 7.54603386e-01 4.39728886e-01 8.16925406e-01 -6.45517588e-01 1.04437900e+00 1.02284777e+00 4.92438316e-01 -1.14843976e+00 -6.06592417e-01 -2.01596096e-01 -6.78339958e-01 -3.26462895e-01 9.19957936e-01 -5.60287297e-01 -9.79346156e-01 7.91159451e-01 -1.15770471e+00 -4.39432472e-01 -5.96195281e-01 1.55006498e-01 -8.86812389e-01 7.88931489e-01 -4.65348750e-01 -8.39445710e-01 -2.46410221e-01 -1.07034898e+00 1.09263015e+00 1.47246465e-01 5.40059447e-01 -1.07469666e+00 -7.97546580e-02 3.65075111e-01 6.66718900e-01 3.32419187e-01 8.94964576e-01 7.05982864e-01 -1.02513587e+00 2.71487355e-01 -5.52787602e-01 8.01700473e-01 1.68092206e-01 1.19686745e-01 -1.33134198e+00 -3.65959644e-01 5.21610558e-01 -4.34805639e-04 9.44666684e-01 4.17024702e-01 1.33194709e+00 -4.04785693e-01 7.24055618e-02 1.23612416e+00 2.02085376e+00 -2.46464282e-01 1.09010363e+00 1.24582388e-01 6.87469780e-01 8.58179092e-01 4.78703350e-01 2.39549696e-01 -7.51413405e-02 9.44948077e-01 6.95439994e-01 -6.52994335e-01 -5.46571255e-01 1.57073393e-01 3.06671053e-01 6.26987278e-01 -4.25381660e-01 -2.81226963e-01 -2.17637181e-01 1.58062071e-01 -1.55899465e+00 -9.33009624e-01 -5.10302067e-01 2.72386193e+00 8.39361310e-01 -5.57218552e-01 -3.68327051e-01 2.34196022e-01 7.58010626e-01 2.44845420e-01 -5.38787484e-01 -3.38411242e-01 -6.43505394e-01 2.36483291e-01 6.60183966e-01 8.43471944e-01 -8.59008610e-01 5.18425703e-01 6.76133776e+00 7.67816544e-01 -1.11313951e+00 1.70501366e-01 5.83295465e-01 1.93107530e-01 -6.32529497e-01 -3.57854739e-03 -4.89705086e-01 2.49733970e-01 3.75834793e-01 -3.94784026e-02 8.57577682e-01 2.75805086e-01 4.07310396e-01 -2.83374459e-01 -8.20749760e-01 1.12568843e+00 3.46935391e-01 -8.05654407e-01 1.92583144e-01 1.44234255e-01 8.48821878e-01 -5.22942781e-01 5.18485069e-01 -5.21262765e-01 -4.85476136e-01 -7.04975188e-01 3.63768041e-01 7.60070324e-01 1.25763404e+00 -6.51832640e-01 6.99453428e-02 9.64968279e-03 -8.53011370e-01 -1.73885524e-02 -4.84172463e-01 9.05890837e-02 2.45504007e-01 9.02681828e-01 9.35959443e-02 8.84946585e-01 4.69686657e-01 8.21515024e-01 -2.08668455e-01 7.41048634e-01 -3.44953716e-01 7.81175401e-03 -2.89880008e-01 6.05796516e-01 -3.40852261e-01 -9.52599823e-01 6.83047771e-01 1.06483936e+00 2.46566698e-01 7.89170191e-02 -4.21012968e-01 1.15596080e+00 1.21450126e-02 1.53190687e-01 -5.10885894e-01 4.73836005e-01 -2.47440711e-01 1.54876912e+00 -4.51045036e-01 -4.52022590e-02 -4.24563736e-01 1.38067412e+00 -1.78534880e-01 8.16539824e-01 -8.64817142e-01 -4.78231013e-01 6.83349013e-01 1.70474827e-01 3.66059877e-02 7.50102429e-03 -3.39210123e-01 -1.34730268e+00 2.74174482e-01 -6.98596239e-01 -2.53106058e-01 -1.04801321e+00 -1.09195387e+00 2.75920719e-01 -1.70112457e-02 -1.16661870e+00 3.00803870e-01 -7.91444898e-01 -3.95780116e-01 1.05270660e+00 -2.33345437e+00 -1.22074091e+00 -6.31398082e-01 7.98478544e-01 3.77837904e-02 3.79845023e-01 8.48571181e-01 6.75800681e-01 -4.70265329e-01 4.74481940e-01 4.47424293e-01 -4.45046872e-01 8.29187036e-01 -1.08069241e+00 -2.36118168e-01 1.11529136e+00 -4.40399945e-01 4.46001679e-01 6.49291635e-01 -1.02184176e-01 -1.67537832e+00 -1.01130819e+00 6.58732772e-01 -1.36078894e-01 9.93372723e-02 -1.88765049e-01 -8.97427201e-01 5.32160044e-01 4.44648862e-01 -3.24533321e-03 3.35935563e-01 -4.10970122e-01 -3.71543199e-01 -5.19013822e-01 -1.32650137e+00 4.24952030e-01 1.23349285e+00 -6.16398215e-01 -8.55607912e-02 4.41306829e-01 4.65611786e-01 -2.81838268e-01 -7.63823390e-01 3.45181853e-01 6.42174900e-01 -1.24404752e+00 1.32754612e+00 4.89999019e-02 4.83055949e-01 -6.13280654e-01 -2.13214010e-01 -9.33213115e-01 -1.18668564e-01 -1.15419900e+00 1.94088638e-01 1.42768717e+00 -1.24118127e-01 -9.76839364e-01 1.81129009e-01 6.20388031e-01 -9.96187851e-02 -2.50667393e-01 -6.48069799e-01 -6.73841298e-01 -3.21756393e-01 -1.29078299e-01 4.37795848e-01 8.05451572e-01 -4.42696005e-01 -1.49546206e-01 -6.42228544e-01 2.15399638e-01 1.16625941e+00 2.19519183e-01 8.36088240e-01 -9.31312382e-01 -4.25834268e-01 -3.91394615e-01 -1.26312330e-01 -1.16369057e+00 1.40039679e-02 -6.14024758e-01 1.45279735e-01 -1.21146643e+00 1.89570069e-01 -3.73910069e-01 -1.98390350e-01 1.91986784e-01 8.88676867e-02 6.63548410e-01 9.52606946e-02 2.29579851e-01 -2.05816060e-01 6.93894923e-01 1.52779269e+00 5.12429886e-02 -1.47142023e-01 -1.16296478e-01 -4.43208188e-01 6.31891787e-01 4.43844199e-01 -6.40577897e-02 -5.15831113e-01 -5.83178282e-01 4.20859993e-01 -2.03233898e-01 5.64458191e-01 -8.57992947e-01 4.92302366e-02 -2.27856457e-01 1.42779186e-01 -3.34131569e-01 5.68214476e-01 -1.04975355e+00 4.74895388e-01 2.56091595e-01 -3.49358946e-01 -5.64249933e-01 -6.79698512e-02 4.47272420e-01 -2.57519722e-01 -1.90940052e-01 1.35999525e+00 -3.32081392e-02 -3.68503869e-01 1.07001640e-01 -2.79129539e-02 -3.77214581e-01 8.52659285e-01 -2.82756031e-01 -4.21298563e-01 -3.06617588e-01 -4.21305209e-01 -4.62360293e-01 8.48223448e-01 -1.79304063e-01 5.37819982e-01 -1.26382816e+00 -4.80487287e-01 4.67038691e-01 -7.15968385e-02 -1.08456008e-01 5.99062204e-01 1.14637864e+00 -7.01852798e-01 2.42960304e-02 -3.99124771e-01 -6.66626453e-01 -1.22152507e+00 6.14466786e-01 6.09310627e-01 -1.62354127e-01 -6.28824770e-01 4.79542881e-01 6.82062447e-01 -1.57375738e-01 1.23786181e-02 -2.13705972e-01 8.96466374e-02 -2.63928682e-01 6.25056446e-01 5.39569974e-01 1.07260466e-01 -7.24458814e-01 3.23973298e-02 1.32542646e+00 3.53008777e-01 -3.64451744e-02 1.18086219e+00 -7.38306046e-01 -6.02957547e-01 1.88756883e-01 1.25518489e+00 9.60282236e-02 -1.43140268e+00 -2.96189517e-01 -6.98010862e-01 -8.66836369e-01 2.14604914e-01 -6.66406870e-01 -1.19235885e+00 1.10094881e+00 5.69088936e-01 1.26132220e-01 1.88508749e+00 -6.88915074e-01 6.15077615e-01 2.40674600e-01 2.33211771e-01 -9.88741636e-01 -5.49220927e-02 1.69835061e-01 1.11928546e+00 -1.08382905e+00 1.32243738e-01 -8.24604213e-01 2.20631491e-02 1.22131252e+00 1.57895654e-01 8.67979079e-02 3.98011178e-01 1.49071008e-01 -6.22440912e-02 2.31062993e-01 -2.90062904e-01 -3.06333303e-01 2.12019563e-01 7.16820598e-01 2.99218327e-01 -2.11656824e-01 -5.11020482e-01 -1.96547061e-01 4.56361264e-01 2.87556183e-02 5.38327515e-01 4.53219265e-01 -2.27305755e-01 -1.21356821e+00 -4.35990721e-01 -2.45593145e-01 -2.69123107e-01 -5.85187078e-02 1.04131818e-01 5.50165892e-01 1.27202809e-01 7.77726769e-01 -1.19798988e-01 2.33186662e-01 3.16211164e-01 -8.92466605e-02 7.94729114e-01 -2.33341813e-01 -2.85748959e-01 2.49353990e-01 -3.36960346e-01 -7.89205849e-01 -9.99415636e-01 -5.33615291e-01 -6.86838925e-01 -3.25691640e-01 -3.02819341e-01 -4.89661098e-01 9.21476066e-01 5.12897372e-01 3.62728387e-01 4.49842125e-01 8.93352091e-01 -1.20723581e+00 -2.82768667e-01 -4.27276224e-01 -7.74234414e-01 7.19393015e-01 5.55629015e-01 -4.49487925e-01 -7.09196508e-01 4.28784460e-01]
[10.353979110717773, -2.7442164421081543]
884806a2-c84a-4f32-8455-9a4e85e349ae
an-empirical-study-on-relation-extraction-in
2112.05910
null
https://arxiv.org/abs/2112.05910v1
https://arxiv.org/pdf/2112.05910v1.pdf
An Empirical Study on Relation Extraction in the Biomedical Domain
Relation extraction is a fundamental problem in natural language processing. Most existing models are defined for relation extraction in the general domain. However, their performance on specific domains (e.g., biomedicine) is yet unclear. To fill this gap, this paper carries out an empirical study on relation extraction in biomedical research articles. Specifically, we consider both sentence-level and document-level relation extraction, and run a few state-of-the-art methods on several benchmark datasets. Our results show that (1) current document-level relation extraction methods have strong generalization ability; (2) existing methods require a large amount of labeled data for model fine-tuning in biomedicine. Our observations may inspire people in this field to develop more effective models for biomedical relation extraction.
['Yongkang Li']
2021-12-11
null
null
null
null
['document-level-relation-extraction']
['natural-language-processing']
[ 4.41115648e-01 4.18336123e-01 -7.03067839e-01 -3.64856541e-01 -6.94357634e-01 -2.92033792e-01 4.80815440e-01 9.10338759e-01 -4.02472198e-01 1.10879910e+00 1.49480060e-01 -6.96417212e-01 -1.34419248e-01 -9.66213763e-01 -3.27052146e-01 -3.69678885e-01 -1.20520659e-01 4.56952333e-01 1.66273013e-01 -1.66466057e-01 1.47740752e-01 5.42182028e-01 -9.06546831e-01 3.50515306e-01 9.38314855e-01 5.65403640e-01 -1.88064992e-01 3.95293117e-01 -3.09071690e-01 7.92187452e-01 -6.37197375e-01 -5.15797853e-01 -2.15049595e-01 -5.30141830e-01 -1.36526299e+00 -1.35773793e-01 -3.51109803e-01 1.82497963e-01 -1.00232407e-01 1.18557131e+00 3.19473743e-01 -2.61181086e-01 7.88626611e-01 -1.02177989e+00 -5.11965334e-01 9.40854132e-01 -4.75133419e-01 4.35324788e-01 4.38966990e-01 -1.84556782e-01 9.81613338e-01 -5.31287193e-01 9.59109843e-01 9.62097347e-01 4.70331222e-01 4.81927872e-01 -1.03706205e+00 -6.55697286e-01 4.85764146e-02 2.36206979e-01 -1.43067086e+00 -4.20378178e-01 6.70734584e-01 -4.87577945e-01 1.23849940e+00 4.08577412e-01 3.55023235e-01 9.82466698e-01 5.61673105e-01 6.32755280e-01 1.29628778e+00 -5.82852602e-01 8.88674706e-02 1.69777542e-01 5.27056217e-01 5.36365926e-01 7.20036328e-01 -3.12942207e-01 -3.79148006e-01 -2.90785879e-01 4.99768406e-01 -2.97925681e-01 -2.53862262e-01 3.64432752e-01 -1.26221788e+00 7.61435449e-01 -4.83463630e-02 6.44180894e-01 -3.50788176e-01 -6.08379126e-01 5.38627982e-01 2.46169195e-01 6.99170232e-01 8.67060184e-01 -8.77250016e-01 -5.26820458e-02 -1.01211524e+00 2.05674380e-01 1.07637382e+00 1.18457949e+00 4.17480171e-01 -7.18288898e-01 -1.88116282e-01 7.69512951e-01 2.41457194e-01 -1.77517440e-02 3.82540792e-01 -2.11569160e-01 6.65015817e-01 8.76448154e-01 -3.12993675e-01 -1.01983249e+00 -7.12013304e-01 -3.93992126e-01 -1.16748226e+00 -5.04989624e-01 2.23793134e-01 -2.96620965e-01 -7.74141848e-01 1.32423663e+00 3.40936750e-01 1.15294307e-01 2.49784678e-01 5.48661947e-01 1.35844970e+00 3.30080897e-01 4.12864596e-01 -6.17402077e-01 1.97853267e+00 -6.94664717e-01 -1.28820515e+00 -2.26817042e-01 9.49599922e-01 -9.24705565e-01 5.59906006e-01 3.46358657e-01 -1.01388729e+00 -1.24301814e-01 -9.85269904e-01 -2.25425228e-01 -6.96301877e-01 1.18743896e-01 9.25054848e-01 4.76830661e-01 -4.99207556e-01 4.53769565e-01 -9.17458713e-01 -5.67072868e-01 6.36426806e-01 3.80537540e-01 -4.54649746e-01 -7.67947957e-02 -1.56173944e+00 1.16401017e+00 5.97384334e-01 1.54526830e-02 -2.34735474e-01 -5.55993736e-01 -8.38925302e-01 -1.68699160e-01 7.42072225e-01 -9.32216167e-01 1.11838031e+00 2.48929504e-02 -1.07678771e+00 1.19181681e+00 -3.21947098e-01 -4.47446406e-01 5.79276979e-02 -1.65329084e-01 -6.86828792e-01 9.22328383e-02 1.48242339e-01 1.00324072e-01 -7.30981603e-02 -8.56869519e-01 -6.00148439e-01 -4.73532856e-01 6.19961321e-02 -1.90135419e-01 -3.90099436e-01 3.29141021e-01 -5.05084455e-01 -8.41175139e-01 5.75130293e-03 -6.62854970e-01 -4.98972595e-01 -4.01913285e-01 -9.88932133e-01 -5.97051919e-01 3.77890408e-01 -4.87982094e-01 1.70513141e+00 -1.60037684e+00 -3.29457447e-02 -1.88469552e-02 3.66377950e-01 4.34863865e-01 1.61283121e-01 6.59970284e-01 -1.82479903e-01 5.86507022e-01 -2.00494573e-01 -6.55378774e-02 -3.44701260e-01 1.30400717e-01 6.24351129e-02 2.08906204e-01 5.35108507e-01 9.76861179e-01 -9.87314224e-01 -1.12253022e+00 -1.93624511e-01 1.36919513e-01 -3.01134437e-01 1.76130280e-01 -1.49530381e-01 3.62416208e-01 -9.68803942e-01 8.65512133e-01 4.30840373e-01 -5.12756824e-01 4.92338330e-01 -4.31312501e-01 7.92980194e-02 7.81843662e-01 -7.67991304e-01 1.55165660e+00 -9.94463861e-02 2.77661741e-01 -1.77546218e-01 -1.16733027e+00 7.72948444e-01 5.54717064e-01 7.33518541e-01 -2.91288525e-01 2.41087213e-01 1.19241290e-01 2.09416017e-01 -9.17818010e-01 2.38647044e-01 -3.02036703e-01 -6.74197152e-02 1.88063264e-01 -5.51699847e-02 -4.25784774e-02 6.11996472e-01 1.42103866e-01 1.33520973e+00 -2.31999252e-02 1.05565643e+00 -4.28708106e-01 6.37008667e-01 2.52729416e-01 7.29071021e-01 3.80232602e-01 -9.03832614e-02 3.40389132e-01 7.82825470e-01 -3.29466075e-01 -4.82100427e-01 -4.76963609e-01 -4.56865042e-01 6.06441021e-01 -1.86751008e-01 -1.00348043e+00 -7.35673428e-01 -1.03196943e+00 -2.10938498e-01 4.16611731e-01 -6.52032912e-01 -4.77491915e-02 -6.41329646e-01 -1.37290502e+00 6.59246922e-01 3.92075449e-01 3.05305004e-01 -9.94801342e-01 -2.14670554e-01 3.75352889e-01 -4.33374405e-01 -1.58338642e+00 -1.78506389e-01 2.76097476e-01 -1.07123458e+00 -1.50876641e+00 -2.36197695e-01 -7.62995362e-01 7.54049242e-01 -1.00503758e-01 1.30757785e+00 7.56162852e-02 -2.33451381e-01 -3.79102975e-01 -4.78660733e-01 -8.52175355e-01 -4.06493604e-01 5.25196850e-01 -1.95852339e-01 -5.52968323e-01 1.02627015e+00 -3.04470807e-01 -3.28763336e-01 1.86633766e-01 -1.01744807e+00 9.86950770e-02 8.05568814e-01 6.65868163e-01 6.67801321e-01 2.24184260e-01 7.96896160e-01 -1.65098155e+00 1.09076726e+00 -5.45021653e-01 -2.34674543e-01 3.93393576e-01 -9.50453758e-01 1.76050942e-02 4.49395537e-01 -3.16575617e-01 -8.01000059e-01 -1.10529102e-01 -3.49310905e-01 5.18639028e-01 -4.33130383e-01 1.21056879e+00 -2.70358026e-01 3.84994358e-01 6.88093483e-01 -7.61109218e-02 -2.22178221e-01 -5.72447479e-01 1.05318412e-01 8.58167231e-01 2.05006003e-01 -5.84221959e-01 5.02776206e-01 1.12173989e-01 2.74452269e-01 -7.45545805e-01 -1.07436955e+00 -4.04553294e-01 -6.87497258e-01 3.99289966e-01 9.66241360e-01 -7.21274316e-01 -5.55558324e-01 -3.19566857e-03 -1.20144904e+00 -5.72855808e-02 1.64903458e-02 7.13944137e-01 -1.98671315e-02 3.88239384e-01 -1.02438927e+00 -5.38569450e-01 -5.62925696e-01 -9.82708991e-01 1.07139194e+00 1.48533359e-01 -6.94865763e-01 -1.05043674e+00 2.63351113e-01 5.47733963e-01 -1.60729542e-01 3.86201382e-01 1.25647438e+00 -8.17734659e-01 -1.66300192e-01 -2.19681174e-01 -2.48919979e-01 -1.25325590e-01 6.56229973e-01 1.16540529e-01 -8.15786004e-01 3.88370082e-02 6.62515732e-03 -1.41378239e-01 6.77804053e-01 2.48765200e-01 1.33044660e+00 -4.67503041e-01 -9.66495752e-01 2.56558448e-01 1.01963902e+00 3.29539090e-01 7.07046986e-01 2.97437668e-01 5.48068702e-01 8.38583887e-01 9.24069941e-01 1.20172381e-01 5.23232996e-01 5.70709705e-01 -8.59881565e-02 -2.88959950e-01 -3.44152516e-03 -1.12419594e-02 -2.58285046e-01 1.08057535e+00 -2.90117919e-01 -2.49942124e-01 -1.14718151e+00 5.68394244e-01 -1.79135990e+00 -4.30046082e-01 -3.97512555e-01 1.62630618e+00 1.73526835e+00 3.61432016e-01 -1.08831124e-02 3.56137574e-01 3.28789145e-01 -2.38827989e-01 -6.72123581e-02 -1.99670821e-01 6.81791874e-03 5.17000914e-01 1.71684444e-01 2.60310173e-01 -1.24241102e+00 1.02219081e+00 6.37000370e+00 7.90660501e-01 -7.85100341e-01 -1.51531383e-01 7.33934641e-01 2.18543902e-01 -4.51859683e-02 3.03213224e-02 -1.00342906e+00 2.14303613e-01 9.59693491e-01 -2.11165756e-01 -3.47913623e-01 4.68157619e-01 1.78239956e-01 -3.03065330e-02 -1.34553242e+00 8.04816186e-01 -1.80164292e-01 -1.38721836e+00 -1.67763736e-02 2.49213248e-01 4.73351657e-01 -3.95017892e-01 -5.34626245e-01 2.59589374e-01 1.11139514e-01 -1.28906500e+00 -2.28916794e-01 4.88898307e-01 5.82917154e-01 -5.10189593e-01 1.31260335e+00 4.32456344e-01 -1.02036285e+00 4.58860993e-01 -2.88568556e-01 -4.78779115e-02 1.56473458e-01 1.20339870e+00 -1.08231401e+00 1.13697684e+00 4.69707429e-01 8.42972100e-01 -7.06647456e-01 7.74337351e-01 -4.29504603e-01 8.39566648e-01 -6.63006157e-02 -1.35599107e-01 -4.35907692e-02 -1.52338874e-02 1.03690661e-01 1.68290699e+00 -1.35350555e-01 4.66762334e-01 1.06222615e-01 4.92132574e-01 -2.25786045e-01 4.80390310e-01 -6.06178701e-01 -4.19860750e-01 2.92925686e-01 1.35153854e+00 -9.53610539e-01 -4.48276788e-01 -5.26384950e-01 3.39708269e-01 2.84841657e-01 1.80458143e-01 -5.57474196e-01 -4.73913312e-01 4.65163112e-01 1.41334414e-01 -1.88040674e-01 -1.07274599e-01 -7.39030182e-01 -1.26473784e+00 -9.01093706e-02 -1.02113950e+00 7.16769397e-01 -2.66125053e-01 -1.47743356e+00 7.17082500e-01 1.55027360e-01 -1.03291643e+00 -2.56732225e-01 -6.59213543e-01 -7.25319907e-02 6.95771337e-01 -1.58365238e+00 -1.03759742e+00 6.28718287e-02 3.54249567e-01 3.27831596e-01 -6.89141378e-02 1.27672887e+00 5.53070307e-01 -7.56952882e-01 5.40770054e-01 -4.93431032e-01 6.18198216e-01 7.82917559e-01 -1.03878045e+00 4.47215915e-01 5.52217841e-01 1.77297771e-01 1.21552837e+00 7.34379888e-01 -9.08107698e-01 -1.26918328e+00 -1.06692052e+00 1.68642819e+00 -4.86002922e-01 6.40793741e-01 -2.59748340e-01 -1.06389022e+00 6.67952776e-01 1.94892749e-01 -9.38848183e-02 1.30001962e+00 5.44460773e-01 -7.91836008e-02 6.69737011e-02 -1.17069995e+00 6.53434098e-01 9.79404688e-01 -4.30676162e-01 -8.04130197e-01 5.98502994e-01 5.19797981e-01 -4.67995167e-01 -1.41378009e+00 6.86832786e-01 4.03055549e-01 -2.79631495e-01 7.91012704e-01 -1.18419492e+00 6.51478767e-01 -2.02516288e-01 3.41250598e-01 -9.45753634e-01 -3.06140810e-01 -4.79934305e-01 -4.32517767e-01 1.30307293e+00 8.49239767e-01 -5.23098707e-01 6.56491041e-01 6.05502069e-01 1.25723213e-01 -1.42834878e+00 -5.53949058e-01 -6.05215788e-01 2.60320276e-01 -3.54100317e-01 5.94764829e-01 1.33622563e+00 5.83709598e-01 9.91286337e-01 -5.96005619e-02 -1.27013493e-02 3.43083143e-01 2.36715794e-01 5.27665615e-01 -1.39033067e+00 -4.75024059e-02 -3.51200372e-01 -2.84669161e-01 -6.83607280e-01 7.69812018e-02 -8.22086871e-01 -1.80257633e-01 -1.94320309e+00 4.79616791e-01 -3.67248476e-01 -3.01093251e-01 8.03908110e-01 -6.14180326e-01 1.51161628e-03 -3.94630313e-01 9.65163857e-02 -3.82487744e-01 1.25977635e-01 1.39094305e+00 -1.71963751e-01 -1.11576661e-01 1.22006848e-01 -1.09942818e+00 7.63057530e-01 1.01831532e+00 -7.83103287e-01 -3.99350345e-01 4.24258970e-02 3.40546191e-01 -2.20903140e-02 -1.83259711e-01 -4.67892885e-01 2.69847840e-01 -5.71764350e-01 1.28098845e-01 -4.55940098e-01 -1.34275183e-01 -5.26868999e-01 -8.58708769e-02 4.63567644e-01 -3.18684131e-01 -1.58210874e-01 2.14154825e-01 2.52649575e-01 -4.21250105e-01 -2.36608401e-01 5.17366767e-01 -1.59574330e-01 -1.22271664e-01 2.82849908e-01 -3.84443164e-01 2.59977728e-01 8.88194382e-01 1.61561862e-01 -3.89305741e-01 2.53138971e-02 -5.80485761e-01 1.81881607e-01 1.08368441e-01 3.88658643e-01 4.94114578e-01 -1.05295646e+00 -9.06731665e-01 -1.87286571e-01 2.62694091e-01 2.81150132e-01 -2.70283937e-01 1.02623343e+00 -3.39014083e-01 8.72158587e-01 1.42020091e-01 -2.41967663e-01 -1.55214667e+00 7.63650954e-01 -7.32476637e-02 -9.16249931e-01 -4.09436375e-01 7.05324650e-01 7.81524107e-02 -2.96825737e-01 -4.21074638e-03 -7.62592375e-01 -6.55798197e-01 1.42057791e-01 5.85190117e-01 -1.31567251e-02 3.04675788e-01 -2.91654050e-01 -8.32409918e-01 2.77092040e-01 -3.47499698e-01 3.01175147e-01 1.38799596e+00 3.42522293e-01 -5.19631624e-01 3.38534534e-01 1.04757190e+00 2.95628402e-02 -1.52515680e-01 -2.76020497e-01 5.68514228e-01 2.92464904e-02 -2.35573202e-01 -7.91518211e-01 -8.50690484e-01 5.99197268e-01 -4.38237637e-02 4.16343927e-01 1.21852088e+00 1.81959778e-01 6.59002006e-01 4.64362621e-01 2.93729365e-01 -1.02705407e+00 -4.82334554e-01 4.61502522e-01 6.04417145e-01 -1.20435131e+00 6.97201490e-01 -1.13702500e+00 -3.93255323e-01 1.12549746e+00 3.94816309e-01 3.52053881e-01 9.72799122e-01 7.07668662e-01 1.29546061e-01 -5.68289220e-01 -8.08191419e-01 -1.85203359e-01 5.37900567e-01 3.50624561e-01 1.31254339e+00 1.34744316e-01 -1.08748937e+00 1.00648940e+00 -8.81831869e-02 3.68186057e-01 2.70449460e-01 1.15359354e+00 -7.90404081e-02 -1.64851034e+00 -1.19043328e-01 7.80327380e-01 -1.10069478e+00 -3.86580497e-01 -7.58833110e-01 8.43976259e-01 1.29003033e-01 1.26708734e+00 -6.34517491e-01 -1.99561000e-01 4.19321716e-01 6.04598485e-02 5.13053775e-01 -1.02136457e+00 -6.67655528e-01 1.19054869e-01 6.21104240e-01 -3.62292379e-01 -8.72104347e-01 -5.62367380e-01 -1.37059140e+00 -5.08756563e-02 -4.63537812e-01 4.15483028e-01 1.44799441e-01 1.23684692e+00 3.16860080e-01 8.42356503e-01 -7.79336244e-02 1.94996834e-01 -1.16163604e-01 -1.45209646e+00 -5.03512442e-01 2.78129876e-01 3.35055254e-02 -4.76642549e-01 1.82066366e-01 3.87741327e-01]
[8.732399940490723, 8.686895370483398]
6e8ab5bf-864b-4e1a-9029-d50ad38c4379
probing-script-knowledge-from-pre-trained
2204.10176
null
https://arxiv.org/abs/2204.10176v1
https://arxiv.org/pdf/2204.10176v1.pdf
Probing Script Knowledge from Pre-Trained Models
Script knowledge is critical for humans to understand the broad daily tasks and routine activities in the world. Recently researchers have explored the large-scale pre-trained language models (PLMs) to perform various script related tasks, such as story generation, temporal ordering of event, future event prediction and so on. However, it's still not well studied in terms of how well the PLMs capture the script knowledge. To answer this question, we design three probing tasks: inclusive sub-event selection, starting sub-event selection and temporal ordering to investigate the capabilities of PLMs with and without fine-tuning. The three probing tasks can be further used to automatically induce a script for each main event given all the possible sub-events. Taking BERT as a case study, by analyzing its performance on script induction as well as each individual probing task, we conclude that the stereotypical temporal knowledge among the sub-events is well captured in BERT, however the inclusive or starting sub-event knowledge is barely encoded.
['Lifu Huang', 'Mo Yu', 'Xingyu Zhang', 'Zijian Jin']
2022-04-16
null
null
null
null
['story-generation']
['natural-language-processing']
[ 1.90818071e-01 4.16905619e-02 -1.88680097e-01 -6.14719808e-01 -3.05303872e-01 -8.45935524e-01 1.13230538e+00 2.96707571e-01 -1.62942082e-01 7.84286141e-01 7.41411328e-01 -3.33877325e-01 -2.13843569e-01 -6.64552748e-01 -6.15259767e-01 -1.85011953e-01 -1.97069407e-01 7.64875233e-01 5.66996634e-01 -1.43252730e-01 2.98237234e-01 5.11589348e-01 -1.46931720e+00 8.07537675e-01 7.08620965e-01 3.41779500e-01 2.86404967e-01 7.22888052e-01 -8.36649090e-02 1.53575492e+00 -7.41501212e-01 -4.33913022e-01 -3.47119689e-01 -9.17952657e-01 -1.18349433e+00 3.39993387e-02 -5.37919402e-02 -5.44384420e-01 -3.92161995e-01 3.09371054e-01 3.34135920e-01 4.48017657e-01 5.34200907e-01 -9.94362056e-01 -8.41705054e-02 1.18015230e+00 -5.87467737e-02 4.95597512e-01 8.16261053e-01 2.21530408e-01 1.08767188e+00 -2.14957267e-01 9.03452933e-01 1.05021358e+00 6.21120751e-01 3.04051340e-01 -9.27076340e-01 -1.69106230e-01 1.04746938e-01 6.30628288e-01 -1.20173025e+00 -2.67972708e-01 6.59737825e-01 -5.19720376e-01 1.09677196e+00 4.64150637e-01 6.10270321e-01 1.60726237e+00 1.90943822e-01 1.04216361e+00 1.20544338e+00 -3.94287229e-01 1.67408362e-01 1.96775690e-01 1.94110319e-01 6.56984329e-01 -8.49234015e-02 -1.10626429e-01 -1.16644394e+00 -1.48292989e-01 9.47518349e-01 -4.72085595e-01 -6.74623176e-02 4.20401335e-01 -1.54217720e+00 7.61117995e-01 -2.65097797e-01 5.65632522e-01 -3.74504417e-01 -1.15467094e-01 6.09506547e-01 1.34224936e-01 1.47203103e-01 7.71911800e-01 -6.62333012e-01 -6.96710289e-01 -1.22066951e+00 4.04624701e-01 1.27291632e+00 8.63859892e-01 3.24110597e-01 -3.68380062e-02 -7.63536215e-01 8.61621141e-01 -1.14871830e-01 -1.53204352e-01 6.08106315e-01 -8.43549132e-01 4.97069329e-01 3.99456948e-01 2.55732208e-01 -6.80541098e-01 -5.72545767e-01 -1.16074011e-01 -4.02390718e-01 -5.82437694e-01 5.48368514e-01 -2.53431231e-01 -5.71035624e-01 1.86259151e+00 1.87010854e-01 3.16182256e-01 -4.09845293e-01 5.99560440e-01 8.13372374e-01 9.30509150e-01 2.45816499e-01 -4.67127085e-01 1.53786707e+00 -8.27030420e-01 -7.01452971e-01 -6.16048455e-01 6.04186535e-01 -5.91803432e-01 1.25336385e+00 3.76539260e-01 -1.02908432e+00 -6.06752872e-01 -8.54241729e-01 1.21332884e-01 -1.19461969e-01 2.05080986e-01 1.18751514e+00 4.00891006e-01 -6.51135027e-01 7.74187207e-01 -1.08688736e+00 -9.30896103e-01 3.21318619e-02 -6.53565750e-02 -1.36491776e-01 2.59455219e-02 -1.38053763e+00 1.13653576e+00 8.49942148e-01 -2.04946995e-01 -1.30918646e+00 -4.49060529e-01 -6.84548497e-01 -4.59221154e-02 4.52066422e-01 -5.11061966e-01 1.54744136e+00 -7.39313722e-01 -1.58498526e+00 9.59155679e-01 -3.78423959e-01 -1.77971244e-01 4.77363884e-01 -2.21947506e-01 -3.62626165e-01 1.55186936e-01 2.90768415e-01 1.57598168e-01 3.19270611e-01 -8.88279200e-01 -3.60571623e-01 -9.65030491e-02 1.56176865e-01 2.49758467e-01 6.90760463e-02 7.97225177e-01 -3.53346944e-01 -7.72396147e-01 -8.80295113e-02 -7.52500176e-01 -1.39214188e-01 -6.88497066e-01 -4.45838809e-01 -4.06019479e-01 2.65197456e-01 -9.37015116e-01 1.55800176e+00 -1.77474844e+00 -6.28685281e-02 -2.28719592e-01 -4.59818959e-01 -1.12649642e-01 5.95239997e-02 9.59186494e-01 -7.63347968e-02 -4.67603058e-02 2.41796896e-02 -1.82324983e-02 2.55480647e-01 3.36755574e-01 -5.98640084e-01 -1.58124196e-03 2.02092856e-01 8.71586680e-01 -9.37015235e-01 -7.29174852e-01 3.05865835e-02 4.96488772e-02 -3.37467581e-01 6.79384530e-01 -7.15024889e-01 5.59931755e-01 -5.13542831e-01 4.64431286e-01 -2.21060097e-01 -3.36966068e-01 4.39170957e-01 1.68449849e-01 -6.08975627e-02 9.01394427e-01 -1.13561130e+00 1.53582811e+00 -2.14717582e-01 8.22748482e-01 -5.72644830e-01 -7.84620464e-01 6.59698009e-01 6.36190414e-01 2.09556654e-01 -4.07933742e-01 -1.39143109e-01 -1.86082244e-01 -3.75145767e-03 -1.00688004e+00 4.60151643e-01 -3.56308281e-01 -4.16509032e-01 8.94935250e-01 2.65022933e-01 -9.23227742e-02 6.70891225e-01 2.93933064e-01 1.25801098e+00 6.15542054e-01 6.36433244e-01 1.61253974e-01 1.81814373e-01 2.73257136e-01 4.95552629e-01 1.12993002e+00 -9.67779756e-02 5.67211747e-01 8.40744853e-01 -3.18630248e-01 -9.40663517e-01 -1.00104702e+00 1.01924345e-01 1.65097773e+00 -2.23967478e-01 -6.82292402e-01 -7.39360929e-01 -5.25032938e-01 -5.86058497e-01 1.55296659e+00 -6.10028028e-01 4.55756523e-02 -7.24309981e-01 -8.97787809e-01 9.11220968e-01 6.89986050e-01 4.45492417e-01 -1.57028937e+00 -8.21262538e-01 4.55911636e-01 -5.55701792e-01 -1.31859481e+00 -4.73299265e-01 2.73885399e-01 -6.27763987e-01 -7.46582925e-01 -3.11837308e-02 -5.56059659e-01 1.38028741e-01 -3.36507350e-01 1.37731075e+00 -2.27625921e-01 -4.28368188e-02 3.85213643e-01 -5.38513839e-01 -3.58474761e-01 -4.42698240e-01 -2.08424535e-02 -1.96743533e-01 -8.49979371e-02 2.00566843e-01 -8.65529954e-01 -1.62174597e-01 3.65319759e-01 -9.48244274e-01 5.28444707e-01 4.26468432e-01 4.67730999e-01 2.21943506e-03 2.16815010e-01 4.13880348e-01 -8.78175199e-01 5.47878504e-01 -6.22789562e-01 -5.93959130e-02 4.30502087e-01 3.91425285e-03 -1.56256892e-02 5.45600951e-01 -7.41929591e-01 -1.59956396e+00 -1.93346262e-01 -4.46498245e-02 4.46952045e-01 -5.05910397e-01 7.97143221e-01 -2.00460240e-01 6.88215792e-01 7.73396432e-01 5.58681488e-01 -8.47848833e-01 -3.86713743e-01 1.50712937e-01 4.03581679e-01 4.65170771e-01 -1.12829208e+00 4.93290275e-01 3.48986775e-01 -4.28324819e-01 -8.80943835e-01 -1.35292029e+00 -3.03198874e-01 -6.78916991e-01 -4.26020443e-01 1.02051091e+00 -7.55477309e-01 -5.43277681e-01 2.92679846e-01 -1.37914109e+00 -8.85741711e-01 -9.40993354e-02 5.62428594e-01 -9.49230015e-01 1.71218008e-01 -9.13941681e-01 -7.28770018e-01 5.98531868e-03 -8.18413496e-01 8.48060191e-01 2.32817024e-01 -1.16704428e+00 -1.02784562e+00 1.35228872e-01 4.27629739e-01 -3.21235768e-02 2.60419428e-01 1.19722199e+00 -9.80959058e-01 -4.73928958e-01 -1.06694132e-01 2.26864785e-01 -1.43838644e-01 -2.19868138e-01 7.18347877e-02 -7.29387701e-01 2.90473402e-01 1.50319874e-01 -4.48092490e-01 4.25844401e-01 1.14738069e-01 9.81348217e-01 -3.94814849e-01 -1.29771903e-01 4.73017335e-01 1.06952167e+00 3.91880423e-01 7.29676425e-01 4.57362652e-01 4.51069802e-01 8.04549515e-01 6.21980011e-01 7.93243885e-01 5.62238097e-01 6.87159598e-01 -2.74187684e-01 6.29279315e-01 -3.30041051e-02 -6.23125136e-01 7.97776520e-01 5.80235302e-01 -1.56444773e-01 -3.79772305e-01 -1.01215005e+00 6.82174921e-01 -1.84488595e+00 -1.45215988e+00 -1.02758452e-01 1.90653801e+00 1.40278697e+00 3.21858793e-01 4.27432321e-02 -5.28501607e-02 5.79858422e-01 6.04707897e-01 -1.88465625e-01 -6.04032993e-01 -1.99457780e-01 1.82336628e-01 -9.61054191e-02 2.11935669e-01 -1.01569998e+00 1.08073866e+00 6.67846823e+00 7.89091885e-01 -7.94746578e-01 8.42717364e-02 5.49488604e-01 -3.64434831e-02 -1.09041147e-01 2.23912567e-01 -9.72793519e-01 3.22602212e-01 1.18182874e+00 -2.63821095e-01 5.95108569e-01 6.72241211e-01 6.32221401e-01 -4.27296489e-01 -1.59344757e+00 5.13662875e-01 1.78275123e-01 -1.19280839e+00 1.95589587e-01 -5.88646233e-01 6.75652623e-01 -2.46571764e-01 -7.98419058e-01 6.49937391e-01 5.44098020e-01 -1.10604203e+00 1.05924392e+00 5.12421489e-01 4.58992630e-01 -3.50278795e-01 4.36695307e-01 8.29367638e-01 -8.42662811e-01 1.75726920e-01 1.92634583e-01 -4.76676822e-01 4.24377680e-01 4.01347637e-01 -1.07309902e+00 3.75645131e-01 4.43555027e-01 3.98940563e-01 -8.06150079e-01 9.25731122e-01 -8.47252607e-01 1.39956939e+00 -2.86747366e-01 -2.01533332e-01 9.49774310e-02 -5.02561359e-03 5.51210284e-01 1.60188627e+00 1.48765340e-01 3.51601094e-01 1.91185072e-01 8.45000148e-01 3.48558784e-01 -2.84310374e-02 -4.35427874e-01 -3.60739082e-01 3.74311537e-01 8.89042020e-01 -1.10809612e+00 -6.88284576e-01 -1.81124270e-01 1.23205507e+00 2.52930880e-01 3.60814601e-01 -1.08463371e+00 -2.24758431e-01 1.76913261e-01 1.24385737e-01 1.93986267e-01 -3.97402167e-01 -5.23250759e-01 -1.31562018e+00 2.01879460e-02 -9.03285384e-01 5.91003239e-01 -1.35568893e+00 -1.03761852e+00 3.58942121e-01 5.26639462e-01 -6.64560854e-01 -5.18004000e-01 -1.51637182e-01 -1.15677047e+00 5.43825626e-01 -7.57451415e-01 -1.13492644e+00 -1.30325764e-01 5.23941278e-01 8.24423969e-01 2.44178280e-01 8.67078424e-01 1.34041579e-02 -7.58316875e-01 2.70570874e-01 -3.93214852e-01 3.20701689e-01 7.14953780e-01 -1.17384207e+00 1.79370463e-01 9.93717730e-01 2.36538231e-01 7.21252799e-01 9.94160771e-01 -9.23525631e-01 -1.03800642e+00 -9.31057155e-01 1.44654429e+00 -7.16246128e-01 8.83272529e-01 -4.94152993e-01 -9.32290077e-01 1.25419545e+00 3.04265499e-01 -6.15664601e-01 7.35467911e-01 1.44114032e-01 -3.78031552e-01 8.75303149e-02 -6.34775698e-01 9.02229667e-01 1.21482253e+00 -6.27581954e-01 -1.13689339e+00 7.05921650e-01 6.47269130e-01 -4.22596037e-01 -8.03223252e-01 1.57157615e-01 4.15730268e-01 -1.09918082e+00 7.18318105e-01 -8.59204471e-01 1.00999057e+00 -1.71666294e-01 4.90701152e-03 -1.00245035e+00 -3.64246547e-01 -8.50495160e-01 3.37555148e-02 1.76138830e+00 2.30435699e-01 -2.31061518e-01 5.01499832e-01 6.15905464e-01 -1.84814036e-01 -4.52624351e-01 -5.63778937e-01 -6.78917825e-01 -4.29449707e-01 -8.90435159e-01 4.80920643e-01 1.10350692e+00 2.62248397e-01 6.08515263e-01 -4.94627506e-01 1.83009550e-01 1.83272585e-01 3.53990138e-01 6.34078622e-01 -8.44667017e-01 -7.99404263e-01 -4.14549947e-01 1.46038413e-01 -7.52198458e-01 1.02796845e-01 -7.78431118e-01 2.14735299e-01 -1.77857709e+00 5.46863437e-01 9.99711305e-02 9.90851000e-02 5.13466835e-01 -4.26651150e-01 -2.79262781e-01 -2.64037624e-02 1.76374391e-02 -9.93027568e-01 2.62457341e-01 1.05001771e+00 2.98476011e-01 -3.01372290e-01 1.02458782e-01 -5.31036556e-01 1.03702378e+00 7.67863750e-01 -5.02849162e-01 -4.69092369e-01 -2.49244019e-01 4.20220613e-01 6.85617089e-01 3.87408853e-01 -8.83569300e-01 2.01995656e-01 -8.06098223e-01 4.52770829e-01 -5.87525845e-01 1.34915426e-01 -1.94093153e-01 4.41668272e-01 1.05740026e-01 -6.63677871e-01 -1.35937363e-01 2.77849346e-01 1.36124358e-01 -2.35689029e-01 -4.28624511e-01 4.64748144e-01 -5.70529878e-01 -9.20101523e-01 -8.85344818e-02 -8.99494290e-01 2.60332167e-01 1.10759842e+00 -2.34844252e-01 -6.39413623e-03 -5.58548212e-01 -8.28099310e-01 -1.77708101e-02 1.51594192e-01 2.56874174e-01 2.44865581e-01 -1.08885300e+00 -7.88371861e-01 -2.07578883e-01 7.19225705e-02 -2.29194507e-01 2.17934072e-01 8.18802416e-01 -5.44560790e-01 4.52979207e-01 -1.64277047e-01 -2.90531844e-01 -1.00148594e+00 2.84609616e-01 3.80156897e-02 -7.26235688e-01 -3.09240639e-01 9.39333737e-01 5.18536083e-02 -2.93878287e-01 1.73194185e-01 -1.39526978e-01 -3.56937885e-01 2.23314941e-01 4.83946115e-01 2.42994711e-01 -2.27652982e-01 -1.98783681e-01 -2.08232149e-01 1.07689299e-01 1.83348119e-01 -3.85855377e-01 1.51703727e+00 1.51021844e-02 -4.54166770e-01 1.07636774e+00 6.39127672e-01 -9.70955491e-02 -1.17282557e+00 -1.23152256e-01 5.93529642e-01 -1.32699773e-01 -5.65749466e-01 -1.08595657e+00 -2.28778556e-01 6.81649923e-01 -3.95350337e-01 3.12340528e-01 1.00703287e+00 2.65186429e-01 6.40795112e-01 2.62666047e-01 5.01167357e-01 -1.07508433e+00 2.30304345e-01 8.81813824e-01 9.47308600e-01 -8.97856891e-01 1.19790196e-01 -2.01996714e-01 -1.16004062e+00 1.03391469e+00 6.56050265e-01 1.97509408e-01 5.62727526e-02 1.14783376e-01 -3.77886504e-01 -1.40059918e-01 -1.22123301e+00 -1.35890618e-01 1.75097987e-01 2.44273722e-01 7.25258529e-01 1.47905216e-01 -4.27586228e-01 9.25951719e-01 -5.46970785e-01 6.11607283e-02 6.43594980e-01 1.00675654e+00 -2.63448507e-01 -8.30657065e-01 -4.98587936e-01 6.49350703e-01 -5.52377045e-01 -1.19040258e-01 -5.17641544e-01 6.25640213e-01 1.94080308e-01 9.21686411e-01 -1.82456240e-01 -2.50397414e-01 2.79212862e-01 5.37407458e-01 6.69674873e-01 -1.01178491e+00 -7.65484691e-01 -2.25853249e-01 7.33013451e-01 -5.61816931e-01 -1.72129735e-01 -1.14448869e+00 -1.12697566e+00 -2.21571922e-01 1.05465032e-01 1.12365402e-01 2.32516214e-01 1.26955044e+00 -1.15465134e-01 5.24593651e-01 2.79894382e-01 -7.70132899e-01 -4.39056545e-01 -1.15401828e+00 -5.19832313e-01 5.18765628e-01 -2.25973681e-01 -3.34538817e-01 -1.68396294e-01 5.25349021e-01]
[11.18035888671875, 8.829509735107422]
add04f0a-2b5d-46b4-85b1-69e69f0b4aaf
lidar-in-the-loop-hyperparameter-optimization
null
null
http://openaccess.thecvf.com//content/CVPR2023/html/Goudreault_LiDAR-in-the-Loop_Hyperparameter_Optimization_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Goudreault_LiDAR-in-the-Loop_Hyperparameter_Optimization_CVPR_2023_paper.pdf
LiDAR-in-the-Loop Hyperparameter Optimization
LiDAR has become a cornerstone sensing modality for 3D vision. LiDAR systems emit pulses of light into the scene, take measurements of the returned signal, and rely on hardware digital signal processing (DSP) pipelines to construct 3D point clouds from these measurements. The resulting point clouds output by these DSPs are input to downstream 3D vision models -- both, in the form of training datasets or as input at inference time. Existing LiDAR DSPs are composed of cascades of parameterized operations; modifying configuration parameters results in significant changes in the point clouds and consequently the output of downstream methods. Existing methods treat LiDAR systems as fixed black boxes and construct downstream task networks more robust with respect to measurement fluctuations. Departing from this approach, the proposed method directly optimizes LiDAR sensing and DSP parameters for downstream tasks. To investigate the optimization of LiDAR system parameters, we devise a realistic LiDAR simulation method that generates raw waveforms as input to a LiDAR DSP pipeline. We optimize LiDAR parameters for both 3D object detection IoU losses and depth error metrics by solving a nonlinear multi-objective optimization problem with a 0th-order stochastic algorithm. For automotive 3D object detection models, the proposed method outperforms manual expert tuning by 39.5% mean Average Precision (mAP).
['Felix Heide', 'Nicolas Robidoux', 'Mario Bijelic', 'Dominik Scheuble', 'Félix Goudreault']
2023-01-01
null
null
null
cvpr-2023-1
['hyperparameter-optimization']
['methodology']
[ 2.42344141e-01 -3.61076891e-01 3.07289660e-01 -6.18846714e-01 -8.12308669e-01 -7.47147262e-01 3.94162744e-01 1.07872277e-01 -5.06967485e-01 2.37032667e-01 -7.16739535e-01 -5.53892612e-01 4.61556576e-02 -8.49978089e-01 -7.80585110e-01 -4.34605271e-01 1.30857944e-01 7.35458374e-01 4.30826873e-01 2.27066964e-01 4.59973067e-01 1.14075327e+00 -2.05233645e+00 -3.54459524e-01 6.60816371e-01 1.39927173e+00 2.51219213e-01 9.53295112e-01 -2.51765639e-01 -1.50774583e-01 -7.10946977e-01 -4.56904098e-02 6.68475389e-01 3.76958936e-01 3.87089640e-01 -9.38326493e-02 6.52097166e-01 -4.05811250e-01 -5.60992993e-02 1.06045949e+00 8.75218570e-01 -7.84715358e-03 7.43118644e-01 -1.39857280e+00 -1.59633473e-01 1.02080666e-01 -4.95589018e-01 4.35093567e-02 -6.25723824e-02 7.02278316e-01 6.11659527e-01 -1.27949679e+00 -1.26043358e-03 1.43043864e+00 6.35310650e-01 1.21314362e-01 -1.51377690e+00 -8.96316409e-01 -2.54091769e-01 3.72396074e-02 -1.41383851e+00 -6.96818709e-01 7.98371911e-01 -6.93431675e-01 1.01484334e+00 -1.34542555e-01 4.15322036e-01 7.01640427e-01 1.75885171e-01 2.76802450e-01 7.62237132e-01 -1.17243111e-01 4.90680307e-01 2.59225875e-01 1.79716855e-01 5.93086123e-01 4.44076240e-01 7.52257943e-01 -6.06958091e-01 -1.22360818e-01 4.91562545e-01 -3.15821975e-01 3.49165350e-02 -2.51944333e-01 -6.42136991e-01 6.38349831e-01 3.22918594e-01 -5.11360109e-01 -3.70484233e-01 3.95659208e-01 -7.53311813e-02 2.09986866e-01 2.49057814e-01 5.99977523e-02 -1.59859508e-01 1.21853933e-01 -1.03775966e+00 1.28349423e-01 6.59195006e-01 1.05111182e+00 9.78806376e-01 3.33080441e-01 -5.14757335e-02 4.56539333e-01 9.63053405e-01 1.40141976e+00 -2.10125476e-01 -1.12986207e+00 4.06487554e-01 5.11855245e-01 1.41163871e-01 -7.70712614e-01 -3.08132738e-01 -2.80622751e-01 -2.99342781e-01 8.49151134e-01 7.74401352e-02 -1.24535412e-01 -1.05708420e+00 1.21369720e+00 4.58519191e-01 2.58789361e-01 -1.11065708e-01 9.55546916e-01 5.73803604e-01 6.51187778e-01 -2.85119683e-01 -8.43631104e-02 9.67953920e-01 -2.80873645e-02 -4.00504231e-01 -3.47929806e-01 1.71651691e-02 -9.70558584e-01 7.36553550e-01 4.87533510e-01 -1.19641566e+00 -8.69188964e-01 -1.37544215e+00 -1.12925462e-01 -2.06019983e-01 2.61261463e-01 -7.54007921e-02 8.28637183e-01 -1.04815042e+00 5.23730516e-01 -8.22304785e-01 5.39834797e-02 3.02755952e-01 5.08738697e-01 6.18350744e-01 6.18920736e-02 -5.82744181e-01 9.36280370e-01 -1.04659364e-01 2.72020727e-01 -1.13926589e+00 -1.28931832e+00 -6.14552677e-01 -1.01439871e-01 2.99985558e-01 -6.47286654e-01 1.37414265e+00 2.87553724e-02 -1.73542333e+00 7.65994668e-01 -2.41611004e-01 -5.91242135e-01 4.79985446e-01 -1.49587288e-01 -6.08143806e-02 1.41198682e-02 9.38949361e-03 9.49256301e-01 1.43276346e+00 -1.32472873e+00 -7.90549695e-01 -5.09669721e-01 -4.46470946e-01 -1.82879165e-01 4.15987760e-01 -3.70962262e-01 -3.94117832e-01 1.50077954e-01 1.21168144e-01 -7.48182178e-01 -2.91919857e-01 5.58555067e-01 -2.78815091e-01 2.09503938e-02 1.06212974e+00 9.90485102e-02 4.15992230e-01 -2.18485856e+00 -5.15047669e-01 2.52807081e-01 -3.04923896e-02 2.63659716e-01 -1.27655327e-01 9.25334729e-03 3.02393407e-01 -2.05995038e-01 -1.90194800e-01 -7.66430736e-01 1.86255574e-01 1.16936103e-01 -6.85036421e-01 4.53151673e-01 5.49586236e-01 6.14177227e-01 -6.36139393e-01 -4.58979666e-01 7.13198602e-01 5.49404323e-01 -4.87080961e-01 1.52524248e-01 -3.56058866e-01 2.27496803e-01 -3.85211378e-01 9.92868423e-01 9.18966115e-01 2.44052812e-01 -6.05465174e-01 -3.89262527e-01 -5.52769601e-01 2.45675668e-01 -1.31349504e+00 1.34282172e+00 -7.22869635e-01 8.06113124e-01 5.54498732e-01 -6.49231315e-01 1.57594836e+00 -4.00757641e-01 4.20271695e-01 -3.59100401e-01 4.74361449e-01 1.98594585e-01 -3.22967291e-01 -3.41211826e-01 7.29067802e-01 -2.16769755e-01 7.61974528e-02 1.18373007e-01 -2.52367049e-01 -1.22953045e+00 -2.39241719e-01 -1.27134189e-01 1.02396345e+00 2.40042005e-02 -3.07171732e-01 8.23321864e-02 4.35311079e-01 2.75653392e-01 2.94021189e-01 7.26492286e-01 -8.43113437e-02 4.24887747e-01 -3.46093439e-02 5.21726087e-02 -9.38596845e-01 -1.59413183e+00 -3.56753290e-01 3.55038494e-01 7.81195462e-02 2.50961512e-01 -2.48738647e-01 6.40764683e-02 8.62320662e-01 1.23579681e+00 1.93008259e-01 -2.92782456e-01 -2.09527284e-01 -3.02880675e-01 6.07919514e-01 2.62244821e-01 1.85138553e-01 -5.47230065e-01 -1.14602876e+00 3.05827290e-01 6.06077611e-01 -1.27894866e+00 -9.80912745e-02 5.85214674e-01 -1.02406144e+00 -7.99120903e-01 -2.82020289e-02 -9.83617008e-02 4.35955137e-01 5.67590177e-01 8.80264044e-01 -2.88487464e-01 -7.08417952e-01 7.21730113e-01 2.89588034e-01 -1.17158616e+00 -3.22060347e-01 -4.36321646e-01 4.79769498e-01 -7.45957568e-02 4.94986892e-01 -7.52847552e-01 -2.20984384e-01 1.37042031e-01 -4.35325980e-01 -6.17260456e-01 5.93319237e-01 1.58180624e-01 8.49878728e-01 1.13692982e-02 6.78522214e-02 -1.25256300e-01 5.43281376e-01 -1.77027181e-01 -1.84333575e+00 -4.62565035e-01 -8.06466043e-01 9.68096778e-02 4.21579391e-01 -2.92324096e-01 -6.73716962e-01 5.95478117e-01 2.26246625e-01 -1.44867206e+00 -8.23032632e-02 1.04222469e-01 -2.21289471e-01 -2.42839873e-01 7.77665377e-01 5.63403443e-02 3.06110948e-01 -3.02977592e-01 2.73387015e-01 9.04533803e-01 8.49691212e-01 -7.65163004e-01 1.36052585e+00 6.95230901e-01 6.10547543e-01 -1.38979089e+00 -6.54332161e-01 -4.18127716e-01 -6.27340555e-01 -5.94700277e-01 5.94206691e-01 -1.04525876e+00 -1.25808251e+00 2.57913828e-01 -1.36646283e+00 -1.93378806e-01 -4.17936504e-01 5.36750376e-01 -4.84336346e-01 2.44991500e-02 1.32127985e-01 -1.34852302e+00 -6.02549091e-02 -1.27924454e+00 1.51676691e+00 1.30684167e-01 2.15298980e-01 -3.92803878e-01 -2.18284279e-01 2.67686218e-01 5.65674156e-02 8.16980228e-02 7.04052329e-01 3.89415175e-02 -1.15817428e+00 -3.04367244e-01 -4.01211232e-01 5.64839184e-01 -2.82974958e-01 5.96155882e-01 -1.45779467e+00 7.25503042e-02 2.44167015e-01 3.84843312e-02 6.60237014e-01 8.03877950e-01 8.69305253e-01 4.98989493e-01 -4.37221080e-01 6.63007498e-01 1.53593743e+00 2.03846246e-01 1.98113203e-01 -1.35161534e-01 2.53811061e-01 5.81309140e-01 9.17537987e-01 5.10658681e-01 2.18082637e-01 5.62689483e-01 8.25069189e-01 4.38340724e-01 9.19200014e-03 -1.60735682e-01 5.99341393e-01 3.99495453e-01 4.65813965e-01 -5.50550632e-02 -8.44764054e-01 4.48524237e-01 -1.32139337e+00 -6.98296130e-01 -4.55926329e-01 2.45513678e+00 4.70614463e-01 4.93573487e-01 -2.57450789e-01 6.18566684e-02 7.15043783e-01 -2.01904356e-01 -9.98580158e-01 -4.49084789e-01 4.90493298e-01 5.06303549e-01 1.09722865e+00 7.21356750e-01 -5.26394486e-01 6.94267929e-01 5.72211981e+00 2.74860591e-01 -1.33346617e+00 -6.39524534e-02 -2.03452513e-01 -5.46361864e-01 -2.80316919e-01 -9.64500830e-02 -1.44932783e+00 4.10820872e-01 1.26402688e+00 -1.83082789e-01 3.31199467e-01 7.97662735e-01 9.09214795e-01 -4.70139027e-01 -1.32562971e+00 1.15899920e+00 -3.00549597e-01 -1.18580461e+00 -7.15651661e-02 2.85384238e-01 -1.46699501e-02 3.78165007e-01 3.32455903e-01 1.74257010e-01 3.56111348e-01 -6.63191795e-01 1.04258835e+00 5.88677347e-01 8.92729402e-01 -6.09937549e-01 1.95042491e-01 5.17832041e-01 -1.08006561e+00 -4.66779582e-02 -7.56806076e-01 -1.43642023e-01 5.11701941e-01 1.07982349e+00 -1.42035151e+00 8.04469660e-02 5.52719712e-01 2.87328511e-01 -1.68677106e-01 1.04988468e+00 -3.62743616e-01 5.48507154e-01 -9.21940088e-01 -3.22094917e-01 4.87734936e-02 -3.63650352e-01 1.02779472e+00 1.00182796e+00 5.99022567e-01 1.57981962e-01 1.95548981e-01 1.45344412e+00 1.26897261e-01 -6.81190372e-01 -8.45492125e-01 4.31039594e-02 1.05011427e+00 1.23304200e+00 -2.72493601e-01 7.87850246e-02 -1.06805153e-01 9.97176468e-02 -3.46566528e-01 1.24656908e-01 -8.64690840e-01 -3.53785187e-01 1.29046726e+00 2.67875105e-01 4.60505933e-01 -6.36147559e-01 -5.92320561e-01 -3.84273618e-01 6.06894046e-02 -5.10993898e-02 -2.74200112e-01 -1.05101979e+00 -1.13165700e+00 -7.71621838e-02 -6.35116873e-03 -1.30135286e+00 -1.01887643e-01 -9.10134912e-01 -5.33701837e-01 1.04623270e+00 -1.92918789e+00 -6.69367850e-01 -5.19831002e-01 4.91041899e-01 4.70297784e-01 9.18814912e-02 2.52235472e-01 3.80737424e-01 -2.98206419e-01 3.59286927e-02 -2.13081628e-01 -4.24373597e-01 6.96078539e-01 -9.91788983e-01 5.19895792e-01 8.41694891e-01 -1.48173362e-01 1.68644488e-01 8.99786890e-01 -7.27031291e-01 -1.83946383e+00 -1.36237442e+00 5.20574689e-01 -5.17057657e-01 7.85207391e-01 -4.23960835e-01 -5.11792660e-01 2.75477678e-01 -2.69196212e-01 1.35551006e-01 1.00282766e-01 -4.88030970e-01 -6.43666610e-02 -6.08848870e-01 -1.37677109e+00 1.78127274e-01 1.06371605e+00 -4.87203687e-01 -7.14398026e-01 9.16994959e-02 7.66502559e-01 -3.96912634e-01 -5.72533190e-01 2.92152494e-01 2.82233357e-01 -8.27124596e-01 1.25712156e+00 1.91769674e-02 1.19921587e-01 -8.42645943e-01 -3.08497518e-01 -1.13428354e+00 2.27219358e-01 -6.48320317e-01 2.89205611e-02 1.14884794e+00 3.46519530e-01 -6.46912456e-01 7.15253115e-01 3.86886001e-01 -5.80664217e-01 -3.19101699e-02 -1.10129035e+00 -9.33304131e-01 -3.89716327e-01 -1.16626143e+00 2.86532730e-01 1.09596975e-01 -8.17978740e-01 5.52796125e-01 4.97505784e-01 1.07494736e+00 1.47415125e+00 2.53713340e-01 1.04510307e+00 -1.56906509e+00 1.38593778e-01 -5.09461105e-01 -4.37301606e-01 -1.18025851e+00 -1.06258004e-03 -7.93859720e-01 6.61124408e-01 -1.12171030e+00 -6.96472287e-01 -6.44976258e-01 2.76085585e-01 7.95206875e-02 2.88829446e-01 -9.12088677e-02 3.81672472e-01 5.99217601e-02 2.60040581e-01 4.37712431e-01 6.26937568e-01 -2.76297688e-01 -4.35609788e-01 5.69051027e-01 -1.46418780e-01 6.11753702e-01 3.98677766e-01 -6.47822917e-01 -4.20460254e-01 -7.58017778e-01 2.37116396e-01 5.84515259e-02 7.68443525e-01 -1.42051280e+00 6.85147703e-01 -1.25351503e-01 3.16451669e-01 -1.38047802e+00 8.55344236e-01 -1.11149538e+00 8.24812055e-03 4.01591450e-01 2.27141619e-01 -1.77226409e-01 3.56397539e-01 5.02161801e-01 1.04721427e-01 -3.06691110e-01 1.10383999e+00 1.70676470e-01 -5.38984835e-01 2.45026037e-01 -4.31634068e-01 -1.81870773e-01 9.15104091e-01 -6.23315334e-01 2.54700687e-02 -8.65468010e-02 -5.04043102e-01 4.30706024e-01 3.18256587e-01 2.12492719e-01 8.43204677e-01 -9.26854253e-01 -6.24079406e-01 3.73908222e-01 -7.89905712e-02 5.95275044e-01 -3.18884522e-01 5.56487679e-01 -1.81101531e-01 4.26562041e-01 9.23007950e-02 -1.35009408e+00 -1.05348074e+00 2.85775244e-01 4.44855958e-01 6.04920566e-01 -2.37459868e-01 8.65345359e-01 -3.02241355e-01 -5.24058700e-01 2.97423512e-01 -8.69310021e-01 4.85530704e-01 3.47898543e-01 2.14282006e-01 4.57384855e-01 2.32859850e-01 -8.63223895e-02 -3.88662875e-01 8.80286276e-01 6.22722745e-01 -2.91299880e-01 1.28313291e+00 -2.17228562e-01 4.07313406e-01 7.01984525e-01 9.43572700e-01 3.97172719e-02 -1.50618374e+00 -3.54840644e-02 -1.06274024e-01 -4.52354580e-01 6.28669024e-01 -3.87748957e-01 -8.27524304e-01 1.22240078e+00 7.73508608e-01 -5.40043041e-02 8.52203608e-01 -7.47522935e-02 6.19840562e-01 6.11133635e-01 5.57339907e-01 -1.09285307e+00 -2.64693379e-01 6.03735626e-01 5.17675340e-01 -1.06049204e+00 1.64252982e-01 -1.54161140e-01 -1.71171293e-01 1.13270605e+00 3.55777830e-01 -3.22457850e-01 7.82635987e-01 8.45098317e-01 1.86411634e-01 -3.32349747e-01 -7.14612544e-01 -3.96040559e-01 1.74975116e-02 6.67339563e-01 -4.15068448e-01 -1.55606866e-01 3.89861852e-01 1.14917435e-01 -2.93816626e-01 8.30211192e-02 4.68497276e-01 6.41714692e-01 -9.71683800e-01 -6.21075869e-01 -7.77070522e-01 3.43752414e-01 3.60780656e-01 1.53944701e-01 -3.52551550e-01 6.43650770e-01 1.42497659e-01 1.05967414e+00 3.80207807e-01 -3.88627291e-01 8.04279685e-01 4.34589535e-02 4.69760269e-01 -7.76365757e-01 -3.03356260e-01 -4.80902493e-02 -8.89167711e-02 -5.74223876e-01 -7.57680610e-02 -9.82763231e-01 -1.34604001e+00 -1.49054304e-01 -3.97742808e-01 -3.23702604e-01 1.48610604e+00 6.42990947e-01 5.34459889e-01 4.27798897e-01 9.37244177e-01 -1.32731664e+00 -1.11196613e+00 -4.98927265e-01 -3.55055809e-01 -7.06081331e-01 4.42077100e-01 -7.84616530e-01 -7.46340871e-01 -6.49888515e-02]
[7.784411430358887, -2.6574208736419678]
cad4a705-a4a1-48e7-9ba6-7ab1148bfee8
task-oriented-feature-distillation
null
null
http://proceedings.neurips.cc/paper/2020/hash/a96b65a721e561e1e3de768ac819ffbb-Abstract.html
http://proceedings.neurips.cc/paper/2020/file/a96b65a721e561e1e3de768ac819ffbb-Paper.pdf
Task-Oriented Feature Distillation
Feature distillation, a primary method in knowledge distillation, always leads to significant accuracy improvements. Most existing methods distill features in the teacher network through a manually designed transformation. In this paper, we propose a novel distillation method named task-oriented feature distillation (TOFD) where the transformation is convolutional layers that are trained in a data-driven manner by task loss. As a result, the task-oriented information in the features can be captured and distilled to students. Moreover, an orthogonal loss is applied to the feature resizing layer in TOFD to improve the performance of knowledge distillation. Experiments show that TOFD outperforms other distillation methods by a large margin on both image classification and 3D classification tasks. Codes have been released in Github.
['Chenglong Bao', 'Kaisheng Ma', 'Zuoqiang Shi', 'Yukang Shi', 'Linfeng Zhang']
2020-12-01
null
null
null
neurips-2020-12
['3d-classification']
['computer-vision']
[ 3.07188910e-02 1.89904884e-01 -8.35578069e-02 -5.94073117e-01 -4.78261024e-01 -4.85979438e-01 7.12004185e-01 7.93097392e-02 -5.22416115e-01 6.84929252e-01 1.43538713e-01 -2.47800097e-01 -4.43593003e-02 -8.79453123e-01 -8.39145422e-01 -7.18157828e-01 5.29341698e-01 7.90967271e-02 1.49341106e-01 -8.66186917e-02 1.95305124e-02 5.53987622e-01 -1.24652433e+00 -4.76451479e-02 1.20190513e+00 1.02794242e+00 1.73486546e-01 2.87069380e-01 -1.86157718e-01 7.27327228e-01 -4.02092308e-01 -4.10346478e-01 4.99022484e-01 -3.87599617e-01 -7.22336650e-01 -2.40478486e-01 5.10053992e-01 -4.45184261e-01 -5.15644610e-01 9.85541821e-01 6.34996176e-01 3.20787311e-01 7.30267346e-01 -1.10769093e+00 -9.26716924e-01 7.58674264e-01 -5.01075387e-01 -4.61196415e-02 2.05047697e-01 3.06744371e-02 7.63624668e-01 -1.23010170e+00 3.35047871e-01 1.22287762e+00 5.15211761e-01 5.22573948e-01 -1.34551084e+00 -1.05046690e+00 1.10903703e-01 2.83898056e-01 -1.45632648e+00 9.37726051e-02 1.22031498e+00 -5.68392575e-01 5.75240433e-01 4.67682369e-02 8.26099277e-01 7.61875510e-01 -7.32101277e-02 1.10207522e+00 1.21485603e+00 -5.31313181e-01 -1.70379892e-01 4.57237720e-01 1.48710664e-02 8.05541873e-01 3.90099972e-01 2.05619529e-01 -4.01585013e-01 3.41855824e-01 5.97413421e-01 1.76499590e-01 -2.57331222e-01 -7.15872109e-01 -9.82748687e-01 8.79604101e-01 9.59670186e-01 4.33359817e-02 -2.25570768e-01 2.48271339e-02 3.50154877e-01 6.14677072e-01 7.35050559e-01 6.26586735e-01 -5.11209488e-01 -8.88544992e-02 -7.75127769e-01 3.48315358e-01 4.37723428e-01 9.70481396e-01 1.07209516e+00 1.08531684e-01 -5.00154018e-01 7.03956246e-01 1.70733511e-01 5.19618869e-01 8.13060880e-01 -5.09061515e-01 4.41056699e-01 8.79776299e-01 -2.93391615e-01 -9.29202139e-01 -1.84629485e-01 -5.20781398e-01 -7.01796591e-01 2.52512664e-01 1.89727098e-02 -4.02488232e-01 -1.10913789e+00 1.78293812e+00 6.03702545e-01 2.71378458e-01 5.99019676e-02 5.90323925e-01 1.12601161e+00 4.35945123e-01 -1.26125544e-01 2.83880025e-01 1.11942613e+00 -1.05874622e+00 -5.72472870e-01 7.49490485e-02 7.92661488e-01 -6.98031127e-01 1.21280062e+00 3.68064374e-01 -7.10735261e-01 -7.23644078e-01 -1.10100377e+00 -4.74282503e-01 -4.97113883e-01 8.11285526e-02 5.24451911e-01 4.47202146e-01 -7.48826027e-01 5.55740297e-01 -7.28267074e-01 -3.43771316e-02 7.52271414e-01 2.52319843e-01 -3.95944983e-01 -1.91611513e-01 -1.04433692e+00 8.25685561e-01 7.21032739e-01 -3.26180965e-01 -9.57121670e-01 -1.05260122e+00 -1.13499129e+00 2.18480498e-01 2.46956766e-01 -6.25888228e-01 1.40369165e+00 -7.05487311e-01 -1.69903207e+00 6.54365242e-01 2.60371417e-01 -3.37029725e-01 7.17486143e-01 -4.49824721e-01 1.67249829e-01 -9.63943154e-02 -8.30045864e-02 8.98246944e-01 8.61118555e-01 -9.33799624e-01 -7.08300114e-01 -1.14860639e-01 8.06140304e-02 4.64099705e-01 -7.30487347e-01 -6.33226752e-01 -1.59596100e-01 -8.23957205e-01 -8.05182382e-02 -8.48327756e-01 -1.52473688e-01 1.00841686e-01 -4.75794107e-01 -5.45718789e-01 9.22646403e-01 -4.73684937e-01 1.12882161e+00 -2.23973274e+00 9.36474800e-02 6.62534907e-02 3.93101364e-01 5.87900698e-01 -2.24746346e-01 1.21468101e-02 -2.03620940e-01 -1.29529491e-01 -7.70950615e-02 -3.15475523e-01 3.16785648e-02 1.95528477e-01 -3.39278966e-01 2.24063188e-01 2.86094338e-01 1.07388902e+00 -1.06941104e+00 -3.64313006e-01 3.77846390e-01 6.27913177e-01 -8.60964954e-01 2.92882383e-01 -1.10692836e-01 5.22388339e-01 -6.67012751e-01 2.50873506e-01 8.20617497e-01 5.98471612e-02 -2.96746075e-01 -1.49177074e-01 -1.04998745e-01 4.55509365e-01 -7.54535854e-01 1.92203891e+00 -7.57342041e-01 6.28852606e-01 -6.16615653e-01 -1.07331324e+00 1.12893021e+00 2.70114481e-01 3.46496642e-01 -6.23437464e-01 2.45346472e-01 1.61492363e-01 -8.28310400e-02 -2.61441678e-01 5.19078910e-01 -8.89977142e-02 -6.97455704e-02 2.71013200e-01 2.35510319e-01 -6.59981966e-01 -1.29968738e-02 1.42598972e-01 7.72109330e-01 2.42633656e-01 2.08249360e-01 -1.41726851e-01 5.19358575e-01 -1.37470275e-01 6.45159304e-01 5.57272732e-01 -4.73928526e-02 4.78408307e-01 3.13250244e-01 -4.90714371e-01 -8.73922288e-01 -9.04482722e-01 -3.33383024e-01 8.16416144e-01 -9.87348706e-02 -3.92993420e-01 -7.52074718e-01 -1.21143878e+00 3.72851849e-01 7.15628803e-01 -8.88355315e-01 -7.16706753e-01 -3.12973857e-01 -2.14932054e-01 1.97882190e-01 6.79782212e-01 9.22908723e-01 -7.90528178e-01 -2.78776228e-01 4.40582111e-02 1.73789307e-01 -9.26591456e-01 -7.28579581e-01 3.67246687e-01 -8.40651333e-01 -9.18284833e-01 -9.78091776e-01 -9.28580403e-01 1.01927292e+00 4.39172298e-01 7.19442844e-01 -2.48323560e-01 -2.39177868e-01 6.84623569e-02 -4.13168907e-01 -8.44008744e-01 3.95864323e-02 3.86265010e-01 -2.60197800e-02 -1.76684186e-01 7.55114138e-01 -5.69646120e-01 -5.94293594e-01 -2.53208950e-02 -8.37333798e-01 2.97344953e-01 7.32416511e-01 1.08196366e+00 6.61904633e-01 1.08510204e-01 5.03144145e-01 -1.00412500e+00 7.02650189e-01 -3.15154195e-01 -5.60238242e-01 -1.98982581e-02 -9.48575497e-01 4.77453828e-01 7.37272382e-01 -6.12878323e-01 -1.05942941e+00 1.37079835e-01 -1.10137187e-01 -7.14813352e-01 -8.35012272e-02 4.68585342e-01 -1.48812130e-01 -3.23161274e-01 6.30462408e-01 3.56786996e-01 -4.64593954e-02 -8.27427626e-01 6.89486027e-01 5.04815817e-01 3.16919595e-01 -6.12746179e-01 1.17347157e+00 1.10444352e-01 -6.29572868e-02 -4.68043000e-01 -1.32462263e+00 -6.69384971e-02 -5.88624895e-01 2.40684718e-01 6.63041353e-01 -9.58782554e-01 -4.42079246e-01 6.55813038e-01 -8.14209938e-01 -4.39241201e-01 -8.54133964e-01 8.58334482e-01 -3.00935328e-01 -1.45528261e-02 -2.44957700e-01 -1.19311459e-01 -4.65730309e-01 -1.09060502e+00 6.11600339e-01 6.08477056e-01 1.32899314e-01 -9.24801290e-01 1.44955352e-01 1.48581311e-01 5.42909920e-01 2.02038825e-01 8.66191089e-01 -9.37241733e-01 -2.90072203e-01 -2.65177876e-01 -3.83246660e-01 7.43658423e-01 4.92102057e-01 -2.75163651e-01 -1.04541123e+00 -2.93647110e-01 -1.26049280e-01 -5.81280291e-01 1.12335849e+00 2.57281303e-01 1.46967208e+00 -4.30803478e-01 -2.08256096e-01 9.09997463e-01 1.02711642e+00 1.94802418e-01 2.25141317e-01 3.14488411e-01 9.27921057e-01 2.85322309e-01 5.94002903e-01 3.80071729e-01 5.11135876e-01 4.26882803e-01 1.98878825e-01 -2.82730490e-01 -5.24730325e-01 -6.42821252e-01 8.60489532e-02 8.65449131e-01 1.83632538e-01 1.91440433e-01 -7.06752956e-01 6.46745384e-01 -1.62037659e+00 -5.40833056e-01 2.37003803e-01 2.13836789e+00 1.46177518e+00 1.37917653e-01 -1.48185313e-01 1.39169157e-01 4.92240816e-01 -6.85195774e-02 -7.04796195e-01 -3.30682218e-01 2.74089128e-01 3.75048876e-01 3.31511825e-01 5.26726067e-01 -1.05784273e+00 1.09794819e+00 5.49406290e+00 9.15122509e-01 -1.33436978e+00 2.80026742e-03 4.75203723e-01 -1.94376528e-01 -4.68866885e-01 -1.27574891e-01 -8.94959033e-01 5.17763197e-01 4.27031279e-01 -4.59740341e-01 1.99030135e-02 1.05594325e+00 1.00368420e-02 1.74559206e-01 -1.09690976e+00 9.51061666e-01 -3.31386924e-02 -9.87005532e-01 1.94174349e-01 -3.67089361e-02 1.13156772e+00 -1.99981242e-01 4.00434941e-01 7.35772729e-01 5.56483567e-01 -8.58268440e-01 4.62207049e-01 4.75223869e-01 8.70274603e-01 -1.06445825e+00 5.78122199e-01 5.47366850e-02 -1.10792148e+00 9.27664638e-02 -4.22041059e-01 -4.90663806e-03 -2.55832076e-01 1.04578543e+00 -1.15241671e+00 4.81975704e-01 5.72849512e-01 9.31208491e-01 -7.79784322e-01 1.19181216e+00 -8.00026953e-01 6.82784855e-01 -1.52095661e-01 2.19396129e-02 3.04705590e-01 -7.45868264e-03 3.10485929e-01 9.67778683e-01 4.61103320e-01 -6.82018921e-02 2.00923115e-01 8.05505276e-01 -4.45602030e-01 2.77160928e-02 -7.67803311e-01 2.55959854e-02 5.06402493e-01 1.32695818e+00 -2.08949059e-01 -2.78238833e-01 -4.12954122e-01 8.24249804e-01 4.51657385e-01 1.87534958e-01 -6.69733346e-01 -1.19663513e+00 6.47597492e-01 -4.77152504e-02 4.52765107e-01 -6.74326122e-02 -7.40785822e-02 -1.18593538e+00 3.64308879e-02 -4.93852407e-01 1.60665110e-01 -4.78002191e-01 -1.18399155e+00 4.75327939e-01 8.71690214e-02 -1.23338377e+00 -8.19737092e-02 -5.11287153e-01 -6.25921965e-01 8.97686124e-01 -2.05561972e+00 -1.09600282e+00 -6.39628828e-01 7.08729506e-01 2.42758557e-01 -1.15482859e-01 5.26093245e-01 3.19419205e-01 -5.85912347e-01 1.01928115e+00 2.04149842e-01 3.03390533e-01 9.74968493e-01 -1.55879223e+00 2.88495660e-01 6.39636397e-01 4.41021323e-02 4.17148352e-01 3.79173726e-01 -3.61829579e-01 -9.54265714e-01 -1.29002583e+00 8.97613049e-01 -3.51773910e-02 3.46667737e-01 -4.05491024e-01 -9.48833883e-01 7.22054362e-01 1.63176373e-01 2.35564575e-01 6.55602932e-01 -3.35278511e-02 -5.49144328e-01 -4.04356211e-01 -1.23095560e+00 4.02273715e-01 6.48004711e-01 -5.75480998e-01 -7.96660602e-01 2.56198794e-01 1.06379187e+00 -5.24231970e-01 -8.44328582e-01 4.74142671e-01 3.83298486e-01 -4.46955442e-01 7.77185380e-01 -6.91487193e-01 3.92456412e-01 -5.69179542e-02 2.05141261e-01 -1.82049239e+00 -3.10586929e-01 -5.69542229e-01 -3.07788670e-01 1.23932445e+00 2.15269566e-01 -7.34159887e-01 8.53085935e-01 4.37952548e-01 -2.22173482e-01 -1.01203167e+00 -6.65068328e-01 -1.00390065e+00 4.66944516e-01 -5.23403063e-02 8.77161503e-01 1.21390772e+00 -6.06692396e-02 3.94110024e-01 -1.57034457e-01 -3.27425718e-01 5.25028288e-01 1.59772739e-01 8.53446960e-01 -1.44705951e+00 -3.64607237e-02 -4.07637894e-01 -4.51619178e-01 -1.42408788e+00 1.11162044e-01 -1.25140679e+00 -9.48976800e-02 -1.46709192e+00 2.67102122e-01 -6.53212965e-01 -4.51564401e-01 1.04438591e+00 -4.96460140e-01 1.20023660e-01 5.14842980e-02 -2.51321524e-01 -2.28338122e-01 1.10750854e+00 1.75519252e+00 -1.45332873e-01 -2.95702219e-01 -4.67246212e-02 -9.29530561e-01 5.84908783e-01 9.01691198e-01 -5.49263537e-01 -6.55390263e-01 -5.26248693e-01 -7.29677603e-02 -5.08914232e-01 1.25857249e-01 -8.39581966e-01 5.13447411e-02 -2.88959235e-01 5.36339641e-01 -4.59779680e-01 1.80790871e-01 -8.94873083e-01 -5.14000893e-01 6.06773973e-01 -5.29487908e-01 -3.00972313e-01 2.61111140e-01 2.48570532e-01 -2.62628615e-01 -3.18284154e-01 8.12062740e-01 2.03899920e-01 -4.55926389e-01 5.33903122e-01 1.61081508e-01 2.20235854e-01 1.15223587e+00 -7.30226636e-02 -2.33358026e-01 -2.27550134e-01 -4.98811513e-01 3.40451509e-01 4.75867465e-02 5.01011252e-01 6.10454500e-01 -1.71850657e+00 -6.88486814e-01 4.87693310e-01 8.44632536e-02 6.24357462e-01 3.72215509e-02 7.50460029e-01 -3.43864053e-01 5.72669685e-01 -2.67093688e-01 -2.84749269e-01 -1.05978155e+00 6.01650298e-01 1.18321963e-01 -3.19259793e-01 -6.49196565e-01 1.15294707e+00 4.48714942e-01 -7.37596571e-01 4.28763300e-01 -6.38495326e-01 -9.03101265e-02 -1.04170665e-03 5.63603699e-01 1.57951847e-01 8.05696175e-02 -1.92567870e-01 -8.34291894e-03 4.39047456e-01 -5.68121493e-01 3.08959484e-01 1.39160264e+00 8.86601955e-02 4.37415570e-01 6.03709854e-02 1.49986744e+00 -9.19948891e-02 -1.66002727e+00 -7.19858170e-01 -2.79789478e-01 -5.49656272e-01 3.44862968e-01 -7.69348264e-01 -1.38509405e+00 1.10501087e+00 6.43255055e-01 -9.63897035e-02 1.20174491e+00 -1.91397563e-01 7.97137797e-01 6.11270130e-01 -6.95463410e-03 -8.15693617e-01 4.03388917e-01 6.51418984e-01 7.60809660e-01 -1.24646521e+00 -3.43255140e-02 -1.92839831e-01 -3.92140031e-01 9.04527664e-01 1.04440045e+00 -1.76666141e-01 8.09706688e-01 8.70152935e-02 -1.11000910e-01 7.29267076e-02 -5.26041567e-01 -1.58424810e-01 5.39197981e-01 5.69153786e-01 4.71051335e-01 -4.41414230e-02 -3.20629001e-01 7.27320373e-01 -4.36857343e-01 2.35305186e-02 3.00861210e-01 1.03178215e+00 -5.90568364e-01 -1.27458119e+00 4.91726622e-02 4.21023428e-01 -1.43993691e-01 -1.64704382e-01 -3.39988232e-01 7.12446868e-01 2.95975238e-01 4.64484036e-01 -1.35753423e-01 -6.23334587e-01 4.15989488e-01 1.01215549e-01 5.66749692e-01 -8.47565234e-01 -5.24052501e-01 -3.52752417e-01 -4.45816875e-01 -3.43076885e-01 9.32333991e-02 -2.32465059e-01 -1.34245467e+00 -1.54108495e-01 -5.82391202e-01 4.11420435e-01 6.06013715e-01 8.20528746e-01 4.55757052e-01 8.91440690e-01 8.70068014e-01 -6.09728575e-01 -6.38125598e-01 -1.05915225e+00 -4.86196548e-01 4.62329537e-01 3.83536071e-01 -9.56062138e-01 -2.57207751e-01 -8.86057019e-02]
[9.443382263183594, 3.4066965579986572]
d2846b4a-def2-4eaf-aa83-9857dc6b2d00
tsa-inf-at-semeval-2017-task-4-an-ensemble-of
null
null
https://aclanthology.org/S17-2135
https://aclanthology.org/S17-2135.pdf
TSA-INF at SemEval-2017 Task 4: An Ensemble of Deep Learning Architectures Including Lexicon Features for Twitter Sentiment Analysis
This paper describes the submission of team TSA-INF to SemEval-2017 Task 4 Subtask A. The submitted system is an ensemble of three varying deep learning architectures for sentiment analysis. The core of the architecture is a convolutional neural network that performs well on text classification as is. The second subsystem is a gated recurrent neural network implementation. Additionally, the third system integrates opinion lexicons directly into a convolution neural network architecture. The resulting ensemble of the three architectures achieved a top ten ranking with a macro-averaged recall of 64.3{\%}. Additional results comparing variations of the submitted system are not conclusive enough to determine a best architecture, but serve as a benchmark for further implementations.
['Jasper Friedrichs', 'Amit Ajit Deshmane']
2017-08-01
null
null
null
semeval-2017-8
['twitter-sentiment-analysis']
['natural-language-processing']
[-9.63199809e-02 1.32466525e-01 1.66358098e-01 -6.53859138e-01 -6.19774878e-01 -5.02669632e-01 6.72642052e-01 2.60489970e-01 -7.25781143e-01 4.31156516e-01 3.58282715e-01 -6.25451505e-01 2.85471588e-01 -6.08595312e-01 -4.43648845e-01 -4.61059451e-01 2.62844592e-01 6.10393584e-01 -1.76106356e-02 -9.45912123e-01 2.70517617e-01 1.55684769e-01 -1.26733756e+00 1.09614873e+00 2.04252839e-01 1.41252196e+00 -4.82410520e-01 9.25666094e-01 -2.13435218e-02 1.10846853e+00 -8.92338634e-01 -7.25579560e-01 1.61721915e-01 -2.87351850e-02 -9.73179042e-01 -4.40348357e-01 4.92157519e-01 -1.73966870e-01 4.49213944e-02 6.73299789e-01 5.83717763e-01 1.01099133e-01 6.30079746e-01 -6.63203895e-01 -7.62624502e-01 9.56882536e-01 -5.21048605e-02 3.17432523e-01 9.97236669e-02 -9.80824158e-02 1.42766571e+00 -1.11772811e+00 3.28922957e-01 1.05580151e+00 8.58992159e-01 2.51994938e-01 -9.08166766e-01 -4.66015011e-01 2.66190976e-01 -8.76123011e-02 -9.00716364e-01 -5.43600738e-01 2.31525928e-01 -2.91870117e-01 1.91592515e+00 6.78087324e-02 5.70577621e-01 1.14778686e+00 5.00052392e-01 8.80620182e-01 1.14540648e+00 -3.56348574e-01 2.69625038e-01 3.65531653e-01 7.78097034e-01 5.56794226e-01 3.43834072e-01 -2.80588448e-01 -6.54441357e-01 -5.17533794e-02 -4.77114357e-02 -1.90548033e-01 -7.85689801e-02 2.82792598e-01 -8.15924227e-01 8.01322043e-01 7.57908285e-01 4.67358947e-01 -5.24572074e-01 1.10139646e-01 7.86799014e-01 8.00488412e-01 9.62385476e-01 8.61617267e-01 -1.17721522e+00 -9.41803828e-02 -1.02639592e+00 3.48427743e-01 1.20868421e+00 4.21082020e-01 4.05939460e-01 2.56849289e-01 -1.81366190e-01 7.13074982e-01 2.75538474e-01 4.33153689e-01 7.53476620e-01 -4.29305792e-01 3.49367887e-01 8.97507310e-01 2.45258473e-02 -8.17195058e-01 -8.62534404e-01 -8.53235722e-01 -5.30453563e-01 2.76279122e-01 2.31981859e-01 -5.72226882e-01 -1.12941277e+00 1.12064552e+00 -5.28519452e-01 -3.77889782e-01 2.32309952e-01 6.70594096e-01 1.14268589e+00 5.73069930e-01 1.80551745e-02 2.07503229e-01 1.26512790e+00 -1.25327969e+00 -5.54156661e-01 -5.00335395e-01 9.61275995e-01 -9.63901281e-01 8.11513186e-01 6.02255940e-01 -1.30919826e+00 -4.93567556e-01 -1.35639703e+00 -7.70199206e-03 -1.05206692e+00 4.75862116e-01 5.39016604e-01 7.29577005e-01 -1.69746125e+00 4.30219233e-01 -6.33375585e-01 -3.15936416e-01 9.10890177e-02 7.38493025e-01 -1.42324045e-01 3.87496799e-01 -1.40906334e+00 1.22609472e+00 2.55401462e-01 5.37076831e-01 -4.53315467e-01 -3.94427121e-01 -7.63037682e-01 -5.39603867e-02 -1.52951732e-01 -7.58306503e-01 1.78408813e+00 -1.33734369e+00 -1.66692317e+00 1.09304810e+00 -2.17332169e-01 -8.14868569e-01 2.49318421e-01 -5.05816638e-01 -5.80900729e-01 -3.45017970e-01 -5.48883639e-02 3.48491222e-01 5.35322607e-01 -7.60588944e-01 -6.45349562e-01 -3.29032153e-01 2.50499547e-01 2.00271100e-01 -4.51596916e-01 1.75618127e-01 -3.74704003e-01 -4.40707892e-01 -1.83000609e-01 -1.03058076e+00 -4.97334361e-01 -1.11538792e+00 -3.67983967e-01 -3.39314073e-01 2.67430961e-01 -4.90994245e-01 1.26380157e+00 -1.87048924e+00 7.84132555e-02 2.62392908e-01 1.30916648e-02 2.76668787e-01 -2.35413730e-01 3.91604364e-01 -4.75418299e-01 1.46661431e-01 7.77228251e-02 -8.27454388e-01 1.20651424e-01 -3.82154644e-01 -5.78703701e-01 2.67380625e-01 4.39253181e-01 1.04029703e+00 -5.41311264e-01 2.25979075e-01 2.15179510e-02 4.87947166e-01 -2.95987874e-01 6.04534075e-02 -2.41756931e-01 -2.88327307e-01 -3.50529134e-01 5.74232578e-01 3.00608069e-01 -3.56657743e-01 3.27649750e-02 -2.77949005e-01 -1.70682400e-01 7.86926985e-01 -6.91217124e-01 1.41226172e+00 -5.61373770e-01 8.42121124e-01 -1.44175082e-01 -7.25060642e-01 9.71775353e-01 3.30804318e-01 1.18980631e-02 -7.82855213e-01 6.58031821e-01 4.47635740e-01 1.28555268e-01 -1.40927300e-01 1.06610322e+00 2.06304584e-02 -4.79418933e-01 5.53199947e-01 3.96940917e-01 -9.24949721e-02 3.34458679e-01 2.39623964e-01 1.15909481e+00 -1.26816750e-01 1.21425115e-01 -5.92312217e-01 6.35666430e-01 3.28774750e-02 6.96011260e-02 7.17603326e-01 7.12140650e-02 8.54160786e-01 7.51032233e-01 -1.00239635e+00 -1.06085658e+00 -5.75514615e-01 -1.12250395e-01 1.52195919e+00 -5.59437096e-01 -6.37490034e-01 -6.57156646e-01 -7.55837381e-01 -2.99959451e-01 6.81558907e-01 -1.18961799e+00 -1.27718195e-01 -2.87119001e-01 -1.04952943e+00 5.15109360e-01 7.47548282e-01 1.99908182e-01 -1.52490079e+00 -4.55096155e-01 1.50306210e-01 6.67409152e-02 -8.33701193e-01 7.56427273e-02 9.08859253e-01 -4.12076235e-01 -8.74782264e-01 -4.27929819e-01 -8.27614665e-01 3.62928092e-01 -1.91529304e-01 1.82629073e+00 1.18631728e-01 2.74989069e-01 3.32327783e-02 -5.40504456e-01 -8.23797047e-01 -2.41362602e-01 8.29044521e-01 3.79839838e-02 -1.38936847e-01 9.17252123e-01 -2.04238519e-02 -6.09708726e-01 8.71364586e-03 -6.36146247e-01 -2.82582283e-01 5.78225195e-01 7.84381092e-01 2.74628431e-01 -3.98386329e-01 5.34917891e-01 -1.17910826e+00 9.74458277e-01 -4.73472118e-01 -3.33513647e-01 1.37700550e-02 -5.22578537e-01 -1.77250773e-01 7.35494971e-01 3.30802560e-01 -7.36669004e-01 -2.15573713e-01 -5.44807136e-01 1.74648985e-01 6.45830408e-02 7.97967792e-01 4.57639873e-01 4.77909714e-01 8.45323265e-01 -6.86686188e-02 -2.69217014e-01 -2.15554476e-01 2.23696902e-01 8.98565829e-01 2.80930012e-01 -2.01236889e-01 1.43131334e-02 3.19827288e-01 -5.17066717e-01 -5.71351469e-01 -1.52986157e+00 -3.64352673e-01 -4.43864256e-01 5.76021187e-02 9.58789885e-01 -1.14690745e+00 -5.76527476e-01 6.80778861e-01 -1.12270820e+00 -5.63998580e-01 -2.39512533e-01 1.77203789e-01 -2.68050939e-01 -4.91091579e-01 -8.87823462e-01 -6.97071850e-01 -9.20235395e-01 -1.22836959e+00 1.18434083e+00 1.55155212e-01 -5.74342251e-01 -1.14567745e+00 3.51156622e-01 3.71869564e-01 7.62162983e-01 -5.64830266e-02 4.14959431e-01 -1.30439246e+00 2.55540788e-01 -6.88325942e-01 -3.74339409e-02 7.71747351e-01 -3.90267015e-01 1.26874194e-01 -1.36881638e+00 -4.85398859e-01 -8.04095268e-02 -8.40544045e-01 1.58205545e+00 5.66904962e-01 9.59981740e-01 2.56449521e-01 8.78723189e-02 3.98354024e-01 1.02446353e+00 -8.51769447e-02 5.32902598e-01 7.49153972e-01 5.17469823e-01 5.96008956e-01 2.39275724e-01 2.06957415e-01 5.52304447e-01 2.84954667e-01 3.31262618e-01 -1.30296722e-01 1.45904973e-01 3.67717564e-01 7.96782851e-01 1.23219192e+00 -6.62691817e-02 -4.47396576e-01 -1.16989112e+00 5.53505242e-01 -1.88610685e+00 -5.50917506e-01 -4.47269142e-01 1.63665271e+00 4.71431643e-01 5.84400475e-01 -1.01492420e-01 7.09811375e-02 2.01571032e-01 2.84153670e-01 -3.94187033e-01 -1.17012405e+00 -4.01168793e-01 7.77753711e-01 3.50655943e-01 4.54369903e-01 -1.32149816e+00 1.11636877e+00 7.47119379e+00 3.85799229e-01 -1.00308537e+00 -4.84619737e-02 9.49668169e-01 -3.57720315e-01 -1.39287531e-01 -3.26587260e-01 -1.04408014e+00 7.86546171e-02 1.59049368e+00 1.57656655e-01 1.31919160e-02 7.16241062e-01 -2.16888577e-01 -1.78365614e-02 -8.36509347e-01 4.26176846e-01 3.37080568e-01 -1.28756070e+00 9.72760543e-02 -1.89049080e-01 9.52905118e-01 8.84773791e-01 4.50214535e-01 8.92451167e-01 7.69614160e-01 -1.39534009e+00 8.11374545e-01 5.66711307e-01 5.41533113e-01 -1.10542214e+00 1.60583150e+00 -1.05291963e-01 -8.43330681e-01 -6.54408932e-02 -4.00340050e-01 -4.97648627e-01 -6.37422502e-02 6.57579541e-01 -6.34243369e-01 4.43813622e-01 1.07065344e+00 9.21085358e-01 -8.89958382e-01 3.91898096e-01 -3.76272380e-01 7.99784124e-01 -1.94612250e-01 -2.54235655e-01 5.92202127e-01 1.38219357e-01 2.47922510e-01 1.66999817e+00 -1.61677212e-01 -2.06055641e-01 -1.77336670e-02 2.42441326e-01 -3.88736427e-01 1.58907250e-01 -4.22100127e-01 1.46828070e-02 -9.52278674e-02 1.66377676e+00 -7.78433681e-01 -5.63907385e-01 -3.18502098e-01 7.94168472e-01 6.29752100e-01 3.41018081e-01 -4.16691512e-01 -4.98659730e-01 5.49474657e-01 -4.04433310e-01 4.46085900e-01 1.91088974e-01 -6.77745402e-01 -1.18839145e+00 -2.07927197e-01 -1.12457561e+00 4.37841594e-01 -8.18682253e-01 -1.22547054e+00 1.39124751e+00 -6.50887370e-01 -7.10926116e-01 -3.76928836e-01 -1.15976858e+00 -6.67291820e-01 1.13698149e+00 -1.38036513e+00 -1.25040567e+00 -1.76343039e-01 2.82442838e-01 5.10627925e-01 -7.52856076e-01 1.33411205e+00 5.18939644e-02 -8.79809022e-01 6.47003829e-01 7.17722951e-03 9.03770253e-02 7.76698649e-01 -1.67027092e+00 9.97228980e-01 5.19033790e-01 -3.78400879e-03 7.77453542e-01 5.61844170e-01 -3.48279923e-01 -9.02321458e-01 -1.19175947e+00 1.15703523e+00 -9.33538556e-01 9.50261116e-01 -2.88474917e-01 -6.48613334e-01 8.89814794e-01 9.18703973e-01 -2.96305120e-01 8.97386611e-01 6.40425146e-01 -4.46901321e-01 3.96255851e-02 -5.45920968e-01 5.05701005e-01 2.35700697e-01 -6.06539130e-01 -7.16206849e-01 1.48098662e-01 6.82696939e-01 -5.25306821e-01 -6.79800689e-01 3.91059339e-01 6.85713410e-01 -1.22565758e+00 4.55234706e-01 -7.23352671e-01 8.35387409e-01 -1.26023591e-01 -1.30525649e-01 -1.57525206e+00 -1.49086669e-01 -2.70960301e-01 -3.32625359e-02 7.54424274e-01 1.20967150e+00 -6.26354456e-01 7.49485433e-01 3.02472770e-01 -3.64208639e-01 -1.12785852e+00 -2.79129773e-01 -9.67693049e-03 4.76338923e-01 -7.55603254e-01 2.41625905e-01 7.81402290e-01 -6.04041070e-02 8.91447783e-01 9.17904750e-02 -3.41341466e-01 -9.87979025e-03 -4.44731303e-02 6.30397081e-01 -1.06776762e+00 -2.18224078e-01 -9.27104414e-01 -1.10525273e-01 -7.39079475e-01 3.07763904e-01 -9.68693078e-01 -1.60503983e-01 -1.62033570e+00 3.83523032e-02 1.20261714e-01 -1.03328073e+00 6.08082473e-01 -2.79804654e-02 7.35779345e-01 -1.23623833e-02 -1.77830100e-01 -8.51155758e-01 2.66558647e-01 5.46223760e-01 -2.00938627e-01 -3.59899253e-02 1.28258526e-01 -1.04668450e+00 9.35693860e-01 1.14976144e+00 -2.36427575e-01 -2.11910419e-02 -6.54228091e-01 1.10322845e+00 -7.49231160e-01 -1.53930962e-01 -6.97789609e-01 2.23181531e-01 7.33449280e-01 5.03549516e-01 -9.17738676e-01 2.04438180e-01 -4.48253036e-01 -4.85601127e-01 2.90196657e-01 -5.57208836e-01 3.73788536e-01 5.02367079e-01 7.51589090e-02 -4.59384680e-01 -6.70391545e-02 5.43555140e-01 -1.74559891e-01 -4.88255918e-01 -6.25784472e-02 -6.13626778e-01 -1.62283853e-01 4.35990930e-01 1.34466857e-01 -3.34958315e-01 -2.68317014e-01 -7.50143468e-01 3.74516636e-01 1.68255493e-01 6.65847003e-01 1.99199140e-01 -8.79032552e-01 -9.34362829e-01 1.07541583e-01 1.94357142e-01 -7.58916065e-02 -4.25224788e-02 7.03642786e-01 -6.66738212e-01 7.09705174e-01 3.19113210e-02 -3.22398841e-01 -8.91708970e-01 -1.60165146e-01 7.15693474e-01 -7.95472682e-01 -1.34457707e-01 1.22154760e+00 -1.51592270e-01 -6.92903638e-01 1.68638438e-01 -3.65039080e-01 -7.32259989e-01 5.03736019e-01 7.66657412e-01 1.66245475e-01 8.44558597e-01 -5.34570813e-01 -3.87836665e-01 2.40479052e-01 -6.32117629e-01 -1.84214324e-01 1.65391970e+00 2.14206859e-01 -3.99661273e-01 8.54798436e-01 1.22201931e+00 -2.96036869e-01 -4.98943239e-01 2.19934201e-03 2.63971150e-01 4.83667374e-01 4.43507910e-01 -1.19599771e+00 -1.03048968e+00 8.10502768e-01 2.55403250e-01 6.40084326e-01 9.57756400e-01 -3.70948404e-01 4.79659051e-01 8.50354791e-01 -7.59033859e-02 -1.19602823e+00 -7.25928098e-02 1.43733740e+00 9.23686445e-01 -1.28596222e+00 1.07768849e-02 4.76047009e-01 -8.01763535e-01 1.20151043e+00 6.63062930e-01 -5.91070354e-01 7.73727953e-01 3.71296287e-01 5.01772761e-01 -6.86478853e-01 -1.24426937e+00 -3.70069563e-01 4.76466238e-01 -4.01787236e-02 1.14363825e+00 2.66824998e-02 -2.13518411e-01 9.78587270e-01 -7.47364998e-01 -2.30455846e-01 4.19636637e-01 7.86373913e-01 -1.84379444e-01 -7.78390288e-01 1.26157701e-01 6.31345630e-01 -1.10007834e+00 -4.80277270e-01 -8.46844316e-01 5.66004932e-01 -2.22759455e-01 1.09600377e+00 2.58290201e-01 -6.51158929e-01 8.38014543e-01 1.62827015e-01 3.73175256e-02 -8.11992466e-01 -1.72364295e+00 -1.30538717e-01 4.87544715e-01 -5.36685467e-01 -3.55371386e-01 -4.26443219e-01 -9.53732550e-01 -3.53424668e-01 -3.93972367e-01 2.73317397e-01 8.85239422e-01 9.25842524e-01 1.31626338e-01 9.75556731e-01 5.41831076e-01 -9.11130011e-01 -4.87246245e-01 -1.49089384e+00 -4.06825691e-01 1.78495944e-01 5.00221193e-01 2.72896830e-02 -4.25519049e-01 -1.78390041e-01]
[10.866456031799316, 7.519080638885498]
b0b0f9ad-0f4e-46ad-bddf-cdfbcff1df60
alfred-a-system-for-prompted-weak-supervision
2305.18623
null
https://arxiv.org/abs/2305.18623v1
https://arxiv.org/pdf/2305.18623v1.pdf
Alfred: A System for Prompted Weak Supervision
Alfred is the first system for programmatic weak supervision (PWS) that creates training data for machine learning by prompting. In contrast to typical PWS systems where weak supervision sources are programs coded by experts, Alfred enables users to encode their subject matter expertise via natural language prompts for language and vision-language models. Alfred provides a simple Python interface for the key steps of this emerging paradigm, with a high-throughput backend for large-scale data labeling. Users can quickly create, evaluate, and refine their prompt-based weak supervision sources; map the results to weak labels; and resolve their disagreements with a label model. Alfred enables a seamless local development experience backed by models served from self-managed computing clusters. It automatically optimizes the execution of prompts with optimized batching mechanisms. We find that this optimization improves query throughput by 2.9x versus a naive approach. We present two example use cases demonstrating Alfred on YouTube comment spam detection and pet breeds classification. Alfred is open source, available at https://github.com/BatsResearch/alfred.
['Stephen Bach', 'Peilin Yu']
2023-05-29
null
null
null
null
['spam-detection']
['natural-language-processing']
[-4.61210638e-01 5.34595214e-02 -4.27019298e-01 -7.90243268e-01 -8.08350027e-01 -7.44470477e-01 5.06524861e-01 3.47918034e-01 -4.27265793e-01 4.38161463e-01 3.44579786e-01 -5.64694583e-01 2.98071325e-01 -5.01579523e-01 -6.25703931e-01 -2.22968459e-01 4.06796038e-01 7.51885712e-01 5.52726090e-01 -3.64602447e-01 1.59034148e-01 3.76357213e-02 -1.58314991e+00 7.41511822e-01 8.24855268e-01 4.92676109e-01 1.77069485e-01 8.61537218e-01 -1.51007175e-01 1.49752831e+00 -6.87079310e-01 -5.16451657e-01 3.07610929e-01 2.82956898e-01 -1.19733143e+00 -5.29189110e-01 6.30192935e-01 -4.42707747e-01 1.04024291e-01 8.21150005e-01 5.36500096e-01 -6.44923598e-02 -2.96860486e-02 -1.61163664e+00 -8.83174956e-01 7.54327118e-01 -4.39069360e-01 2.09693208e-01 5.83939254e-01 5.01556277e-01 1.25166142e+00 -8.24405849e-01 7.27182865e-01 1.20340729e+00 6.96004033e-01 6.34324014e-01 -1.33058751e+00 -6.88841701e-01 -2.28538923e-02 1.76792115e-01 -9.59218383e-01 -4.30103511e-01 1.08096555e-01 -7.87899375e-01 8.53808045e-01 4.36879069e-01 2.10055873e-01 7.73479462e-01 -3.55765790e-01 1.00661910e+00 9.26599145e-01 -3.03686410e-01 2.50052810e-01 7.32228518e-01 8.14435005e-01 1.05187118e+00 -2.30279833e-01 -2.65024722e-01 -1.01849282e+00 -6.28749549e-01 1.87529206e-01 9.91776064e-02 2.67693419e-02 -1.01768292e-01 -1.10738266e+00 6.89562440e-01 4.85502154e-01 7.16448203e-02 -2.32709378e-01 1.81489110e-01 4.57274467e-01 7.13122904e-01 6.68679774e-01 7.65076995e-01 -7.30881333e-01 -4.29850340e-01 -9.12181139e-01 3.24461460e-01 1.14370346e+00 1.08308434e+00 9.62935030e-01 -3.98412108e-01 -5.11196077e-01 7.39202082e-01 3.22962731e-01 4.08600301e-01 3.53183389e-01 -1.42155492e+00 1.35527477e-01 8.39172244e-01 2.94497430e-01 -4.66365844e-01 -1.64338395e-01 -1.79998770e-01 -1.31028593e-01 3.71160805e-01 4.56766725e-01 -2.33204067e-01 -5.23285687e-01 1.30662012e+00 6.27728701e-01 -8.47752020e-02 -2.52882659e-01 1.04085243e+00 1.11056733e+00 3.83088768e-01 3.04584414e-01 3.00692260e-01 1.34412062e+00 -1.38430083e+00 -2.37410933e-01 -1.14469025e-04 8.51781726e-01 -8.27617824e-01 1.74354315e+00 3.02305728e-01 -1.09069777e+00 -4.72125381e-01 -4.37043369e-01 -3.88289511e-01 -2.40622610e-01 8.94772559e-02 7.77362585e-01 1.94493577e-01 -1.63228381e+00 5.46451747e-01 -9.52318370e-01 -4.51921761e-01 3.03743094e-01 2.66690046e-01 -1.66316763e-01 1.70994997e-01 -9.48467910e-01 6.91922784e-01 -1.91887766e-01 -5.16153157e-01 -8.85367930e-01 -1.23459005e+00 -5.59657812e-01 3.94303724e-02 2.79799402e-01 -6.32650256e-01 2.10935926e+00 -1.00052643e+00 -1.04009283e+00 1.17352641e+00 -2.60135055e-01 -4.93263781e-01 3.21360290e-01 -5.31449139e-01 -2.17074975e-02 -2.35667005e-02 5.18728971e-01 7.84585834e-01 6.67699873e-01 -7.69216597e-01 -6.22405052e-01 -2.71626592e-01 1.93734512e-01 1.73215881e-01 -4.80266809e-01 8.07328463e-01 -3.87069494e-01 -5.66645078e-02 -5.02076685e-01 -6.48528934e-01 -2.53184974e-01 2.91827947e-01 -4.72564958e-02 -7.17733443e-01 9.01459694e-01 -6.31199956e-01 1.11227047e+00 -2.03428078e+00 -3.34601671e-01 -3.47555876e-02 6.41038537e-01 4.43657219e-01 -1.27886623e-01 3.41919571e-01 7.88584501e-02 1.05186097e-01 1.04212791e-01 -4.52215642e-01 2.89672256e-01 -1.01453299e-02 -4.75576729e-01 1.69949174e-01 8.25745687e-02 7.82364666e-01 -1.20276928e+00 -5.95716298e-01 -1.18303441e-01 2.24849820e-01 -7.97240019e-01 8.82890701e-01 -7.15189934e-01 2.31829695e-02 -3.13425124e-01 8.65887642e-01 4.14692223e-01 -9.43745136e-01 -1.35689199e-01 2.21296608e-01 -2.56061345e-01 5.72905362e-01 -6.74995005e-01 1.59097958e+00 -3.60935330e-01 5.97751975e-01 6.91952407e-01 -6.34540796e-01 8.63439739e-01 2.11477861e-01 4.30753887e-01 -3.96185994e-01 -2.91504115e-01 1.69325650e-01 -6.30258799e-01 -6.59388006e-01 6.00893140e-01 3.44418943e-01 3.34057882e-02 1.20766604e+00 3.07671160e-01 -2.56030440e-01 1.86004356e-01 1.01943791e+00 1.64389503e+00 2.25791663e-01 -5.46918325e-02 -2.60398895e-01 2.37707675e-01 4.27583426e-01 3.08822304e-01 7.74988711e-01 -2.43868083e-01 2.76072502e-01 5.46302676e-01 -6.69432104e-01 -8.60026419e-01 -9.72724736e-01 3.89115475e-02 2.40304089e+00 -1.24764703e-01 -9.00939465e-01 -8.14056575e-01 -9.30327237e-01 2.81932920e-01 7.79670417e-01 -3.08268249e-01 2.31546521e-01 -2.78445929e-01 -2.63635904e-01 4.61043566e-01 2.93518275e-01 2.69892037e-01 -1.32151914e+00 -4.49501306e-01 -7.79302642e-02 -7.70953745e-02 -7.74729908e-01 -5.50518036e-01 4.16741520e-01 -3.74634892e-01 -1.02520967e+00 -3.00160557e-01 -7.09921956e-01 6.51446640e-01 3.73453230e-01 1.67514706e+00 6.84651792e-01 -4.32078838e-01 5.51878214e-01 -4.43502516e-01 -3.03494453e-01 -6.57717764e-01 1.81794181e-01 1.43571692e-02 -5.19658864e-01 8.91915917e-01 -5.57920039e-01 -5.35870254e-01 5.73219240e-01 -5.34613609e-01 2.79410988e-01 1.79423138e-01 8.12584102e-01 2.68784940e-01 -7.56049216e-01 4.31794137e-01 -1.33981419e+00 8.12428951e-01 -9.55144167e-01 -8.70700896e-01 3.52598161e-01 -9.24145699e-01 1.42008826e-01 6.01811588e-01 -3.01075559e-02 -1.17427313e+00 3.06772470e-01 -2.11832106e-01 -1.96759358e-01 -3.64148140e-01 1.91683277e-01 5.74333608e-01 -2.98662316e-02 1.43065953e+00 -1.11076191e-01 6.68798313e-02 -7.19420493e-01 5.66636384e-01 1.15401280e+00 6.97475910e-01 -1.01795995e+00 6.62528813e-01 1.38115361e-01 -1.01904392e+00 -3.70749474e-01 -1.08201873e+00 -1.04113019e+00 -5.63445807e-01 -5.84439412e-02 7.51177132e-01 -1.15231848e+00 -8.98429215e-01 1.59284621e-01 -1.14148617e+00 -7.77631342e-01 -5.43621480e-01 -1.00175500e-01 -2.18140900e-01 7.37114027e-02 -9.45243061e-01 -3.65011215e-01 -8.65749002e-01 -8.75938237e-01 1.08715248e+00 3.07431519e-01 -6.58438444e-01 -7.84382939e-01 3.07792097e-01 8.65074217e-01 7.64176130e-01 -4.56950605e-01 5.21267533e-01 -9.29456711e-01 -5.32527685e-01 -9.61962156e-03 -5.19872785e-01 3.31286430e-01 -3.48232329e-01 2.37781376e-01 -1.10762286e+00 -1.81540206e-01 -2.73391426e-01 -8.39967430e-01 4.50377882e-01 -2.17324197e-01 1.08856845e+00 -5.71251631e-01 -2.35204086e-01 5.28255343e-01 7.63960779e-01 -5.73680520e-01 -1.74646839e-01 2.49000028e-01 6.51109993e-01 3.92559677e-01 7.28104115e-01 5.14792383e-01 5.61513841e-01 5.02542973e-01 3.60212028e-01 -2.50992507e-01 -3.64779681e-02 -2.96420753e-01 5.18393576e-01 6.99422002e-01 2.83219904e-01 2.32442424e-01 -1.27911282e+00 5.82289636e-01 -2.27915621e+00 -8.58341932e-01 -4.17195737e-01 1.81415117e+00 1.33289802e+00 -1.04070604e-01 3.60673457e-01 -6.96718574e-01 7.36223698e-01 -5.96620850e-02 -7.22317815e-01 -4.97401118e-01 2.37915918e-01 1.98688909e-01 4.09829795e-01 6.48836613e-01 -9.10344124e-01 1.25252891e+00 6.61226273e+00 5.48427463e-01 -9.12505567e-01 6.08522892e-01 4.71257627e-01 -3.92216057e-01 -5.40354073e-01 1.43936723e-01 -9.70305681e-01 5.07296383e-01 1.11987495e+00 -5.25155008e-01 5.96190631e-01 1.44804525e+00 2.00626150e-01 -1.62726134e-01 -1.21729553e+00 6.36139989e-01 -1.18250959e-01 -1.56892705e+00 -4.30512875e-01 -3.86991322e-01 7.86644340e-01 9.46856380e-01 -2.06095561e-01 5.19185424e-01 1.59662127e+00 -7.94354141e-01 6.02064550e-01 2.84398437e-01 8.00214887e-01 -1.38262421e-01 5.52696824e-01 8.14165294e-01 -6.30922556e-01 -1.82065308e-01 -2.80298024e-01 -3.23545575e-01 1.18949488e-01 5.61890423e-01 -1.50172842e+00 -2.75076598e-01 1.08095920e+00 7.11259782e-01 -1.10630453e+00 7.96909392e-01 -5.40843308e-01 1.13697410e+00 -4.98526633e-01 -1.91583097e-01 -6.94131553e-02 5.67376576e-02 3.45272779e-01 1.60576904e+00 -1.79572046e-01 -1.72126759e-02 2.75101066e-01 1.03708136e+00 -3.07322264e-01 1.25069231e-01 -3.20946962e-01 6.45297021e-02 7.16705859e-01 1.60615408e+00 -1.32503569e-01 -6.50132298e-01 -3.93430352e-01 7.83416390e-01 6.39638960e-01 2.35363841e-01 -5.83912194e-01 -2.35183820e-01 7.86464512e-01 6.00494266e-01 -3.20391387e-01 5.66293299e-02 -3.97130370e-01 -1.25020027e+00 -5.30645065e-03 -1.15817642e+00 6.08469069e-01 -1.15739310e+00 -1.38977826e+00 4.32599872e-01 -2.50451028e-01 -5.38697779e-01 -3.84207934e-01 -3.43090206e-01 -8.21365714e-01 9.55042422e-01 -1.08789837e+00 -1.03478694e+00 -5.83241999e-01 7.65875995e-01 5.41582108e-01 -2.77889639e-01 8.76573443e-01 2.49901935e-01 -3.33757877e-01 3.83464485e-01 -1.77049682e-01 6.01337478e-02 1.23598528e+00 -1.75419247e+00 7.91239738e-01 7.42588997e-01 1.30064815e-01 8.24851632e-01 7.73517966e-01 -5.82712710e-01 -1.10015714e+00 -9.54490781e-01 1.08550870e+00 -9.49031234e-01 1.06901479e+00 -4.97983545e-01 -1.11358857e+00 7.51540661e-01 4.92516071e-01 2.41825789e-01 7.07135975e-01 5.16069770e-01 -6.46912813e-01 -2.13685125e-01 -1.08584142e+00 2.73063421e-01 8.86564016e-01 -9.19410288e-01 -4.44561094e-01 1.11931264e+00 9.98614490e-01 -3.39250177e-01 -6.41030133e-01 -4.71894965e-02 3.46464008e-01 -9.94650602e-01 5.18793702e-01 -7.53217816e-01 5.89438498e-01 -4.67642844e-01 2.54939079e-01 -1.13669097e+00 -3.47230256e-01 -1.00553298e+00 -1.89420775e-01 1.14246047e+00 5.34110010e-01 -3.69003356e-01 1.07436132e+00 1.18210089e+00 -1.27389818e-01 -4.50974315e-01 -1.93049997e-01 -2.64669120e-01 -4.18060333e-01 -3.78756404e-01 6.37683690e-01 1.09535909e+00 5.55334091e-01 6.10077441e-01 -6.43403679e-02 3.11933775e-02 5.07643640e-01 7.63478056e-02 9.94769096e-01 -1.13313687e+00 -5.74133396e-01 -7.94688612e-02 2.97723636e-02 -1.17881918e+00 2.15849459e-01 -1.11095691e+00 1.73552141e-01 -1.51150858e+00 3.21835011e-01 -8.89624476e-01 -1.75773457e-01 1.12365532e+00 -1.88080534e-01 5.30139990e-02 7.80855352e-03 5.42542875e-01 -1.23701680e+00 2.64426544e-02 6.09254539e-01 2.46228222e-02 -2.09524259e-01 3.78280967e-01 -9.57583070e-01 7.51977444e-01 8.86454999e-01 -5.09178638e-01 -2.35568002e-01 -8.01904917e-01 5.64291179e-01 -2.30504259e-01 4.79091972e-01 -7.67139673e-01 7.97522604e-01 -3.58089507e-02 -1.25124231e-01 -3.56792688e-01 -1.42287374e-01 -4.86074924e-01 -1.65845826e-01 2.15411663e-01 -8.26181233e-01 3.22274595e-01 -1.38329893e-01 2.01309770e-01 -1.76931709e-01 -3.61799806e-01 6.17260516e-01 -2.68182606e-01 -7.84235418e-01 9.07473862e-02 -3.08838338e-01 2.94826001e-01 8.69598150e-01 4.20244634e-01 -1.03173339e+00 -5.00376880e-01 -6.27864122e-01 7.66592920e-01 6.97552800e-01 4.53715473e-01 1.11621760e-01 -8.78619730e-01 -7.67270267e-01 2.38278344e-01 1.72606871e-01 1.14915989e-01 -2.95441151e-01 7.15438664e-01 -7.15198815e-01 1.27900749e-01 3.32791582e-02 -7.50771999e-01 -1.81062031e+00 4.46868122e-01 1.48704559e-01 -1.10024586e-01 -3.13975990e-01 1.39637160e+00 -6.90340772e-02 -1.01437497e+00 4.85887617e-01 1.79203779e-01 5.73788397e-02 -2.16040999e-01 7.40973771e-01 2.68010229e-01 2.53936887e-01 -1.71642393e-01 -2.83328027e-01 -3.07614475e-01 -2.33054802e-01 -3.73848677e-02 1.59072351e+00 1.14796363e-01 -5.21809399e-01 2.95420229e-01 8.19240510e-01 1.75858632e-01 -1.25295341e+00 -6.29892826e-01 2.00247079e-01 -3.71831715e-01 -1.15506187e-01 -1.22509539e+00 -6.26521885e-01 8.73002887e-01 2.07356855e-01 2.15912625e-01 7.26301253e-01 4.92134482e-01 6.02601349e-01 7.01466143e-01 2.35931858e-01 -1.15796542e+00 9.45542231e-02 5.17805219e-01 6.90123200e-01 -1.43056309e+00 -3.92328389e-02 -1.92318752e-01 -7.75726199e-01 8.26421738e-01 1.23547721e+00 1.75792351e-01 4.83465880e-01 6.50759518e-01 4.72856343e-01 -5.24477482e-01 -1.49347937e+00 5.97246401e-02 -1.26974210e-01 5.47320008e-01 8.39072466e-01 1.23269446e-01 1.35928076e-02 5.04418969e-01 -3.14582437e-01 1.39370963e-01 3.28692853e-01 7.53285348e-01 -6.11426234e-01 -1.14881194e+00 -3.02932769e-01 5.66964567e-01 -3.68958682e-01 -3.88592750e-01 -4.81797069e-01 -2.90867593e-02 -8.33091419e-03 8.50815594e-01 4.66215461e-02 -3.59144658e-01 1.72313571e-01 9.65453535e-02 -3.24402064e-01 -1.24257874e+00 -1.29969049e+00 -6.12924993e-01 3.29535276e-01 -8.03077817e-01 -3.40963677e-02 -5.15718639e-01 -1.14232075e+00 -5.70429087e-01 -1.62687108e-01 8.08115065e-01 6.75441563e-01 4.47995186e-01 7.95529425e-01 -1.16127387e-01 5.01049042e-01 -4.04766202e-01 -9.12658811e-01 -7.71731436e-01 -8.33505169e-02 4.23544258e-01 2.26537019e-01 6.99781924e-02 -3.86372060e-01 4.75049168e-01]
[11.751314163208008, 8.049894332885742]
1c647844-5385-4c57-9fb2-371ca8e30280
universal-sentence-encoder
1803.11175
null
http://arxiv.org/abs/1803.11175v2
http://arxiv.org/pdf/1803.11175v2.pdf
Universal Sentence Encoder
We present models for encoding sentences into embedding vectors that specifically target transfer learning to other NLP tasks. The models are efficient and result in accurate performance on diverse transfer tasks. Two variants of the encoding models allow for trade-offs between accuracy and compute resources. For both variants, we investigate and report the relationship between model complexity, resource consumption, the availability of transfer task training data, and task performance. Comparisons are made with baselines that use word level transfer learning via pretrained word embeddings as well as baselines do not use any transfer learning. We find that transfer learning using sentence embeddings tends to outperform word level transfer. With transfer learning via sentence embeddings, we observe surprisingly good performance with minimal amounts of supervised training data for a transfer task. We obtain encouraging results on Word Embedding Association Tests (WEAT) targeted at detecting model bias. Our pre-trained sentence encoding models are made freely available for download and on TF Hub.
['Yun-Hsuan Sung', 'Mario Guajardo-Cespedes', 'Sheng-yi Kong', 'Yinfei Yang', 'Brian Strope', 'Nan Hua', 'Daniel Cer', 'Steve Yuan', 'Rhomni St. John', 'Ray Kurzweil', 'Noah Constant', 'Nicole Limtiaco', 'Chris Tar']
2018-03-29
null
null
null
null
['conversational-response-selection', 'subjectivity-analysis']
['natural-language-processing', 'natural-language-processing']
[ 2.44707763e-01 6.57740980e-02 -4.27247137e-01 -5.85673273e-01 -1.26268375e+00 -6.21517837e-01 7.06057370e-01 3.03496778e-01 -8.94126475e-01 8.28462481e-01 5.43167651e-01 -6.23981714e-01 3.55169773e-02 -8.42823029e-01 -8.10370207e-01 -1.89422995e-01 -2.32947111e-01 6.04056120e-01 1.35440558e-01 -2.96356201e-01 3.97215664e-01 4.44747582e-02 -9.66186047e-01 4.50312823e-01 7.56240189e-01 6.67330742e-01 8.28181878e-02 9.65939522e-01 -1.72937840e-01 3.57492894e-01 -5.83920300e-01 -5.31911075e-01 -5.90575337e-02 -2.52963603e-01 -1.10692203e+00 -4.21361923e-01 6.83919847e-01 -3.64363968e-01 -4.70893770e-01 7.87938952e-01 8.81973565e-01 2.00693741e-01 9.59485948e-01 -1.13548064e+00 -1.27440071e+00 3.13707829e-01 -1.17610894e-01 7.33307838e-01 3.09373617e-01 1.56240121e-01 1.43378866e+00 -1.19158661e+00 6.64960504e-01 1.08876610e+00 9.22604501e-01 5.71938157e-01 -1.46321499e+00 -5.05106390e-01 -2.31641546e-01 2.98080444e-01 -1.03175688e+00 -6.01942182e-01 3.09874833e-01 -5.07747054e-01 1.88591850e+00 5.72851375e-02 2.35810056e-01 1.28016114e+00 4.08078939e-01 6.59869969e-01 8.37583721e-01 -7.58958042e-01 9.02322382e-02 6.01751149e-01 4.66447830e-01 5.80438972e-01 3.26162428e-01 -3.37773152e-02 -7.24620640e-01 -2.52290189e-01 4.74745214e-01 -1.62340328e-01 -1.84835956e-01 -1.31798178e-01 -1.07634234e+00 1.13813031e+00 5.10090828e-01 5.36943018e-01 -7.44568855e-02 2.85859853e-01 7.29989707e-01 7.51006901e-01 1.05439663e+00 7.47828245e-01 -9.68026936e-01 -3.33872288e-01 -8.21826458e-01 1.57368690e-01 7.73106039e-01 9.95149255e-01 8.97051394e-01 -1.64413378e-01 -6.94714248e-01 1.13517618e+00 7.57437050e-02 2.21719623e-01 8.40093493e-01 -5.26108503e-01 8.66888225e-01 7.56222159e-02 -9.94929224e-02 -6.49883211e-01 -2.22419187e-01 -2.94356972e-01 -2.31933668e-01 -2.35473573e-01 1.96547508e-02 -4.38378036e-01 -6.38685763e-01 1.65318751e+00 -2.03616485e-01 1.36148691e-01 2.05508128e-01 3.68524432e-01 7.74173677e-01 7.90809333e-01 3.75806034e-01 1.32808194e-01 1.53362596e+00 -1.21292710e+00 -6.30343676e-01 -5.44130385e-01 1.34637976e+00 -7.06391037e-01 1.37999129e+00 -2.83996671e-01 -1.11031210e+00 -6.30964875e-01 -9.74976182e-01 -5.00558972e-01 -6.98241711e-01 4.71738614e-02 6.81569099e-01 7.54221559e-01 -1.27870584e+00 7.32786119e-01 -6.60167038e-01 -6.44029796e-01 5.09033203e-01 3.83104861e-01 -3.76437783e-01 -3.00550580e-01 -1.48174560e+00 1.25872219e+00 3.03522527e-01 -5.49659550e-01 -5.28060615e-01 -1.08334339e+00 -1.05727971e+00 3.67212087e-01 -4.92149591e-01 -7.01717794e-01 1.31945539e+00 -7.88720489e-01 -1.24546278e+00 9.22348499e-01 -1.64316222e-01 -3.76886398e-01 -3.32066342e-02 -2.36175701e-01 -2.79893905e-01 -4.28744871e-03 1.70341209e-01 8.82975578e-01 5.67492485e-01 -5.13160110e-01 -2.76439041e-01 5.21188192e-02 -5.57532497e-02 7.08102807e-02 -1.22274244e+00 2.98586577e-01 -2.96285916e-02 -5.69763720e-01 -8.25744450e-01 -7.69149780e-01 1.48226947e-01 1.10791266e-01 1.60545811e-01 -7.01409876e-01 5.47550440e-01 -7.07296669e-01 1.06530905e+00 -2.06545329e+00 -2.50178948e-02 -2.72252619e-01 -2.44732171e-01 4.41102445e-01 -7.65507698e-01 6.76592171e-01 -1.54568106e-01 5.20976961e-01 -1.26048133e-01 -3.75334710e-01 2.09527060e-01 1.49654061e-01 -2.71719038e-01 1.57606393e-01 7.83868492e-01 1.28795803e+00 -9.80104089e-01 -4.65518206e-01 -1.22120544e-01 3.98990214e-01 -8.89343262e-01 5.11791408e-01 5.15485257e-02 -1.14226490e-01 -1.75323725e-01 1.76206216e-01 4.18704987e-01 -2.52094418e-01 1.69870872e-02 1.10321991e-01 2.41173163e-01 9.80655909e-01 -2.96533346e-01 1.79511070e+00 -8.58772755e-01 9.62502182e-01 -2.31418386e-01 -1.01621199e+00 8.30887973e-01 5.34191966e-01 -2.49650814e-02 -5.63211143e-01 -9.26099122e-02 1.52423307e-01 2.23178461e-01 -6.71752036e-01 5.41783154e-01 -3.47188264e-01 -1.45790670e-02 7.53158569e-01 8.96779656e-01 -2.67761260e-01 6.28234819e-02 1.45420298e-01 1.43552053e+00 -7.98895881e-02 1.84266016e-01 -4.77043957e-01 9.89337042e-02 7.90228024e-02 4.07009944e-02 4.65283453e-01 -7.48191625e-02 3.05473357e-01 5.26306987e-01 -2.40031302e-01 -1.15353525e+00 -1.09931219e+00 -4.74988639e-01 1.62686551e+00 -5.17170489e-01 -4.76470470e-01 -4.56113935e-01 -7.08293319e-01 1.72358617e-01 9.09406781e-01 -8.63072336e-01 -4.28066492e-01 -2.79396504e-01 -7.77588725e-01 5.77872157e-01 1.03652680e+00 1.40704224e-02 -1.22140348e+00 -3.97228003e-02 1.69713632e-03 4.61068526e-02 -1.07567966e+00 -6.67774618e-01 3.41363817e-01 -1.10601962e+00 -5.87203324e-01 -9.69305456e-01 -1.14413440e+00 7.31354654e-01 1.62387803e-01 1.39363408e+00 1.85136139e-01 -3.56417865e-01 5.46525121e-01 -4.38846022e-01 -4.53130513e-01 -1.07160352e-01 6.30393684e-01 1.09177344e-01 -5.80601037e-01 8.56643498e-01 -3.58284086e-01 -4.34794068e-01 -9.53309312e-02 -6.52536035e-01 -4.63324815e-01 6.42011523e-01 1.20559263e+00 -1.40600249e-01 -6.44537568e-01 8.69203687e-01 -9.73754048e-01 1.22252524e+00 -8.04647982e-01 -2.80682021e-03 2.73761421e-01 -8.09241414e-01 1.25434563e-01 2.65784681e-01 -3.76772672e-01 -8.65064979e-01 -5.80645382e-01 -3.63281131e-01 -1.10332347e-01 -8.19325522e-02 4.85895842e-01 3.82525176e-01 2.85712667e-02 8.78076136e-01 -6.00849558e-03 4.39081341e-02 -3.79693866e-01 3.02012235e-01 8.67778838e-01 -1.21246815e-01 -7.64126241e-01 6.61441445e-01 -2.67504781e-01 -6.45543456e-01 -7.82479465e-01 -7.93928921e-01 -4.38130975e-01 -7.40709007e-01 3.11569452e-01 9.20754969e-01 -9.34958577e-01 4.88545466e-03 -2.27601796e-01 -1.42435813e+00 -6.17396474e-01 -2.69451022e-01 7.03253090e-01 -6.12669110e-01 -1.15236146e-02 -9.04974699e-01 -3.82360429e-01 -4.66332138e-01 -8.28122556e-01 1.08367014e+00 -3.35638970e-01 -6.21201932e-01 -1.60561228e+00 5.54771364e-01 6.98490888e-02 8.43295395e-01 -4.48167562e-01 1.29009175e+00 -1.12666011e+00 -6.84832707e-02 -3.23318809e-01 -4.37032253e-01 5.09225726e-01 1.91753089e-01 -2.47800812e-01 -1.08057523e+00 -4.96626496e-01 -4.12909329e-01 -9.04700041e-01 9.36745584e-01 1.54778495e-01 1.05024481e+00 -2.84634769e-01 -3.13605785e-01 4.58632976e-01 1.32797027e+00 -2.77437299e-01 6.46218002e-01 2.17158467e-01 3.30437779e-01 7.64662206e-01 3.38093370e-01 -7.73884282e-02 9.67494100e-02 6.36551857e-01 -1.93339199e-01 -1.27252927e-02 -2.62299180e-01 -2.98170567e-01 6.52348936e-01 1.25521386e+00 1.46222878e-02 -2.55307347e-01 -9.89456654e-01 8.97102356e-01 -1.57224512e+00 -7.82783985e-01 1.93399593e-01 1.87799203e+00 1.12891567e+00 1.70845032e-01 -1.65773202e-02 -1.91335395e-01 4.60356981e-01 2.00364888e-01 -1.54836506e-01 -1.09784377e+00 3.87179434e-01 9.75043654e-01 4.01195735e-01 8.46961915e-01 -8.43097627e-01 1.04146135e+00 7.71153498e+00 7.20519722e-01 -7.54035771e-01 6.41980827e-01 4.44684535e-01 -2.25372434e-01 -5.16631603e-01 -3.09242696e-01 -8.07364523e-01 3.82107437e-01 1.54302037e+00 -3.26752186e-01 9.20840204e-02 7.07717597e-01 -3.26415807e-01 5.20208001e-01 -1.50464094e+00 4.84314203e-01 1.55922905e-01 -1.35297763e+00 -2.85676643e-02 -6.97446689e-02 7.50744581e-01 4.06261861e-01 1.60798416e-01 8.52778316e-01 4.24518794e-01 -1.16134024e+00 -6.73838705e-02 1.55963331e-01 1.13706219e+00 -5.39219797e-01 1.03698051e+00 3.73835117e-02 -6.91014946e-01 1.17770858e-01 -7.53485799e-01 -3.49760592e-01 -8.64399746e-02 2.69815087e-01 -1.01799679e+00 1.74230531e-01 5.31313300e-01 8.38078439e-01 -6.95188165e-01 7.13548779e-01 -3.20641816e-01 8.05871367e-01 1.19389139e-01 -4.90563244e-01 2.38946632e-01 2.00996116e-01 -7.38343671e-02 1.77414036e+00 3.58312577e-01 -2.33026132e-01 -1.61052182e-01 6.75881326e-01 -3.95016938e-01 3.22909147e-01 -1.05893505e+00 -2.33697936e-01 4.80567604e-01 1.09527171e+00 -1.96106285e-01 -4.23693389e-01 -6.52543068e-01 1.03016889e+00 8.00250947e-01 4.06391889e-01 -5.75558007e-01 -7.61845052e-01 9.51008141e-01 1.29295178e-02 4.26646322e-01 -4.11923915e-01 -3.01211447e-01 -1.19881248e+00 -1.31001577e-01 -4.34282839e-01 1.12654977e-01 -6.69707119e-01 -1.79784310e+00 6.02485418e-01 -2.05565970e-02 -8.97875845e-01 -4.08183396e-01 -1.08433723e+00 -9.89846110e-01 1.20589101e+00 -1.78196979e+00 -8.26589942e-01 1.73163995e-01 3.35243434e-01 7.44590938e-01 -3.09427291e-01 1.36673594e+00 3.08916301e-01 -3.28283966e-01 9.89246786e-01 1.00018859e-01 3.51367593e-01 1.26672065e+00 -1.29456663e+00 6.60676420e-01 2.70763397e-01 2.83128500e-01 8.28995466e-01 4.38157022e-01 -3.26592386e-01 -1.15204549e+00 -1.12728870e+00 1.43964291e+00 -7.93219388e-01 9.28107083e-01 -7.22420216e-01 -9.20677185e-01 1.07757401e+00 7.95262277e-01 1.48408964e-01 1.39108336e+00 8.56081069e-01 -5.56295574e-01 1.21008851e-01 -9.07732368e-01 2.78868258e-01 9.84088302e-01 -9.15584087e-01 -9.72567797e-01 8.40384126e-01 9.46326077e-01 1.08902447e-01 -1.09794497e+00 4.27369513e-02 2.67993569e-01 -3.22432637e-01 1.05797279e+00 -1.29117286e+00 8.52621436e-01 5.75156212e-01 -9.13263261e-02 -1.76068175e+00 -6.75809443e-01 -1.89605385e-01 3.60697024e-02 1.24175274e+00 9.27147388e-01 -8.34290385e-01 4.31822419e-01 6.20683074e-01 -6.42127618e-02 -7.24601448e-01 -8.26291978e-01 -1.06216443e+00 8.24370623e-01 -1.43492982e-01 1.96926638e-01 1.18102551e+00 4.45332557e-01 8.47767293e-01 6.95835203e-02 -2.24280939e-01 1.22664966e-01 -3.43382984e-01 5.01512527e-01 -1.01960695e+00 -4.15891409e-01 -2.92772889e-01 -3.75339180e-01 -1.02151632e+00 6.90140247e-01 -1.48291326e+00 -3.12916562e-02 -1.59109044e+00 2.45691672e-01 -3.03464651e-01 -4.56711173e-01 6.40508473e-01 -3.90373826e-01 4.24109191e-01 -3.82571258e-02 3.70683260e-02 -4.53904867e-01 6.24691308e-01 8.74779403e-01 -2.19209999e-01 1.75860837e-01 -4.41920578e-01 -7.49336064e-01 3.02569568e-01 1.03213835e+00 -7.38265932e-01 -5.01293898e-01 -1.14183772e+00 7.35335574e-02 -3.64200741e-01 2.75920555e-02 -7.71952033e-01 1.47926778e-01 1.35153949e-01 4.22841698e-01 1.38795879e-02 4.02769208e-01 -4.17983025e-01 -8.53268147e-01 5.09376228e-01 -8.15648615e-01 3.43727767e-01 4.17037040e-01 3.58817160e-01 -1.89586520e-01 -7.12422907e-01 5.03751993e-01 3.31973881e-02 -4.78490740e-01 2.08326235e-01 -5.76174557e-01 2.95032740e-01 8.65070939e-01 1.04131505e-01 -4.74744350e-01 -3.21461320e-01 -6.63598239e-01 2.46271595e-01 9.81114432e-02 6.75745547e-01 5.24848938e-01 -1.56156218e+00 -9.67586577e-01 2.13417858e-01 3.49623382e-01 -6.97756171e-01 -1.61536112e-01 5.95534980e-01 -3.50960523e-01 7.99687743e-01 -3.27899069e-01 -2.83102393e-01 -1.10928047e+00 6.23890221e-01 -4.48379405e-02 -3.95503342e-01 -1.47066906e-01 1.08455884e+00 -1.51873797e-01 -8.98462713e-01 -4.74756174e-02 -1.82422921e-01 6.50779307e-02 2.00879365e-01 6.56350493e-01 1.62809446e-01 2.63581425e-01 -2.18122564e-02 -3.65298629e-01 4.72141415e-01 -3.31602454e-01 -1.73802927e-01 1.57761502e+00 2.69853413e-01 -1.31272852e-01 5.64336061e-01 1.95674074e+00 -2.51058280e-01 -7.56446362e-01 -4.09488767e-01 7.27131963e-02 -4.81840253e-01 9.90231931e-02 -6.25517666e-01 -5.69318056e-01 1.50010777e+00 4.59253192e-01 1.03282139e-01 5.53120613e-01 1.94655452e-02 8.68264556e-01 5.86451173e-01 1.90128773e-01 -1.01596892e+00 4.01047438e-01 7.53612936e-01 8.09958816e-01 -1.26731503e+00 8.34463015e-02 -2.55927473e-01 -4.67427999e-01 1.11895967e+00 7.58868039e-01 -5.16413927e-01 8.27010274e-01 4.28535998e-01 -1.32893026e-01 -3.66860256e-03 -1.15085649e+00 -1.18559644e-01 2.93689579e-01 8.59308422e-01 1.00837886e+00 -1.29674539e-01 -3.85274291e-01 4.67190593e-01 -1.83691546e-01 -1.63174048e-02 1.08606115e-01 8.36371243e-01 -5.06868064e-01 -1.46255350e+00 1.71231002e-01 7.20908463e-01 -4.76423144e-01 -6.53507531e-01 -4.14713115e-01 6.46230996e-01 -2.70646721e-01 7.17058957e-01 6.40708923e-01 -3.60895246e-01 1.94641441e-01 6.36569262e-01 6.56150281e-01 -1.27762461e+00 -7.79514790e-01 -5.85357070e-01 4.43344444e-01 -2.38710478e-01 -1.97409704e-01 -4.48126525e-01 -6.32089019e-01 -3.09178382e-01 -3.40079844e-01 3.85982990e-01 4.50245470e-01 7.51519442e-01 6.44469738e-01 6.58158004e-01 4.01442051e-01 -8.71764839e-01 -7.31770456e-01 -1.50242221e+00 -2.35518917e-01 2.06181526e-01 3.06051582e-01 -4.20703679e-01 -3.14962298e-01 3.75883467e-02]
[10.698678016662598, 8.590311050415039]
ec9b2bbd-1726-4fa6-bf3e-0825c995d6c9
learn-to-decompose-cascaded-decomposition
2207.07973
null
https://arxiv.org/abs/2207.07973v1
https://arxiv.org/pdf/2207.07973v1.pdf
Learn-to-Decompose: Cascaded Decomposition Network for Cross-Domain Few-Shot Facial Expression Recognition
Most existing compound facial expression recognition (FER) methods rely on large-scale labeled compound expression data for training. However, collecting such data is labor-intensive and time-consuming. In this paper, we address the compound FER task in the cross-domain few-shot learning (FSL) setting, which requires only a few samples of compound expressions in the target domain. Specifically, we propose a novel cascaded decomposition network (CDNet), which cascades several learn-to-decompose modules with shared parameters based on a sequential decomposition mechanism, to obtain a transferable feature space. To alleviate the overfitting problem caused by limited base classes in our task, a partial regularization strategy is designed to effectively exploit the best of both episodic training and batch training. By training across similar tasks on multiple basic expression datasets, CDNet learns the ability of learn-to-decompose that can be easily adapted to identify unseen compound expressions. Extensive experiments on both in-the-lab and in-the-wild compound expression datasets demonstrate the superiority of our proposed CDNet against several state-of-the-art FSL methods. Code is available at: https://github.com/zouxinyi0625/CDNet.
['Hanzi Wang', 'Si Chen', 'Jing-Hao Xue', 'Yan Yan', 'Xinyi Zou']
2022-07-16
null
null
null
null
['cross-domain-few-shot', 'cross-domain-few-shot-learning', 'facial-expression-recognition']
['computer-vision', 'computer-vision', 'computer-vision']
[-2.72762915e-03 -3.67342204e-01 -1.46442920e-01 -7.88929999e-01 -9.23707664e-01 -2.47306257e-01 8.00028518e-02 -5.19823194e-01 -2.18102142e-01 6.75987124e-01 -1.56195745e-01 3.44568372e-01 1.35550365e-01 -3.71224284e-01 -4.59215820e-01 -8.99228871e-01 -8.23511044e-04 7.06598014e-02 -4.04073834e-01 -4.12337154e-01 -5.08402407e-01 4.23854262e-01 -1.54582691e+00 4.40944284e-01 6.48527443e-01 1.37733018e+00 -1.49591684e-01 2.58162171e-01 -3.37170847e-02 9.17480826e-01 -4.35079396e-01 -5.48753321e-01 2.32536212e-01 -5.25436103e-01 -5.33112049e-01 3.68051887e-01 4.87568587e-01 -5.08774638e-01 -2.45599598e-01 1.10841501e+00 7.54820824e-01 1.32246822e-01 3.13795418e-01 -1.51522768e+00 -3.82741094e-01 -1.58006400e-02 -8.09514105e-01 2.13305783e-02 1.68810353e-01 2.14676514e-01 7.98125863e-01 -1.25307024e+00 5.52629352e-01 1.20111060e+00 5.75312674e-01 1.06665123e+00 -1.31609380e+00 -1.27570450e+00 1.70093074e-01 2.33454257e-02 -1.55671477e+00 -1.01267171e+00 8.79406512e-01 -2.84040362e-01 7.68049777e-01 -1.32318363e-01 4.91942197e-01 1.46700382e+00 -3.74180347e-01 1.01706028e+00 1.05485284e+00 -2.00858951e-01 2.41723925e-01 5.96007779e-02 -3.43078040e-02 9.53545272e-01 -2.16871098e-01 -1.81775615e-01 -8.53152096e-01 -3.70292962e-01 4.34944063e-01 9.07239392e-02 -3.33683193e-01 -1.62417293e-01 -2.99192607e-01 8.26943099e-01 1.81667700e-01 2.70579904e-01 -2.95240492e-01 2.22189780e-02 6.66987181e-01 4.95159417e-01 1.01932156e+00 2.28287783e-02 -7.26368606e-01 -1.83499157e-01 -8.78674626e-01 -2.12410633e-02 7.13914633e-01 7.87636817e-01 1.14955711e+00 2.60963351e-01 -6.43072426e-02 1.20874238e+00 9.49503854e-02 3.06995988e-01 4.47888821e-01 -8.19638729e-01 2.19484687e-01 4.58187521e-01 -1.35492608e-01 -7.30982244e-01 -1.72463655e-01 -2.62395233e-01 -9.68392491e-01 5.57629764e-02 1.91330895e-01 -5.84469318e-01 -8.40634763e-01 2.20962787e+00 5.45551240e-01 6.05459392e-01 8.27161446e-02 8.97758842e-01 7.75348306e-01 5.90569496e-01 3.33135307e-01 -2.63697684e-01 1.19699180e+00 -9.05983925e-01 -6.32668197e-01 -1.24464631e-01 9.21682000e-01 -4.03419644e-01 1.03171742e+00 3.85527968e-01 -6.81723535e-01 -4.59360629e-01 -9.43433642e-01 2.32023560e-02 -1.09103575e-01 4.64235127e-01 8.76982212e-01 4.46002871e-01 -7.99438179e-01 4.95800406e-01 -8.73267949e-01 -2.70512432e-01 1.07652569e+00 4.11746532e-01 -6.34729147e-01 -2.41545603e-01 -1.16203403e+00 3.38884622e-01 -2.27700416e-02 3.69826734e-01 -1.09765124e+00 -8.97075653e-01 -9.40818965e-01 2.77988743e-02 4.18869883e-01 -4.57513481e-01 1.25541675e+00 -1.55040193e+00 -1.73254561e+00 1.01605320e+00 -3.17232341e-01 3.02041546e-02 2.97370583e-01 -3.11725020e-01 -4.76359814e-01 3.99890929e-01 -3.48422788e-02 5.20505667e-01 1.10998392e+00 -9.01369393e-01 -2.38290831e-01 -6.42292202e-01 -8.15330446e-02 -4.67756875e-02 -6.45730555e-01 3.63310546e-01 -5.21160007e-01 -3.68594646e-01 -4.05905455e-01 -8.07036757e-01 -4.40083072e-02 3.96077693e-01 7.58002000e-03 -3.29427034e-01 8.27333510e-01 -4.96653229e-01 1.03053343e+00 -2.46930146e+00 4.04324904e-02 -3.71371470e-02 2.75181621e-01 4.65076119e-01 -4.78986323e-01 3.86405401e-02 -3.05807769e-01 -2.47337610e-01 -2.43208751e-01 -6.92243576e-01 -1.41767785e-01 1.38399005e-01 -2.40933374e-01 5.93978524e-01 5.70505917e-01 7.99022436e-01 -8.83533478e-01 -4.68879640e-01 -2.24975482e-01 7.06434786e-01 -4.18100655e-01 5.19752264e-01 -1.76249981e-01 5.25091290e-01 -6.54061377e-01 1.06531811e+00 8.86362970e-01 -3.27062041e-01 2.52884954e-01 -2.98851341e-01 3.37359846e-01 -4.15149659e-01 -8.63540113e-01 1.96324193e+00 -6.67842686e-01 4.36327040e-01 4.50191349e-01 -1.22419107e+00 1.01251864e+00 4.00963962e-01 6.32701755e-01 -6.56586289e-01 3.69345605e-01 3.07134748e-01 -3.08888614e-01 -6.29966974e-01 -2.14089096e-01 -5.69308460e-01 -1.68550499e-02 3.47418547e-01 7.25795746e-01 4.36931938e-01 1.43520847e-01 -3.71145308e-02 1.12096930e+00 2.27726758e-01 2.38580316e-01 -3.94894294e-02 5.47638357e-01 -3.55886877e-01 1.10266495e+00 1.34340554e-01 -4.90916431e-01 2.34403193e-01 6.56841993e-01 -4.24164534e-01 -6.62366688e-01 -6.78077459e-01 -9.77551863e-02 1.52453732e+00 -2.77063429e-01 -4.97997522e-01 -6.99891984e-01 -7.06025243e-01 -1.14844278e-01 2.38801330e-01 -7.38771796e-01 -2.16553465e-01 -1.65379733e-01 -9.74804103e-01 7.90352762e-01 5.21905363e-01 6.73908532e-01 -8.28704476e-01 -3.77504706e-01 2.87292525e-02 -1.27720222e-01 -1.19908845e+00 -4.14394915e-01 9.57412869e-02 -6.70060456e-01 -1.00828564e+00 -7.22052574e-01 -6.67875588e-01 8.48603725e-01 1.47267058e-01 9.68665063e-01 2.85372175e-02 -5.93721569e-01 3.97764176e-01 -3.23704988e-01 -4.29215074e-01 1.08330892e-02 -1.45648733e-01 6.90029114e-02 7.34852195e-01 8.88786793e-01 -7.68685043e-01 -5.60527444e-01 1.78386152e-01 -8.11188698e-01 -1.49144009e-01 5.17086804e-01 1.23177516e+00 5.58544993e-01 -2.00605839e-01 5.78648150e-01 -8.69202733e-01 5.66984117e-01 -6.95505083e-01 -5.90997100e-01 3.38163406e-01 -1.63430095e-01 -6.60767257e-02 5.67832053e-01 -5.90734482e-01 -1.28405988e+00 3.52370977e-01 -4.17213105e-02 -1.12694407e+00 -1.69642538e-01 3.92275780e-01 -4.99144137e-01 -1.65349752e-01 5.70811987e-01 1.24692611e-01 2.79497653e-01 -5.48275948e-01 1.77675128e-01 6.35222137e-01 2.05413297e-01 -7.61860609e-01 5.07436156e-01 5.37016511e-01 1.99119700e-03 -8.34165871e-01 -1.22421324e+00 -4.64296430e-01 -6.26202345e-01 -1.65693998e-01 6.89621210e-01 -1.49853611e+00 -7.39417136e-01 8.29662681e-01 -9.74581122e-01 -5.39707720e-01 9.24574118e-03 1.17963448e-01 -4.05974358e-01 1.37774348e-01 -7.42173731e-01 -8.01773608e-01 -5.94132483e-01 -8.01266432e-01 1.24263084e+00 2.62357026e-01 -1.21335231e-01 -8.07519674e-01 2.51441568e-01 2.54229337e-01 2.49893516e-01 3.88498455e-01 3.64892662e-01 -5.28470814e-01 -1.72158837e-01 -1.48977116e-01 -1.78169265e-01 7.94994473e-01 1.98329508e-01 -1.29297618e-02 -1.34751761e+00 -3.92658770e-01 1.75379608e-02 -1.29711163e+00 9.38073695e-01 -8.03524628e-02 1.40675581e+00 -2.30453163e-01 -8.04239810e-02 1.05647647e+00 1.35516357e+00 -1.35161370e-01 4.28250313e-01 -1.02076009e-01 6.19831800e-01 6.40219390e-01 7.55243659e-01 9.11623180e-01 1.14484549e-01 5.99876523e-01 -6.04234599e-02 -2.35872313e-01 7.98649415e-02 -2.56365836e-01 5.01559854e-01 5.95329642e-01 -9.30310711e-02 1.54573962e-01 -6.70722127e-01 3.29753041e-01 -1.81752431e+00 -9.82836843e-01 5.62777936e-01 1.72714055e+00 1.12435687e+00 -4.09292758e-01 1.54975861e-01 -3.40099424e-01 5.15258908e-01 3.43662858e-01 -7.75137186e-01 -2.25338280e-01 -1.66514829e-01 6.83951795e-01 1.97565686e-02 1.54908895e-01 -1.18968415e+00 1.05769694e+00 4.94980621e+00 1.08180082e+00 -1.45021677e+00 4.05735701e-01 9.05684769e-01 -4.94058192e-01 1.59803271e-01 -1.97275460e-01 -9.03250396e-01 3.78768116e-01 9.68854308e-01 -1.72818497e-01 3.72094780e-01 1.19241560e+00 6.68162033e-02 1.35745868e-01 -9.97404277e-01 1.36305118e+00 1.96547091e-01 -9.13155973e-01 -1.67065278e-01 -2.25431681e-01 5.70270777e-01 1.48288105e-02 9.01741236e-02 5.64621866e-01 1.57989383e-01 -9.59363401e-01 1.79585949e-01 4.28491831e-01 1.10524535e+00 -6.77205384e-01 4.92791027e-01 9.90511850e-02 -1.17396569e+00 -1.34485707e-01 -4.55031812e-01 3.18673439e-02 -5.33577278e-02 5.34562528e-01 -4.05142188e-01 2.95700371e-01 8.16085339e-01 9.59440172e-01 -2.99255252e-01 4.54567879e-01 -3.95854384e-01 6.48526430e-01 -2.27727726e-01 8.97287503e-02 1.22903667e-01 -3.12780291e-01 9.01585668e-02 1.13455808e+00 3.44616830e-01 4.65420067e-01 1.01284370e-01 7.92117178e-01 -3.32419783e-01 1.26510516e-01 -4.55003172e-01 -3.01329404e-01 2.11929679e-01 1.64956748e+00 -5.24742231e-02 -2.16299444e-01 -6.87270284e-01 1.24200368e+00 7.39670455e-01 5.66779912e-01 -8.87616217e-01 -3.60072047e-01 1.20600855e+00 -1.32831097e-01 4.07272995e-01 -5.68101555e-03 4.46220130e-01 -1.54492891e+00 1.15028501e-01 -1.10690010e+00 4.78055418e-01 -6.33766532e-01 -1.64524281e+00 7.52790570e-01 -1.24780662e-01 -1.29359055e+00 -8.10707062e-02 -6.90677047e-01 -5.66794217e-01 7.88189769e-01 -1.65281355e+00 -1.32095158e+00 -6.49650872e-01 1.07737362e+00 3.58731687e-01 -3.83957386e-01 1.09661531e+00 5.94584227e-01 -1.07928276e+00 1.04783547e+00 -4.26269695e-02 4.11312580e-01 1.03286958e+00 -6.24570310e-01 -2.33776748e-01 5.08105397e-01 -1.02348803e-02 4.89561677e-01 3.39601696e-01 -2.19457775e-01 -1.36136401e+00 -1.22490346e+00 4.86698300e-01 -1.05285875e-01 7.88174450e-01 -7.05176115e-01 -1.05835307e+00 7.06612289e-01 -1.55721843e-01 6.69268012e-01 1.27521312e+00 1.93842068e-01 -8.41408432e-01 -6.30213380e-01 -1.08887935e+00 3.04445356e-01 1.07766449e+00 -7.81511962e-01 -1.05269797e-01 3.37267935e-01 2.91823357e-01 -1.89911291e-01 -8.32123160e-01 3.40776175e-01 6.26672089e-01 -7.80919194e-01 5.44814169e-01 -1.02635324e+00 5.40016890e-01 3.24775316e-02 -2.84128249e-01 -1.29775798e+00 -9.29456651e-02 -8.33540022e-01 -1.88338712e-01 1.34605157e+00 1.75637752e-01 -6.39480054e-01 8.53543341e-01 8.43320131e-01 2.23417744e-01 -9.51554179e-01 -9.41025794e-01 -7.84826756e-01 -2.24658087e-01 -2.75312096e-01 5.26714504e-01 9.90318656e-01 -5.68942279e-02 6.14910364e-01 -6.40240192e-01 -6.83372915e-02 7.74036765e-01 1.27686456e-01 9.79038775e-01 -9.55798507e-01 -4.85807776e-01 4.21857163e-02 -4.14550543e-01 -7.80319512e-01 8.40578377e-01 -7.79775977e-01 -6.52954429e-02 -6.21354103e-01 3.84612739e-01 -1.94429591e-01 -5.93763828e-01 9.92452741e-01 -1.06367134e-01 1.81190848e-01 1.07073277e-01 7.12774694e-02 -8.19440246e-01 1.08030379e+00 1.05864239e+00 -1.69429824e-01 -1.42168477e-01 -2.11654052e-01 -7.76884139e-01 6.46010578e-01 7.21372306e-01 -5.31624854e-01 -5.27332306e-01 -2.95196652e-01 -1.51189759e-01 -2.57035550e-02 2.75347769e-01 -7.05365419e-01 6.86023533e-02 -1.57354012e-01 4.69880193e-01 -1.14120450e-02 6.91499412e-01 -6.54594004e-01 -4.19742167e-02 8.27061161e-02 -1.30150244e-01 -4.57416743e-01 4.62576091e-01 4.22750741e-01 -5.03654003e-01 5.62645122e-02 9.36118007e-01 -8.94249529e-02 -1.05231166e+00 9.11251366e-01 4.52940352e-02 5.52019067e-02 1.04945588e+00 1.16854794e-01 -1.66543975e-01 -4.06245917e-01 -7.56215036e-01 3.00717980e-01 1.59381539e-01 2.74193019e-01 6.26038313e-01 -1.47230124e+00 -7.20300436e-01 3.23404819e-01 5.16620398e-01 -1.51390955e-01 6.23613954e-01 9.43207145e-01 -6.70272857e-02 -1.18153073e-01 -4.14976686e-01 -3.76138389e-01 -1.51366544e+00 3.85354817e-01 5.71988225e-01 -1.95608437e-01 -2.53851414e-01 1.20509756e+00 4.08983916e-01 -3.46290439e-01 8.48652199e-02 4.19365555e-01 1.59936517e-01 3.27293068e-01 7.72699833e-01 1.32220209e-01 -1.25066891e-01 -5.84532619e-01 -4.15375620e-01 5.08931875e-01 -1.84214070e-01 1.56526148e-01 1.68808937e+00 8.02234039e-02 -3.10586125e-01 3.48241389e-01 1.73218012e+00 -4.30983454e-01 -1.54755044e+00 -4.89394248e-01 -2.89648116e-01 -5.24318039e-01 8.11433196e-02 -5.00559807e-01 -1.36419225e+00 1.02963936e+00 6.37930214e-01 -7.49488473e-01 1.74660981e+00 -1.20449942e-02 7.80634940e-01 4.69130874e-01 3.47392350e-01 -1.22492564e+00 3.67389083e-01 2.44651496e-01 8.15923691e-01 -1.45541108e+00 -1.41423538e-01 -3.85677516e-01 -7.38433599e-01 1.17812395e+00 8.95962417e-01 1.12182917e-02 9.21929121e-01 2.86458224e-01 2.26758048e-01 -3.34882766e-01 -1.08440113e+00 -1.36109576e-01 -9.62530002e-02 4.16392297e-01 4.25425559e-01 -3.79702821e-02 9.26170647e-02 1.05448937e+00 3.07100117e-01 6.05066180e-01 3.80597785e-02 9.79656041e-01 -3.05112824e-02 -1.05440903e+00 5.61335422e-02 2.90242225e-01 -5.07837236e-01 5.50727081e-03 -4.04912651e-01 5.93804359e-01 8.94039944e-02 7.89743364e-01 -2.11161212e-03 -3.85160297e-01 3.09199482e-01 3.09914976e-01 5.51789761e-01 -5.76494098e-01 -1.48182392e-01 1.69259176e-01 1.55598670e-01 -9.40543950e-01 -6.60908639e-01 -6.19755983e-01 -9.27549541e-01 -1.70436934e-01 -3.64710987e-02 -7.72267804e-02 2.19706967e-01 7.78016090e-01 7.36531854e-01 1.28651902e-01 8.75569999e-01 -7.01787710e-01 -7.87624538e-01 -1.03332198e+00 -9.55389857e-01 6.31765306e-01 3.30405444e-01 -8.31731737e-01 -4.48617309e-01 1.26954198e-01]
[13.612257957458496, 1.6500401496887207]
f09fb7a4-c29b-45ae-b9aa-884afaf94007
anomaly-detection-for-an-e-commerce-pricing
1902.09566
null
https://arxiv.org/abs/1902.09566v5
https://arxiv.org/pdf/1902.09566v5.pdf
Anomaly Detection for an E-commerce Pricing System
Online retailers execute a very large number of price updates when compared to brick-and-mortar stores. Even a few mis-priced items can have a significant business impact and result in a loss of customer trust. Early detection of anomalies in an automated real-time fashion is an important part of such a pricing system. In this paper, we describe unsupervised and supervised anomaly detection approaches we developed and deployed for a large-scale online pricing system at Walmart. Our system detects anomalies both in batch and real-time streaming settings, and the items flagged are reviewed and actioned based on priority and business impact. We found that having the right architecture design was critical to facilitate model performance at scale, and business impact and speed were important factors influencing model selection, parameter choice, and prioritization in a production environment for a large-scale system. We conducted analyses on the performance of various approaches on a test set using real-world retail data and fully deployed our approach into production. We found that our approach was able to detect the most important anomalies with high precision.
['Mátyás A. Sustik', 'Jagdish Ramakrishnan', 'Elham Shaabani', 'Chao Li']
2019-02-25
null
null
null
null
['supervised-anomaly-detection']
['computer-vision']
[-3.33034366e-01 -3.30161601e-01 1.72088876e-01 -5.67957222e-01 -6.22031808e-01 -6.95602775e-01 9.61782485e-02 1.09379745e+00 -3.65204424e-01 8.89683068e-02 -2.06297100e-01 -3.92200530e-01 -3.55542570e-01 -1.00033987e+00 -7.12585330e-01 -2.97182322e-01 -7.74715245e-01 8.97901118e-01 4.70077664e-01 -5.07507205e-01 5.47190309e-01 4.59686548e-01 -1.61417985e+00 3.05615813e-01 3.81678849e-01 1.43354070e+00 -3.57014030e-01 7.99372911e-01 -7.03345845e-03 8.97360027e-01 -6.95500553e-01 -3.51654828e-01 8.08519185e-01 5.84949814e-02 2.73087285e-02 -3.14816907e-02 1.21053636e-01 -4.95486766e-01 3.04536611e-01 6.25885725e-01 2.85623133e-01 2.18746644e-02 2.10939810e-01 -1.59012616e+00 -3.26561555e-02 6.37013078e-01 -6.04324698e-01 7.60297596e-01 2.30495512e-01 3.24186325e-01 1.17417264e+00 -5.31384170e-01 1.43786266e-01 7.59071887e-01 8.34532499e-01 -4.69564319e-01 -1.62658012e+00 -5.58234096e-01 3.05587053e-01 7.08462447e-02 -1.02294767e+00 -4.06553000e-01 5.05866051e-01 -1.29663542e-01 1.15820765e+00 2.52630502e-01 7.87667990e-01 4.12051231e-01 7.20638156e-01 4.95463043e-01 7.45260477e-01 -2.08402291e-01 7.54783571e-01 6.59566447e-02 9.45309773e-02 1.29370287e-01 6.61548853e-01 -1.36393636e-01 -3.40474814e-01 -6.96837485e-01 5.06119430e-01 2.60116607e-01 7.05244005e-01 -9.82622057e-02 -7.43898690e-01 9.62573290e-01 -2.17750549e-01 -8.23191181e-02 -8.76820326e-01 1.64707273e-01 7.13433146e-01 8.46020699e-01 4.28332418e-01 7.02789247e-01 -7.57313251e-01 -5.78213036e-01 -9.43879724e-01 3.34318727e-01 1.27713454e+00 7.86379457e-01 1.74134791e-01 8.36834162e-02 1.76507011e-01 5.70288241e-01 2.75839806e-01 3.22284877e-01 3.91526014e-01 -9.46549237e-01 1.99919105e-01 5.01229644e-01 3.21053296e-01 -1.20377278e+00 -5.42963505e-01 -2.25633696e-01 -2.20996335e-01 1.02515630e-01 5.33530712e-01 -1.49744198e-01 -5.67232490e-01 8.84575486e-01 2.13002816e-01 -2.57858895e-02 -2.96797872e-01 6.48858845e-01 -1.29140392e-01 5.90711057e-01 9.87948924e-02 -4.46340859e-01 1.17447925e+00 -3.20386648e-01 -7.44894981e-01 -3.01200934e-02 5.19478142e-01 -1.21580708e+00 8.27154756e-01 8.70544553e-01 -1.35822678e+00 -2.07068339e-01 -1.02303326e+00 7.95908689e-01 -2.81480938e-01 -7.72912860e-01 6.60846174e-01 2.63824672e-01 -5.80980897e-01 7.29818940e-01 -9.59086239e-01 -4.83581752e-01 2.24002339e-02 3.01878750e-01 2.89533406e-01 9.39025357e-02 -9.16558266e-01 8.52605164e-01 2.76056193e-02 7.47745112e-02 -3.92930955e-01 -6.22865200e-01 -4.58686680e-01 9.64330211e-02 5.39428651e-01 8.67413357e-03 1.71326470e+00 -6.92731142e-01 -8.14144015e-01 2.47487739e-01 3.61042529e-01 -9.20173347e-01 5.84237635e-01 -1.73226178e-01 -9.79299247e-01 1.98238548e-02 -2.47834381e-02 -2.87587017e-01 7.05470264e-01 -9.83259261e-01 -1.37814546e+00 -4.89400625e-01 -3.40861529e-01 6.15774691e-02 1.43400252e-01 2.86341727e-01 1.01353168e-01 -5.89090884e-01 3.77221078e-01 -6.62325025e-01 -4.08019066e-01 -6.58615172e-01 1.61168709e-01 1.18259341e-01 5.03960609e-01 -7.47378707e-01 1.33845961e+00 -2.09931612e+00 -7.94695079e-01 9.73607361e-01 -1.11747682e-01 -1.89394131e-01 3.65018845e-01 9.64867771e-01 1.31801873e-01 1.33279845e-01 3.93314093e-01 2.83136696e-01 1.78444192e-01 4.50693160e-01 -2.38528579e-01 3.89191240e-01 4.71491776e-02 3.07640433e-01 -7.19576836e-01 -1.40362248e-01 1.19261920e-01 -2.52033114e-01 -4.70921665e-01 2.05389664e-01 -3.13466311e-01 -2.41803750e-01 -2.79223859e-01 1.07662976e+00 2.35205173e-01 3.89467366e-02 -2.18903851e-02 1.70056000e-01 -1.03002407e-01 1.22103959e-01 -1.55814171e+00 6.05821013e-01 -2.68496513e-01 1.01437017e-01 2.78829515e-01 -7.72566617e-01 1.00231719e+00 -2.61922972e-03 1.00727618e+00 -1.20788956e+00 1.02169393e-02 3.58715475e-01 2.00449586e-01 -3.64877164e-01 8.17144275e-01 2.29989603e-01 -3.17740619e-01 8.16610813e-01 -5.99890530e-01 3.17669332e-01 6.00593388e-01 2.54441857e-01 1.48584211e+00 -3.77824128e-01 1.15330741e-01 -2.23005429e-01 -2.28227496e-01 4.47195321e-01 4.96362388e-01 7.75976241e-01 -4.85484153e-01 2.28280276e-01 7.28786469e-01 -7.61098206e-01 -1.16500449e+00 -9.70570087e-01 -8.76473188e-02 1.43187833e+00 2.01937906e-03 -4.27487552e-01 -1.25489816e-01 -3.17048877e-01 7.41473198e-01 1.08862996e+00 -3.66318017e-01 -1.57224238e-01 -4.36721265e-01 -7.88866997e-01 3.38219432e-03 4.10228401e-01 -1.09957242e-02 -1.07716870e+00 -8.53508711e-01 1.02041423e+00 3.56162786e-01 -7.87867367e-01 -3.95070642e-01 4.00818825e-01 -8.30189109e-01 -1.24091125e+00 2.76736766e-01 -2.66111881e-01 4.76915926e-01 1.24530040e-01 1.35065424e+00 -8.26436132e-02 -4.70250726e-01 5.39756477e-01 -4.67437297e-01 -9.43894923e-01 -5.82913101e-01 -2.14143351e-01 2.27835909e-01 1.12474591e-01 7.67917454e-01 -4.31899458e-01 -7.33599901e-01 6.75863802e-01 -9.55659628e-01 -8.92280877e-01 5.21920145e-01 4.51627612e-01 8.70750070e-01 6.31584406e-01 7.65792489e-01 -1.04015458e+00 1.19371104e+00 -7.58250475e-01 -8.61130297e-01 -1.02106877e-01 -1.49660814e+00 -2.23004147e-01 6.97300315e-01 -1.86360121e-01 -4.01618838e-01 -1.84730664e-01 1.25369278e-03 -3.11978254e-02 -1.86274409e-01 5.48045874e-01 5.00909805e-01 3.76118034e-01 2.87383258e-01 -1.15269043e-01 3.39226633e-01 -5.63396573e-01 -4.00372334e-02 4.24429923e-01 3.11349720e-01 -3.92469615e-01 4.58417326e-01 2.39417776e-01 -3.27820778e-01 -5.62996626e-01 -8.96780416e-02 -7.61551976e-01 -3.55067104e-01 -1.36282980e-01 -2.28299163e-02 -7.90953398e-01 -7.00870275e-01 2.72360921e-01 -2.02058747e-01 -2.01647818e-01 -6.65746868e-01 2.04799384e-01 -3.47501695e-01 -1.74776495e-01 -6.97617769e-01 -8.75298798e-01 -2.59238750e-01 -6.51864469e-01 5.21906435e-01 1.82987116e-02 -6.32044613e-01 -7.09903181e-01 2.01444596e-01 9.69907194e-02 8.65627289e-01 3.45368087e-01 7.17877626e-01 -1.52661860e+00 -1.85025021e-01 -7.22645581e-01 6.52618706e-02 1.14289865e-01 6.56037033e-02 5.14214218e-01 -4.54186827e-01 -4.84622419e-01 -6.25387058e-02 3.50752681e-01 2.44249582e-01 3.90675336e-01 9.53388035e-01 -5.54763734e-01 1.16676278e-01 8.84101167e-02 1.52167988e+00 5.34860194e-01 3.70808542e-01 7.53006637e-01 1.05406538e-01 3.17493618e-01 1.34471202e+00 9.35074747e-01 3.16177905e-01 4.20310646e-01 5.05607545e-01 4.51610014e-02 9.13793385e-01 4.15715529e-03 4.96403009e-01 6.94378555e-01 1.10430405e-01 2.20499113e-01 -8.09507072e-01 5.74773014e-01 -2.00990772e+00 -1.03789353e+00 -3.47754359e-02 2.46309781e+00 4.59313929e-01 1.08112359e+00 7.91176498e-01 1.94450304e-01 4.23997939e-01 -4.48382497e-01 -8.13938975e-01 -1.20875835e+00 3.18976372e-01 3.43953911e-03 1.08525085e+00 -8.72425959e-02 -8.13925326e-01 1.72196373e-01 6.73785162e+00 1.62642851e-01 -8.67364764e-01 -2.61077493e-01 8.45026731e-01 -7.68101573e-01 5.23440987e-02 -2.07156882e-01 -7.53845096e-01 9.20651495e-01 1.82220554e+00 -2.52473921e-01 2.85202295e-01 1.23788619e+00 7.53605127e-01 -4.56052929e-01 -1.09887326e+00 6.00568593e-01 -3.68991286e-01 -1.05761111e+00 -4.83827859e-01 3.69008511e-01 3.35668474e-01 1.59924701e-01 -2.62245417e-01 3.49549711e-01 5.82607210e-01 -6.19725108e-01 6.61400020e-01 4.54218358e-01 -8.37177411e-02 -1.28459024e+00 1.13223767e+00 3.01849190e-02 -1.16028154e+00 -4.70936865e-01 -1.12568259e-01 -3.59032393e-01 2.89419085e-01 7.42597759e-01 -8.47371280e-01 5.53421257e-03 1.08355844e+00 1.44931525e-01 -5.70969880e-01 1.08615756e+00 6.62743211e-01 9.53073502e-01 -8.70520532e-01 -9.79395211e-03 8.59754980e-02 -2.27442160e-01 1.81800097e-01 1.03514159e+00 3.04411016e-02 -7.94248730e-02 4.70763236e-01 2.40558401e-01 3.26329768e-01 2.81608939e-01 -2.86023766e-01 -3.71793844e-02 5.96631110e-01 1.20259392e+00 -1.03994942e+00 -2.85578787e-01 -5.59050441e-01 3.24173748e-01 -4.54636484e-01 7.71297440e-02 -8.74184191e-01 -4.36974615e-01 7.68600106e-01 7.83634603e-01 5.31135798e-01 -1.97479561e-01 -3.56563449e-01 -6.55838251e-01 1.42290935e-01 -1.07721698e+00 7.53001153e-01 -5.78113720e-02 -1.71334541e+00 -2.20960714e-02 -7.72869065e-02 -1.04001546e+00 -3.72362822e-01 -3.23699117e-01 -7.11063921e-01 4.31508601e-01 -1.11088526e+00 -2.82410294e-01 7.02242777e-02 4.47262526e-01 5.36109924e-01 -1.05223916e-01 6.10503852e-01 2.91525364e-01 -6.12009346e-01 4.68789577e-01 4.94543165e-01 -1.44539759e-01 7.69654453e-01 -1.40130329e+00 6.25062883e-01 8.01402807e-01 -1.73974484e-01 4.13460642e-01 9.64679658e-01 -8.54742825e-01 -1.68030667e+00 -9.67463136e-01 4.61018652e-01 -2.81078517e-01 1.07975316e+00 -2.23675564e-01 -9.95719790e-01 6.55489564e-01 2.34288275e-02 -2.47802511e-01 7.92129576e-01 2.75231421e-01 1.03649400e-01 -7.17404127e-01 -1.58591533e+00 9.59646702e-02 4.47850406e-01 4.36702296e-02 -5.27268350e-01 2.43721321e-01 3.19265187e-01 -1.10207200e-01 -1.35424268e+00 7.64854178e-02 6.66739464e-01 -1.09516633e+00 5.65766215e-01 -4.97515231e-01 -1.61406249e-02 8.16206858e-02 -1.86490729e-01 -1.27271354e+00 -4.34255153e-01 -8.43659461e-01 -4.04266119e-01 1.20498586e+00 5.61411858e-01 -9.95804846e-01 5.17061591e-01 1.35017729e+00 2.66203642e-01 -7.41492212e-01 -4.74972904e-01 -5.90311050e-01 -5.36151290e-01 -4.87620950e-01 7.26450562e-01 5.98328888e-01 -1.33185983e-02 -1.29982591e-01 1.73857018e-01 2.83542395e-01 8.07393730e-01 2.30465353e-01 8.23445201e-01 -1.21958351e+00 -3.59115779e-01 -2.68745065e-01 -6.00805283e-01 -1.79165173e-02 -9.51088190e-01 -7.41604939e-02 -1.19486488e-01 -1.14965332e+00 -3.52730125e-01 -7.06966281e-01 -7.80457556e-01 4.26679969e-01 2.76034385e-01 4.85494137e-02 5.64379022e-02 5.74905515e-01 -6.84504092e-01 -3.24514478e-01 3.11280102e-01 1.89657196e-01 -5.20009637e-01 4.09435987e-01 -7.86231935e-01 6.89612746e-01 1.02951157e+00 -4.45308030e-01 -1.59001201e-01 8.83948132e-02 5.29738724e-01 -2.53516525e-01 2.77696960e-02 -7.59676576e-01 3.25286508e-01 -2.62044162e-01 5.04996121e-01 -7.35652149e-01 -2.03749627e-01 -1.11972797e+00 2.46316344e-01 5.32142758e-01 -2.68164933e-01 9.72422242e-01 2.33409330e-01 7.14238167e-01 -6.46266788e-02 1.09807570e-02 4.68422741e-01 -2.54520923e-01 -9.52385068e-01 5.04567474e-02 -4.76058125e-01 -1.88712105e-02 1.43322825e+00 -1.47557348e-01 2.52457298e-02 -4.18687105e-01 -7.49222875e-01 6.73901379e-01 5.77777982e-01 4.77320969e-01 2.48029783e-01 -9.01551068e-01 -6.47108793e-01 5.72173297e-01 1.88635141e-01 -2.22197711e-01 -2.71301270e-01 6.51468575e-01 -8.19394171e-01 4.96639386e-02 -2.66292542e-01 -7.64706969e-01 -1.04027915e+00 4.64018077e-01 2.61661857e-02 -2.85625160e-01 -5.62616944e-01 2.88841516e-01 -8.70555520e-01 1.63481265e-01 4.04518366e-01 -6.67932987e-01 1.14532627e-01 5.22667646e-01 6.19454801e-01 5.39146543e-01 5.86870313e-01 -2.33676821e-01 -2.00966403e-01 3.20049971e-02 -5.05132437e-01 9.07724723e-02 1.57302451e+00 -3.24819684e-01 5.12229390e-02 7.95428991e-01 5.89501381e-01 1.42728188e-03 -1.22785687e+00 -6.75600171e-02 3.59350383e-01 -5.48962057e-01 -8.50431062e-03 -7.62510002e-01 -1.07357562e+00 -5.71412966e-02 6.14312828e-01 1.24699461e+00 1.06018925e+00 -3.24939907e-01 1.07460058e+00 2.72687137e-01 5.61002731e-01 -1.77714860e+00 -3.38378966e-01 5.66782989e-02 4.06913877e-01 -1.33670259e+00 2.45820075e-01 2.05743924e-01 -8.25302541e-01 8.79453599e-01 5.31317592e-01 -4.58430439e-01 8.70441079e-01 4.33296561e-01 1.42431051e-01 -4.31418747e-01 -1.14455831e+00 2.88157284e-01 -5.16139627e-01 1.95213705e-01 7.49524981e-02 3.39562684e-01 -1.99245125e-01 6.53719127e-01 -6.07292540e-02 -1.15844220e-01 7.55549788e-01 1.52893698e+00 -6.11596882e-01 -8.38714182e-01 -5.23349941e-01 1.07857263e+00 -8.17894161e-01 2.91873962e-01 -1.70460716e-02 9.15077865e-01 -2.04249263e-01 1.03130925e+00 6.21303022e-01 -2.62963057e-01 9.38591599e-01 3.05742174e-01 -1.07169822e-01 -5.11345625e-01 -9.30881739e-01 3.29594523e-01 4.37953681e-01 -9.29427743e-01 3.24853987e-01 -9.72091019e-01 -1.29963434e+00 -7.42783070e-01 -9.14449096e-02 2.98487306e-01 1.00060689e+00 6.13412440e-01 6.77596688e-01 4.93236095e-01 1.06776333e+00 -5.20237744e-01 -1.16968799e+00 -7.30085552e-01 -1.15396464e+00 8.16956699e-01 4.69319560e-02 -4.19326156e-01 -4.74076301e-01 2.22691260e-02]
[7.306511402130127, 2.845252275466919]
c60ba4a9-71d7-4b2e-b00f-2c26bff6f705
probabilistic-human-mesh-recovery-in-3d
2304.06024
null
https://arxiv.org/abs/2304.06024v1
https://arxiv.org/pdf/2304.06024v1.pdf
Probabilistic Human Mesh Recovery in 3D Scenes from Egocentric Views
Automatic perception of human behaviors during social interactions is crucial for AR/VR applications, and an essential component is estimation of plausible 3D human pose and shape of our social partners from the egocentric view. One of the biggest challenges of this task is severe body truncation due to close social distances in egocentric scenarios, which brings large pose ambiguities for unseen body parts. To tackle this challenge, we propose a novel scene-conditioned diffusion method to model the body pose distribution. Conditioned on the 3D scene geometry, the diffusion model generates bodies in plausible human-scene interactions, with the sampling guided by a physics-based collision score to further resolve human-scene inter-penetrations. The classifier-free training enables flexible sampling with different conditions and enhanced diversity. A visibility-aware graph convolution model guided by per-joint visibility serves as the diffusion denoiser to incorporate inter-joint dependencies and per-body-part control. Extensive evaluations show that our method generates bodies in plausible interactions with 3D scenes, achieving both superior accuracy for visible joints and diversity for invisible body parts. The code will be available at https://sanweiliti.github.io/egohmr/egohmr.html.
['Siyu Tang', 'Darren Cosker', 'Sadegh Aliakbarian', 'Yan Zhang', 'Qianli Ma', 'Siwei Zhang']
2023-04-12
null
null
null
null
['human-mesh-recovery']
['computer-vision']
[-1.29924580e-01 3.82465124e-01 3.20433766e-01 -2.43259400e-01 -3.06502581e-01 -2.82862961e-01 3.65108877e-01 -4.38498527e-01 -1.24686860e-01 3.55802000e-01 4.79590476e-01 4.98476118e-01 -1.63019210e-01 -6.87107325e-01 -5.36135912e-01 -4.80136782e-01 -2.39981804e-02 1.00305140e+00 4.04330790e-01 -6.22478902e-01 -1.85839102e-01 5.45672596e-01 -1.58411145e+00 -8.31047148e-02 9.19242144e-01 6.87393367e-01 2.67620236e-01 1.03963435e+00 2.00625107e-01 3.53338987e-01 -4.40460354e-01 -7.68376470e-01 3.67504746e-01 -3.20251137e-01 -3.97880912e-01 2.19025463e-01 5.65929770e-01 -3.35016906e-01 -4.37889785e-01 8.39106202e-01 8.96013558e-01 5.02882898e-01 7.09261060e-01 -1.21298015e+00 -2.54008267e-02 1.05161361e-01 -8.12834442e-01 -1.17055967e-01 1.03572333e+00 2.31290355e-01 4.87997293e-01 -7.56610990e-01 8.80819976e-01 1.77517259e+00 6.33771479e-01 7.85780370e-01 -9.90008175e-01 -6.58670187e-01 1.18996382e-01 2.99142022e-02 -1.51756787e+00 -4.64373738e-01 9.58375633e-01 -5.71769357e-01 4.63829041e-01 5.30845881e-01 1.24056804e+00 1.36022139e+00 4.99182612e-01 5.61290860e-01 5.91641724e-01 -8.98472592e-02 2.89692990e-02 -2.43989274e-01 -1.90758169e-01 9.98467743e-01 2.45024070e-01 -5.38112894e-02 -6.58314347e-01 -1.88640714e-01 1.27874589e+00 1.11145219e-02 -2.62756526e-01 -8.87338102e-01 -1.13437796e+00 5.76943576e-01 4.19228554e-01 -1.99077353e-01 -3.10854703e-01 1.55869305e-01 2.16669455e-01 -3.11050594e-01 5.76979101e-01 7.16968030e-02 -6.34337440e-02 -2.92728213e-03 -5.23412466e-01 7.62251556e-01 6.47134840e-01 1.16045058e+00 2.64533281e-01 -1.02980055e-01 -4.00409579e-01 7.42624342e-01 4.39712763e-01 8.81588638e-01 -1.43621027e-01 -1.17550611e+00 5.02104044e-01 5.20590901e-01 5.84837086e-02 -1.24440682e+00 -7.35499203e-01 -5.93884110e-01 -1.03979969e+00 6.38746619e-02 4.05114383e-01 -1.20045587e-01 -8.98825228e-01 1.70124996e+00 1.30225265e+00 4.37718965e-02 -4.05438036e-01 1.34073031e+00 9.53674316e-01 2.99698472e-01 -1.34552285e-01 -8.43916554e-03 1.51994228e+00 -9.49511647e-01 -7.09720433e-01 -3.06955278e-01 2.15725958e-01 -7.74808943e-01 7.76585340e-01 3.75686288e-01 -1.19334447e+00 -6.82170153e-01 -6.82145953e-01 -3.11991602e-01 2.72380710e-01 1.91343073e-02 7.97986090e-01 5.39914489e-01 -7.49458551e-01 3.47902298e-01 -8.64601374e-01 -5.11858881e-01 6.11369312e-02 4.20160055e-01 -3.70688409e-01 -8.67324248e-02 -1.00535917e+00 6.73028290e-01 -1.73255168e-02 6.01182640e-01 -7.64311492e-01 -3.95911723e-01 -1.04621339e+00 -3.61199975e-01 5.69309831e-01 -1.33211291e+00 1.04351079e+00 -3.72228712e-01 -1.56399596e+00 8.18351507e-01 -7.74191751e-04 -2.97941547e-02 1.21810758e+00 -6.15334868e-01 -2.51045585e-01 2.19478488e-01 1.09524406e-01 6.74721241e-01 1.04380894e+00 -1.29195559e+00 -2.18906980e-02 -7.13666141e-01 6.63334876e-02 9.75874782e-01 2.05893070e-01 -2.72306144e-01 -1.16485071e+00 -5.54579496e-01 4.30950284e-01 -1.17066932e+00 -4.32318270e-01 2.81627536e-01 -5.49767196e-01 4.19100486e-02 2.92075992e-01 -8.45371187e-01 8.63005936e-01 -1.98052752e+00 7.04745889e-01 2.15649828e-01 5.97669959e-01 -1.67135403e-01 8.51844624e-02 3.22026223e-01 4.06436175e-01 -5.20643950e-01 5.91210015e-02 -8.82505715e-01 6.18217560e-03 5.57787567e-02 1.50034249e-01 7.94678867e-01 -3.43463719e-01 8.26276183e-01 -8.41507196e-01 -8.95932257e-01 5.35692215e-01 8.53170514e-01 -7.62554586e-01 4.17608142e-01 -5.59409373e-02 1.08609426e+00 -5.71812928e-01 6.10308528e-01 9.65566933e-01 -4.11532447e-02 -6.84435526e-03 -3.27280343e-01 2.73033708e-01 -3.03020984e-01 -1.46788716e+00 2.07908964e+00 -2.15500787e-01 -1.65994957e-01 5.47297418e-01 -1.67939648e-01 7.07498372e-01 1.25356048e-01 3.42059880e-01 -3.77088040e-01 3.97857428e-01 -1.74274758e-01 -1.74428850e-01 -4.72294033e-01 5.04739642e-01 1.18534118e-01 -2.03586295e-01 -1.46803528e-01 -1.34708151e-01 -5.19704044e-01 -1.20470263e-01 2.04865769e-01 7.27603197e-01 5.56414127e-01 9.75212604e-02 -6.11577183e-02 4.21747476e-01 -2.57225245e-01 6.46140695e-01 4.68478441e-01 -5.60166873e-02 9.16953921e-01 7.55962580e-02 -3.90741885e-01 -7.12672889e-01 -1.38765919e+00 7.92672038e-02 8.18702042e-01 7.93075979e-01 -4.58507627e-01 -7.93590665e-01 -4.73331630e-01 -4.38247658e-02 4.64509189e-01 -5.86126387e-01 -1.25892043e-01 -6.60847962e-01 -3.90006214e-01 9.54986513e-02 2.49118477e-01 3.48315209e-01 -8.39948773e-01 -6.00462377e-01 -9.09525529e-02 -4.43428487e-01 -1.05115283e+00 -6.42091751e-01 -5.25938272e-01 -6.87797248e-01 -1.04707170e+00 -1.04929101e+00 -3.12798530e-01 6.99820757e-01 1.30235210e-01 9.01067138e-01 -1.82476029e-01 -6.16211951e-01 5.83660066e-01 -1.76538959e-01 -4.18569669e-02 -1.26115873e-01 -2.38666221e-01 3.83017659e-01 5.88227399e-02 -2.32128799e-01 -6.90670848e-01 -1.04867518e+00 4.84027058e-01 -1.62346095e-01 4.22622114e-01 2.41268575e-01 4.19171989e-01 4.52943236e-01 -2.25780770e-01 -3.39901805e-01 -5.67231715e-01 3.35950851e-01 -2.91959822e-01 -2.96050906e-01 -1.11478560e-01 3.13033819e-01 -3.68820935e-01 1.31861135e-01 -5.63507378e-01 -1.17094159e+00 2.10495993e-01 -2.31942743e-01 -7.51108289e-01 -1.07070573e-01 -2.86420643e-01 -4.44840819e-01 2.77022924e-02 6.69846892e-01 -9.41982940e-02 2.09167916e-02 -4.30214196e-01 4.32509452e-01 7.16446117e-02 5.02754211e-01 -6.68165088e-01 8.26396346e-01 6.76429749e-01 2.20902622e-01 -1.07255578e+00 -4.77157652e-01 -4.00423944e-01 -7.94478536e-01 -7.07863331e-01 1.28360236e+00 -1.03941250e+00 -8.83035004e-01 4.89828616e-01 -1.24273455e+00 -3.65197748e-01 -2.40348756e-01 7.49788284e-01 -6.29101634e-01 6.25856340e-01 -6.25132978e-01 -1.03353167e+00 -3.09500307e-01 -1.10242414e+00 1.55782712e+00 1.21330030e-01 -6.22760415e-01 -7.31994510e-01 4.90134992e-02 7.62926459e-01 -1.99795738e-01 6.23014867e-01 1.56195596e-01 2.28928681e-02 -5.65095305e-01 -1.57634228e-01 1.25587091e-01 -1.35146663e-01 -1.44533932e-01 -7.89835081e-02 -7.66841888e-01 -3.21375966e-01 -1.57636315e-01 -1.08593278e-01 3.60669166e-01 6.21087313e-01 8.10158253e-01 -1.57681584e-01 -5.01947224e-01 8.01869452e-01 7.10160613e-01 -3.60635966e-01 3.70424986e-01 -3.92719328e-01 1.22067153e+00 9.05157864e-01 9.65223014e-01 7.25809038e-01 6.64603770e-01 1.03111911e+00 5.42677522e-01 -9.51757580e-02 -4.11815286e-01 -5.81788957e-01 1.29930094e-01 7.78620958e-01 -5.40279269e-01 -3.97188425e-01 -8.13927054e-01 2.07492039e-01 -1.81080902e+00 -6.92136109e-01 -4.53213304e-01 2.31022692e+00 2.40792096e-01 1.69297248e-01 2.13772953e-01 -3.59700829e-01 7.84610033e-01 1.26036331e-01 -5.87817013e-01 4.15799767e-02 3.09511811e-01 -2.02257499e-01 1.93388253e-01 8.14482331e-01 -7.92360365e-01 9.62666929e-01 5.10791206e+00 9.21973169e-01 -5.18549204e-01 2.59461612e-01 1.24907173e-01 -2.80075490e-01 -2.12109536e-01 -2.90531337e-01 -8.55696261e-01 2.97099799e-01 2.25365087e-02 3.50095570e-01 1.28298491e-01 6.86941803e-01 2.64865577e-01 -2.79978842e-01 -9.20808256e-01 1.30793977e+00 2.48509198e-01 -6.70403421e-01 1.02847172e-02 2.68604964e-01 4.81744975e-01 -3.43374491e-01 -5.71510307e-02 1.14817142e-01 2.01395839e-01 -7.40204632e-01 9.80643511e-01 9.81264055e-01 7.75647461e-01 -7.50299335e-01 4.05804783e-01 5.82113445e-01 -1.40004182e+00 2.46080339e-01 -2.53226131e-01 -2.52668947e-01 4.79383916e-01 6.91654205e-01 -5.90367556e-01 6.66025817e-01 7.98719585e-01 3.41141254e-01 -3.02844495e-01 8.12485933e-01 -2.75743365e-01 -1.13349162e-01 -5.44022799e-01 8.52896348e-02 -5.02548158e-01 -4.00333703e-01 1.05559111e+00 8.95013154e-01 2.82776803e-01 2.86414593e-01 3.68221551e-01 6.31548703e-01 3.76415610e-01 1.16687112e-01 -5.26730359e-01 4.78867203e-01 1.68355644e-01 1.33537197e+00 -8.19067121e-01 -1.35718033e-01 2.79413342e-01 1.51407206e+00 3.09944153e-01 3.50792497e-01 -1.15815067e+00 1.09358497e-01 6.56091750e-01 5.34279227e-01 -1.44351438e-01 -5.17796636e-01 5.65460175e-02 -1.35406053e+00 1.73936173e-01 -5.32606304e-01 3.07742864e-01 -9.40200269e-01 -9.86350298e-01 5.50083041e-01 3.75062108e-01 -1.28242218e+00 -2.85552084e-01 -1.11672208e-01 -3.09339613e-01 7.77382016e-01 -5.00319719e-01 -1.45738459e+00 -7.12024808e-01 6.57877624e-01 6.32941306e-01 3.94882083e-01 4.75682050e-01 1.64264470e-01 -3.82336646e-01 5.45408428e-01 -5.99036098e-01 -1.59856543e-01 6.83191001e-01 -1.01056516e+00 4.71877724e-01 5.97370386e-01 -1.36371911e-01 4.79206443e-01 9.52334464e-01 -1.19235897e+00 -1.53598130e+00 -8.57795417e-01 6.17510617e-01 -8.36347580e-01 8.15848634e-02 -8.40931058e-01 -4.22584027e-01 5.43123901e-01 -3.37429345e-01 -2.43241247e-02 3.02904934e-01 1.01743855e-01 8.37308988e-02 9.58764032e-02 -1.19582760e+00 9.45170462e-01 1.90067124e+00 -1.49757639e-01 -3.94722044e-01 5.03758967e-01 6.97627544e-01 -1.26106489e+00 -6.66093826e-01 6.41932070e-01 7.94565618e-01 -1.12373996e+00 1.20511186e+00 2.44683195e-02 2.12349147e-01 -3.84059697e-01 4.44400758e-02 -9.54629004e-01 -3.52784008e-01 -8.04606915e-01 -3.74886870e-01 9.01537240e-01 -2.80442148e-01 -4.66338992e-01 9.70366061e-01 6.26983345e-01 -9.12182219e-03 -5.46928227e-01 -9.45003510e-01 -5.88738322e-01 -5.73332489e-01 -4.64951485e-01 3.62981558e-01 5.50670087e-01 -3.37868780e-01 3.33529621e-01 -7.09390640e-01 5.57600439e-01 1.03864431e+00 4.63260598e-02 1.50213253e+00 -1.17730212e+00 -6.38085246e-01 -3.74110490e-02 -6.27064347e-01 -1.38934565e+00 -1.31372541e-01 -5.48091114e-01 -2.82160030e-03 -1.62741625e+00 8.62018615e-02 -2.92900026e-01 5.83355188e-01 -1.15577571e-01 -1.63019076e-01 3.78928721e-01 2.21308649e-01 6.74654916e-02 -6.50259316e-01 9.43534374e-01 1.89444339e+00 2.04935163e-01 -3.90438408e-01 2.79785454e-01 -1.06963418e-01 1.10699928e+00 4.29252684e-01 -1.83648542e-01 -5.85607588e-01 -3.86762112e-01 2.83113837e-01 4.75199014e-01 7.50528991e-01 -1.32762516e+00 1.62019268e-01 -1.99633390e-01 6.69617057e-01 -8.25656891e-01 1.18663168e+00 -6.18813038e-01 8.28474224e-01 5.33684015e-01 1.07609406e-01 -2.00931937e-01 2.57500727e-02 7.31242418e-01 3.23738515e-01 2.73749501e-01 4.06970412e-01 -2.58180559e-01 -3.89214247e-01 6.41476750e-01 3.50949541e-02 5.38970679e-02 9.78580117e-01 -5.89585185e-01 2.76188940e-01 -6.96567595e-01 -1.21743166e+00 4.92504120e-01 7.01470912e-01 5.88030398e-01 7.21835852e-01 -1.16148472e+00 -7.95051217e-01 3.04100126e-01 5.13306186e-02 4.97959107e-01 9.76683319e-01 9.94852602e-01 -6.50366008e-01 -1.34934768e-01 2.87848146e-04 -9.31035399e-01 -1.56602609e+00 3.05822104e-01 3.71108770e-01 -6.70000985e-02 -7.59298623e-01 1.15128696e+00 8.61944735e-01 -6.98742747e-01 1.43377826e-01 -1.74777001e-01 -4.97848801e-02 -2.06814989e-01 2.17813522e-01 7.51055479e-01 -3.03424209e-01 -1.05797982e+00 -3.98974210e-01 1.09275544e+00 2.31472686e-01 -2.18150944e-01 8.83377314e-01 -4.46095914e-01 1.57792836e-01 2.12782294e-01 7.95661271e-01 5.52598119e-01 -1.49183404e+00 1.66675001e-01 -9.80645835e-01 -6.81763947e-01 -4.51496482e-01 -4.89793926e-01 -7.97319233e-01 8.95097494e-01 5.28810501e-01 -3.82787615e-01 8.16932917e-01 2.48105079e-01 6.79469585e-01 -2.07211170e-02 8.61960649e-01 -8.60816717e-01 1.21682882e-01 3.96298438e-01 1.39928007e+00 -8.55372846e-01 3.02804589e-01 -1.23825717e+00 -7.52263725e-01 6.85364783e-01 9.75990713e-01 -1.71506271e-01 5.36798060e-01 -1.15130618e-02 -1.14602216e-01 -4.19643462e-01 -6.27595633e-02 -1.18549846e-01 6.37849867e-01 7.98111200e-01 -4.52435995e-03 2.32120320e-01 -1.90190196e-01 4.29627866e-01 -6.25540853e-01 -3.51851672e-01 6.37210459e-02 5.76024294e-01 -1.43750399e-01 -7.93825448e-01 -6.96961641e-01 1.57835960e-01 -5.39381094e-02 3.42260182e-01 -3.47365826e-01 6.05514467e-01 4.69722748e-01 7.61032760e-01 -6.21754415e-02 -4.64509189e-01 5.38688302e-01 -2.96506077e-01 8.53045404e-01 -7.40455568e-01 -3.51580530e-01 4.30842638e-01 2.57384419e-01 -1.08232999e+00 -2.12085724e-01 -6.19212627e-01 -1.36542726e+00 -4.48064625e-01 -2.75287330e-01 -3.75354700e-02 3.82436037e-01 5.91968238e-01 3.98077339e-01 4.12767231e-01 2.69729227e-01 -1.55911112e+00 -2.15292498e-01 -7.35014737e-01 -5.47997296e-01 5.43350339e-01 2.56485850e-01 -1.10599375e+00 -3.28452915e-01 -3.25481981e-01]
[7.0572004318237305, -0.9999073147773743]
d478f2fe-8ce2-45ba-9b89-ab1a88546de0
non-local-latent-relation-distillation-for-1
2204.01971
null
https://arxiv.org/abs/2204.01971v2
https://arxiv.org/pdf/2204.01971v2.pdf
Non-Local Latent Relation Distillation for Self-Adaptive 3D Human Pose Estimation
Available 3D human pose estimation approaches leverage different forms of strong (2D/3D pose) or weak (multi-view or depth) paired supervision. Barring synthetic or in-studio domains, acquiring such supervision for each new target environment is highly inconvenient. To this end, we cast 3D pose learning as a self-supervised adaptation problem that aims to transfer the task knowledge from a labeled source domain to a completely unpaired target. We propose to infer image-to-pose via two explicit mappings viz. image-to-latent and latent-to-pose where the latter is a pre-learned decoder obtained from a prior-enforcing generative adversarial auto-encoder. Next, we introduce relation distillation as a means to align the unpaired cross-modal samples i.e. the unpaired target videos and unpaired 3D pose sequences. To this end, we propose a new set of non-local relations in order to characterize long-range latent pose interactions unlike general contrastive relations where positive couplings are limited to a local neighborhood structure. Further, we provide an objective way to quantify non-localness in order to select the most effective relation set. We evaluate different self-adaptation settings and demonstrate state-of-the-art 3D human pose estimation performance on standard benchmarks.
['R. Venkatesh Babu', 'Anirban Chakraborty', 'Varun Jampani', 'Pradyumna YM', 'Anirudh Jamkhandi', 'Siddharth Seth', 'Jogendra Nath Kundu']
2022-04-05
non-local-latent-relation-distillation-for
http://proceedings.neurips.cc/paper/2021/hash/018b59ce1fd616d874afad0f44ba338d-Abstract.html
http://proceedings.neurips.cc/paper/2021/file/018b59ce1fd616d874afad0f44ba338d-Paper.pdf
neurips-2021-12
['unsupervised-3d-human-pose-estimation', 'weakly-supervised-3d-human-pose-estimation']
['computer-vision', 'computer-vision']
[ 2.56288350e-01 2.77039111e-01 -1.32161127e-02 -5.55937409e-01 -1.04203999e+00 -6.80616796e-01 7.59443581e-01 -4.46431071e-01 -3.26889426e-01 6.46954954e-01 2.44863048e-01 3.42537105e-01 1.57123268e-01 -5.13195038e-01 -1.30146217e+00 -6.28372133e-01 6.02692552e-02 8.15633535e-01 -4.03574854e-02 -3.36514264e-01 -3.27835500e-01 3.46386880e-01 -1.31227887e+00 1.11067347e-01 5.75879574e-01 7.82646775e-01 7.04503059e-02 6.50390267e-01 5.99717677e-01 4.78433907e-01 -4.81848568e-01 -4.62715566e-01 5.07905304e-01 -6.02596879e-01 -6.69104874e-01 4.06885356e-01 7.20420659e-01 -3.86634827e-01 -4.13120091e-01 9.64747131e-01 6.36149764e-01 1.03801392e-01 8.31489265e-01 -1.20416355e+00 -3.87888044e-01 1.39312401e-01 -5.96406400e-01 -3.48045528e-02 8.57083976e-01 3.63968253e-01 7.83704579e-01 -8.53158772e-01 1.02590740e+00 1.34600461e+00 6.10831797e-01 5.20920217e-01 -1.51661706e+00 -4.95664179e-01 2.03673348e-01 -7.95322806e-02 -1.38704240e+00 -2.58738965e-01 1.11167479e+00 -5.91126680e-01 7.67786503e-01 1.82057079e-02 7.69066095e-01 1.78635418e+00 1.79987192e-01 5.87329745e-01 1.20283532e+00 -4.40233171e-01 -3.12456433e-02 -3.76767255e-02 -5.24564922e-01 7.10777283e-01 -1.06933489e-01 2.26369590e-01 -7.28084624e-01 1.48520082e-01 9.92602825e-01 -2.37285301e-01 -2.02975973e-01 -1.02652764e+00 -1.25974345e+00 6.54007316e-01 5.37742972e-01 -5.82906418e-02 -2.89225847e-01 1.09142058e-01 2.22684085e-01 2.74594158e-01 6.50454104e-01 4.71820712e-01 -5.30449152e-01 5.64163923e-02 -5.52695990e-01 4.95012909e-01 5.43302596e-01 9.94674206e-01 8.31455469e-01 -1.49773687e-01 -1.78952992e-01 5.55472076e-01 3.00581604e-01 6.68738246e-01 2.03402236e-01 -8.49331737e-01 7.27659881e-01 2.44408295e-01 1.81292072e-01 -8.37926090e-01 -2.90753454e-01 -6.44547522e-01 -7.08268464e-01 8.60812292e-02 5.17348111e-01 -3.45318243e-02 -9.72526789e-01 2.19267893e+00 6.05982244e-01 2.15531841e-01 -7.60808960e-02 1.11028409e+00 4.89462316e-01 3.88381898e-01 -1.69946164e-01 -2.69246120e-02 1.22983348e+00 -9.95454848e-01 -4.62762088e-01 -5.15357614e-01 2.99331158e-01 -6.74793601e-01 1.13424194e+00 1.01290055e-01 -1.12278354e+00 -6.90504134e-01 -9.26824510e-01 -2.51449466e-01 -1.79741710e-01 3.18594538e-02 3.31722684e-02 2.35967487e-01 -6.40118539e-01 3.39290679e-01 -9.40417707e-01 -2.29874268e-01 6.73669204e-02 2.34268785e-01 -9.08681691e-01 -1.45077467e-01 -1.26782572e+00 1.06982386e+00 2.34047174e-01 5.62401898e-02 -1.16889405e+00 -5.55601835e-01 -1.16805518e+00 -5.39582908e-01 6.56796336e-01 -1.24433267e+00 9.05560374e-01 -7.15795875e-01 -1.45200062e+00 1.48116529e+00 8.35611597e-02 -3.44316244e-01 8.93756628e-01 -5.81781328e-01 -9.03204605e-02 2.67634779e-01 3.33544195e-01 7.58809268e-01 1.15111554e+00 -1.61734581e+00 -1.03606828e-01 -6.33972645e-01 1.54498100e-01 6.27171576e-01 -1.55025683e-02 -3.94720882e-01 -7.74093866e-01 -8.78822327e-01 1.93400368e-01 -1.18193078e+00 -4.80621457e-02 -5.84832765e-02 -7.14452207e-01 2.48466238e-01 6.68382645e-01 -8.00688744e-01 5.81200302e-01 -1.85045063e+00 1.04025948e+00 1.24506317e-01 1.49597406e-01 -1.53503910e-01 -2.71683306e-01 2.74674952e-01 -2.48797327e-01 -3.25759381e-01 -2.49892384e-01 -8.38051677e-01 1.55408978e-01 3.02459419e-01 -1.08251035e-01 6.88466132e-01 3.98523897e-01 1.01507378e+00 -1.03996849e+00 -4.58540261e-01 4.65520740e-01 7.89782465e-01 -7.38795757e-01 6.57202959e-01 -2.52033025e-01 1.19797933e+00 -3.00937772e-01 4.78412956e-01 5.04210234e-01 -2.54279315e-01 -7.81110525e-02 -4.92063344e-01 3.05300683e-01 2.32840195e-01 -1.02322721e+00 2.40448737e+00 -5.72048306e-01 7.24293962e-02 -8.69449154e-02 -9.47253823e-01 7.72990346e-01 1.76149115e-01 5.72228611e-01 -4.00925100e-01 2.82789648e-01 1.08512677e-01 -3.25623304e-01 -5.00631928e-01 2.30485246e-01 -3.30138713e-01 -3.57930511e-01 1.74107611e-01 5.28397024e-01 -3.92247736e-01 -1.05361678e-01 -7.80756548e-02 9.55940962e-01 6.44627690e-01 2.01216757e-01 9.79020968e-02 4.13836241e-01 -3.57528210e-01 4.29042578e-01 3.94806534e-01 -6.76556453e-02 9.91972923e-01 5.02017021e-01 -1.66667491e-01 -1.25195718e+00 -1.48802352e+00 9.94379893e-02 8.08927357e-01 2.82434464e-01 -2.34721333e-01 -8.08519483e-01 -9.34624732e-01 -5.71359769e-02 3.76222253e-01 -8.71337473e-01 -3.61518562e-01 -6.20484114e-01 -2.39401579e-01 4.53238279e-01 3.87081236e-01 4.92947906e-01 -7.35084176e-01 -4.91022617e-01 -1.92038104e-01 -4.87903357e-01 -1.49068034e+00 -7.56829619e-01 3.12393665e-01 -5.95559657e-01 -8.62488151e-01 -9.95235801e-01 -6.88905060e-01 7.88963675e-01 -1.85893387e-01 1.22945154e+00 -6.20213687e-01 2.53071394e-02 4.91373301e-01 -2.87421227e-01 3.26563790e-02 -2.77916700e-01 1.48117304e-01 3.11619878e-01 8.58470649e-02 2.39330214e-02 -8.22970390e-01 -5.99347413e-01 4.14603949e-01 -7.33933985e-01 1.92417473e-01 7.18615830e-01 9.85741377e-01 8.74102950e-01 -3.35600138e-01 6.86307102e-02 -6.83711231e-01 2.15861291e-01 -2.36942589e-01 -2.48108685e-01 2.57265598e-01 1.07452199e-02 2.82850504e-01 4.53069568e-01 -6.27212524e-01 -9.12638962e-01 5.91537654e-01 -1.72138378e-01 -1.02078342e+00 -2.47387767e-01 1.95271537e-01 -7.38139749e-01 2.40580831e-02 7.69214809e-01 1.20583892e-01 9.56721902e-02 -3.97880495e-01 5.75614572e-01 9.99509767e-02 9.75460172e-01 -8.34031761e-01 1.30486250e+00 4.68813032e-01 9.56364349e-02 -4.44927543e-01 -1.08562493e+00 -2.74980903e-01 -1.13113153e+00 -2.59101391e-01 1.25619578e+00 -1.18876898e+00 -4.57984179e-01 4.28837448e-01 -1.10231948e+00 -4.16779637e-01 -4.67499256e-01 4.45990175e-01 -1.01302755e+00 3.00737381e-01 -4.47703511e-01 -3.61021876e-01 6.08326867e-02 -1.30870628e+00 1.75470662e+00 -3.36176842e-01 -3.54034126e-01 -9.13392842e-01 3.31160307e-01 6.89078808e-01 -2.46804267e-01 7.71393597e-01 3.42828989e-01 -1.95917025e-01 -4.10530061e-01 -2.03960016e-01 8.83458778e-02 5.75653255e-01 1.02233320e-01 -5.41464806e-01 -8.67711067e-01 -4.07205731e-01 6.45685568e-02 -6.81713820e-01 6.42046869e-01 2.70980150e-01 7.81452298e-01 -1.83359787e-01 -2.40072995e-01 8.90562236e-01 9.90459561e-01 -3.33075970e-01 5.32278299e-01 2.42996916e-01 1.12748420e+00 6.99816346e-01 7.17381477e-01 3.85071307e-01 4.41147149e-01 1.12323785e+00 4.82724667e-01 -1.34639749e-02 -1.36954620e-01 -8.27294469e-01 5.02248406e-01 5.46773553e-01 -2.33184144e-01 -2.09673390e-01 -8.36028039e-01 2.11226210e-01 -1.63110447e+00 -8.02985489e-01 3.67593795e-01 2.33425355e+00 1.01111054e+00 2.61778235e-01 2.31535226e-01 1.59064475e-02 5.53662360e-01 2.79924989e-01 -5.97594559e-01 3.39274496e-01 -9.84297544e-02 1.74452826e-01 3.36263448e-01 7.55480826e-01 -1.22925937e+00 9.30656075e-01 5.13167763e+00 6.00525975e-01 -9.94138300e-01 1.55796930e-01 4.05530274e-01 -1.84863791e-01 -2.80807137e-01 -1.20235600e-01 -6.75888479e-01 2.93747991e-01 3.66060764e-01 3.38316709e-01 1.96684495e-01 6.54760957e-01 -2.92048305e-02 1.12185113e-01 -1.55352366e+00 1.08640885e+00 2.78532326e-01 -8.17004144e-01 1.35583267e-01 1.50140598e-01 8.18310142e-01 -3.03873241e-01 2.07304239e-01 1.91750094e-01 1.20344669e-01 -1.00024939e+00 1.04922295e+00 6.27485216e-01 1.14138341e+00 -6.45758867e-01 4.87788588e-01 4.52139467e-01 -1.12585008e+00 2.83211142e-01 1.81345001e-01 4.63197865e-02 5.52073479e-01 4.33081269e-01 -5.76243758e-01 7.68044829e-01 6.39471114e-01 8.68423522e-01 -4.16355491e-01 3.51197898e-01 -5.03519654e-01 -6.97250068e-02 -4.42255050e-01 5.93257487e-01 5.08441180e-02 -1.06740139e-01 8.41456532e-01 8.24964583e-01 2.05240354e-01 -8.82917121e-02 3.12119275e-01 8.17910910e-01 -6.07730867e-03 -3.38584334e-01 -7.90964663e-01 3.36750090e-01 2.29301929e-01 8.46197784e-01 -5.23445010e-01 -5.28191142e-02 -1.53654933e-01 1.56139648e+00 3.19732666e-01 3.89205009e-01 -1.05257881e+00 1.86080158e-01 6.23409510e-01 3.42010379e-01 2.45697826e-01 -4.20036376e-01 2.64823367e-03 -1.40475714e+00 2.31184542e-01 -9.19125438e-01 1.34928405e-01 -9.05051470e-01 -1.31718457e+00 5.05114615e-01 3.25221688e-01 -1.53169107e+00 -7.08535254e-01 -3.88928354e-01 -9.83951762e-02 8.27040374e-01 -1.18067539e+00 -1.54512763e+00 -5.04322290e-01 7.79430568e-01 3.03416729e-01 5.18148951e-02 6.73283219e-01 3.36326599e-01 -2.54414886e-01 7.46204853e-01 -4.49923038e-01 2.01052383e-01 1.15566516e+00 -1.19908345e+00 3.36435527e-01 7.49108016e-01 2.58229285e-01 4.05329615e-01 9.47383344e-01 -5.70639729e-01 -1.35336459e+00 -1.02712107e+00 6.38673365e-01 -1.03461289e+00 3.44114214e-01 -7.42122650e-01 -5.20670652e-01 9.46163356e-01 -9.93741378e-02 4.24296468e-01 1.94364905e-01 -3.75355640e-03 -4.91962135e-01 -9.20185968e-02 -9.64315057e-01 5.73046207e-01 1.39317262e+00 -7.78546810e-01 -6.50976360e-01 3.07971388e-01 7.71435738e-01 -9.61820900e-01 -9.60009336e-01 5.83308995e-01 5.21085203e-01 -1.00228417e+00 1.39331424e+00 -4.14192379e-01 6.98975742e-01 -4.40962315e-01 -3.57208848e-01 -1.34162390e+00 -2.08699573e-02 -5.93197882e-01 -1.70848563e-01 1.00149095e+00 1.17354549e-01 -2.66816825e-01 9.39054430e-01 1.54287085e-01 -2.11084366e-01 -7.99322546e-01 -9.64253187e-01 -8.80313396e-01 6.00562394e-02 -3.06400001e-01 2.52185106e-01 8.93939614e-01 -4.03670341e-01 6.97938144e-01 -8.24563801e-01 3.94593775e-01 8.86230350e-01 -4.96918559e-02 1.26573730e+00 -7.62401462e-01 -7.26994157e-01 -1.66692473e-02 -6.54970646e-01 -1.42464697e+00 3.36451501e-01 -6.88432217e-01 1.59267902e-01 -1.02003264e+00 1.49385408e-01 -2.15470940e-01 4.94616814e-02 2.84653366e-01 -6.57089800e-02 5.25776803e-01 6.00773506e-02 1.48863778e-01 -5.20672977e-01 8.98340046e-01 1.64139938e+00 -9.50427949e-02 -2.10586712e-01 -7.29545802e-02 -2.48348907e-01 5.91237128e-01 3.08216333e-01 -4.35352027e-01 -6.62153661e-01 -4.53311473e-01 1.76163241e-01 2.74831057e-01 8.87990654e-01 -9.47661519e-01 -5.54296896e-02 3.14134732e-02 4.05463934e-01 -6.12906456e-01 8.54222953e-01 -6.87925041e-01 3.32694650e-01 1.88145429e-01 -4.12034363e-01 -1.71047762e-01 -1.16808370e-01 6.91340029e-01 -3.55753154e-01 1.55872032e-01 6.60362720e-01 -1.62648633e-01 -4.15249050e-01 5.07177413e-01 3.89858127e-01 4.85597908e-01 1.08904290e+00 -1.96649507e-01 1.92359462e-01 -5.31437933e-01 -1.11208439e+00 1.16345696e-01 7.45892406e-01 5.22139788e-01 5.94222367e-01 -1.52085555e+00 -6.02015495e-01 2.90170848e-01 3.80197883e-01 4.64449376e-01 3.20551008e-01 8.66372108e-01 -3.82320583e-01 2.53718764e-01 -4.54961032e-01 -9.26464021e-01 -1.16541100e+00 4.89346355e-01 4.79075879e-01 -4.73014027e-01 -6.42758250e-01 1.09565163e+00 5.09768307e-01 -6.84295177e-01 3.09897512e-01 -2.37425104e-01 2.20774576e-01 -1.34924516e-01 -2.03304291e-02 1.29940761e-02 -9.16695297e-02 -1.04560542e+00 -3.81399453e-01 8.61281097e-01 1.52809739e-01 -4.22537535e-01 1.17388868e+00 -1.53925657e-01 3.53310615e-01 5.88546813e-01 1.59928846e+00 -4.20461595e-02 -1.81202066e+00 -2.45352834e-01 -5.31377614e-01 -4.60061669e-01 -3.59052181e-01 -5.41038156e-01 -9.59628463e-01 8.29175293e-01 5.53878725e-01 -3.61764967e-01 1.03787041e+00 3.31688702e-01 6.67908788e-01 2.28742480e-01 3.45227957e-01 -9.85716045e-01 6.46207750e-01 4.60123181e-01 1.19258940e+00 -1.43385446e+00 -4.70299497e-02 -5.85672796e-01 -5.58910251e-01 6.50992215e-01 7.26455748e-01 -3.17253709e-01 6.26232862e-01 1.21573098e-01 -7.71783516e-02 -2.12244347e-01 -4.39202636e-01 -2.19707191e-01 6.67165160e-01 7.61499703e-01 2.41114914e-01 -7.30558932e-02 1.78605318e-01 4.40865993e-01 -5.29330730e-01 -1.82001516e-01 -4.98307720e-02 7.63767242e-01 1.84555739e-01 -1.19821560e+00 -4.91676688e-01 7.61826662e-03 -1.41411975e-01 2.87162662e-01 -4.86007214e-01 9.55063403e-01 4.65145618e-01 4.03823227e-01 -1.18663661e-01 -6.13746226e-01 6.19725764e-01 -5.42345159e-02 1.03116310e+00 -7.32886136e-01 -2.10757717e-01 2.38988385e-01 -1.32602907e-03 -6.74458444e-01 -6.84622765e-01 -7.00180411e-01 -8.79033267e-01 2.40587573e-02 -1.44227773e-01 -2.34786704e-01 2.35806748e-01 1.07097042e+00 1.50575146e-01 5.36060393e-01 4.42429811e-01 -1.43212998e+00 -5.83550811e-01 -8.49694312e-01 -3.93379658e-01 8.71714711e-01 3.74044150e-01 -1.18161285e+00 -3.03317785e-01 2.88332790e-01]
[7.018738269805908, -1.0290406942367554]
ee22648c-e58c-4712-addc-42edaa5fe317
learning-spatiotemporal-frequency-transformer-1
2212.14046
null
https://arxiv.org/abs/2212.14046v1
https://arxiv.org/pdf/2212.14046v1.pdf
Learning Spatiotemporal Frequency-Transformer for Low-Quality Video Super-Resolution
Video Super-Resolution (VSR) aims to restore high-resolution (HR) videos from low-resolution (LR) videos. Existing VSR techniques usually recover HR frames by extracting pertinent textures from nearby frames with known degradation processes. Despite significant progress, grand challenges are remained to effectively extract and transmit high-quality textures from high-degraded low-quality sequences, such as blur, additive noises, and compression artifacts. In this work, a novel Frequency-Transformer (FTVSR) is proposed for handling low-quality videos that carry out self-attention in a combined space-time-frequency domain. First, video frames are split into patches and each patch is transformed into spectral maps in which each channel represents a frequency band. It permits a fine-grained self-attention on each frequency band, so that real visual texture can be distinguished from artifacts. Second, a novel dual frequency attention (DFA) mechanism is proposed to capture the global frequency relations and local frequency relations, which can handle different complicated degradation processes in real-world scenarios. Third, we explore different self-attention schemes for video processing in the frequency domain and discover that a ``divided attention'' which conducts a joint space-frequency attention before applying temporal-frequency attention, leads to the best video enhancement quality. Extensive experiments on three widely-used VSR datasets show that FTVSR outperforms state-of-the-art methods on different low-quality videos with clear visual margins. Code and pre-trained models are available at https://github.com/researchmm/FTVSR.
['Dongmei Fu', 'Chang Xu', 'Daochang Liu', 'Jianlong Fu', 'Huan Yang', 'Zhongwei Qiu']
2022-12-27
null
null
null
null
['video-super-resolution', 'video-enhancement']
['computer-vision', 'computer-vision']
[ 4.22850490e-01 -5.30907571e-01 -2.82130450e-01 -3.27801406e-02 -1.08903825e+00 -1.70767531e-01 2.51869678e-01 -5.61556697e-01 2.77354002e-01 7.38572657e-01 6.81080341e-01 2.62291789e-01 -1.83424801e-01 -5.35140038e-01 -8.25804353e-01 -8.38488162e-01 -5.15596122e-02 -6.11578107e-01 1.26334578e-01 -4.41344023e-01 2.52991527e-01 2.60461211e-01 -1.80903602e+00 6.28005624e-01 1.04265356e+00 1.03880739e+00 6.21064067e-01 9.24400330e-01 4.22600448e-01 9.90094304e-01 -4.90970194e-01 6.56388104e-02 1.36181489e-01 -5.44874430e-01 -7.40653217e-01 2.32277438e-01 5.39093018e-01 -5.79483271e-01 -8.25789452e-01 1.28891957e+00 5.27561128e-01 2.87543058e-01 3.28855246e-01 -6.12233996e-01 -1.31728637e+00 2.97467917e-01 -9.24703360e-01 9.16182518e-01 7.24547327e-01 2.13631243e-01 7.06040680e-01 -9.74972010e-01 5.13848245e-01 1.37577641e+00 4.48635519e-01 3.93913895e-01 -1.24362791e+00 -5.18854737e-01 1.56839956e-02 7.74349511e-01 -1.34502161e+00 -6.17895246e-01 9.42727923e-01 -2.30409577e-01 7.82839537e-01 2.97630370e-01 4.23397779e-01 1.24803650e+00 4.57461596e-01 5.96488476e-01 1.11621940e+00 -1.00506939e-01 -1.76264137e-01 -4.89662021e-01 -3.91872786e-02 1.51254311e-01 6.25952799e-03 2.35727429e-01 -7.29094923e-01 1.69207290e-01 1.20166123e+00 1.33350203e-02 -1.10811079e+00 2.46685728e-01 -1.35951197e+00 2.70893425e-01 2.64526635e-01 5.91704071e-01 -5.41764319e-01 -1.06737344e-03 3.41895252e-01 3.25662345e-01 6.50390565e-01 2.01088279e-01 -3.10328901e-01 4.09363806e-02 -7.29047298e-01 5.54524967e-03 -8.83751959e-02 7.91266382e-01 5.04338205e-01 3.90538722e-01 -5.63161850e-01 1.13593209e+00 7.45705590e-02 5.71820259e-01 6.74415708e-01 -1.21689177e+00 3.39426428e-01 -2.62412369e-01 4.06843573e-01 -1.15171671e+00 8.74908045e-02 -4.58093524e-01 -1.40317559e+00 -2.39855014e-02 4.27715741e-02 2.62040466e-01 -7.70111918e-01 1.46802759e+00 1.28668025e-01 5.79744458e-01 6.75112084e-02 1.50662816e+00 9.67823088e-01 9.40362990e-01 -1.16891026e-01 -7.16494441e-01 1.50992799e+00 -8.47565234e-01 -1.27868724e+00 -1.37875183e-03 -5.05664706e-01 -8.23794425e-01 1.11528695e+00 6.19715095e-01 -1.31736779e+00 -1.31609142e+00 -1.09499872e+00 -4.16033387e-01 2.53526419e-01 1.92698181e-01 2.31600657e-01 1.04974277e-01 -1.04837847e+00 8.57330143e-01 -6.50903404e-01 1.75076500e-02 4.78698641e-01 -9.54097137e-02 -3.85204464e-01 -3.96954983e-01 -1.43444145e+00 4.85476464e-01 -1.73971038e-02 4.02050167e-01 -1.00290096e+00 -7.05316007e-01 -8.11564863e-01 5.27834594e-02 4.41617608e-01 -5.38089335e-01 8.72917652e-01 -1.11661899e+00 -1.43204653e+00 5.66184878e-01 -4.32984143e-01 -2.17627823e-01 2.38208458e-01 -4.89169002e-01 -9.96728003e-01 5.24429619e-01 7.11952373e-02 -2.96369521e-03 1.61826241e+00 -1.34293413e+00 -5.08871555e-01 -1.92259729e-01 -1.44214317e-01 2.50581771e-01 -7.59148896e-02 1.68830112e-01 -5.19601345e-01 -1.18554437e+00 1.46982059e-01 -2.65347272e-01 1.74225420e-01 -3.11387837e-01 -9.98955220e-02 1.13810129e-01 7.89757788e-01 -1.26440620e+00 1.40663922e+00 -2.39820695e+00 5.27979910e-01 -5.07994294e-01 3.32527399e-01 2.78566986e-01 -2.05592021e-01 -1.19981192e-01 -4.11206573e-01 -8.05785973e-03 -3.62574011e-02 1.04963385e-01 -4.13161725e-01 -1.28497124e-01 -5.78376353e-01 5.93232155e-01 3.79525512e-01 6.28993273e-01 -9.03792024e-01 -2.75562495e-01 3.16360384e-01 9.99076962e-01 -3.26146126e-01 4.54905480e-01 1.29734725e-01 7.45352566e-01 -2.81241745e-01 7.86323369e-01 8.84971619e-01 -3.94701511e-01 -1.26463836e-02 -9.02416110e-01 -1.11149266e-01 -1.55160770e-01 -1.05339372e+00 1.60123754e+00 -3.69696528e-01 7.55693316e-01 2.42148995e-01 -7.53956258e-01 9.25272524e-01 3.43239069e-01 5.75222909e-01 -1.01892424e+00 8.88152272e-02 1.30804420e-01 -3.38873059e-01 -8.59954476e-01 6.16996646e-01 4.73809458e-04 3.50368679e-01 -9.26553607e-02 1.49861380e-01 3.97276312e-01 1.09607317e-01 -1.41047180e-01 9.88233864e-01 3.84860158e-01 2.48367503e-01 -1.11854471e-01 9.04382944e-01 -5.18819451e-01 7.08400309e-01 4.05959904e-01 -3.67926717e-01 1.16409266e+00 2.49956921e-02 -3.51158857e-01 -1.12532568e+00 -1.18584788e+00 -2.04305857e-01 1.02144909e+00 4.64009881e-01 -1.63923711e-01 -5.12062848e-01 -7.34367147e-02 -3.39695662e-01 3.24102759e-01 -6.05816901e-01 -2.19166458e-01 -6.83501482e-01 -7.51344442e-01 -2.59865634e-02 3.53429168e-01 6.87537670e-01 -1.01374364e+00 -3.77426326e-01 2.43092000e-01 -8.68963182e-01 -1.07768357e+00 -8.16173911e-01 -3.65984023e-01 -6.33728385e-01 -1.00458980e+00 -1.11895645e+00 -6.25611365e-01 2.76346326e-01 7.59865463e-01 1.07615721e+00 -8.71254578e-02 -3.47894996e-01 2.25257874e-01 -6.19081318e-01 4.09794986e-01 -1.88458085e-01 -4.61377084e-01 4.61270437e-02 5.64663053e-01 7.13281408e-02 -5.73572814e-01 -8.76081109e-01 3.59558851e-01 -8.94964159e-01 7.87346810e-02 6.37659967e-01 1.06562710e+00 9.73814785e-01 5.97717285e-01 6.71812713e-01 -3.13319355e-01 4.80517298e-01 -5.84273338e-01 -3.44298184e-01 4.72166389e-02 -1.78860724e-01 -2.54018754e-01 8.99856269e-01 -6.93522274e-01 -1.43369722e+00 -5.65215528e-01 3.92290056e-02 -1.07870126e+00 -2.50507087e-01 6.21848591e-02 -3.20592701e-01 1.31288767e-02 6.24854624e-01 6.30242884e-01 -1.76548243e-01 -7.25239813e-01 2.00178906e-01 7.12583899e-01 1.00674915e+00 -4.71871644e-01 8.49736989e-01 5.25766373e-01 -2.86272287e-01 -8.63514662e-01 -8.64647746e-01 -3.42439055e-01 -2.52301365e-01 -3.93684477e-01 9.71052587e-01 -1.35744262e+00 -5.19358218e-01 6.43709898e-01 -8.69476795e-01 -3.48582327e-01 -2.23768637e-01 5.70609510e-01 -7.56369233e-01 6.10511899e-01 -9.70697880e-01 -6.57192588e-01 -3.11621636e-01 -1.07812071e+00 1.17268765e+00 4.13694590e-01 2.19284505e-01 -5.49899936e-01 -2.13685453e-01 5.29843450e-01 5.83726048e-01 3.37207131e-02 5.33963621e-01 4.61996257e-01 -8.32465470e-01 4.35486406e-01 -4.88479763e-01 5.71920335e-01 3.78199160e-01 -1.85899302e-01 -9.09054339e-01 -5.99633276e-01 4.01539922e-01 -7.59190544e-02 8.88812006e-01 7.14105368e-01 1.55144012e+00 -4.36039239e-01 8.24890882e-02 9.58250046e-01 1.62885129e+00 1.71719134e-01 1.09865785e+00 3.25457901e-01 8.80120993e-01 2.80734301e-01 8.76369059e-01 3.80701602e-01 1.40179902e-01 8.49871337e-01 8.07133839e-02 -2.30856806e-01 -6.49708092e-01 -1.96036436e-02 5.98712683e-01 7.63967812e-01 -5.91599941e-01 -1.87155306e-01 -3.43919009e-01 5.38934231e-01 -1.66079104e+00 -1.27361238e+00 -4.95605543e-02 2.10499430e+00 8.90579402e-01 -2.29284495e-01 -1.61243334e-01 3.17345589e-01 9.63879406e-01 5.50933361e-01 -6.48439169e-01 4.74942513e-02 -5.65197229e-01 1.60488889e-01 3.31304252e-01 4.58953947e-01 -1.16282749e+00 5.11095405e-01 5.44056845e+00 1.28118992e+00 -1.10861313e+00 3.08949351e-01 8.95079076e-01 -1.31346852e-01 -1.55266851e-01 -4.51959580e-01 -3.44079852e-01 7.80822456e-01 7.92484403e-01 -2.03945071e-01 9.26172912e-01 4.32239950e-01 6.03706241e-01 5.66149801e-02 -4.88553822e-01 1.27377653e+00 1.42249927e-01 -1.13056433e+00 -5.75758740e-02 -2.52478123e-01 7.40687072e-01 -2.84654558e-01 2.91505635e-01 3.53873409e-02 -1.12744436e-01 -1.03965151e+00 6.39442444e-01 8.64520133e-01 1.44304907e+00 -7.45915532e-01 6.80436850e-01 -2.86446661e-01 -1.57327628e+00 -3.21857303e-01 -4.05076206e-01 2.99009830e-01 2.32432425e-01 6.10211194e-01 2.74010599e-01 1.11717618e+00 1.39442921e+00 1.31833255e+00 -3.10748786e-01 7.05743968e-01 -2.81583183e-02 5.02268970e-01 2.93610573e-01 8.95991921e-01 -4.22301412e-01 -2.84681588e-01 8.50052416e-01 1.01097691e+00 4.88321930e-01 5.64383924e-01 -1.53660238e-01 7.81376123e-01 2.02321395e-01 -2.20295891e-01 -1.01969130e-01 1.51155844e-01 1.51198283e-01 1.11757588e+00 -3.38107824e-01 -3.02341223e-01 -4.87360954e-01 1.16597903e+00 -1.52199909e-01 7.91796923e-01 -1.07997310e+00 -2.96372414e-01 8.20312500e-01 2.01718912e-01 5.11671722e-01 -6.03877120e-02 2.64154393e-02 -1.57564831e+00 1.93560958e-01 -1.20565283e+00 2.88847774e-01 -1.38018370e+00 -1.43179679e+00 7.34936535e-01 -3.16044360e-01 -1.70048773e+00 1.48013011e-01 -1.46170467e-01 -1.43306211e-01 8.97644341e-01 -1.82502425e+00 -8.22166920e-01 -6.72202289e-01 7.91272223e-01 1.00139213e+00 -2.26403661e-02 2.69375980e-01 6.21776640e-01 -5.60501754e-01 3.60869169e-01 1.28779545e-01 -6.91455230e-02 8.44714522e-01 -9.26485419e-01 2.80829635e-03 1.19075441e+00 -3.91877979e-01 3.74080598e-01 9.09571707e-01 -7.79331803e-01 -1.69372272e+00 -1.33877718e+00 3.25295150e-01 -1.58302020e-02 5.75568855e-01 2.62069535e-02 -1.46433496e+00 4.17381853e-01 1.06926717e-01 3.60975534e-01 1.26953900e-01 -3.92919302e-01 -3.84243965e-01 -4.15476143e-01 -9.97629881e-01 3.91560882e-01 1.17307031e+00 -7.99508393e-01 -5.36247790e-01 1.10804006e-01 9.88644660e-01 -5.19609928e-01 -1.30731130e+00 5.94083548e-01 3.40317488e-01 -1.09684789e+00 1.36524618e+00 -6.94884211e-02 8.40312421e-01 -8.66913140e-01 -3.60794157e-01 -1.21003914e+00 -8.49865973e-01 -8.48162830e-01 -5.97602308e-01 1.15730059e+00 -3.38754773e-01 -3.89154106e-01 4.09447476e-02 -1.95382833e-01 -1.86504692e-01 -5.68367004e-01 -6.63310289e-01 -7.23741770e-01 -5.28058112e-01 -5.07992916e-02 4.30567622e-01 1.02070880e+00 -4.17477459e-01 1.75381795e-01 -9.61648703e-01 5.20983398e-01 9.66185212e-01 1.63552761e-01 2.46463075e-01 -7.46452034e-01 -4.88245875e-01 -2.96319425e-01 -2.63954222e-01 -1.03590691e+00 -8.10856372e-02 -2.95121759e-01 4.23948094e-02 -1.40897691e+00 3.17145795e-01 1.60756379e-01 -5.18278778e-01 5.49992472e-02 -4.63218689e-01 5.28059423e-01 -2.35692095e-02 4.42413390e-01 -5.44638932e-01 7.88599253e-01 1.56701016e+00 -9.00022760e-02 -5.90282008e-02 -3.43591988e-01 -7.35944986e-01 4.61809456e-01 4.93938446e-01 6.95438981e-02 -3.27453375e-01 -3.60836446e-01 -2.07240239e-01 5.78382611e-01 5.02243340e-01 -1.03647983e+00 -1.18063949e-01 -2.56461322e-01 7.94426143e-01 -4.54993635e-01 3.06062877e-01 -5.55429280e-01 5.22333384e-01 7.76348189e-02 -2.01799154e-01 -2.12962866e-01 1.04844026e-01 8.68237078e-01 -5.89282215e-01 5.11518538e-01 1.19582832e+00 -6.64589703e-02 -8.90477479e-01 4.29884642e-01 -2.64173895e-01 -1.36953458e-01 6.17966831e-01 -2.01553255e-01 -6.58273458e-01 -3.33106160e-01 -7.83809304e-01 -1.05583429e-01 5.42853177e-01 6.32807732e-01 8.94453168e-01 -1.39105558e+00 -1.03603411e+00 2.85861641e-01 -1.68791384e-01 -1.64060682e-01 1.36801004e+00 8.13544095e-01 -2.12686017e-01 9.89348814e-02 -5.40999532e-01 -5.68934143e-01 -1.22105861e+00 9.72800195e-01 3.77659559e-01 2.33011488e-02 -1.06713164e+00 5.73501050e-01 4.68230724e-01 5.45900285e-01 -1.38971284e-01 -1.82720989e-01 -6.07412457e-01 -9.76136699e-02 1.15804768e+00 5.53692698e-01 -1.05539136e-01 -1.02761912e+00 -3.65512222e-02 9.60938632e-01 1.28224984e-01 2.72201300e-01 1.36285400e+00 -7.43491113e-01 -1.82357784e-02 3.48348379e-01 1.16370678e+00 -4.91663516e-02 -1.68736815e+00 -3.68463427e-01 -5.95137179e-01 -1.08512402e+00 3.26828301e-01 -5.50209403e-01 -1.44249034e+00 5.67454994e-01 8.18036854e-01 2.98084587e-01 1.98238003e+00 -1.55609325e-01 8.40399861e-01 -4.37069595e-01 3.37566137e-01 -9.01040733e-01 3.22770059e-01 2.25956932e-01 1.31985962e+00 -1.10839975e+00 8.47890601e-02 -4.64002341e-01 -5.03688455e-01 1.03599620e+00 5.70569098e-01 -2.25699604e-01 2.76098371e-01 7.30327442e-02 -1.30827516e-01 9.55414623e-02 -7.80182719e-01 -2.51883715e-01 4.74177092e-01 7.01736629e-01 3.22498947e-01 -1.97412804e-01 -7.74150938e-02 7.43834078e-01 7.18407184e-02 1.80952877e-01 7.11187601e-01 3.42537999e-01 -3.99840355e-01 -4.57169205e-01 -7.09100723e-01 2.44108126e-01 -7.07026899e-01 -6.28811354e-03 4.14669693e-01 2.36179993e-01 1.93610892e-01 1.19273627e+00 2.32264213e-02 -4.73790675e-01 3.29355299e-01 -5.20252168e-01 4.95358407e-01 -8.36489573e-02 -6.26070499e-02 6.46489620e-01 -1.96823478e-01 -1.03948498e+00 -5.59026897e-01 -4.75528300e-01 -8.10629189e-01 -2.57877409e-01 -5.25435805e-02 -1.66321859e-01 6.19294904e-02 5.02745807e-01 4.92013156e-01 1.13160253e+00 8.58920455e-01 -1.19237053e+00 -1.34336203e-01 -9.30842340e-01 -8.86612773e-01 7.18096793e-01 9.41887558e-01 -7.23855734e-01 -6.11345470e-01 4.16866362e-01]
[11.116957664489746, -2.0198380947113037]
645e12c1-2413-43ea-a5ef-b90ed4aa1935
two-stage-is-enough-a-concise-deep-unfolding
2201.05810
null
https://arxiv.org/abs/2201.05810v2
https://arxiv.org/pdf/2201.05810v2.pdf
Two-Stage is Enough: A Concise Deep Unfolding Reconstruction Network for Flexible Video Compressive Sensing
We consider the reconstruction problem of video compressive sensing (VCS) under the deep unfolding/rolling structure. Yet, we aim to build a flexible and concise model using minimum stages. Different from existing deep unfolding networks used for inverse problems, where more stages are used for higher performance but without flexibility to different masks and scales, hereby we show that a 2-stage deep unfolding network can lead to the state-of-the-art (SOTA) results (with a 1.7dB gain in PSNR over the single stage model, RevSCI) in VCS. The proposed method possesses the properties of adaptation to new masks and ready to scale to large data without any additional training thanks to the advantages of deep unfolding. Furthermore, we extend the proposed model for color VCS to perform joint reconstruction and demosaicing. Experimental results demonstrate that our 2-stage model has also achieved SOTA on color VCS reconstruction, leading to a >2.3dB gain in PSNR over the previous SOTA algorithm based on plug-and-play framework, meanwhile speeds up the reconstruction by >17 times. In addition, we have found that our network is also flexible to the mask modulation and scale size for color VCS reconstruction so that a single trained network can be applied to different hardware systems. The code and models will be released to the public.
['Xin Yuan', 'Xiaoyu Yang', 'Siming Zheng']
2022-01-15
null
null
null
null
['video-compressive-sensing']
['computer-vision']
[ 4.26642329e-01 2.54235119e-02 2.55405694e-01 -8.70315582e-02 -7.13448167e-01 -1.81487530e-01 2.87736148e-01 -7.36944020e-01 -2.64587134e-01 3.89463693e-01 1.35674030e-01 -4.70253021e-01 -1.53781176e-02 -4.77661014e-01 -1.03213215e+00 -6.35748029e-01 -2.60138780e-01 -1.92581892e-01 2.48796299e-01 -2.65295535e-01 3.63707803e-02 5.74060917e-01 -1.22730005e+00 4.02171284e-01 6.19456828e-01 1.32946932e+00 6.49826229e-01 5.72804093e-01 2.91875601e-01 7.12575853e-01 -2.39161953e-01 -2.69766361e-01 8.15188587e-01 -4.50239062e-01 -3.62887919e-01 1.62026331e-01 3.32719892e-01 -8.60496581e-01 -5.41795075e-01 8.95442843e-01 5.60002744e-01 -2.11618409e-01 9.54781547e-02 -6.72459364e-01 -7.78726280e-01 5.30737996e-01 -7.23217249e-01 -8.64305794e-02 2.52935678e-01 9.61498450e-03 7.32467949e-01 -1.25099659e+00 5.96983254e-01 1.08629382e+00 8.53761971e-01 4.73485351e-01 -1.06840658e+00 -7.25561440e-01 -6.62021041e-02 4.82128143e-01 -1.52462006e+00 -8.56513262e-01 8.66425037e-01 -3.83259580e-02 7.48360038e-01 2.66705275e-01 7.62290359e-01 1.07372475e+00 -2.01305896e-01 8.31822932e-01 1.15435982e+00 -5.24530709e-01 2.31076226e-01 -2.13748276e-01 -4.53482479e-01 6.73823714e-01 2.58200109e-01 -6.21662997e-02 -4.42407042e-01 3.37866813e-01 1.01550269e+00 1.68595701e-01 -5.75095117e-01 -3.24777693e-01 -1.31289434e+00 5.37922382e-01 5.29544413e-01 3.42404306e-01 -3.67158443e-01 5.81223607e-01 1.89249292e-01 5.48860133e-01 2.52755582e-01 2.83384085e-01 -3.15943539e-01 7.58385584e-02 -1.36647761e+00 -5.78922294e-02 6.93732142e-01 1.02447307e+00 7.37213731e-01 4.57166314e-01 8.62682983e-02 7.28349328e-01 2.80067652e-01 6.28233790e-01 4.21680868e-01 -1.41031909e+00 4.76547629e-01 5.15663391e-03 5.46994731e-02 -1.01148188e+00 -2.99811870e-01 -8.03302050e-01 -1.24569523e+00 3.47638756e-01 -8.87907203e-03 -1.45708025e-01 -8.83463025e-01 1.64402366e+00 6.38200715e-02 5.16761482e-01 1.43474460e-01 1.01733327e+00 5.94554365e-01 6.99395239e-01 -7.30261147e-01 -3.65686506e-01 1.26338756e+00 -9.34277356e-01 -7.67699063e-01 -2.76045859e-01 3.42560112e-01 -8.62647533e-01 8.70409012e-01 7.01461613e-01 -1.18796456e+00 -6.48139894e-01 -1.59799814e+00 -1.28434345e-01 1.46356791e-01 2.96835661e-01 4.94514257e-01 7.81642735e-01 -1.55655921e+00 7.25248873e-01 -8.44483078e-01 -2.21308574e-01 4.29471612e-01 3.49227041e-01 -2.32421249e-01 -3.25186372e-01 -1.05906284e+00 5.70709169e-01 1.71953291e-01 5.21485150e-01 -8.74004364e-01 -5.57212234e-01 -5.77493906e-01 1.56850979e-01 6.13993168e-01 -7.90424407e-01 9.21263278e-01 -9.99326468e-01 -1.90631104e+00 4.80556935e-01 -1.55876130e-01 -6.41223133e-01 5.87917209e-01 -3.60916287e-01 -3.92257571e-01 4.37859178e-01 -1.42068416e-01 4.08153296e-01 1.17106402e+00 -1.20616019e+00 -2.33547986e-01 -1.52762890e-01 1.48812428e-01 3.15644294e-02 -3.94628555e-01 -2.13693678e-01 -8.24484944e-01 -8.52498889e-01 6.08505726e-01 -9.98761952e-01 -2.26149634e-01 2.97245800e-01 -1.88895896e-01 5.17220974e-01 9.95885313e-01 -8.46783042e-01 1.09263074e+00 -2.36477709e+00 2.19274402e-01 -1.52512332e-02 2.62197405e-01 4.17659014e-01 -3.00076991e-01 4.72727656e-01 4.66975430e-03 -1.73799798e-01 -4.16309267e-01 -6.14516616e-01 -1.97777182e-01 1.85600638e-01 -1.57701090e-01 6.35334194e-01 -1.07626513e-01 7.40203202e-01 -5.07384598e-01 -1.12161972e-01 2.08248705e-01 4.54307944e-01 -7.93994486e-01 1.92025512e-01 1.39676645e-01 4.04718727e-01 -1.39054999e-01 6.99724019e-01 1.10874593e+00 -3.75664115e-01 4.81406569e-01 -4.72219765e-01 -1.27511874e-01 -7.53417313e-02 -1.53978097e+00 2.08674884e+00 -6.23822510e-01 7.33370721e-01 6.59332097e-01 -1.28233826e+00 8.42328250e-01 2.14664191e-01 4.74880487e-01 -8.04700673e-01 -3.72848958e-02 5.61490059e-01 -1.55744299e-01 -5.59399903e-01 5.36553085e-01 -1.85125560e-01 2.53731757e-01 2.35221937e-01 6.26140535e-02 -1.64894741e-02 4.34130132e-02 3.42189014e-01 9.19464111e-01 2.02094987e-01 -4.59504463e-02 -2.50469327e-01 4.80215490e-01 -5.30030668e-01 5.64824224e-01 8.02767754e-01 2.12465778e-01 8.82620513e-01 3.18913430e-01 -3.25190306e-01 -1.17924225e+00 -9.24395323e-01 1.75929237e-02 7.66989112e-01 2.73818731e-01 -2.65653849e-01 -6.18415177e-01 -1.48668885e-02 -4.07920927e-01 3.87328416e-01 -2.39106521e-01 2.07220867e-01 -7.86555767e-01 -5.36305904e-01 4.83040154e-01 4.19203579e-01 9.34355199e-01 -6.96549654e-01 -6.61733747e-01 2.35224828e-01 -2.13364661e-01 -1.66514921e+00 -3.03523540e-01 -1.05814561e-01 -9.89487648e-01 -9.15534556e-01 -9.79800761e-01 -8.19524169e-01 3.32421988e-01 6.11663163e-01 6.32751048e-01 1.15617529e-01 1.45419642e-01 3.57876480e-01 -6.14220977e-01 1.55109838e-01 -3.86157542e-01 -1.76000133e-01 2.17920598e-02 3.26909691e-01 -5.26676536e-01 -1.11143291e+00 -1.12232482e+00 9.40886810e-02 -1.30375826e+00 4.82589900e-01 8.58512878e-01 8.64048898e-01 3.79892647e-01 -2.62523264e-01 4.70309615e-01 -7.71350622e-01 2.87744939e-01 -3.58004689e-01 -6.26701057e-01 7.16330111e-02 -8.01315248e-01 1.22769754e-02 9.33108211e-01 -1.94597304e-01 -9.30362642e-01 1.91973448e-01 -4.11496013e-01 -6.11338437e-01 3.28521490e-01 5.14601052e-01 1.54593095e-01 -3.77563655e-01 4.19177055e-01 4.84922856e-01 2.33762667e-01 -6.30494952e-01 4.50648904e-01 5.42004645e-01 5.10969222e-01 -2.33357489e-01 8.48723888e-01 8.07594657e-01 2.98369646e-01 -8.03797781e-01 -3.88083696e-01 -2.46706069e-01 -3.89389336e-01 -2.14089364e-01 5.48326015e-01 -1.41305935e+00 -7.48950183e-01 5.85089028e-01 -1.00537777e+00 -3.39377522e-01 -8.90101492e-02 5.21746993e-01 -5.06935358e-01 9.51622188e-01 -8.74650002e-01 -6.08190894e-01 -4.49332833e-01 -1.27209163e+00 8.70959520e-01 -6.23296984e-02 4.53034461e-01 -6.22531652e-01 -4.85180616e-01 2.56487429e-01 7.24497020e-01 2.30191454e-01 4.42388326e-01 2.63313986e-02 -1.01716137e+00 5.75840771e-02 -3.03824276e-01 5.71440458e-01 -1.53175354e-01 -3.98124248e-01 -9.25817072e-01 -7.13201880e-01 3.66492987e-01 -2.24680424e-01 1.12381470e+00 3.81741107e-01 1.20774472e+00 -3.91117841e-01 1.35906547e-01 1.19170284e+00 1.71188855e+00 5.34271859e-02 9.95900273e-01 3.50922495e-01 6.44849956e-01 1.53131217e-01 1.77629143e-01 5.69619060e-01 1.59711480e-01 7.77556598e-01 7.44077563e-01 -3.35976005e-01 -4.10992712e-01 -1.22834325e-01 6.23084426e-01 1.14166462e+00 -1.86386779e-01 -9.70328674e-02 -3.54373813e-01 4.91785079e-01 -1.59018695e+00 -8.03790033e-01 -1.41416550e-01 2.06394649e+00 4.45704281e-01 -1.72257647e-01 -2.39596769e-01 1.80423215e-01 4.21315968e-01 6.02439761e-01 -5.59936702e-01 -2.19869018e-01 -2.67536879e-01 3.92020255e-01 6.59300625e-01 4.29205507e-01 -6.51837289e-01 6.56815529e-01 6.00102139e+00 1.00418043e+00 -1.28459597e+00 3.02816898e-01 5.32448411e-01 -1.94313556e-01 -3.50142479e-01 1.32762671e-01 -1.62684113e-01 3.10921490e-01 7.10218251e-01 3.33059430e-01 9.69706297e-01 5.34892380e-01 2.76320338e-01 7.27144480e-02 -8.15098226e-01 1.22255194e+00 -1.16435699e-02 -1.60193253e+00 4.50061681e-03 1.81513075e-02 8.24753404e-01 1.63528055e-01 1.26422077e-01 -1.62497591e-02 -2.67168552e-01 -6.76234305e-01 1.07086897e+00 2.69491374e-01 1.40010977e+00 -4.24020201e-01 5.34110427e-01 3.63466024e-01 -1.24728835e+00 -2.49276534e-01 -3.71896029e-01 -5.56932092e-02 3.47204804e-01 6.51134551e-01 -6.17232502e-01 8.57406080e-01 8.32648516e-01 8.59018207e-01 -2.87999213e-01 7.51304269e-01 8.41987133e-03 5.06613970e-01 -3.21907073e-01 8.00230056e-02 1.67694986e-01 -4.04559016e-01 5.14253378e-01 1.19703400e+00 1.07287419e+00 1.58122808e-01 -1.22801073e-01 7.00434208e-01 -1.57306269e-01 -9.40187350e-02 -3.93822581e-01 2.09736764e-01 2.55034238e-01 1.05112386e+00 -5.22221804e-01 -4.10049438e-01 -5.24491191e-01 1.38955784e+00 -4.38209325e-02 5.53258657e-01 -7.81593084e-01 -1.86423182e-01 3.73298168e-01 3.58516335e-01 9.74768817e-01 -4.92289931e-01 -2.38953426e-01 -1.34758663e+00 2.43649423e-01 -9.65586960e-01 -6.14917725e-02 -8.38670135e-01 -8.84846270e-01 6.47971869e-01 -2.35301003e-01 -1.50992823e+00 -2.48502893e-03 -8.22276652e-01 -2.19834253e-01 5.36981881e-01 -1.70545447e+00 -1.15900171e+00 -2.53278106e-01 7.45951772e-01 5.16294122e-01 -9.79242474e-02 5.96291065e-01 5.70533752e-01 -3.58633220e-01 5.37652731e-01 5.26520848e-01 -7.58704245e-02 4.56686646e-01 -7.81082034e-01 3.60762984e-01 1.30067503e+00 5.91613390e-02 6.40124798e-01 7.57405758e-01 -2.79195637e-01 -2.10160112e+00 -8.56964231e-01 2.75494665e-01 4.56383616e-01 6.47982121e-01 -3.79075050e-01 -6.93538904e-01 5.86600721e-01 4.76915658e-01 2.71958530e-01 2.73488224e-01 -1.43256187e-01 -4.28669661e-01 -5.21286428e-01 -1.03531039e+00 5.07536590e-01 1.33923519e+00 -4.71439153e-01 -9.97503251e-02 1.00535385e-01 8.72634590e-01 -6.83290482e-01 -5.97141504e-01 4.62904811e-01 6.85641110e-01 -1.50118005e+00 1.05077255e+00 1.29680559e-01 5.76362252e-01 -4.59608614e-01 -5.25081635e-01 -9.25145686e-01 -4.70800102e-01 -1.00454211e+00 -2.85573721e-01 6.85850799e-01 2.89486587e-01 -8.36443484e-01 5.51845074e-01 7.43825510e-02 -5.24909079e-01 -7.30170429e-01 -1.22641587e+00 -7.55102515e-01 -3.32931787e-01 -6.42015040e-01 4.66907531e-01 7.33685255e-01 -3.61476928e-01 2.97147110e-02 -1.04982698e+00 4.15989608e-01 7.30086863e-01 2.67944425e-01 7.15469837e-01 -7.29930580e-01 -8.59551549e-01 -1.68857023e-01 -2.29427412e-01 -1.87518620e+00 -3.73896241e-01 -7.10909903e-01 -4.75730337e-02 -1.44254267e+00 1.33931533e-01 -3.35396379e-01 -2.64994651e-01 8.44930634e-02 1.97093904e-01 6.30874693e-01 6.13821983e-01 3.01011026e-01 -5.46831787e-01 6.59529507e-01 1.44397151e+00 8.47648233e-02 4.29798886e-02 -1.84166580e-01 -7.83604085e-01 3.88955116e-01 6.41103983e-01 -2.51436532e-01 -3.62543643e-01 -6.92653894e-01 2.67129868e-01 4.40212637e-01 3.71044368e-01 -1.27276683e+00 2.32998192e-01 2.04625994e-01 3.10807049e-01 -2.85971612e-01 6.12467766e-01 -9.58621979e-01 5.90486169e-01 7.49240875e-01 1.14451915e-01 -1.71543717e-01 1.18514366e-01 7.14973152e-01 -1.03347085e-01 -1.89983860e-01 6.73667192e-01 -1.07658416e-01 -8.66475105e-01 1.86892480e-01 -2.99527615e-01 -4.41780508e-01 6.76660955e-01 -4.21694696e-01 -9.58435386e-02 -6.78530395e-01 -7.11325645e-01 -1.74974695e-01 4.11805540e-01 -1.66628622e-02 8.80639613e-01 -1.28068626e+00 -8.22920322e-01 3.45591396e-01 -3.38406384e-01 -1.29451737e-01 5.98229170e-01 9.37222779e-01 -9.62771952e-01 1.73772633e-01 -7.65389726e-02 -6.52936399e-01 -1.01991940e+00 5.49901843e-01 1.66605026e-01 -1.74369276e-01 -9.33907807e-01 6.39537334e-01 4.09791246e-02 -5.24195507e-02 4.45624329e-02 -3.58974308e-01 2.44497821e-01 -3.08331013e-01 5.02613723e-01 4.00366575e-01 4.57026735e-02 -3.55537057e-01 -1.21855631e-01 6.15793347e-01 2.13218823e-01 -1.34061694e-01 1.71621132e+00 -3.21639389e-01 -1.08001538e-01 5.24887517e-02 1.31660128e+00 3.87813210e-01 -1.56810963e+00 -3.71881068e-01 -4.81187314e-01 -5.19696474e-01 7.49176815e-02 -4.34796214e-01 -1.49889755e+00 6.49121284e-01 7.83526003e-01 1.80920646e-01 1.66067851e+00 -2.20927760e-01 1.04629385e+00 4.09265906e-01 4.53430802e-01 -8.18218410e-01 2.08605751e-01 2.92291790e-01 1.12921154e+00 -9.32617843e-01 2.78167546e-01 -3.90803277e-01 -4.11800265e-01 1.25192428e+00 8.56345519e-02 -2.28823557e-01 6.71026230e-01 3.52016151e-01 -8.53129029e-02 -1.30719626e-02 -3.70517731e-01 7.38277053e-03 5.23535870e-02 4.29284453e-01 1.74675807e-01 -1.27201080e-02 -2.99478918e-01 1.80084288e-01 2.78089605e-02 1.83985025e-01 7.64895916e-01 5.82469404e-01 -3.54271919e-01 -1.00704730e+00 -4.30169433e-01 1.35813326e-01 -5.12963295e-01 -2.83645988e-01 2.97230810e-01 7.34413266e-01 1.30439311e-01 8.95196259e-01 -4.02490079e-01 -5.45295060e-01 2.43203416e-01 -4.22566533e-01 5.29225767e-01 -1.76239282e-01 -1.45901814e-01 3.75809342e-01 -7.26184696e-02 -8.39259624e-01 -6.12557590e-01 -4.14356947e-01 -1.00906885e+00 -4.76909399e-01 -2.23701730e-01 -2.69749373e-01 6.33431256e-01 7.49617636e-01 6.01872563e-01 4.91371930e-01 8.68320048e-01 -1.05526042e+00 -4.11789119e-01 -9.51850832e-01 -6.46926582e-01 3.12082261e-01 5.77895820e-01 -2.39467382e-01 -2.81759024e-01 6.51611597e-04]
[11.191635131835938, -2.009080410003662]
16d5b81b-8268-4e7d-8774-4cccb1dff5f0
cabm-content-aware-bit-mapping-for-single
2304.06454
null
https://arxiv.org/abs/2304.06454v1
https://arxiv.org/pdf/2304.06454v1.pdf
CABM: Content-Aware Bit Mapping for Single Image Super-Resolution Network with Large Input
With the development of high-definition display devices, the practical scenario of Super-Resolution (SR) usually needs to super-resolve large input like 2K to higher resolution (4K/8K). To reduce the computational and memory cost, current methods first split the large input into local patches and then merge the SR patches into the output. These methods adaptively allocate a subnet for each patch. Quantization is a very important technique for network acceleration and has been used to design the subnets. Current methods train an MLP bit selector to determine the propoer bit for each layer. However, they uniformly sample subnets for training, making simple subnets overfitted and complicated subnets underfitted. Therefore, the trained bit selector fails to determine the optimal bit. Apart from this, the introduced bit selector brings additional cost to each layer of the SR network. In this paper, we propose a novel method named Content-Aware Bit Mapping (CABM), which can remove the bit selector without any performance loss. CABM also learns a bit selector for each layer during training. After training, we analyze the relation between the edge information of an input patch and the bit of each layer. We observe that the edge information can be an effective metric for the selected bit. Therefore, we design a strategy to build an Edge-to-Bit lookup table that maps the edge score of a patch to the bit of each layer during inference. The bit configuration of SR network can be determined by the lookup tables of all layers. Our strategy can find better bit configuration, resulting in more efficient mixed precision networks. We conduct detailed experiments to demonstrate the generalization ability of our method. The code will be released.
['Shunli Zhang', 'Yurong Chen', 'Yandong Guo', 'Jiaming Liu', 'Ming Lu', 'Senmao Tian']
2023-04-13
null
http://openaccess.thecvf.com//content/CVPR2023/html/Tian_CABM_Content-Aware_Bit_Mapping_for_Single_Image_Super-Resolution_Network_With_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Tian_CABM_Content-Aware_Bit_Mapping_for_Single_Image_Super-Resolution_Network_With_CVPR_2023_paper.pdf
cvpr-2023-1
['image-super-resolution']
['computer-vision']
[ 2.43258983e-01 -2.35667884e-01 -5.44722617e-01 -4.91461933e-01 -5.71682453e-01 -3.36036712e-01 -9.32222456e-02 -2.19480768e-01 -4.12190795e-01 7.01868951e-01 3.24403793e-02 -2.04723537e-01 -1.86814278e-01 -1.17180681e+00 -6.85366869e-01 -7.68295169e-01 3.09513420e-01 -2.76327543e-02 6.56738520e-01 -2.52629421e-03 3.61414880e-01 4.41311330e-01 -1.35391879e+00 6.27064943e-01 8.39692652e-01 1.47945964e+00 4.87459987e-01 4.94247168e-01 -3.52140754e-01 4.57519144e-01 -6.95524275e-01 -3.02187264e-01 3.95059347e-01 -3.10740709e-01 -4.59258944e-01 -5.90246439e-01 5.12588739e-01 -4.95560169e-01 -2.94854164e-01 1.58686626e+00 7.48785257e-01 -2.56617904e-01 2.91905224e-01 -7.75530517e-01 -2.28367895e-01 1.17046595e+00 -4.41774309e-01 3.37528855e-01 -3.22130650e-01 -4.77504879e-02 8.99690032e-01 -6.16307974e-01 3.66412610e-01 1.25003016e+00 5.74255466e-01 3.71824980e-01 -9.83329713e-01 -1.11028481e+00 4.23544645e-02 4.91973519e-01 -1.80416334e+00 -4.10904139e-01 8.83945227e-01 9.39700305e-02 5.86195827e-01 2.47749969e-01 7.70285904e-01 5.52556992e-01 1.07573062e-01 4.89117652e-01 1.02867782e+00 -1.42210647e-01 3.14396232e-01 2.63039052e-01 1.50481015e-01 6.75629258e-01 3.55321586e-01 -2.48600736e-01 -8.15191567e-01 8.19788203e-02 1.41271234e+00 4.38863188e-02 -5.52703440e-01 1.55425414e-01 -7.54300296e-01 3.74533266e-01 9.32115436e-01 2.08408326e-01 -1.75969541e-01 3.97816122e-01 2.07243040e-01 1.75099745e-01 -1.16383746e-01 8.52777138e-02 -4.96748090e-01 -5.97697161e-02 -9.57727730e-01 -1.18105456e-01 4.73442197e-01 8.14100385e-01 1.03520834e+00 -5.65595701e-02 -3.26061666e-01 8.42548907e-01 1.22801080e-01 2.35397905e-01 5.33233106e-01 -8.85931611e-01 7.09928036e-01 8.03355753e-01 -2.05199301e-01 -1.20130241e+00 -2.68254817e-01 -4.97273386e-01 -1.25290036e+00 1.83498174e-01 2.51833290e-01 -6.55073076e-02 -9.86375690e-01 1.53277481e+00 2.62291729e-01 2.07804248e-01 -4.08331454e-02 1.03944039e+00 6.19630694e-01 8.96623909e-01 -2.67008096e-01 -1.34873584e-01 1.43746305e+00 -6.98136091e-01 -6.18737757e-01 -1.33269608e-01 1.89284295e-01 -4.67464209e-01 1.09752977e+00 5.84215939e-01 -1.02904761e+00 -8.17488611e-01 -1.46857142e+00 -1.44631475e-01 -1.97527468e-01 4.54566747e-01 4.93922442e-01 5.08112133e-01 -1.09113061e+00 7.30679333e-01 -6.18784547e-01 3.36698204e-01 5.91623545e-01 7.00177193e-01 1.97690964e-01 -5.93527108e-02 -1.36129177e+00 3.25260192e-01 5.95188797e-01 6.01368658e-02 -4.66925681e-01 -5.49185693e-01 -4.53485906e-01 4.37868208e-01 2.79350817e-01 -2.45552570e-01 9.33253407e-01 -1.02623379e+00 -1.53992140e+00 6.83358759e-02 -7.65555203e-02 -5.10920405e-01 6.07825220e-02 2.87384033e-01 -5.38506210e-01 2.16998696e-01 -2.74136335e-01 6.79833293e-01 1.07618797e+00 -8.01360369e-01 -1.03832901e+00 -3.36580396e-01 5.17704263e-02 1.87563270e-01 -7.22727597e-01 -4.21911627e-01 -8.56497765e-01 -6.55856609e-01 3.58068615e-01 -3.48072052e-01 -2.51738667e-01 1.18341357e-01 -2.60610282e-01 -6.09969981e-02 5.70718944e-01 -4.98276770e-01 1.74799061e+00 -2.41864657e+00 -8.07121173e-02 3.99755776e-01 2.07205400e-01 4.23032045e-01 2.04117343e-01 -5.31155050e-01 3.30982536e-01 2.45948449e-01 -4.61018197e-02 -3.05928010e-02 -2.65457839e-01 8.17410871e-02 -1.22330479e-01 5.45532703e-02 1.22349769e-01 6.66024208e-01 -4.44404364e-01 -6.44225836e-01 -1.07873008e-01 6.90959513e-01 -7.51096547e-01 -1.35273844e-01 -7.02682287e-02 3.92065644e-02 -4.57449675e-01 4.68005955e-01 9.81994212e-01 -4.90992934e-01 1.68021947e-01 -8.75522494e-01 -1.51191905e-01 6.30551517e-01 -1.58213758e+00 1.42753553e+00 -3.49662095e-01 4.05885965e-01 1.56276435e-01 -7.86769927e-01 1.27900398e+00 -9.02867410e-03 -8.60436484e-02 -1.00645566e+00 1.87088400e-01 3.11003000e-01 -8.01656470e-02 -4.87612747e-02 7.14046001e-01 1.69651926e-01 -1.30871788e-01 -3.39965783e-02 -2.31262624e-01 4.26006764e-01 -2.55359530e-01 -1.24285899e-01 8.22953522e-01 -3.11274081e-01 4.72583622e-02 -1.19587764e-01 5.38071394e-01 -2.24922851e-01 9.91123676e-01 5.68299890e-01 1.27983941e-02 4.30044711e-01 5.29553235e-01 -4.42663908e-01 -9.85070109e-01 -6.61092877e-01 -4.57968295e-01 7.25979626e-01 5.25404334e-01 -4.35210139e-01 -9.40432847e-01 -4.07690018e-01 -2.28767589e-01 1.07043304e-01 -9.13764313e-02 -2.40406379e-01 -8.11874628e-01 -7.57157564e-01 5.76590300e-01 5.68683505e-01 1.12223661e+00 -7.13475168e-01 -5.53973317e-01 2.38219559e-01 4.01523374e-02 -9.37582195e-01 -5.57917178e-01 3.72505397e-01 -1.03729177e+00 -6.54747248e-01 -4.84436393e-01 -8.41423512e-01 7.51057804e-01 -3.98205929e-02 6.29730403e-01 6.97035715e-02 1.21854926e-02 -6.07951760e-01 -8.25593919e-02 1.62962839e-01 -6.68740347e-02 3.93699765e-01 -5.06835431e-02 6.80190548e-02 3.48812819e-01 -6.12920225e-01 -9.02578473e-01 3.70794833e-01 -7.02922642e-01 3.06644380e-01 8.15356255e-01 5.13437152e-01 1.12097514e+00 6.47955716e-01 4.73566055e-01 -6.78436995e-01 3.31593692e-01 -8.18696991e-02 -9.50797677e-01 5.94161414e-02 -6.33954048e-01 4.35714692e-01 1.14431751e+00 -5.10111690e-01 -6.99317813e-01 3.07252724e-02 -1.15560852e-01 -4.74531293e-01 2.32083887e-01 3.50822151e-01 -5.95750928e-01 -2.92277396e-01 3.91511589e-01 9.74081606e-02 -4.26510274e-01 -7.32520878e-01 2.58945040e-02 9.55467761e-01 6.56431258e-01 -2.69328535e-01 4.47077185e-01 3.48622888e-01 2.97017954e-02 -4.06687826e-01 -3.76631945e-01 9.54133198e-02 -2.39060417e-01 -3.28795873e-02 6.54467762e-01 -1.00016296e+00 -7.12431490e-01 3.78331572e-01 -1.09259808e+00 -4.02017444e-01 -6.03594258e-02 2.25384951e-01 1.40486345e-01 3.32499519e-02 -6.57579243e-01 -4.99542207e-01 -4.73116010e-01 -1.36508167e+00 7.08096206e-01 6.73672974e-01 2.53889441e-01 -4.65452015e-01 -4.71773177e-01 -1.24029011e-01 5.35788476e-01 -3.23356003e-01 9.64010417e-01 -1.74542189e-01 -1.11846972e+00 7.45965391e-02 -6.96972609e-01 3.76570374e-01 1.13159724e-01 -2.26894781e-01 -8.76892626e-01 -1.49796054e-01 6.60463199e-02 9.29295793e-02 1.05834961e+00 3.22467536e-01 1.60036767e+00 -5.90005517e-01 -3.35345000e-01 1.13163435e+00 1.74150896e+00 2.15916678e-01 8.55255723e-01 2.40535587e-01 8.82973492e-01 1.36567829e-02 4.39769804e-01 3.59378517e-01 3.30924094e-01 8.04886162e-01 2.89967626e-01 2.11392269e-01 -3.04636687e-01 -3.63601416e-01 4.42930728e-01 8.39876831e-01 1.60554931e-01 -2.11348698e-01 -5.31459451e-01 2.48955444e-01 -1.37150121e+00 -5.56476653e-01 2.52286732e-01 2.22890043e+00 1.31696606e+00 6.73639059e-01 -2.98760265e-01 4.55666929e-01 9.70468879e-01 1.48221642e-01 -7.66029835e-01 -3.83933395e-01 -2.84453128e-02 3.33103269e-01 9.74258184e-01 4.87508297e-01 -6.88499570e-01 8.05342078e-01 5.36987352e+00 1.48707747e+00 -1.66280746e+00 -1.00836910e-01 8.81074488e-01 -5.56918569e-02 -3.74480635e-01 -1.29744232e-01 -1.63561082e+00 8.81396294e-01 8.83315980e-01 3.17012876e-01 8.12216163e-01 8.23506415e-01 -1.06601929e-03 -6.86862171e-02 -8.39631021e-01 1.17031026e+00 -2.55054265e-01 -1.38552308e+00 3.60122383e-01 -1.39465749e-01 6.61566794e-01 -2.30016455e-01 1.67399123e-01 7.30829984e-02 -1.44621149e-01 -9.31565702e-01 5.88851333e-01 4.58986998e-01 1.33314431e+00 -9.56861198e-01 5.84443450e-01 2.50711292e-01 -1.54027128e+00 -2.03461215e-01 -8.32097948e-01 3.66521925e-02 -2.10713595e-01 8.30424249e-01 -6.45033598e-01 2.53682762e-01 1.02604663e+00 4.73324895e-01 -3.77763122e-01 9.28611934e-01 -1.22203968e-01 4.77576435e-01 -5.26359856e-01 -3.44040953e-02 -7.96114355e-02 -4.39268202e-02 2.18009278e-01 9.81413901e-01 5.20495236e-01 2.20920816e-01 -1.39640138e-01 9.49253380e-01 -3.51092845e-01 -1.04850763e-02 1.78665482e-02 1.56634316e-01 1.07981265e+00 1.27859747e+00 -8.07023287e-01 -5.01363158e-01 -2.11981878e-01 9.31111157e-01 4.21856076e-01 2.10765123e-01 -5.92653096e-01 -7.16064215e-01 6.79020405e-01 1.78437129e-01 7.92846680e-01 5.84681146e-02 -7.94678688e-01 -7.82857895e-01 7.33837709e-02 -9.21118438e-01 3.06880862e-01 -5.15392244e-01 -7.47252047e-01 5.40691912e-01 -3.37143958e-01 -1.28577626e+00 1.23309813e-01 -5.03398061e-01 -3.53735805e-01 1.04925251e+00 -1.68800962e+00 -3.67204249e-01 -5.62648296e-01 4.54135656e-01 1.83607087e-01 1.06648266e-01 3.78555179e-01 6.16365910e-01 -7.24958539e-01 1.08420002e+00 -7.19322041e-02 2.37761706e-01 5.85216403e-01 -8.99926543e-01 3.30709755e-01 6.79848850e-01 -1.93972915e-01 4.75512564e-01 1.97253600e-01 -5.66034615e-01 -1.25392842e+00 -1.10958302e+00 3.81295502e-01 2.60112673e-01 1.98958561e-01 -3.03902090e-01 -1.14568532e+00 2.16106564e-01 -3.71199042e-01 7.65398219e-02 2.24083290e-01 -4.01736021e-01 -2.08731756e-01 -8.73617887e-01 -1.19750726e+00 5.71456730e-01 8.47812414e-01 -4.16927099e-01 2.00523194e-02 -4.14043695e-01 1.06846285e+00 -6.25091434e-01 -8.77585888e-01 6.77577794e-01 4.97870326e-01 -1.04405701e+00 8.72467935e-01 1.90667525e-01 3.70080024e-01 -6.90528929e-01 -1.20276771e-01 -8.73190880e-01 -4.63779747e-01 -3.25139165e-01 -2.22617671e-01 1.24695396e+00 4.71238464e-01 -5.72899222e-01 1.02062392e+00 3.22032154e-01 4.59364057e-02 -1.01374543e+00 -1.04584408e+00 -2.22866416e-01 -3.40584278e-01 -2.10122555e-01 1.12736309e+00 6.71435177e-01 -2.36419246e-01 2.72626191e-01 -2.31464639e-01 5.83440006e-01 4.15495902e-01 -4.17079497e-03 4.05235440e-01 -1.05390453e+00 -5.13523042e-01 -7.01187789e-01 -4.61271971e-01 -1.61763763e+00 -5.38561583e-01 -7.06201553e-01 -8.09927434e-02 -1.26112390e+00 6.23681396e-03 -9.59320426e-01 -5.48460066e-01 4.04011756e-01 -2.87530422e-01 4.04533803e-01 -8.93463120e-02 2.27390274e-01 -3.49681377e-01 1.31569907e-01 1.46154130e+00 -9.31482166e-02 -4.25629854e-01 -2.82408655e-01 -8.29621673e-01 6.35879695e-01 9.54894662e-01 -3.42507660e-01 -3.58154267e-01 -6.25838578e-01 5.52031398e-01 1.30792633e-02 2.69321829e-01 -1.27837729e+00 5.73386014e-01 -2.22523157e-02 7.24390149e-01 -6.79280996e-01 2.42209837e-01 -8.84842753e-01 1.66340262e-01 3.41041028e-01 -2.13655844e-01 -1.89015538e-01 2.59120733e-01 2.51922816e-01 -1.78631231e-01 -3.40829164e-01 9.79372561e-01 3.89001183e-02 -7.67348647e-01 3.86476666e-01 2.01198474e-01 -2.41867080e-01 4.41015542e-01 -3.46286207e-01 -3.96432489e-01 -8.77944678e-02 -2.05753177e-01 2.60377675e-01 4.94034022e-01 -9.59572345e-02 6.54422879e-01 -1.41133380e+00 -2.77520686e-01 6.64144218e-01 -5.68019807e-01 7.06033885e-01 2.99024969e-01 4.59957212e-01 -5.44116735e-01 2.85138369e-01 -2.02045381e-01 -4.91030931e-01 -1.18088710e+00 1.86218455e-01 5.21507084e-01 -2.08786577e-01 -5.48608840e-01 8.36370885e-01 -3.00719892e-03 2.83601582e-01 4.83131289e-01 -6.07637703e-01 -3.85522544e-01 -6.03605993e-02 8.87310922e-01 3.56341690e-01 -6.45141080e-02 -2.32265130e-01 -1.22288525e-01 8.92786443e-01 -1.45275712e-01 4.80748042e-02 1.04481113e+00 -1.16464742e-01 -2.55442142e-01 2.54927486e-01 1.28973663e+00 -1.36998639e-01 -1.28239429e+00 -3.65468621e-01 -4.13069934e-01 -3.25660616e-01 5.10521054e-01 -5.66923797e-01 -1.51272643e+00 7.87539005e-01 8.37232351e-01 -4.00859304e-02 1.62969589e+00 -2.16467962e-01 1.08831489e+00 2.84787029e-01 4.62709516e-01 -1.20850623e+00 -8.68416727e-02 3.11432332e-01 3.01826358e-01 -7.64002562e-01 -9.73650292e-02 -4.68483746e-01 -2.05336913e-01 1.07645237e+00 8.66301715e-01 -6.53538555e-02 5.90179861e-01 6.48611009e-01 -9.36643481e-02 -3.73250023e-02 -5.23521483e-01 1.75829351e-01 1.37995258e-01 1.21778540e-01 -3.98867950e-02 5.20381443e-02 -1.85122937e-01 9.91552770e-01 -4.88560617e-01 2.08333224e-01 2.54799575e-01 5.61058640e-01 -7.99640119e-01 -1.08547962e+00 -3.31971794e-01 5.68162978e-01 -4.83618438e-01 -2.68678278e-01 2.57592630e-02 2.36654095e-02 4.80901867e-01 3.00569564e-01 4.61469412e-01 -8.07220280e-01 2.02983782e-01 -1.16303653e-01 3.13787073e-01 -3.24218750e-01 -2.07712978e-01 3.21731195e-02 -3.12303305e-01 -5.58107615e-01 -1.39725983e-01 -5.62420823e-02 -1.60468805e+00 -3.94791991e-01 -4.01819319e-01 8.98186788e-02 6.02322102e-01 4.87338781e-01 4.53355938e-01 7.88260221e-01 6.21488392e-01 -5.98815858e-01 -3.38541776e-01 -6.20952964e-01 -5.23902357e-01 -3.00405979e-01 4.07677889e-01 -1.98466450e-01 -2.93163478e-01 -2.72298962e-01]
[8.654312133789062, 3.0258989334106445]
a628746f-ce9b-4ecd-a2cc-cbdfa3e4f092
sharingan-combining-synthetic-and-real-data-1
2006.04026
null
https://arxiv.org/abs/2006.04026v1
https://arxiv.org/pdf/2006.04026v1.pdf
SharinGAN: Combining Synthetic and Real Data for Unsupervised Geometry Estimation
We propose a novel method for combining synthetic and real images when training networks to determine geometric information from a single image. We suggest a method for mapping both image types into a single, shared domain. This is connected to a primary network for end-to-end training. Ideally, this results in images from two domains that present shared information to the primary network. Our experiments demonstrate significant improvements over the state-of-the-art in two important domains, surface normal estimation of human faces and monocular depth estimation for outdoor scenes, both in an unsupervised setting.
['Hao Zhou', 'Koutilya PNVR', 'David Jacobs']
2020-06-07
sharingan-combining-synthetic-and-real-data
http://openaccess.thecvf.com/content_CVPR_2020/html/PNVR_SharinGAN_Combining_Synthetic_and_Real_Data_for_Unsupervised_Geometry_Estimation_CVPR_2020_paper.html
http://openaccess.thecvf.com/content_CVPR_2020/papers/PNVR_SharinGAN_Combining_Synthetic_and_Real_Data_for_Unsupervised_Geometry_Estimation_CVPR_2020_paper.pdf
cvpr-2020-6
['surface-normals-estimation']
['computer-vision']
[ 5.44112325e-01 3.98821324e-01 1.23825073e-01 -8.98223817e-01 -7.45329201e-01 -4.40209895e-01 5.70966125e-01 -7.81436920e-01 -3.99000078e-01 7.63369083e-01 -1.80871129e-01 -2.50681918e-02 3.06743562e-01 -8.05027366e-01 -1.04357016e+00 -3.93380553e-01 1.18645534e-01 4.91187304e-01 2.39212200e-01 -6.32529706e-03 2.05170084e-02 9.33060348e-01 -1.59507835e+00 4.76431519e-01 4.55542147e-01 1.05308497e+00 2.27881476e-01 5.65486014e-01 1.61603063e-01 6.74768746e-01 -4.37896609e-01 -3.32630128e-01 6.66864872e-01 -1.52895033e-01 -7.74463892e-01 2.47216240e-01 1.32400846e+00 -8.50545228e-01 -3.54214817e-01 9.69755054e-01 3.70026976e-01 7.23917335e-02 8.89499903e-01 -1.16428781e+00 -2.04890132e-01 -1.11250551e-02 -6.24899507e-01 -2.02250659e-01 4.52175766e-01 1.15441911e-01 4.38333243e-01 -1.05995214e+00 9.81402040e-01 1.59127951e+00 7.56688595e-01 6.34318292e-01 -1.18013287e+00 -7.01836169e-01 1.92225009e-01 -1.03548445e-01 -1.39671886e+00 -9.17289495e-01 9.96688426e-01 -3.98574442e-01 9.09046650e-01 -2.33341455e-01 2.95564860e-01 9.97675419e-01 -2.36320853e-01 6.86743915e-01 1.03467190e+00 -3.42831939e-01 8.69878083e-02 1.90853357e-01 -4.95849788e-01 7.75014102e-01 2.29917824e-01 3.14125448e-01 -5.94650984e-01 1.34372070e-01 1.24699247e+00 -4.02100116e-01 -1.03534669e-01 -6.84044003e-01 -7.04440534e-01 5.50497174e-01 5.34100771e-01 -2.00691089e-01 -1.50736630e-01 1.53440580e-01 -3.76384817e-02 3.42167020e-01 6.38965189e-01 3.63178909e-01 -5.67467690e-01 3.74691814e-01 -9.16289866e-01 1.32043749e-01 9.44283485e-01 9.21765685e-01 1.29559839e+00 2.59319576e-03 3.93853843e-01 7.26900339e-01 5.18646240e-01 6.08676970e-01 -2.56118271e-02 -1.36720133e+00 3.88428926e-01 3.14207375e-01 1.36197656e-01 -9.21110570e-01 -2.64963448e-01 -1.36280835e-01 -5.68513691e-01 6.90149784e-01 5.99528313e-01 -3.38287830e-01 -1.20046735e+00 1.82897747e+00 4.24403101e-01 3.33134890e-01 2.96229005e-01 8.39532673e-01 1.02108014e+00 3.85037541e-01 -4.26211506e-01 4.25111532e-01 7.44160950e-01 -1.13743174e+00 -2.38822456e-02 -8.28272104e-01 2.06928357e-01 -7.28899360e-01 6.49109423e-01 5.32951236e-01 -1.33606744e+00 -7.57629633e-01 -1.04040384e+00 -1.54587328e-01 -3.70187521e-01 4.02853131e-01 3.08572233e-01 5.31147003e-01 -1.49823892e+00 8.34315836e-01 -5.40686309e-01 -3.40665728e-01 6.83513999e-01 4.29318309e-01 -5.33371925e-01 -4.36758965e-01 -8.11426938e-01 6.77916169e-01 1.15528040e-01 -8.35776553e-02 -1.21461189e+00 -6.71121776e-01 -1.14329922e+00 -3.33181739e-01 2.30062500e-01 -6.51590466e-01 1.47504270e+00 -1.40000594e+00 -1.69201767e+00 1.27294087e+00 -2.23921210e-01 -2.57649720e-01 6.00903034e-01 -2.49188885e-01 -5.08800335e-02 5.61173439e-01 2.88059771e-01 1.30792892e+00 1.09981382e+00 -1.81891239e+00 -5.12768447e-01 -4.71311867e-01 1.60276815e-01 4.48769540e-01 2.32895073e-02 -1.10981405e-01 -5.70156813e-01 -3.74052614e-01 9.69396159e-02 -6.94488287e-01 -1.72838166e-01 7.12017953e-01 -4.45905685e-01 2.10350037e-01 9.09430563e-01 -4.26006377e-01 -4.63044047e-02 -2.02501464e+00 -2.12284662e-02 2.20051318e-01 1.45525545e-01 1.22789338e-01 -3.48066568e-01 -1.83277112e-02 -2.74262220e-01 -2.62969524e-01 -1.43769264e-01 -9.39959884e-01 -3.67259800e-01 1.83593556e-01 -1.30762607e-01 6.97850406e-01 3.20853323e-01 9.15466309e-01 -8.57416093e-01 -3.34285468e-01 3.91290843e-01 4.74634200e-01 -2.85775781e-01 4.56672609e-01 -3.07688773e-01 6.98854327e-01 -1.06174331e-02 5.57273805e-01 1.14682865e+00 -4.23252642e-01 2.05110982e-01 -2.33795002e-01 1.12892404e-01 1.91813022e-01 -1.28196418e+00 1.86364889e+00 -4.63830829e-01 7.39966333e-01 5.53474367e-01 -9.67974603e-01 9.89651978e-01 1.02113120e-01 2.95082480e-01 -6.04701579e-01 1.55544341e-01 7.26846755e-02 -3.83627295e-01 -1.24657877e-01 2.94153169e-02 -6.16045408e-02 4.19838756e-01 4.72410977e-01 2.28982881e-01 -4.68038917e-01 -1.29326265e-02 -4.83600013e-02 7.11638451e-01 4.71117288e-01 4.67461497e-02 -2.02014759e-01 4.98205632e-01 -2.56272256e-01 3.36483866e-01 5.49656808e-01 -6.92957640e-02 9.50061321e-01 2.97493190e-01 -5.94861865e-01 -1.21625400e+00 -1.30895555e+00 -3.69308256e-02 8.80332470e-01 2.94322968e-01 1.16037622e-01 -7.14416265e-01 -7.06865966e-01 4.65480983e-02 2.01933458e-01 -7.70898581e-01 1.37256876e-01 -4.50941592e-01 7.14643523e-02 5.74418724e-01 7.36389577e-01 9.78162110e-01 -9.38683093e-01 -5.19126117e-01 -1.30579308e-01 1.70894295e-01 -1.65310383e+00 -2.34312564e-01 1.92853332e-01 -7.46401191e-01 -1.23393559e+00 -9.11868393e-01 -9.60074425e-01 9.74992335e-01 5.54280519e-01 1.33589947e+00 -8.52939263e-02 -1.42894238e-01 4.86149639e-01 1.50955290e-01 -2.73346514e-01 -4.15982306e-01 -4.54825312e-02 -4.94699702e-02 1.12081841e-01 8.25924650e-02 -6.61277771e-01 -7.75201380e-01 5.45591652e-01 -7.10588872e-01 2.80819595e-01 5.91153264e-01 3.66501063e-01 3.48197192e-01 -4.50364828e-01 1.73948422e-01 -7.61630654e-01 9.79764611e-02 -2.20477283e-01 -7.88488805e-01 4.22007255e-02 -1.39893487e-01 1.52191157e-02 6.71368301e-01 -1.30610406e-01 -1.36556101e+00 6.42592311e-01 -5.88168614e-02 -6.28381312e-01 -7.72357881e-01 1.43498570e-01 -1.84000716e-01 -6.35494709e-01 9.85014975e-01 1.52398702e-02 4.46834296e-01 -3.62564087e-01 3.43828291e-01 3.64545107e-01 8.52844656e-01 -5.70972443e-01 1.09056103e+00 9.07287419e-01 2.14717090e-01 -1.05215466e+00 -1.01204729e+00 -4.74667937e-01 -1.10776067e+00 -1.07879952e-01 7.49215245e-01 -1.21395290e+00 -2.57334530e-01 9.26765263e-01 -1.46086121e+00 -6.43165171e-01 -2.11987168e-01 1.71501532e-01 -7.21936762e-01 2.83262551e-01 -2.58486271e-01 -3.99934053e-01 7.81533271e-02 -1.03743267e+00 1.48495483e+00 3.03266406e-01 1.14924163e-01 -1.17106402e+00 2.43752971e-02 1.92164660e-01 1.45790547e-01 4.08954740e-01 3.27322513e-01 -3.29463631e-01 -7.92499363e-01 2.36466184e-01 -7.19669998e-01 7.41558015e-01 2.34219328e-01 -8.14294815e-02 -1.55941689e+00 -3.82852852e-01 -6.63331300e-02 -7.18280196e-01 8.30558538e-01 4.74039078e-01 1.06821764e+00 -1.02157801e-01 -5.02831936e-01 1.05850816e+00 1.46033728e+00 1.59493625e-01 8.00575793e-01 4.87779528e-02 9.64658976e-01 8.26726258e-01 2.60386288e-01 1.46785244e-01 1.55576110e-01 5.21211207e-01 6.08455122e-01 -6.23169601e-01 -3.17593157e-01 -2.61271685e-01 2.07529619e-01 -5.19323759e-02 2.77156889e-01 -1.80756420e-01 -9.35501337e-01 6.33111119e-01 -1.56603253e+00 -6.98199809e-01 4.16039020e-01 2.10689712e+00 6.51310503e-01 8.59944299e-02 -6.71381131e-02 -2.58796275e-01 5.90835571e-01 2.17523798e-01 -8.18213105e-01 -1.77812129e-01 -1.75288782e-01 1.79051355e-01 6.62990332e-01 5.24520159e-01 -1.19920993e+00 1.08964944e+00 7.68615389e+00 4.09861654e-01 -1.18365383e+00 -2.12370232e-01 9.69736695e-01 2.45327935e-01 -8.50858092e-02 -2.03729928e-01 -8.43248069e-01 -6.24043234e-02 7.13655055e-01 1.30988508e-01 3.02714229e-01 1.07933557e+00 -1.53477788e-01 -3.71543884e-01 -1.34540141e+00 1.19583011e+00 2.90694714e-01 -1.50257611e+00 -5.65319089e-03 6.28538569e-03 1.25777447e+00 3.89048606e-01 2.01595470e-01 -3.32894117e-01 4.35143441e-01 -1.33792114e+00 4.77720141e-01 4.91602212e-01 1.30700254e+00 -7.70598173e-01 3.82400632e-01 2.36831516e-01 -1.23110723e+00 3.60185802e-01 -3.49795043e-01 -1.08591609e-01 -9.38183814e-02 4.02892947e-01 -1.09753501e+00 4.29478437e-01 6.50625527e-01 1.13280404e+00 -6.17263436e-01 9.22326207e-01 -3.81786734e-01 1.31524265e-01 -6.48461878e-01 4.25082624e-01 2.00451076e-01 3.72535549e-02 2.35946357e-01 9.42778349e-01 -3.21925469e-02 -1.51914656e-01 2.20916286e-01 1.07281232e+00 -2.74996668e-01 -2.42901802e-01 -1.14574695e+00 3.61045778e-01 3.16264182e-01 1.08611906e+00 -7.73831844e-01 -2.30104983e-01 -5.06182909e-01 1.11077452e+00 3.56514722e-01 4.17692542e-01 -5.25712430e-01 -3.06827813e-01 7.97667503e-01 1.98694363e-01 4.78228062e-01 -3.41185093e-01 -2.48984724e-01 -9.40501630e-01 -1.17539473e-01 -6.94540858e-01 -1.71329811e-01 -9.22755003e-01 -1.38155115e+00 6.95917606e-01 3.05396199e-01 -1.24402368e+00 -5.60260952e-01 -1.11766481e+00 -6.09260142e-01 1.00015032e+00 -1.81060266e+00 -1.15018177e+00 -7.58139968e-01 7.57251561e-01 4.01959866e-01 -2.72694468e-01 6.29871845e-01 4.67723496e-02 -5.19768819e-02 6.61684215e-01 2.60451049e-01 2.67991722e-01 9.27682519e-01 -1.01399958e+00 9.97052133e-01 7.87856817e-01 1.27900094e-01 2.31549427e-01 3.03159148e-01 -5.44223964e-01 -1.02551258e+00 -1.20247245e+00 2.43632585e-01 -4.44615066e-01 -4.02686298e-02 -4.13850516e-01 -6.74796581e-01 6.31929100e-01 1.43024251e-01 2.19026595e-01 1.99781328e-01 -7.73608088e-02 -5.11163652e-01 -4.90213037e-02 -1.40315330e+00 4.81390327e-01 1.17465019e+00 -6.26434445e-01 -2.53576607e-01 3.88025850e-01 5.39151967e-01 -7.47696996e-01 -4.84638333e-01 3.51908505e-01 5.95006347e-01 -1.26251829e+00 1.10585427e+00 -1.92477480e-01 7.71428704e-01 -1.81636482e-01 -1.67604014e-01 -1.49608326e+00 1.57620102e-01 -6.10889494e-01 1.20719932e-01 6.44664288e-01 3.91162932e-01 -6.01993799e-01 1.34625578e+00 3.40326607e-01 5.48836812e-02 -6.22919023e-01 -6.76695526e-01 -8.78541112e-01 1.75244689e-01 -3.60245615e-01 5.67413449e-01 6.40295088e-01 -8.30002606e-01 3.77207458e-01 -1.79856107e-01 2.00322732e-01 9.43804264e-01 -1.17554568e-01 1.12800157e+00 -1.43603361e+00 1.25998966e-02 -1.54749334e-01 -5.59293568e-01 -1.63406324e+00 4.48667228e-01 -5.78067064e-01 2.52368003e-01 -1.51462328e+00 -3.22893746e-02 -2.85571486e-01 3.58638853e-01 3.75933141e-01 4.04853016e-01 7.47314632e-01 -1.68115586e-01 8.90799537e-02 -4.06437308e-01 4.65535343e-01 1.36484349e+00 4.63856384e-02 -7.23794773e-02 -1.66015789e-01 -6.13219440e-01 1.07260489e+00 7.34097540e-01 -2.14372516e-01 -7.60218561e-01 -7.53674805e-01 6.18327819e-02 -6.21647350e-02 6.60095334e-01 -1.37147474e+00 2.11386025e-01 -3.13045502e-01 8.56738269e-01 -7.75095344e-01 7.83559561e-01 -6.95984006e-01 -1.82931066e-01 -7.05932453e-02 -1.39512569e-01 -2.65717894e-01 4.42418218e-01 3.82848084e-01 -9.95438248e-02 -1.54760793e-01 1.27088475e+00 -3.11552823e-01 -9.14256692e-01 4.33615237e-01 4.16012518e-02 1.97467238e-01 9.46706951e-01 -7.42266595e-01 -3.05894762e-01 -7.91666925e-01 -6.97091877e-01 -3.87259163e-02 7.53445566e-01 3.40831131e-01 1.09544635e+00 -1.15422392e+00 -7.32715428e-01 6.64355338e-01 -2.61726044e-02 6.32491827e-01 -6.08888268e-02 9.23919827e-02 -8.46314371e-01 3.83043617e-01 -5.90824485e-01 -8.25231493e-01 -1.27881157e+00 2.02751607e-02 8.32809865e-01 1.10801347e-01 -3.66928577e-01 1.07036841e+00 6.31275356e-01 -6.88051701e-01 2.42843434e-01 -9.67722461e-02 5.55759743e-02 -4.01881576e-01 4.76707369e-01 3.39395106e-02 7.15685114e-02 -7.55198479e-01 -3.08343440e-01 7.96658456e-01 -1.69927001e-01 -4.01288897e-01 1.34757113e+00 -1.05510101e-01 6.64167223e-04 1.32747635e-01 1.59982514e+00 -2.74332076e-01 -1.94580412e+00 -4.27289069e-01 -6.66741431e-01 -7.02791035e-01 -2.62207515e-03 -6.65481567e-01 -1.29319441e+00 7.40919292e-01 5.71196318e-01 -3.83214116e-01 1.00690067e+00 1.13488734e-01 4.09178257e-01 7.28465378e-01 4.87475485e-01 -8.90459836e-01 4.93175745e-01 8.10236275e-01 8.20011497e-01 -1.49996686e+00 1.54282421e-01 -6.44040048e-01 -4.92789865e-01 1.24922049e+00 1.08652806e+00 -3.97480369e-01 9.15590405e-01 4.09719914e-01 2.83983290e-01 -2.10849136e-01 -4.54309762e-01 -8.31158534e-02 4.87683266e-01 1.15643573e+00 2.19624639e-01 -4.21844363e-01 7.67849147e-01 -2.70025551e-01 -1.38237625e-01 -5.08980155e-02 5.13125300e-01 9.99479473e-01 -4.07015741e-01 -9.46138024e-01 -3.83507103e-01 2.31250539e-01 -8.37171301e-02 3.28929983e-02 -6.56494796e-01 8.12294066e-01 1.29524991e-01 7.48818338e-01 3.29768002e-01 -1.25094414e-01 1.63562208e-01 -2.09047228e-01 8.82481933e-01 -9.81717467e-01 -2.62147710e-02 -2.64401644e-01 1.01208344e-01 -8.94021571e-01 -5.78247190e-01 -5.68176329e-01 -9.52093065e-01 -4.47547510e-02 4.16140258e-02 -3.81444395e-01 6.54877305e-01 1.02232516e+00 4.08171266e-01 2.47125864e-01 8.36725175e-01 -1.49179971e+00 -2.17035607e-01 -7.46893942e-01 -4.07092005e-01 3.03675860e-01 5.49946845e-01 -7.10558057e-01 -4.44729924e-01 1.63241252e-01]
[8.613385200500488, -2.508945941925049]
4c0376b9-5781-49b0-aaf0-af2a6f361535
what-if-we-enrich-day-ahead-solar-irradiance
2306.01112
null
https://arxiv.org/abs/2306.01112v1
https://arxiv.org/pdf/2306.01112v1.pdf
What if We Enrich day-ahead Solar Irradiance Time Series Forecasting with Spatio-Temporal Context?
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_{2}$ emissions. Nonetheless, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid. While the majority of prior research has centered on employing purely time series-based methodologies for solar forecasting, only a limited number of studies have taken into account factors such as cloud cover or the surrounding physical context. In this paper, we put forth a deep learning architecture designed to harness spatio-temporal context using satellite data, to attain highly accurate \textit{day-ahead} time-series forecasting for any given station, with a particular emphasis on forecasting Global Horizontal Irradiance (GHI). We also suggest a methodology to extract a distribution for each time step prediction, which can serve as a very valuable measure of uncertainty attached to the forecast. When evaluating models, we propose a testing scheme in which we separate particularly difficult examples from easy ones, in order to capture the model performances in crucial situations, which in the case of this study are the days suffering from varying cloudy conditions. Furthermore, we present a new multi-modal dataset gathering satellite imagery over a large zone and time series for solar irradiance and other related physical variables from multiple geographically diverse solar stations. Our approach exhibits robust performance in solar irradiance forecasting, including zero-shot generalization tests at unobserved solar stations, and holds great promise in promoting the effective integration of solar power into the grid.
['Yoshua Bengio', 'Loubna Benabbou', 'Tianle Yuan', 'Stefano Massaroli', 'Dan Assouline', 'Ghait Boukachab', 'Oussama Boussif']
2023-06-01
null
null
null
null
['solar-irradiance-forecasting']
['time-series']
[ 5.45779802e-02 -5.18990576e-01 9.28666070e-02 -2.68463939e-01 -6.53354526e-01 -8.73833954e-01 7.89662361e-01 2.10142527e-02 1.75172061e-01 1.18433249e+00 3.08290403e-02 -6.82705045e-01 -4.69189942e-01 -1.23593152e+00 -5.73061109e-01 -1.36899948e+00 -4.45488235e-03 -8.20686296e-02 -4.89122480e-01 -3.01560074e-01 1.22847743e-01 7.61696637e-01 -1.71402025e+00 -4.37182277e-01 1.31938970e+00 9.01333690e-01 2.89483935e-01 4.49121743e-01 6.94646165e-02 3.04361761e-01 -8.50097358e-01 1.31507844e-01 4.67781037e-01 -4.59425300e-01 2.85601113e-02 -9.88223851e-02 3.17744851e-01 -1.47585601e-01 4.30361293e-02 9.12922442e-01 8.28968525e-01 2.13208690e-01 7.15044618e-01 -1.13209605e+00 -3.23989868e-01 3.37078422e-01 -4.15448993e-01 5.17539680e-01 -1.32102352e-02 4.95295882e-01 7.13693202e-01 -4.06815410e-01 -2.04582378e-01 3.44440281e-01 7.00260878e-01 -1.37326017e-01 -1.02181649e+00 -6.26512229e-01 9.18102935e-02 1.71834394e-01 -1.37410343e+00 -1.61097974e-01 8.38494301e-01 -6.83545172e-01 1.12772012e+00 6.02904260e-01 8.01999509e-01 9.23356295e-01 4.31654096e-01 1.33545369e-01 1.48390126e+00 -3.36769134e-01 4.99454379e-01 -1.44713894e-01 -1.39704913e-01 -7.89827779e-02 1.69067979e-01 5.98342657e-01 -1.73312306e-01 2.81090084e-02 2.24135220e-01 6.79734871e-02 -5.89382708e-01 3.32246810e-01 -8.72416615e-01 6.92779362e-01 6.92743719e-01 4.82881486e-01 -6.08313441e-01 -1.08628206e-01 -1.08171754e-01 1.86158478e-01 9.54893589e-01 1.32442892e-01 -6.06437802e-01 1.59224212e-01 -1.19100177e+00 2.14544743e-01 6.06745958e-01 4.64652210e-01 8.04774940e-01 6.83841884e-01 -1.27015516e-01 6.05489075e-01 6.30896464e-02 1.29939866e+00 3.49692136e-01 -6.92645669e-01 2.72644103e-01 3.16941738e-01 3.45783800e-01 -8.22125793e-01 -5.57186842e-01 -7.94542015e-01 -1.13896763e+00 6.43368721e-01 -3.09623685e-03 -7.16819823e-01 -8.61568749e-01 1.65624058e+00 2.03528762e-01 2.84913391e-01 1.25225857e-01 8.26494515e-01 3.10143650e-01 1.07570577e+00 7.27733150e-02 -7.20501542e-01 8.68408024e-01 -3.78765672e-01 -6.15258217e-01 -1.60975516e-01 2.69354165e-01 -5.05395830e-01 5.78294456e-01 8.60370398e-02 -6.76918685e-01 -4.04243141e-01 -9.98241484e-01 5.30673683e-01 -9.33294356e-01 6.29768521e-02 4.00590569e-01 5.83392501e-01 -1.12771678e+00 6.17545187e-01 -7.26443708e-01 -2.99248755e-01 5.87045960e-02 -3.28417048e-02 2.27834478e-01 4.17846948e-01 -1.36868048e+00 1.09394932e+00 3.31816971e-01 4.99381930e-01 -6.97196364e-01 -7.98824966e-01 -5.78246534e-01 4.61326569e-01 2.48993173e-01 -8.29354525e-01 9.13441062e-01 -9.69182491e-01 -1.29933429e+00 1.18501671e-01 -3.69644612e-01 -5.55989981e-01 3.07691157e-01 2.57383287e-01 -8.65497410e-01 -3.21960241e-01 -5.38801262e-03 9.07386616e-02 8.09498012e-01 -1.31708670e+00 -7.56495297e-01 -4.58353639e-01 -1.25818243e-02 3.40837210e-01 -3.61689329e-01 -2.86639690e-01 1.93548471e-01 -6.65771067e-01 -3.48467171e-01 -8.44406307e-01 -1.53211579e-01 -3.98863912e-01 -1.23208046e-01 -4.00205255e-01 5.43228328e-01 -7.75345922e-01 1.32556963e+00 -1.82597172e+00 -8.48037153e-02 2.22172692e-01 -4.18441534e-01 3.89434338e-01 1.79126129e-01 8.10727537e-01 -1.87940523e-01 2.26114139e-01 -6.74161911e-01 -5.51040471e-02 3.09886481e-03 4.71653581e-01 -7.46806145e-01 2.17851326e-01 2.15583935e-01 7.90938854e-01 -6.30536199e-01 2.11677566e-01 5.85695565e-01 6.12475157e-01 2.20391273e-01 -2.54233889e-02 -5.27489543e-01 5.30530751e-01 -2.46932939e-01 4.41454232e-01 9.13658261e-01 -2.04098493e-01 4.37375158e-02 1.61558971e-01 -7.04465389e-01 1.64299622e-01 -9.20523822e-01 1.16424525e+00 -6.87587440e-01 6.62216544e-01 -2.54346102e-01 -8.69215012e-01 9.22507346e-01 2.67023921e-01 5.00274956e-01 -1.10955250e+00 -1.33737817e-01 9.65301022e-02 -1.41086608e-01 -4.93319333e-01 2.70340532e-01 -2.91045517e-01 3.81218612e-01 4.42815542e-01 -5.43261647e-01 -2.24699050e-01 2.17476040e-01 -4.01210338e-01 4.94848579e-01 3.57260704e-02 3.57857406e-01 -4.83503342e-01 4.67042357e-01 -1.27516508e-01 5.95558524e-01 4.34639990e-01 2.18490750e-01 6.21537328e-01 5.66044301e-02 -3.93830568e-01 -9.16807950e-01 -9.46893752e-01 -5.36414564e-01 5.69528401e-01 -2.07618639e-01 1.31870955e-01 -3.56118888e-01 -3.09385955e-01 2.22933993e-01 1.34105742e+00 -5.29160023e-01 2.43978783e-01 -2.07946524e-01 -1.51483667e+00 7.28945583e-02 5.51784515e-01 5.35475731e-01 -8.28316510e-01 -6.39888108e-01 2.03802735e-01 -2.10125789e-01 -5.70842862e-01 1.34173602e-01 4.24872339e-01 -7.43731916e-01 -9.38929081e-01 -7.70947695e-01 -1.77660242e-01 3.23261619e-01 4.75972027e-01 1.16474497e+00 -2.52472430e-01 -2.72255335e-02 3.26732039e-01 -1.23343214e-01 -8.44614327e-01 -8.65954384e-02 6.82577118e-02 9.41654015e-03 -1.22126505e-01 2.24833399e-01 -7.61801183e-01 -8.27070355e-01 1.85164765e-01 -9.16701376e-01 -1.81138754e-01 2.80770421e-01 6.53455555e-01 4.32958752e-01 6.61089897e-01 7.49732554e-01 -3.81204993e-01 5.39865196e-01 -8.77775967e-01 -1.05460596e+00 4.05578315e-01 -9.17056382e-01 -4.41138119e-01 6.89338803e-01 5.16163222e-02 -1.24347842e+00 -3.01103354e-01 -1.36402830e-01 -2.25692853e-01 -2.21165746e-01 9.92447257e-01 9.18881223e-02 5.13625816e-02 5.86700499e-01 6.03333294e-01 -4.02726620e-01 -4.34157848e-01 8.99673849e-02 5.19499719e-01 3.87514859e-01 -2.85754859e-01 1.01223338e+00 3.95446122e-01 2.00268194e-01 -9.60846066e-01 -8.12536776e-01 -3.41727763e-01 -4.76464480e-01 -3.35263550e-01 6.49425566e-01 -1.20081735e+00 -6.84904814e-01 6.37774527e-01 -7.56265879e-01 -5.13183594e-01 -2.22742617e-01 2.79635429e-01 -2.01735795e-01 1.91875786e-01 2.20365807e-01 -1.19184875e+00 -4.29298133e-01 -6.05774224e-01 8.31709146e-01 6.49739385e-01 3.12640399e-01 -1.54469645e+00 4.81436223e-01 1.47475034e-01 7.31619775e-01 5.74102342e-01 8.28862846e-01 -1.01629764e-01 -7.17846572e-01 3.91730713e-03 -1.25462070e-01 6.72863662e-01 4.93075997e-01 1.67647958e-01 -1.40293264e+00 -4.83482331e-01 2.68421680e-01 1.98451187e-02 7.06552088e-01 5.48198044e-01 1.18240464e+00 -2.86813170e-01 -1.44091696e-01 7.67019570e-01 1.88167894e+00 5.20106971e-01 5.58223844e-01 2.48143926e-01 3.21076512e-01 2.68319994e-01 3.14323306e-01 5.67840159e-01 3.61336291e-01 2.41506919e-01 6.88565314e-01 -3.65654171e-01 1.59337461e-01 1.79843381e-01 2.02187479e-01 6.58542335e-01 -3.20081979e-01 -6.64521575e-01 -9.96598482e-01 6.91644728e-01 -1.57505560e+00 -1.27415860e+00 -6.70324638e-02 2.41187143e+00 4.16393131e-01 -2.43141040e-01 -2.74067074e-01 3.44691612e-02 3.31296682e-01 7.66088843e-01 -8.48460317e-01 -1.03028215e-01 -5.29582679e-01 2.14926228e-01 6.89528108e-01 5.36151052e-01 -1.02923238e+00 2.15500116e-01 6.37147188e+00 4.71337885e-01 -1.62918353e+00 2.38136984e-02 6.03228927e-01 -4.07238305e-02 -6.85817599e-01 -1.24994643e-01 -6.76697195e-01 8.78970683e-01 1.11825013e+00 -5.59826136e-01 6.32880926e-01 4.89385694e-01 9.07374322e-01 -4.65398729e-01 -5.74316084e-01 6.09247744e-01 8.71846750e-02 -1.36734509e+00 -1.51560277e-01 2.13118091e-01 1.20908701e+00 6.05935633e-01 3.36008668e-02 1.70171574e-01 7.49139786e-02 -8.98475289e-01 2.10685730e-01 9.85762358e-01 6.19027317e-01 -6.67108476e-01 7.07576931e-01 7.02558100e-01 -1.08719254e+00 -2.62439728e-01 -2.90561318e-01 -3.70179176e-01 -2.98152957e-03 1.07000339e+00 -6.44988298e-01 1.15175581e+00 8.76555085e-01 7.65499115e-01 -3.06560487e-01 1.01674688e+00 -2.87358433e-01 7.62747824e-01 -7.31799304e-01 9.04054493e-02 1.23489402e-01 -5.76040387e-01 3.78059715e-01 8.80752325e-01 8.90157878e-01 4.00717884e-01 -5.00141829e-02 6.54090762e-01 1.36141941e-01 -1.11306287e-01 -1.06148112e+00 1.73668608e-01 5.33471644e-01 1.20627701e+00 -2.30120525e-01 -1.86670199e-01 -5.22917986e-01 4.18432683e-01 -1.24402031e-01 7.25114763e-01 -8.36201310e-01 1.08866602e-01 8.30892265e-01 -1.57060698e-01 4.22333896e-01 -3.75198603e-01 -6.07513428e-01 -1.24584079e+00 2.60835379e-01 -5.96379340e-01 2.92869419e-01 -1.30843842e+00 -1.43617737e+00 3.90006483e-01 -3.41249956e-03 -1.39245439e+00 -4.93302226e-01 -4.33290690e-01 -1.34118772e+00 1.57107544e+00 -2.25358367e+00 -9.47984099e-01 -6.15659118e-01 5.53251922e-01 4.35178608e-01 6.19873055e-04 8.72244596e-01 1.43680155e-01 -7.19783306e-01 -8.82033957e-04 8.80811274e-01 -4.37798709e-01 3.47799242e-01 -1.35173845e+00 2.95726597e-01 1.04046774e+00 -3.28262262e-02 2.94876754e-01 6.69244647e-01 -4.82530802e-01 -1.23687208e+00 -1.27213991e+00 9.14637923e-01 -3.23521137e-01 8.04416358e-01 9.79569703e-02 -1.03158879e+00 5.72535098e-01 6.11418843e-01 -3.81847054e-01 7.50316918e-01 1.82895005e-01 1.96679849e-02 -6.33509040e-01 -9.91115570e-01 3.96483302e-01 4.96020079e-01 -6.14350021e-01 -3.97202373e-01 6.84068680e-01 2.51131654e-01 -1.07376218e-01 -1.09229517e+00 8.77472103e-01 2.99139827e-01 -1.13576937e+00 7.00925052e-01 -2.60702163e-01 3.13315749e-01 -6.00713015e-01 -2.03848809e-01 -1.95886791e+00 -3.31261903e-01 -3.55952561e-01 1.09198745e-02 1.30195153e+00 3.90674889e-01 -9.58581150e-01 5.64638615e-01 4.56409603e-01 -2.28645474e-01 -5.78532398e-01 -1.05762541e+00 -7.38643646e-01 4.46177572e-01 -3.60893518e-01 8.93632770e-01 1.27242768e+00 -5.30688941e-01 -8.61193314e-02 -2.76089758e-01 9.45801914e-01 5.11423528e-01 5.72479784e-01 6.80701673e-01 -1.16702878e+00 1.30395554e-02 -5.34047842e-01 1.98082536e-01 -5.33033550e-01 5.09935897e-03 -6.60715401e-01 -8.08291603e-03 -1.60137630e+00 -1.29049882e-01 -3.55166554e-01 -6.15505040e-01 5.43479025e-01 -2.54793018e-01 1.35371327e-01 1.33257225e-01 1.00055479e-01 4.39858496e-01 8.77671599e-01 8.75567019e-01 -3.48009348e-01 3.99096832e-02 3.84721011e-01 -3.73286724e-01 4.99319375e-01 1.09517980e+00 -7.89392665e-02 -5.79828620e-01 -7.41370142e-01 3.98773551e-01 2.56326735e-01 4.39941913e-01 -1.15188837e+00 2.36365989e-01 -6.02558315e-01 4.27657276e-01 -8.67036343e-01 1.63807049e-01 -1.07636976e+00 6.41577542e-01 1.30541891e-01 2.57451892e-01 -4.41079028e-03 4.45868641e-01 4.23597127e-01 -2.42424399e-01 -1.89663861e-02 5.67112684e-01 7.34032542e-02 -7.47064054e-01 3.28623563e-01 -4.29543048e-01 -4.74955022e-01 1.03615522e+00 7.01630041e-02 -7.01265275e-01 -2.99063236e-01 -6.78090751e-01 7.17036366e-01 5.44394493e-01 3.48879755e-01 1.04139745e-01 -1.00130904e+00 -8.58395934e-01 3.74435514e-01 4.69435230e-02 -2.21804485e-01 5.43762028e-01 5.49662590e-01 -2.74244934e-01 5.05599618e-01 9.34484228e-02 -7.12418914e-01 -8.01479638e-01 4.57486957e-01 7.83343256e-01 3.35016623e-02 -3.84107679e-01 2.11921692e-01 1.12153850e-02 -3.58573675e-01 -1.32195979e-01 -4.72476393e-01 -9.34770256e-02 5.40943563e-01 3.32202315e-01 3.38544190e-01 4.36876297e-01 -2.65224665e-01 -2.47730259e-02 6.68653488e-01 7.13573396e-01 3.06930542e-01 1.31944716e+00 -3.98148865e-01 -2.42741164e-02 9.28768039e-01 8.08267057e-01 -1.21554263e-01 -1.52768815e+00 -9.58304480e-02 -2.62606174e-01 -3.63126755e-01 3.95905793e-01 -1.50342822e+00 -1.16720355e+00 9.25022125e-01 8.09669971e-01 8.76896083e-01 1.53430462e+00 -4.89105940e-01 4.12860245e-01 4.97071505e-01 3.58805299e-01 -9.84697223e-01 -7.38015711e-01 5.21203876e-01 9.41551328e-01 -1.52427268e+00 1.76468253e-01 2.12281838e-01 -3.05073559e-01 9.82303202e-01 1.55748591e-01 1.66995838e-01 8.72639358e-01 1.94493324e-01 3.43035102e-01 3.02375481e-02 -7.48590410e-01 -4.17679906e-01 1.47518858e-01 4.56387907e-01 1.84556291e-01 3.89142573e-01 -2.17032135e-01 -2.85772365e-02 -1.21941216e-01 6.86030611e-02 3.65100116e-01 6.48187518e-01 -4.79618073e-01 -6.47171021e-01 -5.07224321e-01 4.51101691e-01 -1.40956119e-01 -2.55933195e-01 1.96500346e-02 7.40243554e-01 2.58370847e-01 9.72828865e-01 2.83098638e-01 1.10117591e-03 2.04595417e-01 3.47016960e-01 -1.51641360e-02 -2.19041482e-01 -5.92971146e-01 1.12933442e-01 -2.76872888e-02 -1.39780626e-01 -5.88684857e-01 -8.30737054e-01 -6.27112806e-01 -5.99977612e-01 -1.37166440e-01 8.46020058e-02 1.11337972e+00 1.21767950e+00 2.69629002e-01 6.55827820e-01 1.38277709e+00 -1.15909672e+00 -5.32125473e-01 -1.06194794e+00 -7.10321128e-01 -3.48536670e-02 5.21810591e-01 -4.82679307e-01 -8.22570980e-01 -2.06890032e-01]
[6.356087684631348, 2.768005847930908]
1b8c6626-ada0-4099-bc65-ae8fffda6850
ecg-signal-super-resolution-by-considering
2012.03803
null
https://arxiv.org/abs/2012.03803v2
https://arxiv.org/pdf/2012.03803v2.pdf
SRECG: ECG Signal Super-resolution Framework for Portable/Wearable Devices in Cardiac Arrhythmias Classification
A combination of cloud-based deep learning (DL) algorithms with portable/wearable (P/W) devices has been developed as a smart heath care system to support automatic cardiac arrhythmias (CAs) classification using electrocardiography (ECG). However, long-term and continuous ECG monitoring is challenging because of limitations of batteries and transmission bandwidth of P/W devices while incorporated with consumer electronics (CE). A feasible approach to address this challenge is to decrease sampling rates. However, low sampling rates lead to low-resolution signals that hinder the CAs classification performance. In this study, we propose a DL-based ECG signal super-resolution framework (called SRECG) to enhance low-resolution ECG signals by jointly considering the accuracies when applied to the DL-based high-resolution multiclass classifier (HMC) of CAs. In our experiments, we downsampled the ECG signals from the CPSC2018 dataset and evaluated their HMC accuracies with and without the SRECG. Experimental results show that SRECG can well improve the HMC accuracies as compared to traditional interpolation methods. Moreover, approximately half of the CAs classification accuracies of HMC were maintained within the enhanced ECG signals by SRECG. The promising results confirm that SRECG can be suitably used to enhance low-resolution ECG signals from P/W devices with CE to improve their cloud-based HMC performances.
['Kai-Chun Liu', 'Yu Tsao', 'Chun-Yen Shen', 'Guo-Yuan Li', 'Chih-Han Huang', 'Jhih-Yu Chen', 'Huan-Hsin Tseng', 'Yuan-Hong Tsai', 'Tsai-Min Chen']
2020-12-07
null
null
null
null
['electrocardiography-ecg']
['methodology']
[ 2.36560106e-01 -6.28216088e-01 1.80637762e-01 -9.87065881e-02 -1.07826626e+00 -1.86426565e-01 -2.04267889e-01 1.29882768e-01 -3.60577971e-01 8.63509119e-01 -1.81526378e-01 -9.00344551e-02 -5.16641498e-01 -6.73303902e-01 -2.86360234e-01 -9.19932187e-01 -2.34719202e-01 -2.14247271e-01 -1.77151471e-01 4.70751561e-02 -1.92697391e-01 5.65938592e-01 -1.49285686e+00 7.42673874e-01 1.31710827e+00 1.44558752e+00 -5.82394116e-02 8.19572031e-01 3.88200402e-01 5.01780212e-01 -9.16883528e-01 -7.35502243e-02 8.90629143e-02 -7.88869143e-01 -2.00612277e-01 -5.94443917e-01 -1.02119118e-01 -3.21706086e-01 2.08178282e-01 6.56182885e-01 1.29189909e+00 -4.41065073e-01 3.84573400e-01 -1.03366578e+00 -2.00302601e-01 3.35579664e-01 -3.47033083e-01 4.59752351e-01 4.30281371e-01 -5.81173673e-02 1.05274439e-01 -8.29532027e-01 2.09148198e-01 2.94813722e-01 1.68165588e+00 2.87313372e-01 -1.10360241e+00 -6.97222590e-01 -5.92105806e-01 4.88092512e-01 -1.90205514e+00 -1.39382914e-01 1.03354478e+00 -9.96480435e-02 9.06340361e-01 7.26391196e-01 1.21404755e+00 8.99614751e-01 5.07391691e-01 1.94453806e-01 1.26166391e+00 -3.07064950e-01 2.15662554e-01 2.15664748e-02 -1.03704169e-01 2.10139811e-01 2.87979245e-01 -7.39046335e-02 -6.54068530e-01 -4.06788766e-01 1.01583517e+00 1.33480772e-01 -4.86825258e-01 4.27607328e-01 -1.22357070e+00 2.05014050e-01 3.24297100e-01 6.19270861e-01 -6.86209857e-01 -2.12032273e-01 6.51640594e-01 2.31042564e-01 5.39974093e-01 4.32727575e-01 -6.39863610e-01 -4.37219262e-01 -1.00557029e+00 -8.33189115e-02 4.85647053e-01 7.93838680e-01 1.03259020e-01 3.13018292e-01 -4.66994971e-01 8.21067154e-01 -2.54714072e-01 4.61993396e-01 7.08491027e-01 -7.23937929e-01 4.04075742e-01 3.77080351e-01 2.55010843e-01 -1.02314496e+00 -7.08783269e-01 -8.02938759e-01 -1.62158811e+00 -3.54636163e-01 1.27270862e-01 -3.74356955e-01 -7.50909895e-02 1.03051496e+00 2.16880694e-01 6.15246773e-01 9.97178033e-02 1.02969956e+00 9.74548340e-01 5.50271809e-01 1.55913100e-01 -7.40155399e-01 1.24725342e+00 -1.17813803e-01 -1.12275410e+00 5.89837909e-01 7.04053164e-01 -4.23110634e-01 1.07616699e+00 7.66974270e-01 -1.12091422e+00 -1.07222366e+00 -1.22041464e+00 9.73341763e-02 1.64086103e-01 5.96181393e-01 2.49128535e-01 1.03474295e+00 -1.01144564e+00 9.34022546e-01 -8.60243917e-01 1.36983497e-02 5.89974463e-01 1.74489230e-01 1.25488877e-01 2.99742341e-01 -1.52261209e+00 6.13110363e-01 -8.23167190e-02 3.96350354e-01 -3.80315363e-01 -9.85355973e-01 -3.92095476e-01 -6.25548363e-02 -4.34695691e-01 -6.13791108e-01 5.75041592e-01 -8.73460770e-01 -1.54188156e+00 4.88047391e-01 1.16629392e-01 -6.22784495e-01 7.96934068e-01 -3.71419877e-01 -8.87357831e-01 3.09055328e-01 -2.61566281e-01 -1.51030749e-01 8.97528768e-01 -7.24259377e-01 -5.07515967e-01 -5.23834884e-01 -5.69596708e-01 1.07636735e-01 -4.73307401e-01 -1.65602565e-01 5.88801550e-03 -6.95972264e-01 2.90005982e-01 -5.97360492e-01 6.54571354e-02 -4.94773351e-02 1.89219192e-02 1.85678273e-01 6.38419688e-01 -1.15170228e+00 1.40001643e+00 -2.13565350e+00 -2.30591103e-01 1.85555473e-01 1.74543574e-01 5.32791853e-01 2.98200309e-01 -4.27529998e-02 1.13423973e-01 1.64079387e-02 -1.81191042e-01 5.95687218e-02 -6.29793346e-01 1.22843906e-01 1.53186377e-02 7.94579983e-01 1.68233708e-01 9.98389840e-01 -4.32175219e-01 -4.98905689e-01 3.35383266e-01 1.10156274e+00 -2.69136369e-01 1.08697101e-01 6.65208459e-01 9.88846719e-01 -1.83224484e-01 5.89037836e-01 9.10411477e-01 -1.44602984e-01 2.81939089e-01 -6.36713028e-01 -4.16195281e-02 1.07190721e-01 -1.31964707e+00 1.74593890e+00 -5.65224051e-01 2.69899577e-01 3.05396747e-02 -1.02352130e+00 1.22597015e+00 7.57594645e-01 9.48502481e-01 -8.42704177e-01 -5.78560978e-02 3.49741399e-01 -1.71408132e-01 -9.28976834e-01 -1.04110971e-01 -1.67829230e-01 2.85855711e-01 1.19532887e-02 -1.94135949e-01 1.32006496e-01 -6.51802719e-01 -3.95867169e-01 8.36304426e-01 2.41578057e-01 2.43301809e-01 -5.08043349e-01 7.26638138e-01 -4.54754055e-01 8.67271304e-01 7.04932511e-01 -2.31601804e-01 8.33002090e-01 -3.40295173e-02 -7.31574655e-01 -7.07000136e-01 -9.19304550e-01 -6.10789955e-01 4.37011510e-01 2.32356023e-02 -4.58439440e-01 -8.02699685e-01 -1.54636487e-01 -2.81879038e-01 5.27365431e-02 -9.06490237e-02 -2.46727318e-01 -7.61095405e-01 -1.16328204e+00 1.21617842e+00 9.32306945e-01 7.77695656e-01 -7.11843014e-01 -1.23580217e+00 5.95991671e-01 -5.10383427e-01 -1.04677749e+00 -1.31904289e-01 -5.69681898e-02 -1.28420484e+00 -8.70872855e-01 -1.10086858e+00 -4.18461055e-01 1.56371370e-01 -4.41639781e-01 9.29391384e-01 1.75508603e-01 -6.18431509e-01 2.07858592e-01 -2.86327958e-01 -6.49281979e-01 -9.50480178e-02 -3.87274958e-02 2.88592517e-01 1.10399164e-01 8.74002874e-02 -6.61722720e-01 -1.12221313e+00 1.71893969e-01 -3.30666035e-01 -4.33724709e-02 2.93819368e-01 7.39023447e-01 7.45343447e-01 6.03380464e-02 1.17625368e+00 -6.80997550e-01 7.60075569e-01 -2.02334493e-01 -3.57291400e-01 5.93879670e-02 -8.53280544e-01 -6.28472865e-01 8.72975349e-01 -6.58078253e-01 -7.49068975e-01 7.02608330e-03 -6.65552437e-01 -3.15301090e-01 -8.31369460e-02 2.72382051e-01 -1.11919835e-01 2.15857197e-02 7.72664785e-01 3.04475516e-01 -1.76810384e-01 -3.82249802e-01 -3.56903851e-01 1.01476276e+00 7.01478958e-01 -5.46942890e-01 7.79454410e-02 1.97030887e-01 1.46106541e-01 -8.76966715e-01 -3.25554162e-01 -2.39781693e-01 -6.37077510e-01 -3.85208547e-01 8.19595456e-01 -1.32369459e+00 -8.89174104e-01 6.85340285e-01 -9.91671145e-01 -1.26604453e-01 -4.20359075e-01 7.45981455e-01 -3.69211644e-01 4.15640622e-01 -9.08815384e-01 -1.23256457e+00 -1.14892423e+00 -7.45146394e-01 1.00659418e+00 -9.55128223e-02 -3.31945330e-01 -5.91258168e-01 -3.47815752e-01 2.00999394e-01 8.21427405e-01 8.35841298e-01 6.60933316e-01 5.31341322e-02 2.56363135e-02 -3.35520625e-01 1.29008964e-01 6.09871507e-01 1.50887534e-01 -3.59621584e-01 -1.26354861e+00 -4.37880516e-01 5.75072885e-01 2.65140802e-01 1.58903375e-01 6.11384988e-01 1.73067546e+00 -2.90888250e-01 -1.24270096e-01 1.00835800e+00 1.44507158e+00 1.76135004e-01 1.06316304e+00 -8.99279118e-02 5.12334228e-01 -6.67041913e-02 4.75056410e-01 8.84445012e-01 1.21377915e-01 4.95105475e-01 -1.13765284e-01 -5.05249619e-01 3.64051983e-02 9.82542112e-02 1.11811541e-01 1.14002776e+00 -9.45985556e-01 3.55537981e-01 -7.81769991e-01 2.75337785e-01 -1.44802618e+00 -6.54600084e-01 -8.24775457e-01 2.29873896e+00 1.09912813e+00 -1.54388160e-01 2.17894569e-01 1.04130256e+00 7.85019577e-01 -4.93292093e-01 -6.62831187e-01 -2.65208095e-01 -3.06157470e-01 7.23076761e-01 2.45717555e-01 -1.89670369e-01 -8.76653314e-01 -2.46418998e-01 5.61714745e+00 5.49546838e-01 -1.40837181e+00 6.92937016e-01 7.95223176e-01 -1.52056525e-02 2.08503693e-01 -7.16466725e-01 -4.11250859e-01 6.97359920e-01 1.39318478e+00 -2.53962423e-03 1.94268972e-01 6.94853723e-01 2.70078838e-01 3.38294029e-01 -8.62905085e-01 1.61958599e+00 -1.53668970e-01 -1.33435106e+00 -4.63829935e-01 -4.87315863e-01 5.17424107e-01 -3.22179705e-01 -1.80076405e-01 1.91465676e-01 -1.17701030e+00 -8.27475846e-01 4.22052741e-01 8.97988498e-01 1.83201575e+00 -8.33923936e-01 1.03702796e+00 5.02325058e-01 -1.49050236e+00 -2.55622089e-01 -2.97929198e-01 -2.80711681e-01 -2.82086670e-01 9.15302873e-01 -4.30680215e-01 8.52936208e-01 1.23321998e+00 7.84012139e-01 -5.00447690e-01 9.35544789e-01 1.01374149e-01 7.51564682e-01 -3.08587044e-01 1.90164462e-01 -7.04187572e-01 -4.93198708e-02 2.00755909e-01 1.12430108e+00 6.90680861e-01 5.96234679e-01 -1.84506074e-01 7.80039668e-01 1.41964793e-01 2.26588294e-01 -2.33626649e-01 6.10755146e-01 3.66597325e-01 1.09717751e+00 -3.59630764e-01 -5.34802377e-01 -2.80721843e-01 8.16224039e-01 -4.02235746e-01 2.15453118e-01 -1.26785827e+00 -6.23655319e-01 2.93175459e-01 6.01821780e-01 -4.41480488e-01 9.30355210e-03 -8.82968485e-01 -1.12085974e+00 3.71429890e-01 -9.09932196e-01 3.58475059e-01 -6.14422977e-01 -1.22960854e+00 8.90932977e-01 -4.56877679e-01 -1.80814290e+00 1.51925758e-01 6.94118589e-02 -3.62221807e-01 1.17980242e+00 -1.39683843e+00 -8.22455704e-01 -6.96156681e-01 1.04161489e+00 3.37403387e-01 1.66738600e-01 1.30614567e+00 9.13865089e-01 -1.76926449e-01 7.73345530e-01 -5.13968393e-02 -1.67932898e-01 4.91861165e-01 -8.22623849e-01 -1.77646637e-01 6.53680027e-01 -3.47040474e-01 4.06357080e-01 2.30193123e-01 -5.83516955e-01 -1.44209635e+00 -1.36876726e+00 7.52728343e-01 -2.11210668e-01 -2.45342121e-01 -1.52203277e-01 -1.13696206e+00 -6.78136647e-02 -1.85480148e-01 4.78503287e-01 7.53560483e-01 -2.73011595e-01 3.04297745e-01 -7.64482141e-01 -1.47825670e+00 4.57186364e-02 8.61456335e-01 -6.98587775e-01 -2.62851983e-01 1.47090524e-01 1.20636597e-01 -5.43986678e-01 -1.64077806e+00 9.91534889e-01 9.09413695e-01 -7.01535225e-01 1.12126207e+00 -9.08473507e-02 7.50953853e-02 -2.94561803e-01 1.27336979e-01 -9.69491065e-01 -1.93704680e-01 -7.29058862e-01 -2.99713403e-01 1.22966182e+00 1.07434171e-03 -8.00320327e-01 3.95092070e-01 6.19111657e-01 -1.26188219e-01 -8.52702379e-01 -1.21317625e+00 -6.87533617e-01 -2.12671593e-01 -5.35729468e-01 7.23548889e-01 1.04481673e+00 1.18229188e-01 -1.33456528e-01 -5.98943532e-01 2.48242617e-01 5.67153931e-01 -8.23562890e-02 1.41004041e-01 -1.47985840e+00 -1.24479182e-01 2.89700627e-01 -3.35046887e-01 -2.60859281e-01 -6.12480760e-01 -7.28278220e-01 -2.54710197e-01 -1.22296894e+00 -1.99140072e-01 -7.14326203e-01 -8.38792801e-01 1.50857136e-01 -2.70227760e-01 7.16283679e-01 -5.18250465e-03 3.01099926e-01 -2.83220023e-01 3.04044396e-01 1.04672742e+00 2.61035971e-02 -6.29201353e-01 3.19578439e-01 -2.28242323e-01 6.18119419e-01 7.96725929e-01 -3.55875492e-01 -1.43510878e-01 -1.48336023e-01 9.52243581e-02 7.05437481e-01 4.54345405e-01 -1.65311110e+00 2.05012605e-01 4.80401844e-01 1.09843469e+00 -4.84842539e-01 2.56767541e-01 -9.73499358e-01 8.94537687e-01 8.19064915e-01 -2.67234385e-01 9.28452760e-02 3.13175827e-01 9.33975801e-02 -9.18367803e-02 6.07963026e-01 8.79185855e-01 1.65262774e-01 4.86050695e-02 8.20349529e-02 -4.92208719e-01 -3.03285301e-01 8.40373456e-01 -2.88195610e-01 -3.80475409e-02 -3.52117941e-02 -9.38201785e-01 -3.24026078e-01 -1.54995412e-01 6.39728978e-02 1.06501281e+00 -1.42281878e+00 -8.24743927e-01 5.58201969e-01 4.68965657e-02 -3.43132727e-02 7.80859351e-01 1.45732844e+00 -5.52074730e-01 9.33735222e-02 -4.44442391e-01 -9.98202980e-01 -1.32104516e+00 3.24472487e-01 6.28394425e-01 -9.20203887e-03 -1.17624748e+00 4.85449135e-01 -5.66508889e-01 1.45467788e-01 2.53019214e-01 -6.33845627e-01 -3.73575598e-01 4.03370522e-02 7.04214334e-01 8.55019152e-01 6.60209835e-01 -1.41115189e-01 -5.45933843e-01 7.30247080e-01 7.86620200e-01 3.83937567e-01 1.40304434e+00 -2.26327404e-01 -1.71959046e-02 4.98153120e-01 1.01515031e+00 -3.37967962e-01 -9.06654119e-01 1.80187955e-01 -2.97804028e-01 -4.01328862e-01 4.94089387e-02 -7.83165991e-01 -1.27075183e+00 9.31807578e-01 1.47603106e+00 3.86307016e-02 1.81382835e+00 -6.69922650e-01 1.06360841e+00 -3.15649528e-03 7.69249737e-01 -1.13693178e+00 -2.56550729e-01 -3.11383069e-01 8.03802073e-01 -7.44538367e-01 5.74591048e-02 -2.19386443e-01 -6.98404074e-01 1.20380127e+00 1.85890228e-01 -1.28298938e-01 8.11281800e-01 5.45536399e-01 1.10566869e-01 2.48177797e-01 -3.36375326e-01 3.85061949e-01 1.09881386e-01 9.03884768e-01 7.03974903e-01 1.51660442e-01 -8.01906943e-01 1.40748894e+00 1.30109176e-01 7.20952272e-01 3.25214237e-01 8.12759995e-01 2.39570975e-01 -6.52492285e-01 -4.95794594e-01 7.06281662e-01 -8.91614497e-01 -7.68798217e-02 2.77004957e-01 1.56031266e-01 7.30777800e-01 1.12418711e+00 -2.10082278e-01 -4.42905873e-01 4.61935014e-01 2.01251507e-01 4.46936458e-01 -5.80604598e-02 -1.10008729e+00 3.70806545e-01 -1.38769180e-01 -5.70910573e-01 -4.56948072e-01 -4.74714190e-01 -1.06863475e+00 1.04281642e-01 -3.88864160e-01 5.18246926e-02 7.25838602e-01 5.44646680e-01 7.43348420e-01 1.01949167e+00 5.97494364e-01 -5.31451583e-01 -3.78115594e-01 -9.69268262e-01 -1.05533814e+00 4.15648729e-01 4.16260332e-01 -7.79058114e-02 -6.78867251e-02 2.51862228e-01]
[14.209052085876465, 3.314535140991211]
f6c30f72-6a3e-4503-9a86-6262050f8370
scalable-distributed-ai-frameworks-leveraging
2304.13738
null
https://arxiv.org/abs/2304.13738v1
https://arxiv.org/pdf/2304.13738v1.pdf
Scalable, Distributed AI Frameworks: Leveraging Cloud Computing for Enhanced Deep Learning Performance and Efficiency
In recent years, the integration of artificial intelligence (AI) and cloud computing has emerged as a promising avenue for addressing the growing computational demands of AI applications. This paper presents a comprehensive study of scalable, distributed AI frameworks leveraging cloud computing for enhanced deep learning performance and efficiency. We first provide an overview of popular AI frameworks and cloud services, highlighting their respective strengths and weaknesses. Next, we delve into the critical aspects of data storage and management in cloud-based AI systems, discussing data preprocessing, feature engineering, privacy, and security. We then explore parallel and distributed training techniques for AI models, focusing on model partitioning, communication strategies, and cloud-based training architectures. In subsequent chapters, we discuss optimization strategies for AI workloads in the cloud, covering load balancing, resource allocation, auto-scaling, and performance benchmarking. We also examine AI model deployment and serving in the cloud, outlining containerization, serverless deployment options, and monitoring best practices. To ensure the cost-effectiveness of cloud-based AI solutions, we present a thorough analysis of costs, optimization strategies, and case studies showcasing successful deployments. Finally, we summarize the key findings of this study, discuss the challenges and limitations of cloud-based AI, and identify emerging trends and future research opportunities in the field.
['Neelesh Mungoli']
2023-04-26
null
null
null
null
['feature-engineering']
['methodology']
[-3.24403018e-01 -5.81224024e-01 7.99840242e-02 -4.14251298e-01 -2.87573248e-01 -6.28438234e-01 1.22502171e-01 2.02193484e-01 -3.76793772e-01 3.81031305e-01 -1.85797781e-01 -5.32705151e-02 -4.96467412e-01 -9.12260890e-01 -3.37103426e-01 -8.39701474e-01 -4.61020738e-01 1.13927197e+00 -4.52722669e-01 1.41731724e-01 4.37355824e-02 1.05801380e+00 -2.01659298e+00 2.42968127e-01 7.35960662e-01 1.49924052e+00 -2.39637837e-01 7.75637746e-01 -2.66933113e-01 8.81439924e-01 -1.23584270e+00 -4.48297560e-01 6.33020222e-01 2.72827178e-01 -7.08133757e-01 -5.14744259e-02 6.08382642e-01 -4.27575141e-01 -2.13455349e-01 6.96330309e-01 8.08353543e-01 -8.02220404e-03 1.69300511e-01 -2.03548527e+00 -4.70640630e-01 5.23088574e-01 2.74713174e-03 3.82770628e-01 -7.91255161e-02 3.45536143e-01 5.69025517e-01 -6.08692527e-01 4.13656980e-01 5.64706862e-01 5.24120748e-01 5.28968275e-01 -7.29954958e-01 -9.60618854e-01 1.71328515e-01 5.51749766e-01 -1.66542387e+00 -5.59695601e-01 5.20954430e-01 -2.41321370e-01 1.54354453e+00 7.38883913e-01 1.14954901e+00 4.04586107e-01 1.30510330e-01 1.16555202e+00 6.14550769e-01 -4.80009764e-01 5.56482434e-01 2.73320258e-01 1.85975060e-01 3.84370536e-01 2.45779723e-01 -1.21296473e-01 -8.11821878e-01 -4.22747314e-01 1.98873416e-01 5.18020056e-03 4.41112071e-01 -4.10534412e-01 -8.18377852e-01 7.05134749e-01 3.45229566e-01 3.41204613e-01 -9.71670389e-01 1.05895638e-01 8.64745378e-01 2.41812304e-01 7.72156835e-01 7.45125771e-01 -7.17057586e-01 -3.41680229e-01 -9.71715212e-01 5.81807137e-01 8.52985859e-01 1.46842873e+00 3.74505550e-01 6.51123226e-01 2.87163258e-03 6.51462555e-01 -2.24359736e-01 3.65427047e-01 4.18216914e-01 -9.61380005e-01 -8.42788536e-03 5.84034920e-01 -3.65582585e-01 -1.00459802e+00 -5.01590610e-01 -8.11585665e-01 -5.90517461e-01 -1.97469547e-01 -2.95927256e-01 -3.82918268e-01 -6.47829473e-01 1.09203684e+00 4.39608634e-01 1.55800521e-01 1.56578019e-01 8.68794918e-01 8.16103876e-01 4.51195389e-01 2.18690112e-01 -1.54653355e-01 1.14364040e+00 -1.35950387e+00 -6.55338109e-01 -1.97593957e-01 6.79677129e-01 -3.90514672e-01 6.62305653e-01 3.56978148e-01 -1.37261057e+00 -7.54335001e-02 -5.74422479e-01 -4.52441461e-02 -8.59788597e-01 7.94482082e-02 1.45808935e+00 7.07666039e-01 -1.20637882e+00 1.69743359e-01 -1.16177511e+00 -2.61498421e-01 5.19588232e-01 6.89751327e-01 -7.26120770e-02 -2.07100838e-01 -7.30356216e-01 7.37215996e-01 2.97160596e-01 -2.64771078e-02 -8.77919912e-01 -9.57085550e-01 -3.97698730e-01 2.76990741e-01 1.97313517e-01 -8.08962643e-01 1.22182524e+00 -9.29253101e-01 -1.32424438e+00 6.14446878e-01 4.28426713e-02 -6.95879877e-01 1.52213544e-01 -1.77859187e-01 -5.66918135e-01 7.18981177e-02 -1.92608953e-01 5.37718117e-01 2.98415542e-01 -9.47270036e-01 -1.01017153e+00 -6.09930873e-01 -3.59593987e-01 4.90945011e-01 -8.98498178e-01 4.87396866e-01 -5.04434466e-01 -2.01175228e-01 -4.56631780e-01 -8.63713622e-01 -2.40495369e-01 -1.75828382e-01 -1.12949185e-01 -1.69984877e-01 8.41550648e-01 -2.16715783e-01 1.31563735e+00 -2.28061962e+00 -1.32923678e-01 4.03296888e-01 5.07591724e-01 3.17964554e-01 -1.91876292e-01 5.45255482e-01 3.94213438e-01 -7.50011057e-02 1.33138075e-01 -3.45633119e-01 6.92413673e-02 1.85602829e-01 -1.73703834e-01 2.83087552e-01 -5.25447503e-02 8.66328359e-01 -4.78479743e-01 -4.06702459e-01 7.45294020e-02 4.10669655e-01 -5.27981699e-01 3.51537108e-01 -2.77651072e-01 1.39280155e-01 -4.04118091e-01 1.17649484e+00 6.62723839e-01 -2.70030260e-01 1.50813401e-01 1.64891407e-01 -2.37680614e-01 6.72790185e-02 -8.35098386e-01 1.23201847e+00 -4.41816270e-01 5.93166232e-01 4.87641156e-01 -9.57174301e-01 8.00411522e-01 2.20860407e-01 1.06160283e+00 -6.61536276e-01 1.17427126e-01 3.45312357e-01 2.19650865e-01 -2.60070622e-01 6.12522006e-01 7.20606923e-01 4.27668616e-02 5.22374749e-01 6.61568120e-02 -2.31981173e-01 2.89275497e-01 -5.93133643e-02 1.20035470e+00 -3.42118979e-01 7.95707032e-02 -6.02430739e-02 1.48389354e-01 6.62760854e-01 4.63911861e-01 4.90432441e-01 -3.25855583e-01 -8.26923028e-02 -1.25167087e-01 -1.04561400e+00 -9.58295882e-01 -4.58920360e-01 -6.35041073e-02 1.65577173e+00 -3.85230333e-01 -7.30789721e-01 -9.13330913e-01 -2.20021203e-01 3.56287718e-01 5.95956266e-01 -3.40999335e-01 -1.45707369e-01 -3.77635300e-01 -8.40605617e-01 4.93729264e-01 7.08496928e-01 7.34835267e-01 -1.14318407e+00 -1.08745873e+00 -2.45150793e-02 1.07131012e-01 -1.09973037e+00 1.79199204e-01 2.06919074e-01 -8.03916812e-01 -5.43610573e-01 -1.52060851e-01 -3.57190758e-01 3.96960020e-01 2.69405216e-01 1.36336374e+00 4.17805374e-01 -7.62661159e-01 6.37589753e-01 7.23995036e-03 -1.16427445e+00 2.20596462e-01 3.57102722e-01 3.07584852e-01 -4.38567311e-01 9.80469227e-01 -3.79804492e-01 -3.61888528e-01 -1.16289131e-01 -7.37145305e-01 7.15473145e-02 4.70245719e-01 5.82241833e-01 6.14073873e-01 1.36746094e-01 2.51221329e-01 -6.26379371e-01 8.83779883e-01 -7.17397273e-01 -6.95683360e-01 4.37220573e-01 -1.18544674e+00 -6.24591172e-01 7.11543202e-01 -1.88472956e-01 -5.83423436e-01 2.34425440e-01 1.62955344e-01 -8.28970432e-01 -3.83959115e-01 6.26329720e-01 5.82509376e-02 -3.45389664e-01 4.88010317e-01 3.13445449e-01 2.29319334e-01 -2.48178035e-01 1.24964237e-01 9.87888932e-01 2.49619573e-01 -6.85104549e-01 1.40300110e-01 2.52069652e-01 -1.87013090e-01 -7.41995633e-01 -2.74995178e-01 -3.31070542e-01 -4.02330399e-01 -1.98723853e-01 5.80936611e-01 -9.25754189e-01 -1.15121675e+00 5.61239779e-01 -7.77120948e-01 -2.06016764e-01 -5.21117806e-01 4.30768013e-01 -4.84509766e-01 -5.80004632e-01 -7.83673465e-01 -9.60171938e-01 -1.14971316e+00 -1.28034055e+00 8.56837809e-01 3.78428102e-01 7.80748948e-02 -6.79451227e-01 -1.64078310e-01 7.42164910e-01 1.18296266e+00 4.22025584e-02 6.88843906e-01 -1.20040131e+00 -6.42969131e-01 -6.41278446e-01 -7.34193400e-02 -2.50523090e-02 -4.86840039e-01 2.24155486e-01 -1.08399141e+00 -4.88872558e-01 -3.21438760e-01 -4.40960288e-01 -3.25612649e-02 3.77444237e-01 1.65932226e+00 -5.08060277e-01 -4.85025704e-01 1.04017997e+00 1.21505201e+00 4.76626724e-01 2.16535740e-02 5.48760176e-01 6.55433476e-01 4.66888487e-01 7.47440398e-01 7.42626369e-01 4.75688756e-01 3.78235787e-01 4.92856681e-01 -1.06029943e-01 3.01740348e-01 4.22433913e-01 -1.54989541e-01 1.15880692e+00 -2.29590505e-01 -1.99659884e-01 -1.35748351e+00 5.44370055e-01 -1.82616115e+00 -5.11912584e-01 4.63066459e-01 2.05753303e+00 5.99489570e-01 -5.29763520e-01 5.30144870e-01 -1.02412932e-01 3.22081089e-01 -4.48224187e-01 -1.15188909e+00 -7.53357351e-01 1.39116451e-01 3.31107289e-01 6.22875869e-01 -1.82074249e-01 -1.02430248e+00 1.23435748e+00 7.85233688e+00 4.89359200e-01 -1.51522756e+00 1.75837889e-01 6.46080494e-01 -7.61649430e-01 3.69757935e-02 -5.21972179e-01 -6.45701230e-01 3.41409862e-01 1.38000834e+00 -7.78988302e-01 9.56283689e-01 1.65905643e+00 -4.69634116e-01 2.48203397e-01 -8.60904038e-01 8.64526629e-01 2.65031338e-01 -1.62265360e+00 -2.01669149e-02 8.16214457e-02 4.39967275e-01 7.76817501e-01 1.87412009e-01 2.98525542e-01 4.05656189e-01 -1.11531723e+00 5.76128244e-01 1.80969238e-01 8.32069695e-01 -1.19490457e+00 9.08043683e-01 2.70772696e-01 -9.87334132e-01 -6.00614905e-01 -4.21704620e-01 -3.02130431e-01 -4.94923592e-01 2.33713806e-01 -5.63640654e-01 5.53765774e-01 1.31792748e+00 4.01008606e-01 -6.46824360e-01 1.01806521e+00 7.10237563e-01 2.00467065e-01 -5.90801179e-01 -2.52820969e-01 -2.33626254e-02 -2.17919350e-01 1.50795862e-01 1.12923145e+00 -1.68497469e-02 2.70384401e-01 3.43433201e-01 6.10434234e-01 2.11868901e-02 2.12430865e-01 -6.06588125e-01 -4.79198068e-01 1.20864618e+00 1.44008470e+00 -4.38042074e-01 -3.56645197e-01 -2.86550373e-01 5.36261976e-01 4.49163586e-01 7.91797712e-02 -5.21183729e-01 -3.83709282e-01 1.28459096e+00 -5.13911664e-01 -2.63924122e-01 -3.16356063e-01 -4.69426185e-01 -1.03159428e+00 -7.01697171e-02 -1.45503247e+00 6.34639621e-01 -4.78121102e-01 -1.15765584e+00 1.10253024e+00 3.09224755e-01 -8.58374894e-01 -4.74702924e-01 -4.87655461e-01 -3.54922056e-01 5.09452105e-01 -1.17766809e+00 -1.35331500e+00 -6.01857841e-01 6.02885365e-01 4.28317696e-01 -8.02401900e-01 1.40335011e+00 4.75476742e-01 -9.52332377e-01 8.67475450e-01 3.62963885e-01 -5.53367697e-02 2.17827544e-01 -7.86186993e-01 4.92216259e-01 6.79287255e-01 1.26660690e-01 6.10998869e-01 3.97796959e-01 -4.07370836e-01 -2.23503709e+00 -9.02754426e-01 3.74150485e-01 -1.30001828e-01 3.83424610e-01 -5.96611917e-01 -6.70634270e-01 8.56429577e-01 2.45768830e-01 2.80083567e-01 1.19084132e+00 2.83377975e-01 -1.12903444e-02 -4.76786673e-01 -1.43733144e+00 3.97855192e-01 7.72810638e-01 -1.87786773e-01 4.97313172e-01 8.88479710e-01 6.30649269e-01 -5.87499142e-01 -1.06529605e+00 1.61816865e-01 4.75584209e-01 -6.86478853e-01 8.29074562e-01 -9.32098389e-01 1.67999849e-01 1.67882204e-01 -8.97375643e-02 -1.19772708e+00 -5.65349221e-01 -4.18538988e-01 -3.06145579e-01 9.64053869e-01 6.05430454e-02 -6.44510686e-01 1.14356935e+00 1.40187109e+00 -1.47259861e-01 -9.64387715e-01 -7.06279159e-01 -6.50695860e-01 1.27763212e-01 -4.64942545e-01 1.34835088e+00 1.16341090e+00 3.12636495e-02 -9.69534591e-02 -1.62668601e-02 -5.00792079e-02 4.84639585e-01 3.29786420e-01 9.99514043e-01 -8.93130362e-01 2.85309600e-03 -4.73580867e-01 -5.85727274e-01 -1.23764850e-01 9.74086523e-02 -7.90136337e-01 -3.91137689e-01 -1.38848352e+00 -2.88205426e-02 -7.21674562e-01 -2.40810364e-01 8.75640035e-01 2.34150887e-01 1.08238339e-01 6.28506184e-01 4.72033858e-01 -5.44244170e-01 1.77846164e-01 4.90275145e-01 -4.07863297e-02 -9.51751694e-02 -1.98872074e-01 -5.43236554e-01 3.97174001e-01 1.00079048e+00 -1.66272938e-01 -4.26840097e-01 -1.17542899e+00 -1.07306883e-01 -3.04057688e-01 -2.73685068e-01 -1.30533338e+00 9.52904820e-01 -5.37081599e-01 5.86691260e-01 -4.00728464e-01 5.57381272e-01 -1.41118979e+00 2.13553011e-01 3.71958822e-01 -4.25250500e-01 7.94291496e-01 5.71022511e-01 -8.89500007e-02 -1.64533600e-01 2.10543126e-01 4.21803355e-01 -1.34302974e-01 -7.25009739e-01 6.08962953e-01 -4.39276487e-01 -3.92972499e-01 1.56341279e+00 -3.32383960e-02 -4.65616584e-01 -1.89187989e-01 -3.64900500e-01 6.51798725e-01 2.73694903e-01 2.98130661e-01 6.25566840e-01 -1.08902848e+00 -7.17295051e-01 5.63379645e-01 2.14450255e-01 6.78336322e-02 1.55418277e-01 5.71143925e-01 -8.27889144e-01 6.07706904e-01 -7.09751725e-01 -4.74729866e-01 -1.58824122e+00 9.14778292e-01 2.49234840e-01 1.96278170e-01 -3.67279530e-01 9.76311088e-01 -3.64530563e-01 -6.01472020e-01 8.02012444e-01 2.90690005e-01 4.60542291e-02 -4.95481879e-01 6.04648411e-01 4.58705336e-01 5.23489535e-01 -1.90115139e-01 -8.09102595e-01 -1.02679595e-01 -2.41090029e-01 2.34987780e-01 1.59340572e+00 8.70319977e-02 -4.85236049e-01 2.15031028e-01 7.93465316e-01 -4.73037899e-01 -5.19109249e-01 -6.34103566e-02 -2.54356582e-02 -5.74141204e-01 3.53743017e-01 -1.18152833e+00 -1.71668255e+00 7.84396291e-01 6.71238840e-01 1.96428046e-01 1.57332134e+00 -2.23668262e-01 7.32473910e-01 4.98623967e-01 5.22598922e-01 -1.35336781e+00 -3.81474733e-01 4.69355792e-01 6.90681040e-01 -8.06900144e-01 2.72676349e-01 -2.06977174e-01 -9.13106024e-01 1.10895824e+00 1.17057586e+00 -1.99768376e-02 6.72145963e-01 1.02036715e+00 2.77817100e-01 -5.19502103e-01 -1.30375946e+00 2.85684858e-02 -4.56790477e-02 7.43186951e-01 3.57417047e-01 3.86073679e-01 1.11853652e-01 5.12858033e-01 -6.61807775e-01 9.28547680e-02 -1.81507338e-02 1.44342089e+00 1.92000672e-01 -8.54399264e-01 -3.89245778e-01 7.82232285e-01 -4.58367199e-01 -9.17983130e-02 -8.27293813e-01 4.68529344e-01 1.03182994e-01 8.04008067e-01 8.53452384e-01 -8.43129635e-01 6.17094114e-02 1.34716973e-01 4.77883741e-02 -3.93750012e-01 -1.34839368e+00 -9.25112888e-02 5.50819226e-02 -6.30022049e-01 1.01431437e-01 -4.22972858e-01 -1.10432744e+00 -8.46238971e-01 -3.79137009e-01 3.32665414e-01 1.48604798e+00 6.09380960e-01 1.37119627e+00 5.65623760e-01 3.45694840e-01 -5.64836979e-01 -4.66275692e-01 -7.71245658e-01 -4.11771208e-01 -1.64401859e-01 -8.66039097e-02 -2.48878017e-01 -1.11278884e-01 -3.54734629e-01]
[8.42861270904541, 2.9593558311462402]
e93c2a61-c220-45bb-9c3f-c0d821fa0501
parcel3d-shape-reconstruction-from-single-rgb
2304.08994
null
https://arxiv.org/abs/2304.08994v1
https://arxiv.org/pdf/2304.08994v1.pdf
Parcel3D: Shape Reconstruction from Single RGB Images for Applications in Transportation Logistics
We focus on enabling damage and tampering detection in logistics and tackle the problem of 3D shape reconstruction of potentially damaged parcels. As input we utilize single RGB images, which corresponds to use-cases where only simple handheld devices are available, e.g. for postmen during delivery or clients on delivery. We present a novel synthetic dataset, named Parcel3D, that is based on the Google Scanned Objects (GSO) dataset and consists of more than 13,000 images of parcels with full 3D annotations. The dataset contains intact, i.e. cuboid-shaped, parcels and damaged parcels, which were generated in simulations. We work towards detecting mishandling of parcels by presenting a novel architecture called CubeRefine R-CNN, which combines estimating a 3D bounding box with an iterative mesh refinement. We benchmark our approach on Parcel3D and an existing dataset of cuboid-shaped parcels in real-world scenarios. Our results show, that while training on Parcel3D enables transfer to the real world, enabling reliable deployment in real-world scenarios is still challenging. CubeRefine R-CNN yields competitive performance in terms of Mesh AP and is the only model that directly enables deformation assessment by 3D mesh comparison and tampering detection by comparing viewpoint invariant parcel side surface representations. Dataset and code are available at https://a-nau.github.io/parcel3d.
['Kai Furmans', 'Laura Dörr', 'Felix Hertlein', 'Alexander Naumann']
2023-04-18
null
null
null
null
['3d-shape-reconstruction']
['computer-vision']
[ 3.91522832e-02 9.62826163e-02 3.70997041e-01 1.26030028e-01 -6.60252988e-01 -9.89169538e-01 4.12896842e-01 3.12057883e-01 7.80887390e-03 3.35544020e-01 -3.05665225e-01 -3.18088502e-01 1.30197525e-01 -1.34908164e+00 -1.26982474e+00 -3.71886104e-01 -3.44043881e-01 7.75906980e-01 1.28022924e-01 -3.66541415e-01 1.16557494e-01 1.30140960e+00 -1.56428432e+00 3.17435086e-01 7.30147600e-01 1.47390449e+00 5.50474860e-02 7.10938573e-01 2.44281083e-01 -7.08735287e-02 -6.33782029e-01 -5.19732177e-01 7.75154471e-01 4.23385322e-01 -3.56539488e-01 2.37457722e-01 4.96995717e-01 -6.16077244e-01 -2.19086260e-01 6.47198498e-01 3.87946993e-01 -3.50040585e-01 6.65387094e-01 -1.26977289e+00 -4.24931318e-01 -2.35498086e-01 -4.54877585e-01 -1.90350592e-01 5.59520841e-01 1.20874122e-01 3.41793001e-01 -9.68122363e-01 7.97013104e-01 1.17451358e+00 1.08395910e+00 1.03468753e-01 -1.08111811e+00 -5.40943265e-01 -2.06568390e-01 -1.44130424e-01 -1.82067311e+00 -1.52018175e-01 4.91119772e-01 -4.21886235e-01 7.28971779e-01 6.15022480e-01 4.45195705e-01 1.05509114e+00 4.10966516e-01 6.69441521e-01 1.14101422e+00 -1.83872078e-02 3.15006256e-01 1.40594050e-01 -4.36886281e-01 7.21141577e-01 5.16494513e-01 2.65886337e-01 -2.30469197e-01 -1.81269541e-01 1.06193113e+00 4.49321941e-02 -2.94903934e-01 -8.57615709e-01 -9.02196407e-01 5.62623084e-01 5.02162993e-01 -1.43136874e-01 -5.97913682e-01 6.98959306e-02 2.89364904e-01 1.40727654e-01 6.89702153e-01 3.82028744e-02 -6.16921782e-01 -7.62178600e-02 -7.61660814e-01 6.88955009e-01 8.09384286e-01 1.39727628e+00 5.14974713e-01 -8.70152488e-02 3.10555995e-01 4.22198325e-01 -1.05668589e-01 8.46039116e-01 -3.85839760e-01 -7.71199524e-01 6.07345581e-01 6.02787256e-01 6.17514312e-01 -1.19631946e+00 -5.24343669e-01 1.40408864e-02 -8.88174653e-01 6.02221966e-01 1.65191501e-01 -4.82195197e-03 -1.04243851e+00 7.78587401e-01 5.94132304e-01 -4.78502810e-02 -9.84232053e-02 9.92149353e-01 9.73398507e-01 4.42139804e-01 -5.79616964e-01 1.30692944e-01 1.35049927e+00 -4.82663929e-01 -4.32033241e-01 2.34219834e-01 4.30775583e-01 -6.43900275e-01 1.02857900e+00 7.81960726e-01 -9.86443460e-01 -1.92121580e-01 -8.19122851e-01 8.93526077e-02 -8.46145570e-01 1.95418775e-01 4.11076188e-01 7.29316652e-01 -9.13900971e-01 8.25428903e-01 -7.54296601e-01 -5.44559121e-01 7.71181464e-01 2.50353545e-01 -8.06370437e-01 -1.24274783e-01 -5.97080886e-01 8.50340128e-01 -1.74464844e-02 4.01094079e-01 -1.23785579e+00 -7.70166636e-01 -9.07623589e-01 -2.55586773e-01 5.40799022e-01 -1.20283194e-01 8.33828628e-01 -2.66726941e-01 -1.20578861e+00 1.07255816e+00 4.21394885e-01 -2.63704419e-01 9.92256463e-01 -4.14540708e-01 -2.56766856e-01 9.37539116e-02 -1.15955785e-01 1.81630984e-01 7.09828436e-01 -1.90733373e+00 -2.80875176e-01 -5.40636718e-01 8.58287960e-02 -9.76400748e-02 3.41977566e-01 -8.41418281e-02 -4.10575479e-01 -5.41542888e-01 1.69403195e-01 -8.56937766e-01 5.82788438e-02 3.27871054e-01 -6.23327315e-01 3.71214479e-01 1.00630307e+00 -1.05250454e+00 5.45789003e-01 -1.85894978e+00 -2.15432882e-01 3.55033785e-01 -1.64374590e-01 3.42244536e-01 -1.65664822e-01 7.63348579e-01 -1.34144016e-02 3.22958231e-01 -3.18564177e-01 -5.13941944e-01 9.86985713e-02 1.52495578e-01 -5.11579633e-01 9.53587055e-01 3.59272450e-01 7.88710475e-01 -5.22830248e-01 -3.77030931e-02 3.94009084e-01 4.86357242e-01 -3.41124922e-01 2.54039109e-01 -1.24601558e-01 3.95125955e-01 -1.61313459e-01 1.65419400e+00 1.60662913e+00 4.21612024e-01 -1.32267416e-01 -3.97813737e-01 -2.25791663e-01 -1.95154935e-01 -1.20330036e+00 1.51174808e+00 -6.27116442e-01 4.00349647e-01 5.91447294e-01 -6.46121085e-01 1.13955593e+00 -6.96749762e-02 2.55389780e-01 -7.62915671e-01 2.24633709e-01 2.96819478e-01 -8.28638971e-01 -5.25658906e-01 8.76370311e-01 2.18420222e-01 -4.78896558e-01 2.01931328e-01 -3.46475661e-01 -6.77265763e-01 -2.13335410e-01 -1.19366623e-01 1.29807150e+00 5.08832514e-01 8.97136405e-02 -1.81062445e-01 -4.08886261e-02 2.50897169e-01 3.89662713e-01 5.86010933e-01 1.71773862e-02 1.16027200e+00 5.87141037e-01 -6.46473229e-01 -1.19553006e+00 -1.27311242e+00 -4.49568301e-01 4.52081144e-01 4.90138590e-01 -3.17369811e-02 -7.44068742e-01 -7.41699994e-01 7.14058816e-01 7.13598788e-01 -9.08096790e-01 3.16464812e-01 -6.57439888e-01 -5.07459998e-01 6.78604543e-01 4.34322834e-01 3.35659564e-01 -8.87607455e-01 -8.67467821e-01 -8.98013934e-02 2.23872080e-01 -1.15818083e+00 4.73949239e-02 2.03259327e-02 -7.17892230e-01 -1.46572113e+00 -5.33936858e-01 -2.29849756e-01 7.86074936e-01 3.33336055e-01 1.28002155e+00 1.49598584e-01 -6.19573474e-01 5.29188335e-01 -5.09200394e-01 -5.81745207e-01 -9.08302441e-02 -1.89562082e-01 1.90520316e-01 -2.25432411e-01 -1.81615531e-01 -6.00932539e-01 -5.49205780e-01 5.02346754e-01 -9.47196543e-01 -1.24971822e-01 2.65382528e-01 2.75499552e-01 8.00963879e-01 8.43054652e-02 2.29625367e-02 -6.96915030e-01 2.28783518e-01 -6.84256732e-01 -9.31602836e-01 1.82849243e-02 -1.20183155e-01 -8.29591811e-01 4.28126723e-01 -3.94960977e-02 -5.22589266e-01 -1.36758864e-01 -2.01831125e-02 -7.92534888e-01 -5.62905848e-01 1.63250625e-01 -3.16229910e-01 -3.39618027e-01 3.29757243e-01 2.96846349e-02 -1.42182112e-01 -9.35771108e-01 1.18926480e-01 6.14272296e-01 8.02103341e-01 -4.59898949e-01 1.14621568e+00 9.23934102e-01 -2.31880159e-03 -7.52405405e-01 -5.65525778e-02 -9.53709707e-02 -8.37792635e-01 -3.07191432e-01 4.25148249e-01 -8.61593425e-01 -1.28836966e+00 7.54579902e-01 -1.41503823e+00 -6.16432846e-01 -2.30530486e-01 -1.12054996e-01 -6.32199407e-01 2.22233176e-01 -4.53481078e-01 -8.63024473e-01 -3.57694238e-01 -7.09181905e-01 1.81316638e+00 -4.69979383e-02 2.73048967e-01 -5.16474009e-01 -2.24054039e-01 3.29798400e-01 3.37353796e-01 1.12518907e+00 7.66231656e-01 -3.95998925e-01 -9.05008316e-01 -6.14854634e-01 -3.12953830e-01 1.32396117e-01 -5.01269363e-02 2.35222522e-02 -8.61168087e-01 -5.00331938e-01 -4.31724310e-01 -3.00078809e-01 5.23220718e-01 -7.02665001e-03 1.42728531e+00 -3.00174087e-01 -2.91966230e-01 8.33929121e-01 1.52673125e+00 -6.23824894e-02 9.36819494e-01 3.04315180e-01 6.36828661e-01 6.03409410e-01 1.14249861e+00 7.14497745e-01 6.09918773e-01 8.33590269e-01 1.37346756e+00 -2.22376421e-01 9.08793658e-02 -3.00262600e-01 2.92597502e-01 2.80813485e-01 -2.48828307e-01 -5.22879541e-01 -1.18369114e+00 6.34239078e-01 -1.47822952e+00 -3.77585948e-01 -3.69770944e-01 2.47109246e+00 3.11845899e-01 -1.13379665e-01 -4.10625041e-02 4.74534370e-02 6.38246715e-01 -1.88943163e-01 -4.38528836e-01 -4.71933722e-01 -1.05173804e-01 2.74714112e-01 1.08554387e+00 2.99030215e-01 -1.13529980e+00 8.22979033e-01 5.31179762e+00 8.07553470e-01 -8.18973660e-01 2.69666702e-01 5.26927233e-01 -1.87980503e-01 -2.54676998e-01 -3.14721435e-01 -6.39259279e-01 4.03378427e-01 5.16832292e-01 2.72919029e-01 5.05942822e-01 7.29255259e-01 1.96136132e-01 -5.03149748e-01 -8.66756856e-01 7.94428647e-01 1.54863507e-01 -1.33476925e+00 -2.54704893e-01 2.66409189e-01 5.76675177e-01 1.21289082e-01 -2.46695101e-01 1.76914930e-01 1.01395614e-01 -1.21634829e+00 1.22782242e+00 6.78710461e-01 1.24238050e+00 -8.25173795e-01 9.20855880e-01 4.73764420e-01 -1.15144610e+00 1.71109259e-01 -3.75808865e-01 3.01855117e-01 2.08391264e-01 6.12096131e-01 -1.06060278e+00 8.50950360e-01 1.14801764e+00 2.09845647e-01 -4.53901321e-01 1.06218934e+00 1.40231416e-01 1.23436667e-01 -6.49204552e-01 3.64119530e-01 -1.34542271e-01 -2.34030753e-01 5.55053115e-01 1.24912977e+00 6.45087481e-01 -2.60806344e-02 -2.59143226e-02 1.01062632e+00 -9.82283205e-02 -2.48922199e-01 -1.09458017e+00 2.01447323e-01 6.25276864e-01 1.39426422e+00 -8.66815925e-01 1.51279733e-01 9.95509475e-02 1.09983408e+00 -1.65759195e-02 1.06462061e-01 -1.04249382e+00 -4.71707821e-01 8.51815760e-01 6.10898912e-01 6.27814710e-01 -4.56517607e-01 -2.13718534e-01 -8.84315312e-01 2.28200391e-01 -5.64419985e-01 -8.58868957e-02 -9.74936545e-01 -1.14072931e+00 4.62757319e-01 8.13335106e-02 -1.31562686e+00 2.26805151e-01 -9.16013658e-01 -4.51375842e-01 6.82266474e-01 -1.50983560e+00 -1.65643048e+00 -9.14970577e-01 4.60318893e-01 3.71014237e-01 1.65430546e-01 9.88271892e-01 1.97943270e-01 -4.33317095e-01 4.04635787e-01 1.79042473e-01 1.78188260e-03 2.34188616e-01 -1.03132153e+00 7.49969423e-01 4.17547673e-01 -4.39173639e-01 9.54056382e-02 5.36101699e-01 -1.04917312e+00 -1.95817327e+00 -1.44073796e+00 3.91369045e-01 -6.56434178e-01 2.83041239e-01 -1.06444740e+00 -7.89660335e-01 6.15915179e-01 -2.67299175e-01 4.90081102e-01 1.36576742e-01 -4.57168043e-01 -1.35389045e-01 -6.92044646e-02 -1.76673913e+00 1.96089283e-01 1.35808682e+00 -3.73916835e-01 6.28274903e-02 5.91250956e-01 4.97065157e-01 -1.20234919e+00 -1.06809556e+00 8.38351071e-01 4.88984734e-01 -1.15440285e+00 9.77931321e-01 -2.24570751e-01 2.17142403e-01 -4.21780914e-01 -4.31870490e-01 -1.15473795e+00 2.77661055e-01 -5.61165392e-01 -2.97480226e-01 1.23679042e+00 -1.97711661e-01 -5.16260743e-01 8.68568718e-01 2.72712171e-01 -3.06826353e-01 -9.01242137e-01 -1.30701530e+00 -8.73717070e-01 -6.75377399e-02 -7.07937658e-01 1.07929993e+00 7.44041085e-01 -6.48601532e-01 -7.72339344e-01 -1.78291678e-01 7.09102690e-01 4.73750323e-01 3.08847934e-01 1.12138247e+00 -1.07563126e+00 2.51772940e-01 1.53826363e-02 -4.94950533e-01 -6.29556060e-01 -6.38962761e-02 -6.56629145e-01 5.25456406e-02 -1.40479374e+00 -2.69466937e-01 -8.93144727e-01 5.00668585e-01 6.28705919e-01 6.36911571e-01 6.22833967e-01 3.16562712e-01 -1.70382708e-02 -2.17856348e-01 5.53455770e-01 9.60803926e-01 -5.09666838e-02 7.20224716e-03 3.41319852e-02 -2.04317942e-01 7.69034028e-01 7.43471324e-01 -2.71563739e-01 3.14871281e-01 -3.69723141e-01 2.78118730e-01 2.70705581e-01 9.86526549e-01 -8.59725118e-01 -3.79641801e-01 -8.88144746e-02 5.10652542e-01 -1.09390366e+00 5.26623845e-01 -1.23306489e+00 3.61543179e-01 2.81001896e-01 5.22897720e-01 1.70614019e-01 6.39352083e-01 4.64977145e-01 3.03114653e-01 -7.10014179e-02 4.42302585e-01 -2.20564201e-01 -3.89912754e-01 3.91305447e-01 -1.97330192e-01 -4.68760043e-01 1.28405845e+00 -5.27198136e-01 -4.54590946e-01 -3.24891269e-01 -5.90885103e-01 8.32359772e-03 1.04356682e+00 5.45727372e-01 8.77483666e-01 -1.42565310e+00 -7.61699438e-01 4.91929531e-01 4.60491814e-02 4.33880776e-01 2.65791953e-01 6.74343228e-01 -1.18134737e+00 1.92448944e-01 -2.36536622e-01 -5.09539485e-01 -1.23041081e+00 2.69721031e-01 2.63417184e-01 3.79505521e-03 -5.89125454e-01 5.62133312e-01 1.08799964e-01 -9.58993912e-01 1.68876216e-01 -5.95746279e-01 1.10779978e-01 -1.21561149e-02 1.66186288e-01 6.14745915e-01 6.81904733e-01 -7.71031559e-01 -5.62825084e-01 5.72574377e-01 2.33317897e-01 3.67587298e-01 1.62477076e+00 -9.38523784e-02 -5.84060736e-02 3.77715984e-03 8.99202049e-01 2.44331539e-01 -1.38958502e+00 1.55134767e-01 -3.21838886e-01 -9.05797899e-01 -1.60169184e-01 -9.47034776e-01 -1.28287673e+00 6.82334363e-01 8.88877034e-01 1.86580181e-01 1.07289410e+00 3.16135287e-02 7.82848835e-01 3.18800330e-01 1.16355348e+00 -7.76029587e-01 -1.47884250e-01 4.35290098e-01 1.59878254e+00 -9.79804039e-01 1.82805732e-01 -6.46914184e-01 -4.15075511e-01 1.05381036e+00 4.57916200e-01 -3.30495059e-01 3.03974152e-01 5.29579759e-01 -1.73659742e-01 -4.83857185e-01 -2.76116043e-01 -1.26713693e-01 -2.25268826e-01 9.20775652e-01 -2.04272926e-01 2.97272712e-01 2.57113218e-01 7.83051729e-01 -3.07294905e-01 -1.07734255e-01 7.25454450e-01 1.18724906e+00 -3.17481011e-02 -7.73128331e-01 -9.13748980e-01 4.04087156e-01 -2.65572011e-01 1.90630391e-01 -3.34610820e-01 1.13758898e+00 5.67885220e-01 6.34240091e-01 4.57411528e-01 -4.35261369e-01 8.93650711e-01 -5.86570919e-01 5.45787871e-01 -4.25972551e-01 -6.92639947e-01 -3.41994166e-01 2.86297888e-01 -1.02043164e+00 2.08397925e-01 -6.53818607e-01 -1.00148952e+00 -7.49423862e-01 -3.25169414e-01 -3.29608977e-01 9.56328332e-01 3.19250852e-01 5.96132576e-01 1.28563866e-01 8.19602132e-01 -1.68677914e+00 -2.97240078e-01 -7.32211053e-01 -9.24973667e-01 3.00981909e-01 4.09089237e-01 -8.06279480e-01 -2.14136653e-02 -1.46610439e-01]
[7.606844425201416, -2.7240161895751953]
87227949-4c8d-4846-9e55-5a00e73afb9b
multivariate-time-series-imputation-with-1
1907.04155
null
https://arxiv.org/abs/1907.04155v5
https://arxiv.org/pdf/1907.04155v5.pdf
GP-VAE: Deep Probabilistic Time Series Imputation
Multivariate time series with missing values are common in areas such as healthcare and finance, and have grown in number and complexity over the years. This raises the question whether deep learning methodologies can outperform classical data imputation methods in this domain. However, naive applications of deep learning fall short in giving reliable confidence estimates and lack interpretability. We propose a new deep sequential latent variable model for dimensionality reduction and data imputation. Our modeling assumption is simple and interpretable: the high dimensional time series has a lower-dimensional representation which evolves smoothly in time according to a Gaussian process. The non-linear dimensionality reduction in the presence of missing data is achieved using a VAE approach with a novel structured variational approximation. We demonstrate that our approach outperforms several classical and deep learning-based data imputation methods on high-dimensional data from the domains of computer vision and healthcare, while additionally improving the smoothness of the imputations and providing interpretable uncertainty estimates.
['Gunnar Rätsch', 'Dmitry Baranchuk', 'Vincent Fortuin', 'Stephan Mandt']
2019-07-09
null
null
null
null
['multivariate-time-series-imputation']
['time-series']
[ 9.98777524e-02 2.20598504e-01 -1.04870729e-01 -6.54840648e-01 -1.00463986e+00 -1.36188507e-01 5.61909854e-01 4.81281988e-02 -2.46486604e-01 1.08423197e+00 5.33493698e-01 -1.25647232e-01 -5.39737403e-01 -6.33354127e-01 -8.95341218e-01 -8.95697653e-01 1.07065403e-04 8.73687327e-01 -8.49407732e-01 2.56957293e-01 -1.78103179e-01 1.20010853e-01 -1.24332249e+00 -3.55568379e-02 1.10085297e+00 8.65310490e-01 -4.24001098e-01 2.44218469e-01 -1.18336745e-01 5.98141670e-01 -1.18851759e-01 -4.53605860e-01 1.38057247e-01 -3.18999738e-01 -3.68313938e-01 -2.18761027e-01 4.34024334e-02 -4.13951844e-01 -2.91083544e-01 7.43492186e-01 3.96714687e-01 6.92568943e-02 9.86676991e-01 -1.44268405e+00 -7.33852327e-01 3.94745976e-01 -6.69019043e-01 -3.79077226e-01 -1.13181826e-02 -1.75609946e-01 5.36413014e-01 -6.86111629e-01 5.60102224e-01 1.24647236e+00 1.26369262e+00 5.65113604e-01 -1.69931936e+00 -4.58434641e-01 -1.39960229e-01 -3.42037827e-02 -1.02478302e+00 -4.55637842e-01 7.99965024e-01 -8.86489034e-01 6.59826994e-01 7.88863599e-02 2.16529727e-01 1.68876588e+00 3.78865182e-01 7.02030480e-01 8.89892757e-01 -1.39140218e-01 6.29140735e-01 -3.55794132e-01 1.12024896e-01 1.34911373e-01 2.14128986e-01 3.18367094e-01 -5.03102124e-01 -6.25055432e-01 6.86482608e-01 7.06925154e-01 1.25092179e-01 -6.85161829e-01 -1.46179497e+00 1.06576574e+00 -1.83947384e-01 -2.14606285e-01 -8.68338943e-01 3.25907558e-01 4.99518305e-01 2.20807716e-01 8.89275193e-01 -7.61746895e-03 -6.81166649e-01 -5.01739025e-01 -1.21868420e+00 3.61945271e-01 7.06228316e-01 7.41229236e-01 3.68205637e-01 2.35697404e-01 -3.51037771e-01 5.36272347e-01 2.28378996e-01 7.15176165e-01 1.69753700e-01 -1.54093659e+00 5.03893077e-01 2.77387828e-01 5.70187807e-01 -8.10014367e-01 -5.62002957e-01 -2.86481470e-01 -1.71208000e+00 2.90615380e-01 6.64640784e-01 -5.23274839e-01 -9.54542994e-01 2.05424833e+00 3.15789521e-01 4.09802198e-01 1.74142763e-01 6.52046084e-01 3.72557431e-01 3.60456318e-01 1.34570852e-01 -7.01149285e-01 9.64466870e-01 -2.82959729e-01 -1.27433038e+00 2.76846975e-01 3.85564536e-01 -3.43985558e-01 7.13051975e-01 4.78780270e-01 -1.12648845e+00 -3.24583977e-01 -4.62764919e-01 -3.71455222e-01 1.23266816e-01 -1.40502870e-01 6.17387831e-01 5.51838815e-01 -6.05806828e-01 8.01571488e-01 -1.38991630e+00 1.15936518e-01 7.20005035e-01 3.46420377e-01 -3.95841986e-01 -2.86589283e-02 -9.68167782e-01 7.01678216e-01 -2.91907489e-01 3.29913825e-01 -6.57778382e-01 -1.06617200e+00 -9.53222811e-01 6.37794882e-02 -3.01779285e-02 -1.19612730e+00 1.03892827e+00 -7.93215513e-01 -1.17016780e+00 4.57218409e-01 -6.45324945e-01 -6.48834646e-01 1.10670483e+00 -2.17326760e-01 -2.70966202e-01 -4.90180433e-01 1.05059288e-01 1.40329674e-01 1.02534819e+00 -9.27377403e-01 -1.36944532e-01 -8.21291208e-01 -7.06689119e-01 -2.52943367e-01 1.49590299e-01 -3.50540727e-01 9.56958458e-02 -8.83420348e-01 2.77775258e-01 -7.27265716e-01 -4.91905779e-01 8.64982381e-02 -2.64307082e-01 -9.15140510e-02 4.19632792e-01 -1.06782520e+00 1.00000691e+00 -2.02644730e+00 5.21898568e-01 2.92947646e-02 3.24730903e-01 -5.48797190e-01 1.12515844e-01 3.93923134e-01 -5.42487688e-02 -5.27702831e-02 -8.63768518e-01 -1.05697155e+00 3.43912780e-01 5.20686150e-01 -5.04460514e-01 8.18744421e-01 2.06443807e-03 1.06513250e+00 -7.46879637e-01 -2.55306959e-01 2.24922940e-01 8.26927245e-01 -4.02847201e-01 1.44634649e-01 -2.48317942e-01 9.35833573e-01 -1.64495647e-01 5.61759174e-01 9.75858271e-01 -2.62291282e-01 1.36699200e-01 6.38725981e-02 2.08905023e-02 -1.58017904e-01 -1.21366918e+00 1.97365558e+00 -3.71478349e-01 4.58233893e-01 -2.15960331e-02 -1.18665957e+00 7.61079192e-01 4.44026440e-01 8.80216360e-01 -6.07757330e-01 -2.88421139e-02 3.88831608e-02 -3.72622550e-01 -5.70553243e-01 1.10902756e-01 -4.73434806e-01 -2.66535282e-01 3.18507820e-01 -1.91754237e-01 2.79520363e-01 -4.10364091e-01 -2.12520555e-01 9.09238935e-01 4.87638414e-01 -7.88657367e-03 -5.88730425e-02 -5.61317429e-02 -1.33935779e-01 1.04296231e+00 8.13736379e-01 1.27730295e-01 8.21279764e-01 6.77602649e-01 -6.40553236e-01 -1.35203016e+00 -1.43073356e+00 -6.32416904e-01 5.21564364e-01 -4.76474583e-01 5.28210215e-02 -6.50487781e-01 -2.60377675e-01 3.91327262e-01 9.10688400e-01 -9.64012265e-01 8.82874131e-02 -3.61929983e-01 -1.19290972e+00 2.66131580e-01 6.33066237e-01 -6.79501072e-02 -8.71921778e-01 -3.23610097e-01 5.27644455e-01 -4.81206954e-01 -7.37917185e-01 -1.11409247e-01 2.10033268e-01 -1.27893019e+00 -7.55387485e-01 -8.29339087e-01 -2.19000369e-01 5.81461251e-01 -5.48014522e-01 1.06366539e+00 -6.36815608e-01 -1.02247812e-01 3.99310142e-01 4.26032208e-02 -6.25253975e-01 -3.84063184e-01 -1.73112750e-01 3.53087723e-01 1.79459214e-01 7.52383828e-01 -7.31335640e-01 -6.08434379e-01 -1.67505562e-01 -7.70075858e-01 2.43392922e-02 1.17451355e-01 1.15389752e+00 8.33128095e-01 -1.83899909e-01 8.88141513e-01 -8.24919164e-01 5.03240824e-01 -9.54991162e-01 -7.27434456e-01 1.14520594e-01 -8.02162290e-01 4.02663946e-01 5.10442972e-01 -3.58174801e-01 -1.11324513e+00 1.94185704e-01 -1.08051054e-01 -5.64714491e-01 -2.80464143e-01 5.20175815e-01 7.12204203e-02 6.65118754e-01 3.73790115e-01 1.42127890e-02 5.37944198e-01 -8.87147963e-01 2.94282168e-01 5.44051409e-01 5.60341954e-01 -4.52982485e-01 5.91799200e-01 9.09122229e-01 4.64723408e-01 -5.27803719e-01 -5.93450010e-01 -8.08947459e-02 -7.58130133e-01 1.74840212e-01 9.60706890e-01 -1.16010690e+00 -9.69820201e-01 5.69646120e-01 -1.15639400e+00 -3.06481242e-01 -6.79934919e-01 7.01914668e-01 -1.00182927e+00 3.96266490e-01 -5.96552312e-01 -1.12508178e+00 -3.06509286e-01 -9.32607293e-01 1.24638426e+00 -3.15959215e-01 -4.86860007e-01 -1.22337353e+00 3.72738659e-01 2.37412676e-01 2.45106936e-01 8.70807469e-01 1.06663001e+00 -2.63365954e-01 -3.23371917e-01 -1.78471580e-01 4.56497148e-02 2.08624378e-01 1.27764240e-01 -2.79423356e-01 -8.61487985e-01 -1.26006827e-01 3.38312805e-01 -1.37723759e-02 9.12225008e-01 1.23158336e+00 1.47918773e+00 -3.23432267e-01 -1.91759139e-01 8.79145443e-01 1.35221398e+00 -1.30183354e-01 5.81432343e-01 7.94562027e-02 5.69897711e-01 7.60557294e-01 1.35804445e-01 8.74242663e-01 5.79304934e-01 5.13160169e-01 3.68542314e-01 -1.13945134e-01 4.76824373e-01 -1.53989211e-01 5.60879260e-02 6.29522443e-01 -1.11265577e-01 9.99598727e-02 -1.04727387e+00 8.08186114e-01 -2.48067141e+00 -1.13180888e+00 -6.70439243e-01 2.35419655e+00 7.59262979e-01 -3.47487658e-01 1.26578793e-01 -5.51732592e-02 3.92991960e-01 -2.61799753e-01 -1.00815916e+00 -3.37236762e-01 -3.68071526e-01 9.03243944e-02 4.87060964e-01 3.85197818e-01 -1.04584825e+00 9.82611701e-02 6.99805212e+00 2.99846381e-01 -3.97231311e-01 4.05079871e-01 7.64843106e-01 -2.55740941e-01 -6.57704592e-01 -3.75884265e-01 -3.61403883e-01 7.56381452e-01 1.23079240e+00 1.23847136e-02 3.33786726e-01 5.57932496e-01 6.51945233e-01 2.82034725e-01 -1.29410017e+00 1.15154552e+00 -2.64014572e-01 -1.54425550e+00 -3.87977898e-01 4.48550731e-01 1.04874182e+00 1.94984227e-01 3.11218977e-01 2.16538012e-01 4.74799573e-01 -1.30713141e+00 4.39033538e-01 1.32354355e+00 7.03919113e-01 -8.93115580e-01 7.67603695e-01 4.69708085e-01 -3.24157715e-01 -1.64549381e-01 -3.17295313e-01 -2.58655041e-01 5.30959070e-01 8.61131966e-01 -6.63027614e-02 4.65808719e-01 7.52745926e-01 7.22863495e-01 1.08453430e-01 8.70404959e-01 2.54884958e-01 6.16139531e-01 -3.43127728e-01 6.13512874e-01 -1.18488170e-01 -7.27423847e-01 4.61540192e-01 6.48654282e-01 6.58412933e-01 -1.07196160e-01 -3.63971621e-01 1.22170019e+00 -1.44836642e-02 -3.52764964e-01 -5.63764632e-01 2.42433101e-01 1.37583539e-01 6.48732603e-01 2.06088033e-02 -1.07413933e-01 -5.72755456e-01 9.07530725e-01 6.59646392e-02 6.60435915e-01 -7.65146554e-01 1.91915810e-01 9.93061483e-01 7.24723609e-03 2.51486331e-01 -4.14942592e-01 -9.20476496e-01 -1.44825590e+00 2.35040903e-01 -7.31685817e-01 5.26373923e-01 -5.67819178e-01 -1.94996274e+00 2.01802820e-01 -7.04605430e-02 -1.12228262e+00 -8.25062037e-01 -1.86293274e-01 -2.54733413e-01 1.16629803e+00 -1.31353414e+00 -1.16711438e+00 2.97680255e-02 6.76694810e-01 2.40647539e-01 -2.11589560e-01 1.08920407e+00 1.52697891e-01 -4.96217787e-01 3.62961173e-01 1.25218558e+00 -9.12929401e-02 4.42249864e-01 -1.34698200e+00 5.40057778e-01 6.89077497e-01 -2.13869661e-01 5.36807239e-01 9.57511127e-01 -7.97666252e-01 -1.49064529e+00 -1.12135279e+00 9.97041941e-01 -9.15256619e-01 4.77717429e-01 -5.24141908e-01 -1.13407099e+00 8.44703794e-01 -6.24791123e-02 -1.39268652e-01 9.38911259e-01 4.48194265e-01 -2.55891204e-01 1.46941599e-02 -1.44680488e+00 2.89349049e-01 7.39353180e-01 -4.72791672e-01 -6.90211713e-01 4.08355385e-01 6.65763795e-01 -1.88990533e-01 -1.16800511e+00 3.90427202e-01 6.25084460e-01 -5.73804021e-01 1.02936959e+00 -1.02506781e+00 5.81727207e-01 3.37538086e-02 -2.90580958e-01 -1.05245078e+00 -2.46593952e-01 -7.15789139e-01 -7.41552055e-01 1.09124696e+00 1.26718298e-01 -5.26454866e-01 9.64630961e-01 1.26511061e+00 2.19287559e-01 -4.42123085e-01 -1.37071562e+00 -7.12922454e-01 6.19610906e-01 -7.52530992e-01 8.57784450e-01 1.12247229e+00 -3.38811070e-01 -1.05461091e-01 -9.87388313e-01 7.56084621e-02 1.46385515e+00 2.37969905e-01 6.80142522e-01 -1.79307544e+00 -5.15350178e-02 6.13467768e-02 -8.13310817e-02 -5.91057420e-01 4.89588886e-01 -6.09055579e-01 -3.12136501e-01 -1.64287007e+00 2.12674946e-01 -2.84144133e-01 -2.53776312e-01 2.96784610e-01 1.84626684e-01 -2.99928375e-02 -2.86639601e-01 2.66049474e-01 -1.67023957e-01 8.87358904e-01 7.26952314e-01 -1.93775892e-01 -2.45574728e-01 2.48561844e-01 -4.52456832e-01 6.94210231e-01 5.94450235e-01 -6.90523863e-01 -1.96991384e-01 -6.07537985e-01 4.56599206e-01 6.75159514e-01 7.17777073e-01 -4.57870722e-01 6.87406808e-02 -3.35459381e-01 7.65260100e-01 -7.87155986e-01 4.05190498e-01 -1.13085663e+00 7.90019989e-01 2.92720765e-01 -2.57683158e-01 -1.18825501e-02 8.93996581e-02 9.87694502e-01 -8.34633783e-02 1.65261716e-01 4.52536643e-01 1.31717160e-01 -2.01502696e-01 5.78037918e-01 -3.87974828e-01 7.11724162e-03 6.84459269e-01 -2.49933437e-01 9.28688049e-02 -5.23309827e-01 -1.29401743e+00 2.54066437e-01 3.93064499e-01 3.97675991e-01 5.63154459e-01 -1.51746261e+00 -9.79736507e-01 2.78676897e-01 -5.15328646e-02 1.13174498e-01 7.63665915e-01 9.91490901e-01 3.14752050e-02 1.67068362e-01 -1.75176367e-01 -7.33658910e-01 -6.12632930e-01 7.03343570e-01 3.23241591e-01 1.30606990e-04 -8.43555093e-01 1.71574309e-01 2.71454677e-02 -7.02532291e-01 3.49472404e-01 -4.13013190e-01 2.05581918e-01 1.94971815e-01 3.60413015e-01 7.04482615e-01 -1.92523953e-02 -5.20210445e-01 -2.02381030e-01 3.84571791e-01 3.83031249e-01 -1.08884815e-02 1.88709557e+00 -4.38509434e-01 -2.40016982e-01 8.27255011e-01 1.24950385e+00 -5.10249138e-01 -1.64165783e+00 -2.30838716e-01 1.10623084e-01 -3.09671760e-01 1.64968986e-02 -7.36111879e-01 -6.74561679e-01 9.76015985e-01 6.81585789e-01 -4.20250520e-02 9.82956827e-01 -2.32710674e-01 7.29433477e-01 6.74465373e-02 2.54150957e-01 -9.60394561e-01 -6.41675770e-01 3.33899289e-01 8.68533909e-01 -1.55178154e+00 -1.69523478e-01 3.43947083e-01 -5.09148538e-01 9.13937628e-01 8.01141839e-03 -3.43777277e-02 8.45451891e-01 3.11622143e-01 -8.77396017e-02 -3.75061929e-02 -7.40140498e-01 2.32545704e-01 3.00854087e-01 9.66587961e-01 3.12303156e-01 1.90177262e-01 -1.55498728e-01 9.55820441e-01 -1.10359646e-01 3.35040331e-01 5.83488643e-01 3.41523528e-01 3.40817928e-01 -1.12896633e+00 -4.84710366e-01 6.91242397e-01 -6.09586060e-01 6.48436248e-02 2.11147949e-01 4.98893410e-01 -7.81662762e-03 7.70191014e-01 4.86257821e-01 3.44636470e-01 1.93360358e-01 3.13922942e-01 1.78594500e-01 -4.19140756e-02 -8.92071724e-02 1.90133363e-01 -2.10168988e-01 -4.91886526e-01 -4.67875868e-01 -1.22430301e+00 -9.93087411e-01 -5.54617822e-01 1.30926386e-01 -1.26507916e-02 8.03820074e-01 1.02021468e+00 5.85656226e-01 4.09982055e-01 2.51518607e-01 -5.45392096e-01 -9.30881798e-01 -7.17599630e-01 -5.67417264e-01 6.47598982e-01 9.25793469e-01 -6.15334809e-01 -3.84978056e-01 1.60838693e-01]
[7.1881232261657715, 3.671808958053589]
b3ed94f9-4004-43ec-b221-7e3013c95c8d
bear-physics-principled-building-environment
2211.14744
null
https://arxiv.org/abs/2211.14744v1
https://arxiv.org/pdf/2211.14744v1.pdf
BEAR: Physics-Principled Building Environment for Control and Reinforcement Learning
Recent advancements in reinforcement learning algorithms have opened doors for researchers to operate and optimize building energy management systems autonomously. However, the lack of an easily configurable building dynamical model and energy management task simulation and evaluation platform has arguably slowed the progress in developing advanced and dedicated reinforcement learning (RL) and control algorithms for building operation tasks. Here we propose "BEAR", a physics-principled Building Environment for Control And Reinforcement Learning. The platform allows researchers to benchmark both model-based and model-free controllers using a broad collection of standard building models in Python without co-simulation using external building simulators. In this paper, we discuss the design of this platform and compare it with other existing building simulation frameworks. We demonstrate the compatibility and performance of BEAR with different controllers, including both model predictive control (MPC) and several state-of-the-art RL methods with two case studies.
['Yize Chen', 'Yuanyuan Shi', 'Chi Zhang']
2022-11-27
null
null
null
null
['energy-management']
['time-series']
[-4.09648269e-01 -2.52711356e-01 -1.27469927e-01 2.62790889e-01 -3.95298541e-01 -5.10095060e-01 3.96597117e-01 9.15561244e-02 1.16399966e-01 1.16723764e+00 -2.78574318e-01 -2.92097569e-01 -3.87645215e-01 -1.25475991e+00 -5.17816544e-01 -1.00144875e+00 -3.72883111e-01 5.28920054e-01 1.05119534e-01 -6.57212913e-01 -3.54218870e-01 4.54468876e-01 -1.97998929e+00 -5.62884033e-01 6.85925007e-01 4.82322276e-01 5.75739145e-01 1.01290274e+00 7.37216711e-01 8.61649096e-01 -3.13496917e-01 1.02826333e+00 1.68527618e-01 -3.48869085e-01 -5.22467375e-01 -2.83255965e-01 -4.78294790e-01 -2.29583487e-01 -4.08887327e-01 1.87736899e-01 1.07538688e+00 6.44567788e-01 2.16089517e-01 -1.40964961e+00 -2.22824261e-01 1.27466336e-01 9.01650712e-02 1.72237396e-01 4.65847343e-01 7.51431704e-01 5.85739851e-01 2.37438738e-01 1.32800788e-01 8.64470661e-01 8.29662919e-01 7.55114436e-01 -1.30057585e+00 -6.50769234e-01 -1.09054469e-01 2.64511883e-01 -1.54955685e+00 -8.44676867e-02 6.89057231e-01 3.25172171e-02 1.67913771e+00 6.36184871e-01 1.60089755e+00 9.42776680e-01 3.61833364e-01 4.75315690e-01 1.49809301e+00 -4.91529793e-01 9.61046457e-01 -1.37504742e-01 -6.43188298e-01 9.51767623e-01 -1.89925209e-01 9.76608813e-01 -2.02678591e-01 -1.24729730e-01 7.83568978e-01 -5.39618254e-01 -1.35361888e-02 -5.77430964e-01 -7.79149115e-01 8.28560472e-01 6.91827238e-01 1.29611436e-02 -3.69038820e-01 8.77048433e-01 1.26236528e-01 -7.78246894e-02 1.26210582e-02 5.30459285e-01 -8.26405823e-01 -9.88438204e-02 -8.51842403e-01 7.64407039e-01 9.65379357e-01 7.35211194e-01 6.15705788e-01 6.23673677e-01 -2.23748609e-01 6.72231793e-01 7.77515173e-01 7.20824659e-01 4.24009293e-01 -1.47531772e+00 -2.98380107e-01 3.29044729e-01 3.60482454e-01 -2.53446877e-01 -6.96293771e-01 6.20331541e-02 -5.11496425e-01 6.97220266e-01 -2.81068534e-01 -4.67611134e-01 -7.44136870e-01 1.76815403e+00 6.24509871e-01 1.12905398e-01 3.07736229e-02 5.85057795e-01 2.70801961e-01 1.01635909e+00 4.83839840e-01 -2.41467878e-01 1.04722643e+00 -8.84701431e-01 -3.95974576e-01 -1.90755635e-01 2.04203315e-02 -3.04252893e-01 1.02331936e+00 1.14877127e-01 -1.00742674e+00 -4.43978280e-01 -1.48191547e+00 4.47789848e-01 -7.00899005e-01 -4.30330098e-01 6.89893186e-01 1.00139213e+00 -1.35922694e+00 1.05522430e+00 -1.42206824e+00 -8.11098993e-01 -9.35036689e-02 6.28967524e-01 6.21420503e-01 3.99611145e-01 -1.35962665e+00 1.24835324e+00 5.15745938e-01 -4.28403527e-01 -1.37867939e+00 -9.87093329e-01 -6.73743069e-01 -1.19553588e-01 2.93299943e-01 -1.18669415e+00 1.80157232e+00 -1.40671566e-01 -2.30108380e+00 1.43593192e-01 3.47387195e-01 -3.67502600e-01 2.77682960e-01 -4.03401256e-02 -5.29549956e-01 -1.93972021e-01 -1.88735411e-01 6.41793132e-01 4.77167726e-01 -1.33005393e+00 -6.76428616e-01 1.73868120e-01 1.03844121e-01 3.37139666e-01 2.62346178e-01 -4.78762895e-01 2.48656139e-01 -2.11975202e-01 -5.02661586e-01 -1.16397095e+00 -5.35590947e-01 -2.03612939e-01 1.16797928e-02 -1.50117263e-01 1.24218798e+00 -4.74403650e-01 1.17079055e+00 -1.38087332e+00 7.98629150e-02 2.42443323e-01 -6.50056422e-01 -1.32668436e-01 3.86290222e-01 8.00260842e-01 1.16716757e-01 8.74559283e-02 -3.69487554e-01 9.09592807e-02 3.53789598e-01 8.43829155e-01 5.64825572e-02 1.90779537e-01 -8.05755779e-02 6.42224610e-01 -1.13039088e+00 -6.15808845e-01 1.13112450e+00 5.46512842e-01 -4.74527866e-01 2.83064067e-01 -7.48431921e-01 6.51096582e-01 -7.91830420e-01 7.46597111e-01 2.22455412e-01 1.32242367e-01 5.13358951e-01 6.24934770e-02 -6.31693363e-01 1.63119853e-01 -1.33584762e+00 1.72589958e+00 -1.10735047e+00 2.33942345e-01 4.18143153e-01 -8.55237007e-01 4.26462442e-01 3.32753867e-01 9.65566397e-01 -8.77981424e-01 -1.04497001e-01 -8.50286856e-02 -5.38519979e-01 -3.26985985e-01 3.13851565e-01 -3.01342934e-01 -9.55203772e-02 2.94552863e-01 4.11597267e-02 -1.14324117e+00 1.82322606e-01 -5.09178519e-01 1.34022272e+00 9.04994190e-01 3.54662716e-01 -8.01081598e-01 6.39329076e-01 4.28109825e-01 2.47961938e-01 4.15196151e-01 -4.36560094e-01 -3.14491928e-01 -5.36489964e-01 -1.89486057e-01 -1.02741671e+00 -1.43073428e+00 -1.21536352e-01 1.30373657e+00 5.72169870e-02 -5.69995642e-01 -8.19004118e-01 1.70715656e-02 2.15889990e-01 1.35373640e+00 -2.55549461e-01 -1.30041525e-01 -7.37004399e-01 -1.07868826e+00 4.01124358e-01 3.71075451e-01 8.09716284e-01 -1.04996133e+00 -1.36505961e+00 5.91456056e-01 5.27959540e-02 -5.61537802e-01 3.86583954e-01 6.88510120e-01 -7.42944837e-01 -1.17232680e+00 2.40869537e-01 -4.03523684e-01 -1.19079061e-01 -1.29586622e-01 1.56627643e+00 3.54766041e-01 -6.66651130e-01 1.09053564e+00 1.64176784e-02 -5.16015172e-01 -8.57691765e-01 -1.99341457e-02 1.54294118e-01 -1.23113680e+00 -2.77335018e-01 -6.93371475e-01 -9.73148167e-01 4.71845001e-01 -5.38128078e-01 1.86237484e-01 8.12779665e-02 4.37649548e-01 9.22579288e-01 8.41956675e-01 3.44924152e-01 1.28976256e-01 5.55546045e-01 -3.30528766e-01 -1.01572573e+00 5.04056633e-01 -1.12564433e+00 3.99331927e-01 6.69627786e-01 2.81601287e-02 -1.17251182e+00 3.45492601e-01 -4.01408464e-01 2.43416250e-01 -2.06507891e-01 -6.38149753e-02 -4.07499857e-02 -3.78980339e-01 4.04653251e-01 2.24313542e-01 -1.83108181e-01 -7.81528056e-02 3.66874307e-01 6.79223612e-02 2.73591965e-01 -1.28830969e+00 9.71359015e-01 1.62031665e-01 3.24552000e-01 -9.12504673e-01 -2.97223508e-01 2.22512092e-02 -2.62068719e-01 -6.21973038e-01 9.83900726e-01 -9.14165258e-01 -1.04770339e+00 3.69804114e-01 -1.01928711e-01 -1.47675276e+00 -7.24873543e-01 -1.66452061e-02 -1.39102423e+00 -1.85737774e-01 -4.02795494e-01 -1.01935875e+00 -5.61111033e-01 -1.21398377e+00 7.73984790e-01 6.35197043e-01 -2.76309997e-01 -1.08568025e+00 1.00788045e+00 -1.66802615e-01 8.65075946e-01 8.98265302e-01 8.55414271e-01 3.38256150e-01 -6.28284931e-01 3.21526349e-01 7.17380464e-01 8.97112563e-02 7.11760297e-02 3.52079391e-01 -1.11336386e+00 -4.14587498e-01 -1.12126544e-01 -4.73536432e-01 2.32672930e-01 6.55861974e-01 1.23919785e+00 -5.93951344e-02 -7.63488233e-01 2.97345638e-01 2.03684783e+00 1.74692407e-01 3.45958561e-01 7.68257737e-01 1.67168602e-01 5.53240143e-02 5.06043375e-01 7.27449536e-01 5.77752829e-01 7.79572368e-01 6.16590738e-01 1.22347236e-01 6.08967021e-02 -4.66560543e-01 4.17913944e-01 7.60276258e-01 -3.11858654e-01 1.23041980e-01 -1.01100755e+00 6.80093318e-02 -1.75009286e+00 -1.03266144e+00 2.26267129e-01 2.16772676e+00 9.47181523e-01 -2.23058894e-01 5.72817437e-02 1.80530883e-02 3.32803965e-01 1.92982018e-01 -7.50692070e-01 -5.62065363e-01 4.00639862e-01 9.21053588e-01 7.20493853e-01 4.06884938e-01 -1.22315252e+00 7.57902265e-01 7.48982763e+00 7.92676032e-01 -8.31880510e-01 2.41146594e-01 2.46125266e-01 -1.54758647e-01 1.50612965e-01 -2.36372519e-02 -4.53871846e-01 2.03443989e-01 1.96761310e+00 -4.89601910e-01 1.27167785e+00 1.23771048e+00 7.58655548e-01 -6.25695586e-01 -1.14343786e+00 3.62705439e-01 -7.17441320e-01 -1.45281172e+00 -7.04479456e-01 -7.49794096e-02 7.95351863e-01 3.74070525e-01 -4.06070441e-01 1.02353597e+00 1.14807963e+00 -9.03245270e-01 7.64838994e-01 3.22301030e-01 3.24442685e-01 -1.03005159e+00 2.80518457e-02 3.90123338e-01 -1.82733393e+00 -3.83039683e-01 -1.71705827e-01 -2.55861402e-01 1.65471315e-01 -8.91808793e-02 -4.16246831e-01 7.17377663e-01 1.12321866e+00 2.51334071e-01 -5.66572309e-01 9.00463641e-01 -3.07189137e-01 6.35305345e-01 -8.53544772e-01 -3.73412579e-01 1.93417460e-01 -1.80147722e-01 9.98082682e-02 8.82830381e-01 2.54597068e-01 1.65734351e-01 5.76027155e-01 8.76314104e-01 4.97497678e-01 -3.58339280e-01 -4.28836703e-01 3.40483367e-01 4.69935298e-01 1.40109777e+00 -7.42498636e-01 -1.57628521e-01 -5.40515408e-02 5.92154324e-01 -1.25215545e-01 2.56820228e-02 -1.37889063e+00 2.20193908e-01 1.01095212e+00 8.03737119e-02 1.39521450e-01 -6.09912276e-01 7.50850514e-02 -3.51291031e-01 -8.27762842e-01 -6.64515316e-01 1.74991503e-01 -8.41045439e-01 -9.04185295e-01 -2.36879259e-01 6.46161973e-01 -5.57162762e-01 -3.76517922e-01 -3.64643872e-01 -8.35915685e-01 4.62459981e-01 -1.62320054e+00 -8.88314068e-01 -5.77569008e-01 7.10673511e-01 6.40181482e-01 2.12057069e-01 1.38316524e+00 4.47569527e-02 -7.85016179e-01 -2.09226340e-01 5.82244873e-01 -6.78331852e-01 1.39561892e-01 -1.62029791e+00 2.52938300e-01 3.15180659e-01 -5.29433429e-01 -1.59804001e-01 1.18488395e+00 -4.44842160e-01 -1.81528902e+00 -1.18835640e+00 -4.13746297e-01 -3.47017318e-01 7.50286877e-01 -1.30410850e-01 -4.89952177e-01 2.96741873e-01 8.07153642e-01 -3.79822761e-01 4.82671857e-01 -3.41737539e-01 5.77692866e-01 -8.91450867e-02 -1.45380950e+00 5.44459224e-01 7.46398568e-01 -3.68631840e-01 -1.66643217e-01 5.66630244e-01 6.01607025e-01 -4.47066665e-01 -1.19218755e+00 4.60617781e-01 5.52925885e-01 -7.96657503e-01 1.24891376e+00 -1.02818035e-01 -1.37688741e-01 -6.68879092e-01 -3.68058443e-01 -1.54384422e+00 -4.04953331e-01 -7.18945205e-01 -6.75872386e-01 1.07696867e+00 2.77656573e-03 -2.28325680e-01 5.44253707e-01 7.38593102e-01 -2.72146881e-01 -7.77836800e-01 -1.21774459e+00 -8.58875871e-01 3.60851705e-01 -5.28570712e-01 6.24307394e-01 4.83513147e-01 -1.44195914e-01 9.35625099e-03 2.11790591e-01 5.98393083e-01 6.67984843e-01 -1.02634735e-01 3.78576159e-01 -8.40185046e-01 -4.53886658e-01 -3.78649652e-01 2.40496740e-01 -3.10511161e-02 1.95233077e-01 -4.46445048e-01 3.67368072e-01 -2.02780056e+00 -1.83080718e-01 -5.96906960e-01 -3.61042917e-01 5.97985387e-01 1.69680059e-01 -4.37769920e-01 -6.13248497e-02 -1.41223311e-01 -3.05440247e-01 1.03502226e+00 7.90102959e-01 -2.19760910e-01 -5.73038936e-01 -4.57325764e-02 7.07362294e-02 5.92376530e-01 1.45008373e+00 -4.29320782e-01 -7.24061906e-01 2.29607567e-01 8.08896497e-02 -1.62926823e-01 8.08295846e-01 -1.86986351e+00 -4.59564775e-02 -5.64749837e-01 5.27638316e-01 -5.37254214e-01 2.49560148e-01 -9.73408401e-01 7.17239916e-01 1.24379754e+00 6.89342618e-02 3.14415067e-01 7.89245427e-01 7.30815113e-01 5.94723582e-01 1.14442065e-01 1.20927393e+00 -5.24672687e-01 -1.11534548e+00 -9.40686986e-02 -8.97961259e-01 -1.55953273e-01 1.64358127e+00 -8.54702480e-03 -2.90687591e-01 1.66891981e-02 -7.27743387e-01 6.32170260e-01 6.78546488e-01 2.20355079e-01 1.54821843e-01 -1.31282854e+00 -2.73867935e-01 -1.28315583e-01 -2.32128829e-01 -1.42283246e-01 3.01662713e-01 1.36144742e-01 -9.59549963e-01 2.34328508e-01 -5.46952367e-01 -5.06336391e-01 -8.60641122e-01 7.75470793e-01 1.07112694e+00 -7.10370123e-01 -6.50160968e-01 1.10235259e-01 -5.29101312e-01 -8.48583639e-01 -2.60223240e-01 -5.25657237e-01 3.91735971e-01 -4.84456033e-01 -6.35592490e-02 7.17813015e-01 1.70034915e-02 9.03784949e-03 -4.73512352e-01 3.53683770e-01 9.48354065e-01 -3.83173078e-02 1.49965239e+00 -6.18405677e-02 2.05064073e-01 5.09577334e-01 3.42597425e-01 -5.09177208e-01 -1.65739202e+00 5.62523484e-01 -5.73615693e-02 1.82022735e-01 5.54126740e-01 -1.03950131e+00 -8.11042249e-01 1.45906046e-01 1.44735312e+00 2.97888547e-01 1.31681311e+00 -2.91347921e-01 5.46440780e-01 6.30453944e-01 9.01899219e-01 -2.01904035e+00 5.41266873e-02 1.97023302e-01 8.84266913e-01 -7.79466391e-01 5.84219873e-01 2.18940228e-01 -2.10198909e-01 8.86793196e-01 8.89080286e-01 -3.06745708e-01 9.85254765e-01 5.05007684e-01 -4.85063434e-01 -1.32861659e-01 -9.11384583e-01 -3.80847842e-01 -4.17268723e-01 1.00568378e+00 1.61376372e-01 4.34180439e-01 2.06413522e-01 -1.08983167e-01 -1.96921036e-01 2.13553578e-01 2.46770948e-01 1.58561468e+00 -7.59832919e-01 -1.31424081e+00 -6.11792147e-01 -1.49697214e-01 5.70526905e-02 2.81218708e-01 3.71220767e-01 1.52782524e+00 1.25326991e-01 1.08226228e+00 -2.33914524e-01 -1.85795292e-01 5.40101469e-01 2.61926919e-01 7.12963641e-01 -3.40615481e-01 -8.73579323e-01 -2.38621756e-01 1.79332674e-01 -7.33306885e-01 -5.23842454e-01 -5.65945923e-01 -1.62623239e+00 -7.69094408e-01 -2.08315492e-01 -1.12137288e-01 9.59097981e-01 7.20729172e-01 2.36741021e-01 1.29370666e+00 6.85816646e-01 -1.32834768e+00 -5.41559756e-01 -4.62071598e-01 -6.54678047e-01 -3.96627396e-01 4.04699799e-03 -1.16363275e+00 5.36432303e-02 -2.40286767e-01]
[5.217106342315674, 2.306025743484497]
e9944785-38e9-434d-9632-e4dce3f90b6c
mitigating-approximate-memorization-in
2305.01550
null
https://arxiv.org/abs/2305.01550v1
https://arxiv.org/pdf/2305.01550v1.pdf
Mitigating Approximate Memorization in Language Models via Dissimilarity Learned Policy
Large Language models (LLMs) are trained on large amounts of data, which can include sensitive information that may compromise per- sonal privacy. LLMs showed to memorize parts of the training data and emit those data verbatim when an adversary prompts appropriately. Previous research has primarily focused on data preprocessing and differential privacy techniques to address memorization or prevent verbatim memorization exclusively, which can give a false sense of privacy. However, these methods rely on explicit and implicit assumptions about the structure of the data to be protected, which often results in an incomplete solution to the problem. To address this, we propose a novel framework that utilizes a reinforcement learning approach (PPO) to fine-tune LLMs to mitigate approximate memorization. Our approach utilizes a negative similarity score, such as BERTScore or SacreBLEU, as a reward signal to learn a dissimilarity policy. Our results demonstrate that this framework effectively mitigates approximate memorization while maintaining high levels of coherence and fluency in the generated samples. Furthermore, our framework is robust in mitigating approximate memorization across various circumstances, including longer context, which is known to increase memorization in LLMs.
['Aly M. Kassem']
2023-05-02
null
null
null
null
['memorization']
['natural-language-processing']
[ 2.34374449e-01 2.18083024e-01 -1.98041216e-01 -5.04679918e-01 -7.43327737e-01 -6.52047455e-01 5.62463105e-01 4.60501820e-01 -8.99212360e-01 8.48723829e-01 1.01537257e-01 -3.40896875e-01 2.42191702e-01 -8.85882020e-01 -9.73608553e-01 -4.94434237e-01 1.54612735e-01 -1.68594196e-01 -3.42221141e-01 -7.47779384e-02 5.63373208e-01 3.98354024e-01 -1.20026755e+00 4.06893283e-01 1.01803863e+00 8.33327115e-01 -1.56242505e-01 4.80766624e-01 -1.90128665e-02 7.43863821e-01 -9.09598470e-01 -8.12312126e-01 6.27205491e-01 -2.92643338e-01 -7.35469341e-01 -5.80359161e-01 4.42893565e-01 -4.98743236e-01 -2.41879985e-01 1.19268477e+00 5.05322278e-01 2.48801306e-01 2.70614177e-01 -1.24348068e+00 -6.22199714e-01 6.65828407e-01 -5.16891778e-01 9.51213315e-02 5.54329574e-01 3.31509531e-01 7.56187141e-01 -5.02867937e-01 3.30287784e-01 1.27262855e+00 6.91094995e-01 8.33433092e-01 -1.41749418e+00 -1.15498519e+00 8.49944577e-02 -1.79093271e-01 -1.48476446e+00 -6.23144150e-01 4.81161147e-01 -2.07212009e-02 7.91447699e-01 6.66004419e-01 6.34736717e-01 1.43225193e+00 6.54492080e-01 8.28264475e-01 1.44818223e+00 -5.32836676e-01 5.49966574e-01 6.85899258e-01 2.23933965e-01 4.52875912e-01 4.97205883e-01 4.71369267e-01 -7.90377617e-01 -6.87898278e-01 2.96353161e-01 -3.14230248e-02 -1.16324306e-01 -2.44863987e-01 -4.25004244e-01 9.40071285e-01 1.92860499e-01 6.53500408e-02 -1.30928233e-01 -8.89753327e-02 2.33175665e-01 4.98545080e-01 2.99718648e-01 9.23125684e-01 -9.11222920e-02 5.53716384e-02 -1.06104541e+00 4.68373120e-01 7.67355323e-01 7.48517096e-01 7.59947181e-01 -1.95185751e-01 -4.29119170e-01 3.72951239e-01 4.86148596e-02 4.91255730e-01 7.53012538e-01 -7.71350205e-01 6.68893158e-01 3.24439913e-01 1.96150362e-01 -1.10088873e+00 -2.06804216e-01 -2.63675213e-01 -5.77287972e-01 1.95672572e-01 2.87430018e-01 -1.17505223e-01 -5.96392453e-01 2.41837668e+00 2.64663607e-01 -1.73577368e-02 -7.14234710e-02 7.34311819e-01 6.56840429e-02 2.64603913e-01 4.63076860e-01 -9.97102633e-02 1.12041426e+00 -2.82799453e-01 -8.06997120e-01 -4.26023066e-01 6.67180479e-01 -3.53808343e-01 1.53336477e+00 3.29070717e-01 -9.89384294e-01 -3.29317488e-02 -1.19782305e+00 -1.00518443e-01 -4.60927039e-01 -5.84129572e-01 5.89520991e-01 1.33016431e+00 -9.65350628e-01 6.34323418e-01 -7.30209053e-01 -2.03680441e-01 6.83928013e-01 5.67094088e-01 -4.16327089e-01 7.75542855e-02 -1.60879648e+00 8.57493579e-01 3.47337574e-01 -7.85333812e-02 -6.03452325e-01 -8.18434834e-01 -9.29345846e-01 7.61313662e-02 2.49732122e-01 -6.56295657e-01 8.85733187e-01 -9.72210288e-01 -1.30297232e+00 8.73941123e-01 2.39271168e-02 -9.80836153e-01 8.46712291e-01 -3.14288229e-01 -4.20555264e-01 -1.95010081e-01 -1.13281935e-01 6.70503259e-01 1.17141974e+00 -1.08419216e+00 -1.85771167e-01 -5.04335165e-01 -6.83213547e-02 9.82064828e-02 -6.78641737e-01 -9.51373354e-02 2.39947796e-01 -8.96845758e-01 -5.97638786e-01 -7.24172413e-01 -3.39522392e-01 -2.13533804e-01 -5.96344590e-01 3.42482805e-01 5.43706059e-01 -5.32796979e-01 1.43619990e+00 -2.19969201e+00 -5.64887106e-01 6.32870495e-01 1.50014907e-01 5.89856863e-01 -2.41540074e-01 3.44675660e-01 1.48025051e-01 5.45229912e-01 -1.83434099e-01 -6.87831640e-01 3.81724387e-02 1.63847446e-01 -8.70052993e-01 5.73381901e-01 -5.95104992e-02 8.81321549e-01 -6.88926458e-01 -2.70542741e-01 -7.93608502e-02 1.84075668e-01 -9.58863854e-01 4.22964871e-01 -1.17490135e-01 3.04314017e-01 -3.93497705e-01 3.36408824e-01 1.09079850e+00 3.08183312e-01 -6.71620741e-02 4.11388129e-01 1.68505594e-01 3.25064212e-01 -8.98986280e-01 1.38369906e+00 -2.98696131e-01 2.18183994e-01 3.41023505e-02 -5.74452877e-01 7.24953949e-01 -1.06865562e-01 -9.53935832e-03 -9.28588867e-01 1.87214762e-01 -1.02806017e-01 -4.56451416e-01 -3.25729877e-01 8.81839812e-01 -2.01525062e-01 -2.75168508e-01 9.56430614e-01 -4.44485158e-01 -4.97139618e-02 -4.66635972e-01 1.85456261e-01 1.11824071e+00 -2.60981530e-01 3.68181884e-01 -2.65274942e-01 2.31008589e-01 -5.01126707e-01 6.26136661e-01 1.33071804e+00 -4.53474194e-01 2.86900759e-01 3.97782117e-01 -3.03788990e-01 -7.79217780e-01 -1.08990371e+00 -4.08675298e-02 9.08091307e-01 1.23827621e-01 -5.55158913e-01 -1.25205183e+00 -7.38142967e-01 2.39483163e-01 1.28799188e+00 -6.77477002e-01 -8.38175654e-01 -2.45374709e-01 -6.39816344e-01 1.07794583e+00 1.41923621e-01 5.30989766e-01 -1.09638011e+00 -8.39870870e-01 -1.15810268e-01 -2.49214675e-02 -8.14129293e-01 -8.31376612e-01 1.36328012e-01 -6.72784984e-01 -7.08831549e-01 -1.31799832e-01 -1.45634383e-01 8.56536984e-01 5.33791967e-02 6.73037469e-01 4.90036905e-02 -3.07768166e-01 2.88166195e-01 8.79978687e-02 -6.32491529e-01 -5.45475423e-01 1.78012252e-02 2.79385448e-01 1.32811517e-01 6.98350012e-01 -5.07615745e-01 -5.25224864e-01 -3.44753428e-03 -1.22027123e+00 -3.43780994e-01 4.30220187e-01 8.22977424e-01 4.14638549e-01 -4.32801843e-02 5.37196159e-01 -1.34216762e+00 1.37693596e+00 -5.27678967e-01 -4.75404531e-01 3.79556835e-01 -9.39310431e-01 3.77488017e-01 8.15167248e-01 -7.73085415e-01 -9.25155938e-01 -7.03035966e-02 -3.75639438e-03 -4.70161021e-01 -1.31341890e-01 9.28158239e-02 -2.40017369e-01 -3.33485156e-01 7.18005896e-01 3.05712730e-01 8.22700337e-02 -3.15233916e-01 4.28990096e-01 7.38482952e-01 3.16462874e-01 -8.20744336e-01 5.67448497e-01 2.86416829e-01 -2.28544325e-01 -5.53494275e-01 -6.45551264e-01 9.19447169e-02 -1.73112065e-01 2.41022706e-01 4.31563884e-01 -7.50015259e-01 -8.93235087e-01 4.19130355e-01 -7.66148210e-01 -4.01445359e-01 -4.08885807e-01 3.28332961e-01 -5.89222550e-01 4.32936013e-01 -4.02953178e-01 -1.12283611e+00 -4.42958623e-01 -8.57039034e-01 7.36004829e-01 9.32157636e-02 -9.02109861e-01 -7.58455873e-01 -7.42267594e-02 4.00680751e-01 5.61299860e-01 2.20290974e-01 9.58291411e-01 -8.51537287e-01 -4.98438030e-01 -3.79101634e-01 3.21540236e-01 2.75214285e-01 -7.43042305e-03 -4.69101220e-01 -1.23945320e+00 -6.39659524e-01 3.99291068e-01 -6.84785903e-01 8.10238004e-01 -1.08461687e-03 1.53129697e+00 -1.05346596e+00 -7.20779598e-02 6.46010876e-01 1.02715147e+00 -5.49826538e-03 6.78044379e-01 2.36514091e-01 2.53376037e-01 6.57428801e-01 5.67122817e-01 8.54907751e-01 2.84276754e-01 3.36317152e-01 2.87197292e-01 6.38021082e-02 5.19149601e-01 -1.00645065e+00 6.08949304e-01 1.15451798e-01 6.98343337e-01 -2.09699348e-01 -3.44545066e-01 2.28624120e-01 -1.57886899e+00 -1.09412384e+00 5.74261308e-01 2.63588929e+00 1.29898465e+00 1.56377345e-01 6.13431036e-02 -3.12136784e-02 5.04992008e-01 1.60817474e-01 -7.02980638e-01 -9.65486586e-01 -1.36981264e-01 3.85905445e-01 8.37959468e-01 5.00809550e-01 -8.48697484e-01 1.12545109e+00 7.04640055e+00 1.00877678e+00 -1.15122128e+00 -6.93151429e-02 8.61981273e-01 -4.59315330e-01 -8.80311787e-01 6.99103177e-02 -5.82052350e-01 6.23793662e-01 1.07341087e+00 -4.23381180e-01 8.69537592e-01 6.76963270e-01 1.42666355e-01 -2.53055751e-01 -1.28052127e+00 7.80093491e-01 2.89787278e-02 -9.35929358e-01 2.87415564e-01 1.81043103e-01 4.50003177e-01 -5.94066322e-01 6.35077834e-01 3.34283382e-01 4.29506570e-01 -1.36903858e+00 8.10325861e-01 6.01633430e-01 6.93297207e-01 -1.06203067e+00 3.05272907e-01 8.03557813e-01 -4.91684675e-01 -7.06771463e-02 -5.09012878e-01 -2.16386557e-01 -3.43322307e-01 4.11435395e-01 -8.43305409e-01 4.31487523e-02 4.26607817e-01 -1.97644562e-01 -6.44561291e-01 6.00310504e-01 -2.95561939e-01 4.74976689e-01 -4.35079217e-01 -1.81124851e-01 -1.01779550e-01 1.49024189e-01 4.17469800e-01 1.06813049e+00 1.52699545e-01 6.16695881e-02 -8.61049220e-02 1.13737512e+00 -4.36268061e-01 1.80708081e-01 -8.86665404e-01 -3.00149769e-01 8.87205720e-01 8.48090887e-01 -1.39347196e-01 1.37807995e-01 -2.96144243e-02 1.08062220e+00 6.87109232e-01 3.29311103e-01 -5.18868804e-01 -2.63340563e-01 7.84210443e-01 1.94652721e-01 -2.75218099e-01 -5.58904856e-02 -7.54717112e-01 -1.17989922e+00 3.13461237e-02 -1.09651995e+00 6.48930728e-01 -2.51696408e-01 -1.26282477e+00 1.99109897e-01 -1.31604299e-01 -7.73120105e-01 -2.63480872e-01 3.88939083e-02 -6.14050865e-01 9.21686411e-01 -1.16048634e+00 -8.63154531e-01 2.90170521e-01 6.69485092e-01 -3.18967886e-02 -2.10189149e-01 9.38974261e-01 3.79060191e-04 -5.78432262e-01 1.71051157e+00 -1.31458014e-01 -9.80231315e-02 9.67013419e-01 -9.12149906e-01 2.98996031e-01 9.53438461e-01 1.57760292e-01 1.38139176e+00 7.36537874e-01 -7.29924977e-01 -1.39456189e+00 -1.09973538e+00 1.06740630e+00 -6.13896847e-01 2.01811612e-01 -8.76835704e-01 -1.02955174e+00 7.58520961e-01 -6.13630414e-02 -1.83383435e-01 1.06718040e+00 -3.73764453e-03 -5.91907382e-01 -5.20421639e-02 -1.83508456e+00 8.64397645e-01 8.76497209e-01 -9.36572671e-01 -6.12221837e-01 -9.13851634e-02 7.88365126e-01 -4.46068645e-01 -5.64016938e-01 -3.49048041e-02 5.83594978e-01 -8.45640421e-01 8.11600327e-01 -8.80124152e-01 6.30887598e-02 1.42732665e-01 -1.13132738e-01 -1.19618750e+00 4.58922200e-02 -1.01791728e+00 -2.58859247e-01 1.42079175e+00 2.89013088e-01 -7.80752003e-01 8.43412280e-01 1.42940259e+00 6.17111623e-01 -5.75221598e-01 -1.02635789e+00 -7.06411004e-01 2.66072839e-01 -5.17114222e-01 1.03104973e+00 1.11000693e+00 1.40870228e-01 -2.88160264e-01 -7.91251361e-01 2.07703218e-01 6.79245472e-01 -1.03087977e-01 7.52779901e-01 -5.47611833e-01 -2.17748523e-01 -3.32385719e-01 -2.01324776e-01 -7.02512205e-01 6.31278098e-01 -1.05333233e+00 -2.55323470e-01 -4.90872681e-01 1.63721427e-01 -5.07098377e-01 -5.99448204e-01 6.11704350e-01 -3.43025297e-01 -1.99639454e-01 1.90289259e-01 -5.92810661e-03 -5.02457619e-01 7.55736887e-01 7.67723322e-01 -5.94714507e-02 -3.61507714e-01 3.00103635e-01 -1.25845718e+00 3.70061725e-01 8.78121614e-01 -7.82406569e-01 -6.15363181e-01 -3.61231044e-02 1.72472075e-01 -1.78798556e-01 3.43637884e-01 -6.88686311e-01 3.00152570e-01 -4.67674047e-01 5.57709873e-01 -1.05149880e-01 1.58745244e-01 -8.29329610e-01 1.46146372e-01 4.65750903e-01 -1.05444479e+00 -1.94907978e-01 3.39834213e-01 7.25881875e-01 8.01108256e-02 -1.68446302e-01 8.25230002e-01 -5.06735630e-02 -3.10576826e-01 3.29877287e-01 -4.08607215e-01 3.12327296e-01 1.06718922e+00 -4.90403101e-02 -2.19313413e-01 -4.79284406e-01 -2.51058161e-01 4.15005744e-01 6.88411593e-01 4.44057524e-01 5.96314728e-01 -1.28504169e+00 -2.78892547e-01 7.36767888e-01 2.68235747e-02 -3.55604231e-01 2.13034287e-01 1.82905823e-01 1.03983772e-03 2.26844132e-01 -2.13859975e-01 2.58082133e-02 -1.09503281e+00 8.81746769e-01 2.89828241e-01 -2.78612643e-01 -2.59629279e-01 8.79326403e-01 1.59837931e-01 -3.65106970e-01 4.37196761e-01 -2.78034061e-01 2.71209687e-01 -7.63217881e-02 6.82314217e-01 1.73327893e-01 -1.62707381e-02 -1.70044139e-01 -4.08865839e-01 -1.78956483e-02 -3.48273635e-01 -2.05438271e-01 8.78172934e-01 -2.88608879e-01 8.72993991e-02 1.76762104e-01 1.21709967e+00 5.11040926e-01 -1.29359496e+00 -3.33620310e-01 1.41708344e-01 -8.60366642e-01 -1.57728896e-01 -8.07285070e-01 -5.36555409e-01 8.18245769e-01 4.63051409e-01 -6.20304011e-02 1.06948578e+00 -5.91662169e-01 1.06745863e+00 4.85546798e-01 5.90653360e-01 -1.47181916e+00 6.67945156e-03 1.79667294e-01 6.72347307e-01 -1.11033142e+00 8.77084769e-03 2.76092198e-02 -8.11284482e-01 7.49525845e-01 6.36891782e-01 2.49003679e-01 4.86104637e-01 4.25591975e-01 -4.22579981e-02 3.06540579e-01 -6.35507524e-01 5.06805301e-01 -5.16239479e-02 6.21817470e-01 -3.68481949e-02 2.00325385e-01 -4.21696633e-01 1.10268414e+00 -5.98117709e-01 -4.96930443e-02 3.44993621e-01 1.18601477e+00 -1.98695183e-01 -1.34772825e+00 -4.68314976e-01 3.45054299e-01 -8.40803027e-01 -1.84853733e-01 -6.72471583e-01 4.39017773e-01 5.38284937e-03 9.30557430e-01 -2.01325230e-02 -6.57760799e-01 2.30809450e-01 1.82935968e-01 3.13330859e-01 -3.16358775e-01 -9.17260110e-01 -5.21250546e-01 -8.93594548e-02 -7.72171974e-01 2.13100448e-01 -5.46010613e-01 -1.22573709e+00 -8.82552624e-01 -3.53112295e-02 1.48658946e-01 3.65250736e-01 8.66946995e-01 4.98565227e-01 -1.67075798e-01 8.29655766e-01 -1.15219034e-01 -1.15685046e+00 -3.67895365e-01 -6.84086978e-01 6.80991769e-01 4.57586616e-01 -1.93257332e-01 -3.07630420e-01 -5.11423588e-01]
[6.044522762298584, 7.087235450744629]
f75c7bfc-3eb5-496f-885a-028cbf4ea89b
cascading-multiway-attentions-for-document
null
null
https://aclanthology.org/I17-1064
https://aclanthology.org/I17-1064.pdf
Cascading Multiway Attentions for Document-level Sentiment Classification
Document-level sentiment classification aims to assign the user reviews a sentiment polarity. Previous methods either just utilized the document content without consideration of user and product information, or did not comprehensively consider what roles the three kinds of information play in text modeling. In this paper, to reasonably use all the information, we present the idea that user, product and their combination can all influence the generation of attentions to words and sentences, when judging the sentiment of a document. With this idea, we propose a cascading multiway attention (CMA) model, where multiple ways of using user and product information are cascaded to influence the generation of attentions on the word and sentence layers. Then, sentences and documents are well modeled by multiple representation vectors, which provide rich information for sentiment classification. Experiments on IMDB and Yelp datasets demonstrate the effectiveness of our model.
['Xu sun', 'Dehong Ma', 'Houfeng Wang', 'Xiaodong Zhang', 'Sujian Li']
2017-11-01
cascading-multiway-attentions-for-document-1
https://aclanthology.org/I17-1064
https://aclanthology.org/I17-1064.pdf
ijcnlp-2017-11
['product-recommendation']
['miscellaneous']
[-2.85513327e-02 -1.60395011e-01 -3.63349229e-01 -7.65235066e-01 -1.79771990e-01 -4.17208374e-01 7.61390388e-01 2.28390723e-01 -2.58063078e-01 3.55152875e-01 7.21662879e-01 -4.75528121e-01 3.58533531e-01 -9.47939992e-01 -4.79372114e-01 -4.80982840e-01 5.19475341e-01 1.06064603e-02 -1.09546773e-01 -6.84496224e-01 4.93856013e-01 -8.31446871e-02 -1.31938708e+00 7.61929035e-01 7.28495836e-01 9.67101991e-01 1.56504691e-01 6.36095285e-01 -6.33241355e-01 1.18478274e+00 -8.05633724e-01 -7.80904710e-01 -2.59027779e-01 -3.55233103e-01 -7.54719496e-01 2.83690184e-01 -6.88652620e-02 -3.31846952e-01 8.07031468e-02 1.00618458e+00 3.35389256e-01 -4.06109020e-02 8.20602417e-01 -9.94561613e-01 -1.35723245e+00 1.13680947e+00 -8.14115703e-01 2.48445898e-01 1.19929790e-01 -2.14573368e-01 1.46163797e+00 -1.16088486e+00 1.51677862e-01 1.33702481e+00 2.27352381e-01 4.46562767e-01 -7.25507259e-01 -5.75885236e-01 9.61986601e-01 2.19814301e-01 -7.80173182e-01 -1.16137631e-01 1.06523442e+00 -4.88260329e-01 9.85129297e-01 7.62525424e-02 7.57384360e-01 1.15553498e+00 3.79392356e-01 1.21793330e+00 7.41534173e-01 -5.23854017e-01 -2.12831378e-01 6.63378298e-01 8.64732683e-01 2.70827115e-01 2.26393044e-01 -5.37067413e-01 -4.14591372e-01 -5.25500486e-03 2.57513702e-01 2.84214467e-01 -1.48789272e-01 3.14419031e-01 -8.88967276e-01 1.07417095e+00 3.66768450e-01 3.84812623e-01 -4.73243624e-01 -9.30108428e-02 4.76091564e-01 2.69476414e-01 9.80354369e-01 4.56361681e-01 -8.08109462e-01 2.19733641e-01 -2.31499150e-01 -2.84571759e-02 4.91552651e-01 7.91399896e-01 5.89961946e-01 -2.12985631e-02 -3.33182245e-01 9.84201670e-01 7.91644275e-01 5.39190710e-01 8.77758205e-01 -3.54714245e-02 5.31167448e-01 9.97988462e-01 5.96560016e-02 -1.31820500e+00 -3.61052334e-01 -5.53051174e-01 -6.24427199e-01 -2.80162930e-01 -2.41232499e-01 -4.49783534e-01 -1.05424976e+00 1.59210730e+00 5.17384410e-02 -2.54909635e-01 2.46038899e-01 7.92641580e-01 1.04557860e+00 8.62248540e-01 2.89406240e-01 -6.80135563e-02 1.48742676e+00 -1.28289890e+00 -9.92128789e-01 -5.62824368e-01 7.43085563e-01 -7.74577141e-01 1.20049453e+00 2.79253244e-01 -9.54389453e-01 -7.00764537e-01 -1.11189783e+00 -2.07103744e-01 -7.18936086e-01 2.02043712e-01 7.66162992e-01 5.05682051e-01 -7.91180253e-01 2.19278440e-01 -3.51304919e-01 1.68308198e-01 3.81316394e-01 2.56079227e-01 2.24422559e-01 1.95018157e-01 -1.70436347e+00 9.21217978e-01 -2.53493696e-01 4.95109856e-01 -4.20664757e-01 -3.84961903e-01 -8.55960011e-01 2.74282128e-01 -1.20152868e-01 -7.33252108e-01 1.37172532e+00 -1.48836982e+00 -1.24180508e+00 5.84116042e-01 -5.09937227e-01 6.68589585e-03 -2.23312661e-01 -3.34229290e-01 -4.86665964e-01 -2.34337032e-01 5.36979288e-02 3.66899192e-01 7.91284204e-01 -1.20909441e+00 -6.20943487e-01 -5.35683572e-01 4.29194808e-01 4.96381849e-01 -8.36384952e-01 1.65713713e-01 -5.31754732e-01 -5.10962546e-01 -1.44651413e-01 -4.60961252e-01 -4.22587544e-01 -7.84639895e-01 -5.15257776e-01 -5.22574127e-01 5.05114675e-01 -3.08636457e-01 1.44111836e+00 -2.10975122e+00 2.04790518e-01 1.10591844e-01 1.70149028e-01 7.67917484e-02 -2.73499399e-01 4.65102971e-01 -6.39822409e-02 6.44130170e-01 2.23970681e-01 -6.52325511e-01 -1.77693437e-03 8.58241096e-02 -7.16946721e-01 1.04984827e-03 4.18813556e-01 1.16675246e+00 -8.33415091e-01 -2.18521491e-01 -2.31090531e-01 7.86514282e-01 -5.33214390e-01 5.99181689e-02 -1.59192964e-01 5.40959723e-02 -9.32152390e-01 4.75947261e-01 4.28309798e-01 -3.66756380e-01 -5.17851710e-02 -1.84367582e-01 7.72299990e-02 6.88542843e-01 -6.14571333e-01 9.07140911e-01 -6.64301336e-01 4.73148704e-01 -1.19701214e-01 -6.94131196e-01 8.09019446e-01 1.87612265e-01 1.26865581e-01 -7.67706394e-01 5.36886096e-01 -8.33081305e-02 6.08497411e-02 -4.75800693e-01 7.25737631e-01 -2.43504405e-01 -2.59456515e-01 6.39904857e-01 3.91853005e-02 5.64513281e-02 2.89290637e-01 4.95409995e-01 4.89304364e-01 -2.99220532e-01 7.10609928e-02 -8.75534266e-02 6.22479796e-01 -1.94751322e-01 2.92439163e-01 5.60382545e-01 1.15979224e-01 4.87716079e-01 1.00670612e+00 -1.99463457e-01 -7.30841100e-01 -1.38810530e-01 -4.97312918e-02 1.61226106e+00 1.97139025e-01 -5.90603530e-01 -5.36342263e-01 -7.52040923e-01 -1.63837329e-01 7.28325844e-01 -1.12576890e+00 -4.09215033e-01 -1.77464113e-01 -1.14149296e+00 -1.29369870e-01 6.77492917e-01 -2.20639333e-02 -1.37542605e+00 6.07682914e-02 1.59831911e-01 -1.62140802e-01 -6.86002076e-01 -6.75643563e-01 2.41949067e-01 -5.92844069e-01 -8.27852070e-01 -5.48170924e-01 -8.57991934e-01 9.15288270e-01 5.04063964e-01 1.17186189e+00 2.36786723e-01 2.07851425e-01 3.02533060e-01 -7.64581621e-01 -9.12351847e-01 -1.71812043e-01 1.72443286e-01 -1.12064153e-01 4.29446399e-01 7.45958626e-01 -2.16667086e-01 -4.96008664e-01 2.39433609e-02 -9.72555637e-01 8.19325894e-02 6.14229918e-01 8.26734781e-01 2.14059889e-01 6.00291230e-02 8.26156855e-01 -1.39051247e+00 1.25538874e+00 -7.00717628e-01 1.39311915e-02 1.94658101e-01 -8.64425242e-01 -1.20741032e-01 6.86767578e-01 -5.09416997e-01 -1.15934110e+00 -3.81717652e-01 -3.91857207e-01 7.95910694e-03 2.06917107e-01 1.03444803e+00 -3.00189763e-01 4.05426234e-01 1.96933731e-01 2.10701838e-01 -3.25293899e-01 -1.79853991e-01 4.94696558e-01 9.82989311e-01 -3.11772913e-01 -1.45840332e-01 2.23035559e-01 2.02624157e-01 -6.58577085e-01 -4.76049095e-01 -1.39086866e+00 -4.57755387e-01 -4.75004196e-01 -2.04683095e-01 7.88997531e-01 -9.60708380e-01 -5.27210772e-01 7.49993205e-01 -1.30824935e+00 6.21353276e-02 5.69184348e-02 2.99163640e-01 8.52461457e-02 8.61264765e-02 -8.22423458e-01 -1.03334284e+00 -5.07054865e-01 -1.19961369e+00 9.60920870e-01 2.36171380e-01 -1.77838087e-01 -1.35458243e+00 -1.56380728e-01 3.73926133e-01 5.90725780e-01 -3.99739593e-01 1.02115107e+00 -7.87368536e-01 9.20662358e-02 -4.86706406e-01 -1.97213739e-01 5.71949780e-01 3.07746023e-01 1.92147106e-01 -1.07000399e+00 1.94919690e-01 3.16990018e-01 -3.93960744e-01 1.13581443e+00 4.23953772e-01 1.08766091e+00 -5.78905821e-01 -1.00577652e-01 7.61973336e-02 1.17425382e+00 3.22064698e-01 4.66536552e-01 2.11313039e-01 8.80059302e-01 7.82428741e-01 4.39581811e-01 4.48006332e-01 8.38549972e-01 1.41963780e-01 5.25710106e-01 -4.52826709e-01 3.62511486e-01 -2.13589221e-01 6.08154118e-01 1.18908215e+00 2.14866593e-01 -7.20878124e-01 -6.29160941e-01 6.18666291e-01 -1.69988227e+00 -9.47531760e-01 -5.09323180e-01 1.49469256e+00 8.98431659e-01 2.97854930e-01 -3.20530921e-01 -5.05624758e-03 6.63067043e-01 4.59870607e-01 -5.33084691e-01 -6.60804152e-01 -3.07774037e-01 -2.15654030e-01 1.66920379e-01 6.46069944e-01 -9.66357589e-01 9.21329260e-01 6.58277607e+00 3.11049670e-01 -1.19324195e+00 4.17310186e-03 1.12455487e+00 -2.07269549e-01 -8.43786895e-01 -2.98160017e-01 -1.02602327e+00 5.41563690e-01 8.17129254e-01 -2.76661694e-01 3.65568101e-02 8.19130242e-01 2.95210779e-01 2.96515878e-02 -7.83248901e-01 3.77997100e-01 4.76188660e-01 -9.72386897e-01 4.53610450e-01 -1.30047321e-01 7.50314772e-01 4.57870141e-02 3.84190202e-01 6.20249331e-01 4.43809330e-01 -8.01529169e-01 7.57090688e-01 3.86884898e-01 4.06412631e-02 -7.53964663e-01 1.05135250e+00 2.28184506e-01 -8.37528586e-01 -2.43628338e-01 -3.69886994e-01 -3.64608228e-01 4.00518656e-01 6.50240242e-01 -4.82266754e-01 2.19921246e-01 4.73947138e-01 9.60465074e-01 -6.05783403e-01 2.52932698e-01 -5.58371723e-01 8.34496737e-01 2.70431876e-01 -5.85865796e-01 4.43951815e-01 -7.14488178e-02 -7.30535537e-02 1.36172426e+00 4.12903726e-02 2.38545403e-01 -9.87873748e-02 5.15976727e-01 -1.66184887e-01 4.93281722e-01 -3.52460563e-01 -3.09011221e-01 7.97672290e-03 1.50702429e+00 -5.98979592e-01 -5.73969841e-01 -7.27778256e-01 7.77775764e-01 3.66962969e-01 5.91126859e-01 -7.14760542e-01 -4.76715386e-01 6.64840162e-01 -4.87219617e-02 4.21979100e-01 1.51922584e-01 -5.46833813e-01 -1.26532388e+00 1.51485115e-01 -6.17015004e-01 9.91836339e-02 -1.02018034e+00 -1.60428154e+00 8.73267114e-01 -5.69431484e-01 -9.04217422e-01 1.17308185e-01 -8.38136613e-01 -9.23695266e-01 1.08420622e+00 -1.82873356e+00 -1.12737405e+00 1.06917165e-01 3.41330498e-01 7.46374428e-01 -2.59185191e-02 6.16638958e-01 3.14457059e-01 -7.39437163e-01 3.34114641e-01 -2.07436353e-01 2.72961855e-01 6.03148341e-01 -1.24643624e+00 3.56680006e-01 6.08424664e-01 6.47508278e-02 1.04319966e+00 5.48249245e-01 -5.66705048e-01 -1.22236466e+00 -1.00398958e+00 1.36340022e+00 -6.47252321e-01 9.09450829e-01 -3.79546583e-01 -7.72334337e-01 7.03371465e-01 6.01120114e-01 -4.90086019e-01 1.19345069e+00 5.41929722e-01 -3.66055459e-01 4.26556394e-02 -4.89486784e-01 5.99384010e-01 4.81084585e-01 -4.98254359e-01 -6.88317060e-01 3.54110241e-01 1.20731485e+00 3.09552029e-02 -4.45637375e-01 1.64489523e-01 4.08225626e-01 -6.76982343e-01 6.13583624e-01 -1.06401908e+00 1.24096334e+00 -7.35695884e-02 -1.11915633e-01 -1.64856708e+00 -6.05539680e-01 1.69249535e-01 -7.39137679e-02 1.46057403e+00 1.10418808e+00 -6.19555891e-01 3.01131725e-01 6.82345808e-01 -3.71904999e-01 -1.07572436e+00 -1.09169386e-01 9.97679159e-02 1.84429646e-01 -5.48261702e-01 7.53277063e-01 9.71188188e-01 5.91832995e-01 1.05576158e+00 -5.46239495e-01 2.74786931e-02 -1.44343883e-01 2.23557979e-01 3.63903224e-01 -1.10281503e+00 -8.39256048e-02 -8.30030680e-01 7.79290795e-02 -1.26435935e+00 2.57506639e-01 -8.14495087e-01 -6.81475503e-03 -1.87593508e+00 4.69232261e-01 -1.15699202e-01 -6.70419812e-01 4.79105234e-01 -7.48703778e-01 1.14436843e-01 5.98501228e-03 7.91149065e-02 -6.41824782e-01 7.25878179e-01 1.48303688e+00 -2.80152410e-01 2.52187327e-02 8.97029415e-02 -1.78284490e+00 6.81581616e-01 7.15881586e-01 -3.38910908e-01 -5.90023696e-01 -9.38184440e-01 9.49895561e-01 -3.09629112e-01 -2.51013607e-01 -8.28580707e-02 2.19187185e-01 -1.71951756e-01 5.38441777e-01 -6.15072310e-01 3.57950300e-01 -6.40142381e-01 -7.20078707e-01 5.76459058e-02 -8.13357174e-01 1.66961148e-01 -4.67262268e-02 4.76811707e-01 -5.21895409e-01 -3.55080009e-01 2.45259359e-01 -1.62765846e-01 -3.80905628e-01 3.81369978e-01 -7.22281039e-01 -3.60809118e-01 5.74387193e-01 1.53994516e-01 -3.02812189e-01 -5.52133083e-01 -6.20316446e-01 6.10110283e-01 2.36451477e-02 9.44688737e-01 5.78510284e-01 -1.32036364e+00 -6.42412603e-01 4.60652977e-01 1.31327972e-01 -1.61614820e-01 3.07368994e-01 6.41124725e-01 1.81759343e-01 4.57811207e-01 2.86514103e-01 -9.30957049e-02 -1.03799736e+00 5.97548544e-01 1.01816624e-01 -3.24226260e-01 1.74537599e-01 1.13553596e+00 4.40360487e-01 -4.76561934e-01 9.29010883e-02 -3.71001244e-01 -1.22675192e+00 7.66555548e-01 8.55539560e-01 -2.72024155e-01 1.25880893e-02 -8.14672649e-01 -1.48813307e-01 6.05093658e-01 -5.35799623e-01 -1.37455076e-01 1.35147333e+00 -4.33610052e-01 -3.69558245e-01 8.04158568e-01 1.25238633e+00 1.36528477e-01 -7.89786100e-01 -1.68278828e-01 -2.58431256e-01 -1.21200450e-01 2.51323849e-01 -7.77418673e-01 -1.31242156e+00 1.08889580e+00 -1.45989016e-01 7.33218968e-01 1.01700997e+00 8.90358984e-02 6.38461113e-01 1.68945417e-01 -4.38266546e-02 -1.07353461e+00 1.80054054e-01 8.71581137e-01 8.06293070e-01 -1.37846649e+00 -1.90188408e-01 -2.26812258e-01 -1.27514684e+00 1.00913393e+00 9.74368215e-01 4.65501398e-02 8.65207672e-01 2.48292774e-01 4.59059924e-01 -2.52812862e-01 -1.23088694e+00 -1.68690875e-01 2.51451850e-01 1.18611865e-01 1.00645804e+00 -1.43507183e-01 -5.24640620e-01 1.36251295e+00 -2.17074111e-01 -3.24323237e-01 7.48070240e-01 7.39024997e-01 -5.81927598e-01 -1.07035208e+00 -6.10736236e-02 7.08768427e-01 -8.15076888e-01 -4.88345653e-01 -6.89391375e-01 6.87412471e-02 -4.07430157e-02 1.18688679e+00 9.75234360e-02 -5.74264467e-01 3.67020756e-01 -5.75768994e-03 -2.64731497e-01 -9.13158298e-01 -8.73772502e-01 4.17234600e-02 6.68767933e-03 -1.53773025e-01 -3.89451772e-01 -4.30969149e-01 -1.13409412e+00 2.47032158e-02 -6.64539635e-01 4.17365819e-01 8.76501441e-01 1.04937387e+00 5.03167570e-01 8.93737018e-01 1.07945299e+00 -6.36650681e-01 -4.03172076e-01 -1.24697042e+00 -5.86968839e-01 4.23534900e-01 4.26514328e-01 -3.67776871e-01 -6.29355729e-01 -2.14115847e-02]
[11.417582511901855, 6.699455738067627]
a1e8cc0b-f97c-44c7-bcaf-b4e0b63c244c
evaluating-generatively-synthesized-diabetic
2208.05593
null
https://arxiv.org/abs/2208.05593v2
https://arxiv.org/pdf/2208.05593v2.pdf
Evaluating the Quality and Diversity of DCGAN-based Generatively Synthesized Diabetic Retinopathy Imagery
Publicly available diabetic retinopathy (DR) datasets are imbalanced, containing limited numbers of images with DR. This imbalance contributes to overfitting when training machine learning classifiers. The impact of this imbalance is exacerbated as the severity of the DR stage increases, affecting the classifiers' diagnostic capacity. The imbalance can be addressed using Generative Adversarial Networks (GANs) to augment the datasets with synthetic images. Generating synthetic images is advantageous if high-quality and diversified images are produced. To evaluate the quality and diversity of synthetic images, several evaluation metrics, such as Multi-Scale Structural Similarity Index (MS-SSIM), Cosine Distance (CD), and Fr\'echet Inception Distance (FID) are used. Understanding the effectiveness of each metric in evaluating the quality and diversity of GAN-based synthetic images is critical to select images for augmentation. To date, there has been limited analysis of the appropriateness of these metrics in the context of biomedical imagery. This work contributes an empirical assessment of these evaluation metrics as applied to synthetic Proliferative DR imagery generated by a Deep Convolutional GAN (DCGAN). Furthermore, the metrics' capacity to indicate the quality and diversity of synthetic images and a correlation with classifier performance is undertaken. This enables a quantitative selection of synthetic imagery and an informed augmentation strategy. Results indicate that FID is suitable for evaluating the quality, while MS-SSIM and CD are suitable for evaluating the diversity of synthetic imagery. Furthermore, the superior performance of Convolutional Neural Network (CNN) and EfficientNet classifiers, as indicated by the F1 and AUC scores, for the augmented datasets demonstrates the efficacy of synthetic imagery to augment the imbalanced dataset.
["Ruairi O'Reilly", 'Mubashir Husain Rehmani', 'Muhammad Muneeb Saad', 'Cristina-Madalina Dragan']
2022-08-10
null
null
null
null
['ms-ssim']
['computer-vision']
[ 6.21785581e-01 2.05239937e-01 -5.36173508e-02 -2.92924404e-01 -7.16101468e-01 -3.50951970e-01 5.54463267e-01 -7.09335180e-03 -3.00519437e-01 8.82024944e-01 3.48356575e-01 -1.37648270e-01 -2.19662994e-01 -7.56233096e-01 -3.95358086e-01 -8.39219928e-01 1.28414586e-01 2.17922822e-01 -3.59388322e-01 -1.65155232e-01 1.46555305e-01 7.62522697e-01 -1.73405743e+00 4.26301658e-01 1.24828792e+00 8.72244835e-01 -6.07098006e-02 6.57497644e-01 9.97377858e-02 8.65753829e-01 -1.03824377e+00 -3.12743485e-01 4.05623645e-01 -7.22555041e-01 -5.01798689e-01 8.74063447e-02 6.35064483e-01 -3.86138916e-01 -1.75254405e-01 7.04705298e-01 8.93707633e-01 -3.72884125e-01 7.47433960e-01 -1.09526551e+00 -4.07654077e-01 2.98218012e-01 -2.72216529e-01 4.26675022e-01 1.51568115e-01 5.59290051e-01 4.34121400e-01 -4.41063076e-01 7.57595181e-01 9.23267186e-01 6.49471760e-01 3.32558215e-01 -1.39545226e+00 -5.19446254e-01 -5.74438989e-01 -9.89412516e-02 -1.03480327e+00 -2.45940149e-01 4.95909274e-01 -7.93540180e-01 4.44599628e-01 3.63802552e-01 9.14223850e-01 9.12856340e-01 3.75245422e-01 3.20435792e-01 1.51375675e+00 -4.06302363e-01 2.02733666e-01 1.16733655e-01 -3.84020001e-01 2.47659594e-01 5.54986656e-01 2.81816483e-01 -9.41257626e-02 8.37917998e-02 7.24771202e-01 -4.10969347e-01 -3.10522288e-01 -8.17610174e-02 -1.00578797e+00 8.95192325e-01 5.23021519e-01 3.17126006e-01 -5.25073767e-01 -3.20439525e-02 5.37141442e-01 1.97788343e-01 3.45404595e-01 8.81438553e-01 9.62598994e-02 -5.44252768e-02 -9.29509401e-01 1.74663529e-01 1.65410846e-01 3.15812081e-01 2.76133060e-01 3.10165584e-01 -5.52056193e-01 1.02384579e+00 -2.41294697e-01 3.73509765e-01 6.18523717e-01 -1.11343396e+00 9.96872857e-02 9.63811696e-01 -1.59075662e-01 -8.71363997e-01 -3.89695287e-01 -8.19224119e-01 -1.01463246e+00 6.02046072e-01 4.01369125e-01 -1.08886652e-01 -1.04840338e+00 1.50039721e+00 -3.99212576e-02 -3.60488892e-01 3.45376968e-01 7.75690258e-01 8.37730229e-01 1.58612087e-01 2.13311046e-01 -6.78655431e-02 1.10322464e+00 -3.81168425e-01 -5.00254095e-01 -1.79227039e-01 6.64870501e-01 -6.13059342e-01 1.04862547e+00 2.14729935e-01 -1.13179171e+00 -6.44307554e-01 -1.18192840e+00 2.58723080e-01 -1.75608426e-01 3.11636060e-01 3.69386792e-01 7.55896151e-01 -9.60367143e-01 2.16207132e-01 -4.90475744e-01 -2.69700736e-01 8.15108001e-01 2.72230715e-01 -3.94628197e-01 -4.61227685e-01 -9.76575136e-01 1.06157732e+00 2.33616278e-01 -3.71109918e-02 -5.00370800e-01 -8.08910429e-01 -6.27899706e-01 -2.92773038e-01 -5.82282186e-01 -8.77803624e-01 4.73615199e-01 -1.31776428e+00 -8.70532274e-01 1.04620802e+00 4.87344235e-01 -5.41186273e-01 8.84276450e-01 3.19271028e-01 -4.58060354e-01 5.03758252e-01 1.53714448e-01 9.51837480e-01 5.27382016e-01 -1.26603734e+00 -4.24309075e-01 -5.00752270e-01 -6.02021739e-02 2.16639057e-01 9.42143872e-02 -1.25740305e-01 3.23369592e-01 -8.26196790e-01 -1.37132794e-01 -8.90531123e-01 -5.18968776e-02 8.18316787e-02 -1.54568583e-01 4.34333235e-01 5.89366376e-01 -6.95175052e-01 8.34182203e-01 -2.01972032e+00 -2.67087579e-01 2.60012478e-01 2.58199364e-01 5.87861657e-01 -2.23229259e-01 1.67999759e-01 -2.99915105e-01 3.27879339e-01 -3.26923072e-01 4.02352035e-01 -4.69681472e-01 6.87064007e-02 2.60782093e-01 4.64587569e-01 5.11120915e-01 8.66120398e-01 -6.82683051e-01 -2.51692027e-01 2.65577674e-01 7.59531915e-01 -3.79637241e-01 1.21743225e-01 4.18497659e-02 7.48840988e-01 -7.06915408e-02 4.21007544e-01 5.96579373e-01 -6.15237020e-02 -5.32316118e-02 -4.86597061e-01 1.00368537e-01 -1.58785313e-01 -6.79711282e-01 9.16731477e-01 -3.42053831e-01 9.06806052e-01 -6.03702068e-01 -8.00505400e-01 1.21749425e+00 1.92880526e-01 5.53094566e-01 -1.06303012e+00 7.25965872e-02 3.39952588e-01 3.66502941e-01 -5.43358922e-01 1.26890630e-01 -1.72945425e-01 3.55743736e-01 1.06586799e-01 -2.43934721e-01 -2.12699383e-01 3.61937046e-01 -1.32952631e-01 1.01962996e+00 -1.72456563e-01 6.86431825e-02 6.25799643e-03 3.34479719e-01 2.31345952e-01 1.90549403e-01 5.33016801e-01 4.00596373e-02 1.07152510e+00 7.74604917e-01 -3.47314894e-01 -1.34777355e+00 -7.82456756e-01 -5.47793269e-01 1.01199828e-03 -1.87154114e-01 3.24697524e-01 -6.10691607e-01 -4.56797749e-01 7.11979810e-04 7.87501037e-01 -7.06434846e-01 -4.93536532e-01 -3.02971601e-01 -1.20097220e+00 8.07544231e-01 5.40536404e-01 5.97209573e-01 -9.05571401e-01 -8.17655444e-01 5.87331653e-02 -1.63030177e-01 -8.78752112e-01 -5.68068624e-02 -2.04795629e-01 -8.88063848e-01 -1.32309759e+00 -8.65885735e-01 -3.89302880e-01 7.99385905e-01 -1.06393196e-01 1.14038920e+00 1.02408029e-01 -7.22726583e-01 1.60551429e-01 -4.35048461e-01 -4.00073409e-01 -9.27506268e-01 -3.36219668e-01 -3.37756693e-01 -3.81408930e-02 9.96341035e-02 -4.83744562e-01 -1.04048610e+00 3.49305779e-01 -1.19384754e+00 -5.27241193e-02 1.00120533e+00 1.00611949e+00 7.22817183e-01 -5.44661283e-02 7.72752583e-01 -7.52200186e-01 6.57207787e-01 -1.73811257e-01 -2.46613339e-01 8.27162042e-02 -8.90915632e-01 -2.27798507e-01 2.77764231e-01 -3.83184820e-01 -7.81066716e-01 -3.21099997e-01 -1.38476146e-02 -2.12829262e-01 -1.95483834e-01 5.70567489e-01 9.09711495e-02 -3.17124188e-01 1.18395793e+00 2.30968674e-03 5.66555798e-01 2.92000547e-02 3.79702821e-02 7.48712063e-01 4.86548007e-01 -3.08810845e-02 2.79227495e-01 4.15585607e-01 1.94233641e-01 -7.30868697e-01 -6.75898433e-01 -1.57085061e-01 -3.71751934e-01 -3.75461280e-01 8.48164439e-01 -8.65206718e-01 -2.96070188e-01 6.25693679e-01 -5.63987076e-01 -3.55489761e-01 -5.31002820e-01 7.40929604e-01 -5.69672704e-01 -9.07774083e-04 -1.71187505e-01 -5.62306643e-01 -4.81973380e-01 -1.37733340e+00 6.89240992e-01 2.62845129e-01 -3.51141214e-01 -8.23336959e-01 -8.63033831e-02 9.64859962e-01 5.13639688e-01 1.10932600e+00 1.27900040e+00 -4.43912208e-01 -2.95620978e-01 -5.45548081e-01 -4.35295731e-01 8.44673097e-01 2.68406779e-01 7.61222988e-02 -8.97816479e-01 -3.04366976e-01 -3.31631124e-01 -2.73696899e-01 6.74291909e-01 6.52895808e-01 8.35217774e-01 -3.26954186e-01 5.21193109e-02 5.28377295e-01 1.65375805e+00 5.20221949e-01 1.26083398e+00 4.82157826e-01 3.84819061e-01 5.24131417e-01 5.81739366e-01 1.31294623e-01 1.08010478e-01 5.69631696e-01 5.34587681e-01 -5.96377194e-01 -7.59708464e-01 -5.02583617e-03 7.06761330e-02 8.83475095e-02 -1.21979795e-01 -3.52671146e-01 -9.51767862e-01 5.07997811e-01 -9.44897413e-01 -9.85398948e-01 -9.98117924e-02 2.18554091e+00 6.79503620e-01 1.01867996e-01 1.75787434e-01 3.36635619e-01 7.58450091e-01 -1.65440112e-01 -5.67454576e-01 -4.88582909e-01 -5.69704354e-01 2.73054838e-01 6.04245305e-01 -4.32470217e-02 -6.14946902e-01 1.61230490e-01 6.44051600e+00 3.50644410e-01 -1.39859641e+00 -3.26051384e-01 1.18334544e+00 -6.61356524e-02 -2.94669569e-01 -2.66208977e-01 -2.93893099e-01 6.66370392e-01 8.84079695e-01 8.91846940e-02 1.38934910e-01 4.45359856e-01 4.52384055e-01 -3.17439616e-01 -7.34131873e-01 7.30994344e-01 2.27060094e-01 -1.36429477e+00 2.28369907e-01 1.20215610e-01 9.01858211e-01 -1.69250052e-02 3.28267455e-01 -1.61088467e-01 -1.17185727e-01 -1.51215076e+00 1.96238130e-01 7.98590422e-01 1.43513179e+00 -8.36259842e-01 1.32613873e+00 -3.21458697e-01 -3.10887247e-01 -1.69674829e-01 -4.60062586e-02 5.03646970e-01 -5.12830839e-02 6.70776725e-01 -1.13053000e+00 3.84309709e-01 4.73602206e-01 2.18761176e-01 -8.84433508e-01 1.18852925e+00 6.02065772e-02 4.78156060e-01 -1.23889931e-03 3.69499147e-01 4.51039262e-02 -3.70230317e-01 5.50294638e-01 8.64063799e-01 4.86740351e-01 -4.18986119e-02 -4.73697156e-01 8.68717134e-01 1.80944249e-01 1.91788509e-01 -5.24079919e-01 -2.93171644e-01 2.79664040e-01 8.52375805e-01 -4.69621748e-01 -2.40511540e-03 -1.41327947e-01 5.32111764e-01 -2.50640035e-01 2.30776295e-01 -3.92983139e-01 -2.07173005e-01 5.30473888e-01 5.33177018e-01 2.19401484e-03 3.62097293e-01 -6.05948448e-01 -4.99383658e-01 -2.54675979e-03 -1.32673156e+00 2.86694378e-01 -1.10296082e+00 -1.10101819e+00 7.64421344e-01 -2.30151683e-01 -1.47316980e+00 -5.24869561e-02 -2.12719142e-01 -4.23883915e-01 1.06636775e+00 -1.31558490e+00 -1.29674232e+00 -8.79266918e-01 3.00041074e-03 1.82490990e-01 -4.58081990e-01 7.41265774e-01 2.34954834e-01 -3.65859032e-01 6.21173859e-01 5.91037385e-02 5.74152842e-02 6.75337017e-01 -1.13175988e+00 -1.06811732e-01 6.41633630e-01 -4.93583202e-01 1.11540332e-01 7.38759279e-01 -6.88113570e-01 -7.29396284e-01 -1.29934907e+00 3.35020274e-01 -1.94233730e-01 -9.14839879e-02 5.41044474e-01 -6.70152009e-01 2.57640332e-01 -1.52202934e-01 -7.29536265e-02 7.90279210e-01 -5.97276211e-01 -8.34280178e-02 -3.83302480e-01 -1.62637842e+00 5.35814703e-01 6.21199608e-01 -1.51285335e-01 -1.39160842e-01 2.59868413e-01 2.65774041e-01 -3.84385407e-01 -1.46809971e+00 8.23167503e-01 6.41405463e-01 -1.29243600e+00 9.04148877e-01 -4.15353179e-01 8.92575204e-01 -2.62613177e-01 -3.23344357e-02 -1.34030902e+00 -3.77233513e-03 1.30201519e-01 5.01765132e-01 1.01066852e+00 5.50326467e-01 -7.05058038e-01 6.85627460e-01 3.82029206e-01 -3.35039422e-02 -9.28234756e-01 -5.86263955e-01 -4.58673567e-01 4.23626462e-03 1.69200450e-01 5.85700989e-01 8.58542442e-01 -5.71331799e-01 -6.36891946e-02 1.13160595e-01 -1.31912708e-01 3.94841462e-01 -2.35668838e-01 6.00804627e-01 -1.16364276e+00 1.65174648e-01 -5.01027524e-01 -1.03988540e+00 1.54869333e-01 -2.84051389e-01 -9.77141619e-01 -5.18945336e-01 -1.77099752e+00 3.35085616e-02 -7.87323117e-01 -1.37518093e-01 2.42462665e-01 -1.44598693e-01 6.66661024e-01 4.38279659e-02 2.52990574e-01 2.77450860e-01 1.64329946e-01 1.50290263e+00 -2.64729351e-01 -3.55230808e-01 1.13003962e-01 -8.34195793e-01 2.17583254e-01 1.08170295e+00 -2.74882764e-01 -6.08403206e-01 -1.59012243e-01 9.17311981e-02 1.21670589e-01 6.04488552e-01 -1.26391780e+00 -3.34741414e-01 1.38227865e-01 7.91333735e-01 -2.48428524e-01 1.67188317e-01 -4.15327907e-01 6.96006179e-01 6.86697900e-01 -5.00875711e-01 1.04691302e-02 1.61448136e-01 1.61291391e-01 -3.31143230e-01 -7.45700970e-02 1.26171684e+00 -1.10358246e-01 -2.44568154e-01 1.77011713e-01 -1.97736248e-01 1.55765355e-01 1.01551545e+00 -8.50572646e-01 -4.37111378e-01 -4.31602597e-01 -5.44342577e-01 -1.83437854e-01 8.08714092e-01 2.24208310e-01 5.52342355e-01 -1.12120903e+00 -1.08961892e+00 1.92223787e-01 3.81341934e-01 6.72964379e-03 4.36302662e-01 1.09527779e+00 -1.05592048e+00 1.36310712e-01 -8.25251579e-01 -6.88646317e-01 -1.25143659e+00 2.20952690e-01 7.03338742e-01 -1.34111449e-01 -3.95013571e-01 5.06802559e-01 1.19364280e-02 8.41875747e-03 -1.03509001e-01 2.24415790e-02 -4.90172088e-01 2.56155550e-01 3.58435005e-01 6.23963773e-01 3.51803124e-01 -5.13622522e-01 8.36736187e-02 4.36451048e-01 1.08977534e-01 1.62660688e-01 1.24615133e+00 3.06900516e-02 -2.03876927e-01 7.88777545e-02 1.01206076e+00 -1.48398861e-01 -1.10446727e+00 2.57028341e-01 -2.86614418e-01 -4.34410363e-01 1.86611652e-01 -1.25607789e+00 -1.30740178e+00 4.48278606e-01 1.23803604e+00 -4.20998968e-02 1.40326941e+00 -4.05084491e-01 3.47351700e-01 -4.34099078e-01 -5.25604561e-02 -8.23806882e-01 8.04315284e-02 -2.48717889e-01 1.10308456e+00 -9.92247164e-01 -2.08980590e-03 -2.75336057e-01 -9.64276373e-01 1.04036021e+00 5.24083614e-01 1.23118468e-01 9.25889462e-02 1.73373967e-01 4.78823662e-01 -1.74890831e-01 -3.14182520e-01 -6.02585934e-02 2.23073170e-01 9.60243881e-01 3.63986671e-01 -4.82707396e-02 -6.22413099e-01 -3.50699686e-02 -5.25019228e-01 2.03835428e-01 8.25444818e-01 5.23560047e-01 -4.31705937e-02 -1.01185620e+00 -1.11740224e-01 1.05635440e+00 -5.36207020e-01 5.50174713e-02 -2.88283050e-01 8.46470416e-01 5.15732586e-01 7.05456316e-01 1.36568695e-01 -1.74335837e-01 3.47479463e-01 -1.08497202e-01 4.76361781e-01 -3.91948789e-01 -5.71805358e-01 -3.23232174e-01 3.38184834e-01 -1.73216671e-01 -6.51461899e-01 -5.77144444e-01 -6.69592142e-01 -8.62612054e-02 -2.24197894e-01 -2.49023348e-01 8.89650464e-01 7.13010550e-01 3.22207719e-01 7.30999231e-01 6.81164443e-01 -1.71921536e-01 -3.69139165e-01 -9.79531646e-01 -5.02278328e-01 4.60237443e-01 2.68439353e-01 -4.62066829e-01 -4.22805101e-01 1.10375971e-01]
[14.355939865112305, -2.0093917846679688]
8c73ef8c-7176-4b18-94aa-9eac68749dbd
distribution-regularized-self-supervised
2206.09683
null
https://arxiv.org/abs/2206.09683v1
https://arxiv.org/pdf/2206.09683v1.pdf
Distribution Regularized Self-Supervised Learning for Domain Adaptation of Semantic Segmentation
This paper proposes a novel pixel-level distribution regularization scheme (DRSL) for self-supervised domain adaptation of semantic segmentation. In a typical setting, the classification loss forces the semantic segmentation model to greedily learn the representations that capture inter-class variations in order to determine the decision (class) boundary. Due to the domain shift, this decision boundary is unaligned in the target domain, resulting in noisy pseudo labels adversely affecting self-supervised domain adaptation. To overcome this limitation, along with capturing inter-class variation, we capture pixel-level intra-class variations through class-aware multi-modal distribution learning (MMDL). Thus, the information necessary for capturing the intra-class variations is explicitly disentangled from the information necessary for inter-class discrimination. Features captured thus are much more informative, resulting in pseudo-labels with low noise. This disentanglement allows us to perform separate alignments in discriminative space and multi-modal distribution space, using cross-entropy based self-learning for the former. For later, we propose a novel stochastic mode alignment method, by explicitly decreasing the distance between the target and source pixels that map to the same mode. The distance metric learning loss, computed over pseudo-labels and backpropagated from multi-modal modeling head, acts as the regularizer over the base network shared with the segmentation head. The results from comprehensive experiments on synthetic to real domain adaptation setups, i.e., GTA-V/SYNTHIA to Cityscapes, show that DRSL outperforms many existing approaches (a minimum margin of 2.3% and 2.5% in mIoU for SYNTHIA to Cityscapes).
['Mohsen Ali', 'Yu-Tseh Chi', 'Rehan Hafiz', 'Hamza Rawal', 'Javed Iqbal']
2022-06-20
null
null
null
null
['self-learning']
['natural-language-processing']
[ 5.55875719e-01 2.00696155e-01 -4.58701849e-01 -4.87887740e-01 -1.08513737e+00 -7.15907753e-01 3.20635319e-01 -5.71776778e-02 -5.09529710e-01 7.16468990e-01 -9.74052176e-02 1.97872251e-01 2.47466937e-02 -7.10240722e-01 -6.83467746e-01 -1.20625365e+00 3.15109491e-01 5.56643069e-01 3.30796629e-01 1.11653954e-01 -9.13645402e-02 2.62969911e-01 -1.51260233e+00 3.18934411e-01 1.11789072e+00 1.00035203e+00 1.71377480e-01 2.87303388e-01 -1.92726672e-01 2.20909789e-01 -5.08018374e-01 -1.77263513e-01 3.17855388e-01 -5.14083385e-01 -6.93873942e-01 3.09164107e-01 6.33910358e-01 8.67622159e-03 -4.85512465e-02 1.31391490e+00 5.65358698e-01 2.62182653e-01 1.09269261e+00 -1.01537108e+00 -3.02876294e-01 3.74878705e-01 -8.39857757e-01 2.18855795e-02 -1.56624198e-01 2.21967399e-01 1.13379812e+00 -4.70818907e-01 6.72488272e-01 1.13954759e+00 4.52921778e-01 7.68490613e-01 -1.51926196e+00 -7.12993085e-01 3.25390309e-01 2.59684622e-02 -1.29642189e+00 -2.45708868e-01 1.11490679e+00 -5.89072883e-01 3.32974225e-01 1.42278641e-01 3.40273499e-01 1.26567972e+00 -1.31293582e-02 8.85202467e-01 1.34114599e+00 -3.72956812e-01 3.42128694e-01 4.34367806e-01 8.65301788e-02 4.67049450e-01 -6.33452237e-02 -7.27594737e-03 -3.49844217e-01 1.49667770e-01 6.61901832e-01 -3.41363490e-01 -7.53875822e-02 -7.20163941e-01 -7.53815711e-01 8.44351172e-01 3.83807808e-01 3.82484585e-01 2.77304612e-02 -2.45051712e-01 3.75033468e-01 8.61168727e-02 5.97705424e-01 6.21011294e-02 -5.86727560e-01 2.01703995e-01 -9.68893945e-01 -2.56156223e-03 4.15414393e-01 7.71941960e-01 1.11874330e+00 -5.75937750e-03 -2.68282473e-01 1.23881364e+00 4.13309246e-01 6.23690963e-01 7.17575610e-01 -8.90526652e-01 6.39028966e-01 6.30216897e-01 -2.92956442e-01 -7.73081362e-01 -3.33833039e-01 -7.45092690e-01 -9.09713030e-01 2.85516322e-01 7.15710521e-01 -1.94688544e-01 -1.20211935e+00 2.13733029e+00 5.11455774e-01 1.16239235e-01 1.28985748e-01 8.99763286e-01 5.20565987e-01 4.94688064e-01 2.42854550e-01 -5.10437116e-02 1.21022069e+00 -7.14199364e-01 -3.58169377e-01 -5.70364892e-01 5.13318121e-01 -4.20742035e-01 1.23062444e+00 9.33578685e-02 -6.56724393e-01 -6.64625347e-01 -1.09262359e+00 1.47878081e-01 -2.90319771e-01 1.75122961e-01 1.95086360e-01 5.11578918e-01 -6.66355908e-01 4.96779054e-01 -8.62334013e-01 -1.37688980e-01 7.17394769e-01 2.94655502e-01 -2.51280755e-01 8.54499489e-02 -1.26666081e+00 5.50303936e-01 4.74227309e-01 -2.79024601e-01 -7.41661251e-01 -7.43766189e-01 -9.25879717e-01 -2.08240733e-01 2.23091483e-01 -3.44951630e-01 8.13966453e-01 -1.56496274e+00 -1.52132368e+00 1.29520929e+00 -1.21711530e-01 -3.00647497e-01 5.48226595e-01 1.82914451e-01 -4.07511532e-01 1.19232930e-01 4.22833204e-01 8.57739806e-01 9.68218386e-01 -1.57093740e+00 -6.51399195e-01 -6.99067116e-01 -2.99953133e-01 4.77116525e-01 -3.49252313e-01 -5.76976597e-01 -6.03740871e-01 -8.38891149e-01 4.08988684e-01 -1.07147884e+00 -7.91749582e-02 -1.12923309e-01 -5.90061784e-01 1.33022200e-02 7.15308487e-01 -6.39316857e-01 1.01129973e+00 -2.31730175e+00 2.31092885e-01 4.10176456e-01 -1.86070837e-02 2.30679989e-01 -1.88701838e-01 -3.13872099e-01 -6.60657436e-02 -1.63978919e-01 -8.41376245e-01 -3.79046232e-01 -1.28792584e-01 3.24303120e-01 -1.75086707e-02 5.49433529e-01 2.04720438e-01 6.00012541e-01 -6.87661231e-01 -5.84677637e-01 2.60725349e-01 4.38295424e-01 -4.22680140e-01 1.80993341e-02 -2.92799771e-01 8.07698846e-01 -5.85219681e-01 5.32870114e-01 9.45518017e-01 -8.47935677e-02 6.80975094e-02 -2.29402274e-01 2.47357398e-01 6.00376911e-02 -1.17930806e+00 1.83925176e+00 -5.77031016e-01 4.29063857e-01 2.47148544e-01 -1.20775914e+00 9.14476275e-01 -3.52471843e-02 5.64408004e-01 -8.39969933e-01 6.95835566e-03 2.11373836e-01 -1.78537637e-01 -3.22207093e-01 7.87987432e-04 -2.68967211e-01 -2.48949125e-01 8.98290724e-02 2.42444158e-01 -8.43623206e-02 -9.66557488e-03 -1.23542137e-01 5.80148757e-01 3.28355283e-01 3.15397382e-02 -2.03761443e-01 6.27456963e-01 -5.70325665e-02 1.00025582e+00 4.32421416e-01 -4.19758469e-01 8.95438313e-01 3.67213398e-01 2.54255068e-02 -7.18636513e-01 -1.39792228e+00 -3.18612546e-01 9.40363109e-01 3.85594994e-01 2.78117150e-01 -1.05923593e+00 -9.85148191e-01 6.70592189e-02 7.64734268e-01 -5.63924253e-01 -3.66920531e-01 -4.80102211e-01 -9.28932309e-01 4.57478434e-01 3.48224878e-01 8.25838804e-01 -8.73530388e-01 -2.34678656e-01 1.78217486e-01 -3.71009201e-01 -1.07313573e+00 -5.52129030e-01 4.61504579e-01 -9.04605210e-01 -8.75606239e-01 -9.17798221e-01 -8.60379398e-01 6.93727851e-01 -2.22322255e-01 8.75321507e-01 -6.30585730e-01 -1.84834406e-01 1.10812321e-01 -2.74713263e-02 6.07106052e-02 -4.80602682e-01 2.09897012e-01 -2.26465151e-01 3.56088132e-01 4.70548242e-01 -7.38159299e-01 -5.47498524e-01 4.71322238e-01 -8.05640459e-01 -6.96099624e-02 5.53732455e-01 9.78510797e-01 9.96621013e-01 7.95182735e-02 5.75680256e-01 -1.07918417e+00 -2.98441164e-02 -4.79112834e-01 -6.82779729e-01 1.73655018e-01 -5.15355766e-01 1.64623842e-01 6.08321309e-01 -5.83167553e-01 -1.29033804e+00 4.08963740e-01 -9.75472629e-02 -4.16752040e-01 -5.35213172e-01 7.66766071e-02 -7.77857006e-01 1.12985410e-01 7.51899421e-01 2.86185354e-01 -6.24333546e-02 -3.06747288e-01 3.79413962e-01 7.67890453e-01 4.14093107e-01 -5.54561019e-01 7.66053319e-01 6.85719192e-01 -1.83693066e-01 -7.71051764e-01 -8.54424894e-01 -5.68911672e-01 -8.01295757e-01 -6.11007400e-02 1.09252071e+00 -1.04154503e+00 -1.15049317e-01 7.43165433e-01 -6.94010377e-01 -4.18811202e-01 -4.98867929e-01 3.19423020e-01 -5.92631340e-01 2.75675505e-01 -2.93219030e-01 -5.73441505e-01 1.94205623e-02 -1.21103644e+00 1.06487656e+00 3.76233816e-01 -7.17000514e-02 -1.30773854e+00 1.26483798e-01 6.95728660e-01 1.93253215e-02 3.93237978e-01 9.34060931e-01 -7.19258606e-01 -2.93351799e-01 4.40819077e-02 -2.15199620e-01 7.07746625e-01 3.11758190e-01 -3.25372368e-01 -1.36604190e+00 -2.39661142e-01 -4.24832217e-02 -2.65371650e-01 1.06657481e+00 6.29109561e-01 1.16965294e+00 -8.61779973e-03 -3.88939798e-01 8.46544623e-01 1.44258440e+00 1.25813425e-01 4.87766802e-01 2.71309793e-01 9.16294038e-01 7.56563723e-01 6.50746584e-01 1.94976136e-01 4.18513715e-01 8.11761379e-01 2.34290943e-01 -2.55255252e-01 -4.92264390e-01 -3.12871307e-01 3.49262685e-01 4.31338489e-01 4.40335631e-01 -2.04993576e-01 -7.47049510e-01 6.17406070e-01 -1.62714446e+00 -6.13663912e-01 1.75370067e-01 2.28191519e+00 1.08173835e+00 2.28670374e-01 1.29976839e-01 -1.03567982e-04 8.90072525e-01 3.26545864e-01 -1.09512162e+00 -1.36830434e-01 -5.08054912e-01 7.65507445e-02 7.46436834e-01 5.83225727e-01 -1.48005962e+00 1.02590215e+00 4.80034256e+00 1.37502921e+00 -1.14972019e+00 6.55957088e-02 9.58139658e-01 1.18969426e-01 -4.56993103e-01 -2.11870402e-01 -8.90210867e-01 6.75184906e-01 6.12534225e-01 3.43277186e-01 2.92152166e-01 7.54599988e-01 1.39539316e-01 -1.17737681e-01 -8.01335037e-01 9.23326850e-01 2.77334806e-02 -8.42514336e-01 -2.33965064e-03 -3.71518619e-02 9.33021426e-01 2.22147163e-02 2.72575825e-01 1.69039235e-01 2.81785250e-01 -7.68107355e-01 6.70168877e-01 8.11438635e-02 1.10824299e+00 -6.81441844e-01 4.72621918e-01 3.62257332e-01 -1.12860978e+00 -5.03830686e-02 -2.29818776e-01 4.88661557e-01 2.11922228e-02 8.79794419e-01 -5.53617835e-01 4.79648411e-01 5.95853806e-01 8.15235972e-01 -3.59748036e-01 5.18207371e-01 -3.55944991e-01 7.23759353e-01 -2.66887426e-01 4.45057720e-01 1.33604094e-01 -3.86779517e-01 7.90113568e-01 1.07609951e+00 3.45578007e-02 -2.44249597e-01 1.04131252e-01 1.01533806e+00 -3.58311348e-02 -3.21307518e-02 -2.97748148e-01 2.85589457e-01 3.37372333e-01 1.12413549e+00 -8.15310299e-01 -1.38222679e-01 -2.29693979e-01 1.33761203e+00 2.55055159e-01 5.74525297e-01 -9.06235278e-01 -2.80170411e-01 8.80223155e-01 8.21289495e-02 3.24945599e-01 9.30364579e-02 -7.91170835e-01 -1.10776472e+00 1.23155817e-01 -6.90166712e-01 5.02128422e-01 -2.45430484e-01 -1.37332296e+00 4.87636805e-01 -3.04741692e-02 -1.29651678e+00 -1.74765527e-01 -4.65744376e-01 -4.87443238e-01 1.01626027e+00 -1.69865358e+00 -1.22537017e+00 -6.27805367e-02 5.87767541e-01 5.58216870e-01 -1.56007931e-01 6.19007289e-01 4.46479946e-01 -7.38187611e-01 1.09556723e+00 3.62437159e-01 1.96919829e-01 8.65185916e-01 -1.40549231e+00 2.87698163e-03 7.68281102e-01 1.59788162e-01 2.22748425e-02 3.95250171e-01 -5.64837039e-01 -5.17427027e-01 -1.36789358e+00 4.91000772e-01 -2.37802938e-01 3.41550946e-01 -4.39689457e-01 -1.10151577e+00 3.52658361e-01 -2.32393980e-01 8.20346326e-02 6.15504503e-01 -2.60983050e-01 -4.48150188e-01 -4.00358170e-01 -1.54056180e+00 4.51845586e-01 9.37634170e-01 -5.67903757e-01 -3.39625001e-01 1.40151352e-01 5.93621671e-01 -2.51276612e-01 -6.68986797e-01 4.40037012e-01 3.68860364e-01 -8.61424506e-01 9.75280881e-01 -1.24089591e-01 2.81387299e-01 -3.66453826e-01 -2.34307230e-01 -1.37775087e+00 -1.63604856e-01 -2.79322535e-01 2.56879210e-01 1.53296757e+00 6.20327771e-01 -7.24438727e-01 1.01888514e+00 4.11749661e-01 -6.81085736e-02 -4.69302982e-01 -1.34117949e+00 -8.26622307e-01 4.85132337e-01 -3.53296041e-01 2.75746793e-01 1.01013029e+00 -4.25799698e-01 2.83753872e-01 2.95928232e-02 3.35066319e-01 8.60211968e-01 8.25204700e-02 3.59441698e-01 -1.22896981e+00 -4.19356436e-01 -4.04618293e-01 -2.92053908e-01 -1.09177530e+00 5.83503366e-01 -1.18050110e+00 1.76926449e-01 -1.15443838e+00 1.07849635e-01 -7.90740430e-01 -3.69903713e-01 3.60681206e-01 -1.61574706e-01 2.49329552e-01 -8.31694454e-02 2.18491629e-01 -2.26858214e-01 6.14088237e-01 1.39641666e+00 -4.63286757e-01 -3.73435110e-01 1.64524570e-01 -5.19044876e-01 8.26005936e-01 8.25323403e-01 -5.50671995e-01 -5.70905268e-01 -2.99331933e-01 -3.97500664e-01 -2.15924561e-01 2.59047866e-01 -1.04580128e+00 -7.58446753e-02 -1.53998271e-01 4.11502242e-01 -2.95600653e-01 2.62308002e-01 -8.25774491e-01 -1.63895369e-01 1.60950720e-01 -4.83244866e-01 -7.82032430e-01 2.69921392e-01 6.05574846e-01 -3.52787077e-01 -1.81710213e-01 1.34864509e+00 8.26493800e-02 -7.86094844e-01 2.77021289e-01 -1.46671563e-01 5.17686665e-01 1.03067648e+00 -5.38223624e-01 1.31330326e-01 -1.24398269e-01 -1.00970912e+00 2.41992697e-01 5.41164696e-01 1.94705293e-01 2.48723224e-01 -1.24825382e+00 -5.27154386e-01 5.26663005e-01 2.72454888e-01 3.37963820e-01 5.46166241e-01 4.87418592e-01 -4.37552221e-02 -1.74460821e-02 -1.31446481e-01 -9.18627739e-01 -1.12297881e+00 9.61342007e-02 5.86335361e-01 -3.46104264e-01 -3.09938401e-01 1.06032014e+00 6.10947132e-01 -8.08181047e-01 1.50875539e-01 -2.61883020e-01 -2.42723390e-01 3.00660133e-01 8.50237012e-02 2.72059172e-01 5.09192655e-03 -8.88737679e-01 -4.07192558e-01 9.74954844e-01 3.40094008e-02 -1.72479600e-01 1.04845095e+00 -4.69218493e-01 2.57229179e-01 5.55192947e-01 1.53800464e+00 -7.79482648e-02 -1.84006488e+00 -3.58552128e-01 -8.62030834e-02 -1.87197611e-01 1.05272979e-01 -1.07883763e+00 -1.35344410e+00 9.63884413e-01 1.11113524e+00 -2.51805872e-01 1.25270009e+00 1.94312930e-01 7.34874785e-01 -1.73945904e-01 1.44127220e-01 -1.59268892e+00 -1.75249428e-02 3.49526644e-01 4.78228837e-01 -1.47337449e+00 -3.75684321e-01 -5.09486496e-01 -8.81025076e-01 7.52603054e-01 8.06560755e-01 -9.82574224e-02 6.40826523e-01 9.65740308e-02 2.74193078e-01 8.72936845e-02 -1.32766709e-01 -2.48362646e-01 3.97413850e-01 9.23045635e-01 1.77160233e-01 3.01418304e-01 1.30118743e-01 6.18544281e-01 1.15544103e-01 -4.06449050e-01 9.20083225e-02 4.49261039e-01 -3.34599137e-01 -1.13705337e+00 -3.67720991e-01 2.59857178e-01 -2.36378103e-01 1.01414643e-01 -1.95510864e-01 6.65887535e-01 4.18526232e-01 7.74865627e-01 3.14512908e-01 -2.62692034e-01 3.21226507e-01 1.57283649e-01 3.05834025e-01 -5.33106685e-01 -2.73218453e-01 2.77618140e-01 -1.18998483e-01 -4.74000186e-01 -4.08519059e-01 -8.08148384e-01 -1.49856853e+00 2.69282877e-01 -2.60414839e-01 -1.39077306e-01 5.12575150e-01 8.75613034e-01 2.52182603e-01 5.78148544e-01 7.82181144e-01 -6.43118024e-01 -5.05887389e-01 -7.36013710e-01 -7.66235709e-01 6.57626390e-01 3.82410288e-01 -8.14633012e-01 -6.81513906e-01 6.73549473e-02]
[9.673096656799316, 1.379259705543518]
2e3392cf-58ee-4b99-b544-c583db7a3f4d
mau-a-motion-aware-unit-for-video-prediction
null
null
http://proceedings.neurips.cc/paper/2021/hash/e25cfa90f04351958216f97e3efdabe9-Abstract.html
http://proceedings.neurips.cc/paper/2021/file/e25cfa90f04351958216f97e3efdabe9-Paper.pdf
MAU: A Motion-Aware Unit for Video Prediction and Beyond
Accurately predicting inter-frame motion information plays a key role in video prediction tasks. In this paper, we propose a Motion-Aware Unit (MAU) to capture reliable inter-frame motion information by broadening the temporal receptive field of the predictive units. The MAU consists of two modules, the attention module and the fusion module. The attention module aims to learn an attention map based on the correlations between the current spatial state and the historical spatial states. Based on the learned attention map, the historical temporal states are aggregated to an augmented motion information (AMI). In this way, the predictive unit can perceive more temporal dynamics from a wider receptive field. Then, the fusion module is utilized to further aggregate the augmented motion information (AMI) and current appearance information (current spatial state) to the final predicted frame. The computation load of MAU is relatively low and the proposed unit can be easily applied to other predictive models. Moreover, an information recalling scheme is employed into the encoders and decoders to help preserve the visual details of the predictions. We evaluate the MAU on both video prediction and early action recognition tasks. Experimental results show that the MAU outperforms the state-of-the-art methods on both tasks.
['Wen Gao', 'Xiang Xinguang', 'Yan Ye', 'Siwei Ma', 'Shanshe Wang', 'Xinfeng Zhang', 'Zheng Chang']
2021-12-01
null
https://openreview.net/forum?id=qwtfY-3ibt7
https://openreview.net/pdf?id=qwtfY-3ibt7
neurips-2021-12
['video-prediction']
['computer-vision']
[ 3.15246463e-01 -1.61547825e-01 -3.33142698e-01 -2.56427705e-01 -2.74510354e-01 2.05152318e-01 5.47814965e-01 -2.09329024e-01 -2.64334142e-01 5.44845164e-01 4.81443942e-01 1.81364626e-01 2.50677228e-01 -6.61644995e-01 -6.58368587e-01 -9.49130177e-01 -4.82454710e-02 -2.51175076e-01 8.74287963e-01 1.61888659e-01 3.28712493e-01 1.73195422e-01 -1.57446527e+00 7.37353623e-01 6.78385556e-01 1.37755287e+00 9.82357144e-01 5.85997403e-01 5.66922240e-02 1.56157362e+00 -8.40940252e-02 1.86468050e-01 -5.77094331e-02 -5.86966872e-01 -6.13619804e-01 2.83096135e-01 8.44877735e-02 -7.06007957e-01 -6.38037026e-01 8.26531231e-01 2.58595705e-01 6.55753553e-01 2.31510520e-01 -9.15091038e-01 -5.28555453e-01 2.27602616e-01 -4.88518476e-01 7.38804758e-01 3.41712654e-01 1.85083553e-01 7.25104451e-01 -9.71932590e-01 6.62723660e-01 1.41139483e+00 3.70344780e-02 5.31600833e-01 -7.55402982e-01 -5.41658103e-01 7.70353615e-01 9.84221518e-01 -1.13865650e+00 -5.52317619e-01 7.72437096e-01 -5.27139604e-01 1.05071533e+00 9.14007425e-03 7.92660534e-01 7.35526323e-01 6.55892313e-01 1.13972723e+00 4.29534107e-01 -1.09136209e-01 2.93720752e-01 -4.02776361e-01 -1.87441066e-01 6.29191041e-01 -5.05021155e-01 2.57390328e-02 -6.95909977e-01 2.75693923e-01 1.07509816e+00 4.85549241e-01 -6.64302945e-01 -1.42086759e-01 -1.36749756e+00 4.40200746e-01 5.99625647e-01 3.39692533e-01 -9.17758584e-01 1.59475997e-01 2.77687281e-01 -3.56266797e-02 4.70403492e-01 -1.74560323e-01 -2.04101562e-01 -1.78926006e-01 -7.89500475e-01 -2.65534163e-01 1.19161569e-01 7.72993207e-01 8.22496295e-01 5.24091832e-02 -3.98864806e-01 6.22604609e-01 5.93558967e-01 2.20732257e-01 6.71152830e-01 -1.12512863e+00 6.46753371e-01 5.78672945e-01 3.19387197e-01 -1.17064118e+00 -2.59586368e-02 -9.75766852e-02 -9.97751296e-01 -6.95035933e-03 -1.04792558e-01 7.53587112e-02 -8.18537772e-01 1.55463314e+00 2.03751653e-01 8.37071240e-01 -1.83298755e-02 1.15290809e+00 5.74210107e-01 1.33340394e+00 4.04574752e-01 -7.04812706e-01 1.05285251e+00 -1.22212052e+00 -8.17423463e-01 -4.79595542e-01 4.18661147e-01 -6.58156455e-01 3.96531314e-01 3.80750038e-02 -1.29398894e+00 -1.20518935e+00 -8.82313371e-01 -3.43520567e-02 2.65141964e-01 2.91487277e-01 2.26484284e-01 -3.23433697e-01 -1.14177155e+00 5.92044592e-01 -1.21920156e+00 -2.93425411e-01 4.19653445e-01 3.88218492e-01 -2.41748273e-01 -2.99301267e-01 -1.08467185e+00 6.97195828e-01 6.73651338e-01 2.09363818e-01 -8.54737222e-01 -2.19736874e-01 -9.77429390e-01 1.88285112e-01 1.81322634e-01 -6.71171784e-01 1.07534385e+00 -1.32005143e+00 -1.46130466e+00 4.03888077e-02 -7.33485043e-01 -3.73213887e-01 -3.71366404e-02 -1.18011594e-01 -3.29088032e-01 2.88365066e-01 -7.79008195e-02 9.32859719e-01 9.02789533e-01 -9.03356493e-01 -1.22921526e+00 -1.24142118e-01 -1.50354147e-01 5.52313149e-01 -2.83671141e-01 -2.01828584e-01 -8.71588588e-01 -8.18283439e-01 2.12624550e-01 -6.36934280e-01 -2.78239399e-01 -6.48441315e-02 2.91330695e-01 -1.57512560e-01 9.61081207e-01 -8.99228990e-01 1.64548886e+00 -2.31184959e+00 5.90445459e-01 -1.85451701e-01 -4.30649444e-02 5.52113533e-01 -1.33842975e-01 7.77447373e-02 -1.10892586e-01 -4.37494189e-01 3.67698297e-02 -1.96455866e-01 -5.62856674e-01 3.12713444e-01 -4.46607083e-01 1.66620657e-01 1.85992092e-01 8.79637241e-01 -1.06682241e+00 -5.56339502e-01 6.83314621e-01 4.63702112e-01 -5.97717166e-01 5.46695292e-01 -1.67448834e-01 7.68465757e-01 -7.26567090e-01 3.52896005e-01 4.57805723e-01 -3.20113540e-01 1.31306887e-01 -3.01991910e-01 -2.77401894e-01 2.87598252e-01 -8.53069127e-01 1.81896102e+00 -2.59051085e-01 6.24042630e-01 -2.85128891e-01 -9.36080635e-01 8.74588668e-01 3.72679979e-01 5.45092940e-01 -7.73597002e-01 1.22546814e-01 -2.05048069e-01 6.42574802e-02 -5.72040021e-01 4.42186385e-01 7.87481144e-02 4.11300153e-01 1.73718631e-01 9.61013064e-02 7.25664258e-01 3.71417543e-03 -6.48501068e-02 8.66703331e-01 4.25183564e-01 5.10101616e-01 8.78628567e-02 1.04047668e+00 -4.58971471e-01 1.16346538e+00 2.47183427e-01 -5.21972239e-01 4.90496725e-01 1.01137593e-01 -8.95268679e-01 -9.91122127e-01 -8.67229402e-01 3.42244387e-01 1.13215792e+00 5.72902799e-01 -5.06499827e-01 -4.08770055e-01 -5.28683901e-01 -4.97288734e-01 6.10741377e-01 -7.07300961e-01 -4.71516192e-01 -7.07062662e-01 -3.36998314e-01 -4.91834998e-01 1.05884433e+00 8.08910429e-01 -1.42373097e+00 -7.06504405e-01 5.78495681e-01 -4.95023459e-01 -9.47400272e-01 -7.74841547e-01 -4.65144604e-01 -9.74629819e-01 -6.33486331e-01 -7.69744396e-01 -8.90876830e-01 5.53805530e-01 5.24433076e-01 7.42285848e-01 3.44700068e-02 3.44242543e-01 1.14268363e-01 -5.83422065e-01 1.77992359e-01 -2.36615255e-01 -4.26759988e-01 -2.10253641e-01 5.27871788e-01 3.35895866e-01 -5.76163292e-01 -9.70082998e-01 5.72244704e-01 -7.79030263e-01 7.12437749e-01 8.15474391e-01 8.51662934e-01 7.58597672e-01 -9.91270095e-02 3.43863368e-01 -2.34288394e-01 -1.46133527e-01 -6.21378064e-01 -4.00980979e-01 2.35702232e-01 -4.14935872e-03 7.30594993e-02 5.14968157e-01 -5.31028509e-01 -1.39420450e+00 3.84534448e-01 -9.88810807e-02 -6.77084863e-01 -5.26687913e-02 3.20479035e-01 -3.32044482e-01 2.58894920e-01 -7.41148144e-02 6.73396766e-01 -2.90685117e-01 -4.20470089e-01 8.70004818e-02 5.61597705e-01 5.61108530e-01 3.12617980e-02 7.52815157e-02 3.38630825e-01 -2.04872280e-01 -6.70610547e-01 -6.67823672e-01 -5.62435031e-01 -8.01946759e-01 -5.22905290e-01 1.22307074e+00 -1.13043261e+00 -4.16019946e-01 5.68086565e-01 -1.31955087e+00 -2.59128988e-01 -7.10325316e-02 7.96471715e-01 -7.74869978e-01 5.85769713e-01 -8.22722673e-01 -7.47421443e-01 -2.56982446e-01 -1.34308827e+00 1.03816140e+00 4.68344092e-01 -8.29703733e-02 -9.66136217e-01 -2.97328141e-02 2.72589803e-01 2.48239692e-02 -1.70084625e-01 6.49491072e-01 -1.39159977e-01 -1.07087266e+00 2.14745756e-02 -2.32148692e-01 2.38607273e-01 1.42021373e-01 -1.38207510e-01 -7.56850898e-01 -1.71753183e-01 -3.40261933e-04 1.42745167e-01 1.18602741e+00 6.81477964e-01 1.19866168e+00 -3.80598873e-01 -5.25866687e-01 4.58183080e-01 1.02186656e+00 8.07205617e-01 1.10708606e+00 2.83670843e-01 8.63196671e-01 2.81480253e-01 1.01078904e+00 6.51335418e-01 4.98602629e-01 8.50448072e-01 5.02692580e-01 2.70673215e-01 -1.03955597e-01 -2.82567680e-01 7.44040072e-01 1.01001906e+00 -4.88080651e-01 -3.12257528e-01 -6.64512336e-01 4.81842101e-01 -2.40547633e+00 -1.46523225e+00 2.12865978e-01 2.26062107e+00 5.06351113e-01 -9.78235248e-03 -1.89503923e-01 -1.72043741e-01 8.46046686e-01 4.93363917e-01 -5.77973604e-01 -1.60223305e-01 1.62028730e-01 -3.05627972e-01 -1.27613172e-01 4.75663811e-01 -1.23220432e+00 8.54715705e-01 5.10846949e+00 8.54298592e-01 -9.78342175e-01 -4.21436597e-03 9.10290718e-01 -4.46664281e-02 8.82192329e-02 9.35670957e-02 -6.40795588e-01 8.60942900e-01 7.19584584e-01 5.21509424e-02 2.02936769e-01 7.92820513e-01 4.71456289e-01 -3.27423602e-01 -9.98993337e-01 9.52470005e-01 9.65852197e-03 -1.40964603e+00 4.16280061e-01 -7.95761794e-02 7.53006697e-01 -1.21016651e-01 -7.43930712e-02 2.39771932e-01 -1.36721000e-01 -6.86500609e-01 6.55665576e-01 1.21048164e+00 4.24933821e-01 -7.93669760e-01 9.28264618e-01 5.69365740e-01 -1.75483954e+00 -4.63601530e-01 -6.17083848e-01 -2.80209959e-01 4.01291251e-01 1.96646690e-01 -2.82593340e-01 5.29709101e-01 6.00399137e-01 1.45199394e+00 -3.66726547e-01 9.93272305e-01 -1.70011148e-01 3.59653980e-01 1.15783669e-01 2.38983810e-01 3.44325930e-01 -1.95617184e-01 4.18216854e-01 9.10207748e-01 5.43706834e-01 5.53710699e-01 3.41467619e-01 4.72517490e-01 2.70230830e-01 -9.76206921e-03 -2.65315056e-01 2.88189799e-01 3.09776574e-01 9.88896549e-01 -3.39903861e-01 -6.86924756e-01 -7.08504200e-01 1.23119497e+00 3.35052490e-01 4.52203840e-01 -7.40013421e-01 2.40375966e-01 7.44824529e-01 -4.10807170e-02 7.94573426e-01 -6.60140514e-02 2.24293053e-01 -1.31334531e+00 -1.63329542e-02 -3.66599232e-01 4.87923682e-01 -1.20583522e+00 -8.17746580e-01 6.88092053e-01 -2.10530356e-01 -1.66006899e+00 -5.20041764e-01 -2.69182712e-01 -8.26969624e-01 9.85265195e-01 -1.28597832e+00 -8.86763871e-01 -3.70275140e-01 5.17271161e-01 9.65221226e-01 -1.69608146e-01 5.14971137e-01 1.57294482e-01 -7.91896105e-01 9.30888504e-02 -7.40999877e-02 -9.91406199e-03 4.97797072e-01 -7.06823945e-01 2.27635771e-01 1.13489437e+00 -1.96649596e-01 2.34546721e-01 1.93742067e-01 -8.47517073e-01 -9.95129406e-01 -1.44894648e+00 8.89892459e-01 -1.00601926e-01 3.92249584e-01 2.01243415e-01 -1.17271912e+00 7.21391201e-01 2.23579556e-01 2.27585822e-01 4.55905765e-01 -6.24088645e-01 9.45821702e-02 -1.73363268e-01 -4.70076382e-01 5.08152246e-01 8.32784176e-01 -3.07042241e-01 -7.04370916e-01 -1.81082681e-01 5.07381916e-01 -2.87383288e-01 -7.96309412e-01 4.09898281e-01 5.81584632e-01 -1.12694824e+00 9.18361485e-01 -3.39513958e-01 7.35278606e-01 -5.83723307e-01 -1.88763201e-01 -1.08232331e+00 -1.02177823e+00 -2.96260715e-01 -5.53460598e-01 1.00975811e+00 -8.61827061e-02 -1.54026106e-01 4.99015301e-01 6.44939303e-01 -2.84937233e-01 -1.04018211e+00 -1.00246429e+00 -2.97148764e-01 -4.90540892e-01 -2.18106657e-01 3.18943411e-01 5.45274436e-01 9.69344079e-02 3.46673667e-01 -7.51792848e-01 1.68397471e-01 1.96554869e-01 3.33837599e-01 3.98154289e-01 -7.06984997e-01 -3.79524887e-01 -2.71681845e-01 -8.59169841e-01 -1.75983310e+00 5.44674955e-02 -4.30743873e-01 2.06806883e-01 -1.51901925e+00 5.26221454e-01 2.12755024e-01 -6.68050647e-01 4.64953184e-01 -6.77804410e-01 3.16533186e-02 4.96085405e-01 5.87531567e-01 -1.00970387e+00 9.77455020e-01 1.43676484e+00 -1.47918612e-02 -3.21517020e-01 8.82112905e-02 -5.85375875e-02 8.93150270e-01 5.47414064e-01 6.09439565e-03 -5.26761055e-01 -3.49790990e-01 -4.05620068e-01 4.22302544e-01 2.95573682e-01 -1.31400204e+00 4.01426345e-01 -3.45718175e-01 8.61066341e-01 -8.50013196e-01 4.90565985e-01 -7.00670481e-01 1.33956715e-01 5.01388729e-01 -2.53509730e-01 -3.65090966e-02 7.64622986e-02 8.57403219e-01 -4.58323479e-01 2.27457598e-01 7.97239244e-01 -6.25220761e-02 -1.47555888e+00 7.26323426e-01 -5.52223384e-01 -4.37802285e-01 1.26546872e+00 -2.88944989e-01 -7.97022805e-02 -4.98105526e-01 -8.15982103e-01 3.17811549e-01 4.64045823e-01 5.29076278e-01 1.05012667e+00 -1.60761738e+00 -4.47008401e-01 3.38397920e-01 -4.54121456e-03 -1.24971889e-01 7.58771777e-01 9.76763010e-01 -2.39460438e-01 3.61428648e-01 -5.33106685e-01 -7.10966408e-01 -1.20040834e+00 9.73342717e-01 2.43568450e-01 -1.72104627e-01 -5.73242307e-01 6.53309345e-01 9.63950574e-01 6.87577605e-01 1.36288062e-01 -4.03056145e-01 -6.90198123e-01 -1.02741465e-01 1.12147212e+00 2.80543327e-01 -5.33945024e-01 -1.13731766e+00 -3.60380858e-01 6.16529107e-01 -9.32057500e-02 1.56005338e-01 1.23525715e+00 -6.25332832e-01 -3.99584845e-02 4.71501291e-01 1.07125449e+00 -6.39140904e-01 -1.96161664e+00 -3.33262175e-01 -3.56544018e-01 -6.60659552e-01 1.45040289e-01 -2.86278099e-01 -1.25940716e+00 1.07968521e+00 5.53804755e-01 -3.70368183e-01 1.65919316e+00 -4.27817293e-02 8.78459990e-01 -2.14541778e-02 3.45173031e-01 -8.59267592e-01 5.80889806e-02 4.76477593e-01 8.39053988e-01 -1.06244731e+00 2.53369957e-02 -3.64087075e-01 -9.58228707e-01 1.07758534e+00 8.74879181e-01 -4.60567884e-03 6.09179080e-01 -1.25489518e-01 -2.56484449e-01 3.64968956e-01 -1.27873886e+00 -2.38051251e-01 7.03735471e-01 5.26139855e-01 3.98898154e-01 -2.67914653e-01 -1.13446288e-01 6.94343328e-01 6.07390761e-01 2.49849766e-01 1.43286213e-01 8.49601090e-01 -7.44360268e-01 -8.75717700e-01 -1.84126541e-01 2.89176136e-01 -2.04092897e-02 2.59394553e-02 7.29193864e-03 1.52593762e-01 3.77596229e-01 8.86129260e-01 5.00415266e-01 -7.86281228e-01 3.55717987e-02 -1.94920916e-02 2.30527312e-01 -3.87558907e-01 -3.85116749e-02 4.20367599e-01 -1.57879248e-01 -1.07955730e+00 -7.77912915e-01 -6.79749668e-01 -1.18309259e+00 -9.32572931e-02 -6.12528101e-02 -9.62277800e-02 -1.54786915e-01 1.05788183e+00 5.50894141e-01 6.72395885e-01 6.20595455e-01 -1.23884332e+00 1.14656195e-01 -9.47744131e-01 -2.83637226e-01 3.76597255e-01 3.55904341e-01 -7.60853171e-01 2.01864943e-01 5.43869793e-01]
[8.72280216217041, 0.38664552569389343]
91148b81-e450-4ca3-9fbe-f2ad692eca7a
semi-supervised-clustering-for-short-text-via
1602.06797
null
http://arxiv.org/abs/1602.06797v2
http://arxiv.org/pdf/1602.06797v2.pdf
Semi-supervised Clustering for Short Text via Deep Representation Learning
In this work, we propose a semi-supervised method for short text clustering, where we represent texts as distributed vectors with neural networks, and use a small amount of labeled data to specify our intention for clustering. We design a novel objective to combine the representation learning process and the k-means clustering process together, and optimize the objective with both labeled data and unlabeled data iteratively until convergence through three steps: (1) assign each short text to its nearest centroid based on its representation from the current neural networks; (2) re-estimate the cluster centroids based on cluster assignments from step (1); (3) update neural networks according to the objective by keeping centroids and cluster assignments fixed. Experimental results on four datasets show that our method works significantly better than several other text clustering methods.
['Abraham Ittycheriah', 'Zhiguo Wang', 'Haitao Mi']
2016-02-22
semi-supervised-clustering-for-short-text-via-1
https://aclanthology.org/K16-1004
https://aclanthology.org/K16-1004.pdf
conll-2016-8
['text-clustering', 'short-text-clustering']
['natural-language-processing', 'natural-language-processing']
[-6.52268827e-02 -1.74222440e-01 -4.72403377e-01 -8.26261461e-01 -5.20299196e-01 -6.71604276e-01 2.83133060e-01 3.43436778e-01 -6.03984177e-01 2.75070041e-01 4.31112349e-01 -1.36238545e-01 -1.22656167e-01 -5.27543128e-01 -2.37327769e-01 -7.64045298e-01 2.88582504e-01 1.05228710e+00 -1.25354121e-03 3.37978601e-01 5.08495569e-01 2.82467037e-01 -1.38194430e+00 3.03568929e-01 1.08390975e+00 7.12321341e-01 1.36339962e-01 5.59231877e-01 -6.28294885e-01 1.08124137e+00 -5.02540648e-01 1.78866591e-02 -9.79483966e-03 -5.39379835e-01 -1.21432269e+00 5.74200392e-01 -1.01811782e-01 -8.20422471e-02 -3.05061340e-01 1.13523114e+00 2.46730477e-01 8.16551328e-01 1.14226258e+00 -1.11192226e+00 -7.79210925e-01 1.42885518e+00 -7.94984818e-01 -2.55622059e-01 -4.11767252e-02 -4.39295799e-01 8.80898237e-01 -7.64756739e-01 3.69606346e-01 1.13061678e+00 6.64784074e-01 5.53507090e-01 -1.20341182e+00 -5.61332643e-01 5.43246508e-01 2.38916487e-01 -1.84539306e+00 -4.42212492e-01 9.70577478e-01 -4.00894672e-01 5.46779275e-01 -6.87978566e-02 1.95083335e-01 5.70427775e-01 -5.53113759e-01 1.04731774e+00 4.46727216e-01 -7.50277221e-01 6.81619346e-01 3.23819071e-01 8.64213765e-01 5.15094459e-01 -1.21800005e-01 -7.93762028e-01 9.04098898e-02 -2.61946410e-01 1.16527461e-01 3.40488940e-01 -1.98675558e-01 -4.12480652e-01 -1.14350641e+00 1.17076099e+00 4.63000029e-01 6.74211085e-01 -4.66358393e-01 3.91163304e-02 3.63295853e-01 4.31749932e-02 4.85792160e-01 1.20813087e-01 -4.22211677e-01 9.19416640e-03 -1.24971867e+00 -2.53853083e-01 8.77300203e-01 8.57943892e-01 1.08104110e+00 -1.35163486e-01 -4.18998152e-02 1.31294978e+00 6.28693163e-01 2.25699902e-01 1.10627103e+00 -8.50614727e-01 5.28912663e-01 7.66636252e-01 -1.90255307e-02 -1.01512349e+00 -4.42918956e-01 1.41568929e-01 -1.04346001e+00 -3.15738112e-01 3.91630828e-01 -4.89330590e-01 -9.86351252e-01 1.44562674e+00 1.91842958e-01 7.01135769e-02 2.26578310e-01 7.35019565e-01 7.12408423e-01 1.07558608e+00 -7.05585331e-02 -4.83195812e-01 7.99243510e-01 -1.10842502e+00 -8.87680531e-01 8.26834887e-02 9.37946975e-01 -5.67994416e-01 8.12225521e-01 3.40410709e-01 -7.68570602e-01 -6.43255651e-01 -8.20607185e-01 2.94697642e-01 -5.73700786e-01 6.53789341e-01 3.32698137e-01 8.63205135e-01 -1.14482045e+00 3.83628219e-01 -9.32401597e-01 -5.12550473e-01 1.70837954e-01 6.35884464e-01 1.38021335e-01 1.00719608e-01 -8.94567847e-01 1.96084291e-01 1.01628423e+00 2.85945553e-02 -2.33031139e-01 -1.10448137e-01 -8.79507482e-01 2.98140287e-01 2.81467468e-01 -2.17620000e-01 1.06137431e+00 -1.16995502e+00 -1.58863068e+00 5.83742619e-01 -5.15934885e-01 -1.70754269e-01 7.09763616e-02 2.21947968e-01 -2.24871308e-01 1.17830001e-01 8.45153034e-02 7.64221787e-01 6.26171649e-01 -1.68932533e+00 -8.29774678e-01 -5.20876765e-01 -6.93554699e-01 4.33393210e-01 -1.04741395e+00 -8.67116824e-03 -1.11077785e+00 -5.10987163e-01 5.84591389e-01 -9.42992568e-01 -5.24280488e-01 -5.31463444e-01 -7.15234339e-01 -8.52777541e-01 1.10786486e+00 -3.54384661e-01 1.55771589e+00 -1.86140466e+00 2.75057763e-01 7.62230039e-01 4.22347933e-01 2.20344514e-01 -4.55825813e-02 1.21983737e-01 -1.01016171e-01 1.18942438e-02 -3.34090889e-01 -6.27940238e-01 1.05367459e-01 8.98064524e-02 -1.61208093e-01 4.33537841e-01 -5.33403456e-01 7.01110661e-01 -7.19597995e-01 -1.02015150e+00 4.01289672e-01 1.68304756e-01 -3.66421014e-01 2.83525467e-01 -5.66891395e-02 -1.54860005e-01 -5.59504628e-01 3.11987966e-01 5.51925778e-01 -4.37962592e-01 5.51164091e-01 -2.11890370e-01 4.35584560e-02 -2.65959084e-01 -1.76286554e+00 1.43090284e+00 1.49130644e-02 6.15367889e-01 6.57498464e-02 -1.51830375e+00 9.12720501e-01 1.28824264e-01 7.90379703e-01 1.33294925e-01 4.02754515e-01 -3.80966693e-01 -3.37258130e-01 -5.11144221e-01 4.98805821e-01 1.61869302e-01 -1.15657561e-01 1.18382359e+00 1.17516987e-01 2.12491199e-01 4.05791044e-01 5.66593230e-01 6.07943237e-01 -2.16421664e-01 -6.22695088e-02 1.31864299e-03 7.60494411e-01 2.87459530e-02 3.60804439e-01 8.97987127e-01 -1.82936043e-01 5.36624908e-01 2.60039389e-01 -3.57444674e-01 -6.83792591e-01 -6.71186388e-01 2.79960446e-02 1.53160644e+00 2.09327433e-02 -5.34474313e-01 -1.17407513e+00 -1.02812517e+00 -8.77803490e-02 7.36118972e-01 -8.48808885e-01 -6.01062402e-02 -4.13606822e-01 -8.29102814e-01 5.83825886e-01 7.08103955e-01 3.00291836e-01 -9.63835537e-01 1.50907069e-01 2.00168729e-01 -3.68941098e-01 -5.84755301e-01 -8.15087199e-01 5.89281023e-01 -6.76713169e-01 -8.25003862e-01 -7.44947135e-01 -1.34122074e+00 1.20947015e+00 5.49552023e-01 5.10625899e-01 2.69656748e-01 3.24491173e-01 3.09872270e-01 -5.70068479e-01 2.00185552e-02 -3.83970469e-01 5.51536202e-01 3.19537073e-01 3.29468817e-01 7.29295075e-01 -2.26615235e-01 -1.33792177e-01 4.32637274e-01 -9.53355193e-01 -2.98518389e-01 1.94023222e-01 4.81776267e-01 5.30983388e-01 8.07493806e-01 5.11745095e-01 -1.14198029e+00 9.34525847e-01 -4.72693175e-01 -4.58882302e-01 3.53289127e-01 -8.87222946e-01 8.68731141e-02 9.89432454e-01 -6.43556237e-01 -1.11185253e+00 5.79494596e-01 1.22733735e-01 -6.29054010e-01 -4.20382202e-01 7.52677977e-01 -2.54945189e-01 3.34765851e-01 6.99604511e-01 4.37638879e-01 -5.36207901e-03 -4.21359837e-01 8.50633025e-01 1.49422836e+00 5.90559185e-01 -6.07695043e-01 8.68537843e-01 3.32276672e-01 -7.65963078e-01 -7.54294753e-01 -8.88349950e-01 -9.87774372e-01 -1.47434747e+00 -2.11826757e-01 1.01743412e+00 -7.10329711e-01 -8.84658337e-01 4.16760474e-01 -8.54772449e-01 -3.52874100e-01 -3.81277613e-02 7.65585244e-01 -2.24170014e-01 8.13620508e-01 -7.41872489e-01 -8.21018577e-01 -3.94404590e-01 -1.06137896e+00 5.89200377e-01 3.41466993e-01 -4.02865499e-01 -1.37802899e+00 9.12108123e-02 3.40281516e-01 -2.78970180e-03 -4.11521763e-01 8.39154899e-01 -1.12499237e+00 1.42001793e-01 -3.12565148e-01 -3.15544933e-01 2.27067769e-01 4.87113297e-01 1.15667179e-01 -7.67935693e-01 -3.78641129e-01 -1.69320390e-01 -5.54232121e-01 9.51373577e-01 6.66197717e-01 1.54267025e+00 -3.91073346e-01 -6.69719994e-01 5.04116774e-01 1.18265152e+00 5.09881556e-01 2.23701954e-01 1.01744160e-01 1.23412490e+00 8.03448796e-01 2.56518573e-01 3.69687378e-01 5.44611096e-01 2.10559040e-01 -8.63089114e-02 1.06416205e-02 3.45052063e-01 -1.32526487e-01 5.83131462e-02 1.41791821e+00 3.17250282e-01 -4.48992580e-01 -1.01757562e+00 4.08045053e-01 -2.40506315e+00 -9.77624357e-01 -1.49613097e-01 1.99130273e+00 8.86593819e-01 7.45886117e-02 3.74288738e-01 2.34732628e-01 1.24345326e+00 -5.36856316e-02 -6.25869930e-01 -1.03694297e-01 2.86175996e-01 -3.53952616e-01 2.96549886e-01 4.69715089e-01 -1.19883931e+00 1.22421455e+00 6.52212715e+00 8.00827384e-01 -9.19645965e-01 -2.43279859e-01 7.48389602e-01 2.91458182e-02 -5.51738739e-02 -8.95292163e-02 -7.92307198e-01 6.43252730e-01 9.19443727e-01 -2.10184008e-01 6.83282316e-01 8.39138627e-01 1.72578186e-01 1.64594173e-01 -1.02830756e+00 1.03070188e+00 6.21239126e-01 -1.18771183e+00 2.66107559e-01 -1.82120264e-01 9.66393113e-01 -1.05667338e-01 -2.78570384e-01 5.01766980e-01 1.01482606e+00 -8.24105680e-01 3.79109710e-01 2.81737000e-01 3.33477944e-01 -1.16944754e+00 6.48229003e-01 6.13688469e-01 -1.38215613e+00 -6.32455945e-02 -5.39451420e-01 2.66911238e-01 -1.72050029e-01 3.01967949e-01 -7.29485035e-01 2.30470315e-01 5.46877682e-01 9.40190494e-01 -4.71988946e-01 7.66834617e-01 -5.32778613e-02 9.56155419e-01 -3.25178534e-01 -4.64223534e-01 5.81446290e-01 -6.37759984e-01 -1.29911527e-01 1.37516260e+00 -1.79078683e-01 2.69058973e-01 7.21927881e-01 8.14736307e-01 -3.00509423e-01 4.81282294e-01 -1.63369298e-01 3.35620493e-02 8.07846189e-01 1.36784065e+00 -1.44084346e+00 -8.01491678e-01 -1.56788722e-01 9.90337491e-01 6.19483232e-01 6.66628897e-01 -4.58415776e-01 -1.01695013e+00 -2.81306673e-02 -4.41669345e-01 3.45610201e-01 -2.37982534e-02 -2.79441476e-01 -1.07319856e+00 -3.67076457e-01 -3.53304595e-01 7.49548376e-01 -8.29721689e-01 -1.28089333e+00 5.23541093e-01 -1.74786985e-01 -1.09005606e+00 -3.09424549e-01 -2.63730645e-01 -7.03042805e-01 5.36188841e-01 -9.15729582e-01 -7.76850998e-01 -1.22618079e-01 7.97587633e-01 6.46723568e-01 -2.28966638e-01 7.51922607e-01 3.36514600e-02 -1.00336087e+00 7.03270853e-01 8.80562544e-01 7.63642490e-01 7.14304209e-01 -1.43899143e+00 -1.07738160e-01 5.55792689e-01 2.77412593e-01 8.09949875e-01 2.24389821e-01 -6.91391706e-01 -1.04026854e+00 -1.41565061e+00 7.81121790e-01 -2.93731123e-01 5.61846435e-01 -3.46814543e-01 -1.08714318e+00 9.03050423e-01 1.94277912e-01 -3.52120250e-01 1.15248609e+00 4.52420831e-01 -1.59743428e-01 8.02150145e-02 -1.09957719e+00 4.99123096e-01 3.56279552e-01 -2.73543090e-01 -7.63563275e-01 5.70534587e-01 5.66018224e-01 -3.05051152e-02 -7.84236848e-01 -2.67750472e-01 2.02965349e-01 -2.50222355e-01 7.16749072e-01 -5.72122455e-01 1.24640293e-01 -5.09531379e-01 -1.31201953e-01 -1.53173792e+00 -7.71109283e-01 -4.34813887e-01 2.27010176e-02 1.55302513e+00 4.77088779e-01 -3.19258600e-01 1.17475581e+00 6.56801403e-01 1.28908902e-01 -3.41127336e-01 -4.06741828e-01 -2.89426774e-01 1.69790685e-01 -3.57727796e-01 4.52120185e-01 1.58049464e+00 5.47592342e-01 7.58598447e-01 -2.34585777e-01 8.72386172e-02 7.61219084e-01 3.43475729e-01 6.53639734e-01 -1.40668762e+00 1.69005454e-01 -6.30217552e-01 9.81006697e-02 -1.27547288e+00 7.97304928e-01 -1.13748288e+00 4.48154628e-01 -1.66418648e+00 4.29615527e-01 -5.31972051e-01 -3.73809218e-01 7.31120706e-01 -3.85233194e-01 1.31922185e-01 -3.44795659e-02 7.63917327e-01 -1.33827651e+00 5.05836427e-01 4.64693636e-01 -4.22693104e-01 -8.28784525e-01 1.71347976e-01 -8.66997123e-01 8.30601692e-01 6.72185183e-01 -6.27296567e-01 -5.43032110e-01 -2.82461226e-01 -3.17464650e-01 -4.82348576e-02 -6.62064850e-01 -8.11265647e-01 9.50339019e-01 -1.77650675e-01 8.90652299e-01 -1.10081041e+00 -9.02215838e-02 -9.94465411e-01 -4.46722507e-01 2.86096185e-01 -9.32530403e-01 -2.86918342e-01 -2.58297950e-01 6.00068748e-01 1.93644725e-02 -6.09444737e-01 7.58789062e-01 1.30139962e-01 -4.77053374e-01 2.20987171e-01 -1.09375620e+00 -1.05958663e-01 9.15691376e-01 -3.27622384e-01 2.64027655e-01 -4.83279169e-01 -1.04553223e+00 8.43486786e-01 4.16754782e-01 4.01167125e-01 4.24565047e-01 -1.41649938e+00 -4.65753645e-01 5.29140495e-02 1.08985901e-01 7.78605267e-02 -5.96207045e-02 1.22612968e-01 -2.27832019e-01 5.04474401e-01 4.08062756e-01 -7.32643068e-01 -1.31552804e+00 8.94742131e-01 2.07245111e-01 -1.44665748e-01 -3.79813194e-01 5.95892966e-01 -1.81733221e-01 -1.04277718e+00 9.55962360e-01 -5.19171543e-02 -8.77059281e-01 3.32758993e-01 6.83041871e-01 3.07121336e-01 -1.25194803e-01 -8.51930976e-01 -2.59384543e-01 5.71106553e-01 -5.55819035e-01 -8.23489726e-02 1.30841088e+00 -4.09205168e-01 -1.26554772e-01 6.78904116e-01 1.52565396e+00 -3.68047476e-01 -8.83119762e-01 -7.38602817e-01 5.08305393e-02 -4.39447686e-02 2.05122292e-01 -4.58551258e-01 -1.32199955e+00 4.75005239e-01 4.58515793e-01 2.62704849e-01 8.85484576e-01 1.70076355e-01 5.88364065e-01 9.68185067e-01 -2.21184611e-01 -1.61463308e+00 1.72791436e-01 5.45125067e-01 -6.81030899e-02 -1.06308138e+00 2.60915817e-03 -2.71851439e-02 -7.37246752e-01 1.18272638e+00 6.85199499e-01 9.67233554e-02 8.72555733e-01 5.39821796e-02 4.10294324e-01 -1.93759039e-01 -5.34637630e-01 -1.03463143e-01 1.82195842e-01 5.98257959e-01 4.83195245e-01 5.66976927e-02 -1.62087251e-02 6.61259234e-01 -3.22309183e-03 -1.20731875e-01 4.19318050e-01 1.01373839e+00 -8.34342539e-01 -9.63660181e-01 -6.75915658e-01 7.75374413e-01 -1.55746549e-01 1.35120764e-01 -7.59139955e-01 2.47134000e-01 -9.13457721e-02 1.30995584e+00 3.26578707e-01 -5.42184293e-01 -1.52099980e-02 1.91547975e-01 -1.24369852e-01 -6.89954698e-01 -4.87930119e-01 3.65660101e-01 -3.80709738e-01 6.47673011e-02 -4.77387995e-01 -6.55696332e-01 -1.80580473e+00 -2.55477697e-01 -8.01254928e-01 9.70099390e-01 6.42083585e-01 1.10834455e+00 4.93776239e-02 2.83939779e-01 1.12609792e+00 -9.98694003e-01 -4.83047575e-01 -1.09367573e+00 -7.32281089e-01 5.28762281e-01 -1.37304217e-01 -1.35015190e-01 -5.60537219e-01 6.05894744e-01]
[10.38455867767334, 6.711939334869385]
a05a63cd-a4e3-4fa6-8aba-28a0d519bb5b
robust-reference-based-super-resolution-via
2106.01863
null
https://arxiv.org/abs/2106.01863v1
https://arxiv.org/pdf/2106.01863v1.pdf
Robust Reference-based Super-Resolution via C2-Matching
Reference-based Super-Resolution (Ref-SR) has recently emerged as a promising paradigm to enhance a low-resolution (LR) input image by introducing an additional high-resolution (HR) reference image. Existing Ref-SR methods mostly rely on implicit correspondence matching to borrow HR textures from reference images to compensate for the information loss in input images. However, performing local transfer is difficult because of two gaps between input and reference images: the transformation gap (e.g. scale and rotation) and the resolution gap (e.g. HR and LR). To tackle these challenges, we propose C2-Matching in this work, which produces explicit robust matching crossing transformation and resolution. 1) For the transformation gap, we propose a contrastive correspondence network, which learns transformation-robust correspondences using augmented views of the input image. 2) For the resolution gap, we adopt a teacher-student correlation distillation, which distills knowledge from the easier HR-HR matching to guide the more ambiguous LR-HR matching. 3) Finally, we design a dynamic aggregation module to address the potential misalignment issue. In addition, to faithfully evaluate the performance of Ref-SR under a realistic setting, we contribute the Webly-Referenced SR (WR-SR) dataset, mimicking the practical usage scenario. Extensive experiments demonstrate that our proposed C2-Matching significantly outperforms state of the arts by over 1dB on the standard CUFED5 benchmark. Notably, it also shows great generalizability on WR-SR dataset as well as robustness across large scale and rotation transformations.
['Ziwei Liu', 'Chen Change Loy', 'Xintao Wang', 'Kelvin C. K. Chan', 'Yuming Jiang']
2021-06-03
null
http://openaccess.thecvf.com//content/CVPR2021/html/Jiang_Robust_Reference-Based_Super-Resolution_via_C2-Matching_CVPR_2021_paper.html
http://openaccess.thecvf.com//content/CVPR2021/papers/Jiang_Robust_Reference-Based_Super-Resolution_via_C2-Matching_CVPR_2021_paper.pdf
cvpr-2021-1
['reference-based-super-resolution']
['computer-vision']
[ 5.07177114e-01 -1.78708658e-01 -1.02736175e-01 -2.52751112e-01 -1.27365255e+00 -2.88189232e-01 6.46271706e-01 -5.00327528e-01 -1.93763614e-01 5.76464117e-01 4.49221164e-01 1.16225533e-01 -1.09533988e-01 -7.61016309e-01 -9.09171700e-01 -7.78477013e-01 3.71321231e-01 -4.45905030e-02 3.63609165e-01 -5.22461832e-01 2.37554356e-01 4.63561237e-01 -1.51614988e+00 3.12519640e-01 1.19643676e+00 9.69164729e-01 4.15459871e-01 2.29635343e-01 1.86356306e-01 4.59887445e-01 -3.03167403e-01 -1.99287072e-01 6.68770790e-01 -3.80704373e-01 -7.20686257e-01 5.03794961e-02 9.50780749e-01 -4.75841731e-01 -4.43846166e-01 1.17822611e+00 5.54550707e-01 4.03797239e-01 1.33983150e-01 -6.42670691e-01 -1.03120661e+00 4.26919073e-01 -1.12608171e+00 3.48252982e-01 4.78986710e-01 9.80814248e-02 8.45599353e-01 -1.24471796e+00 7.45891273e-01 1.46944571e+00 4.39063817e-01 3.62888604e-01 -1.44242990e+00 -9.17904079e-01 2.96849400e-01 1.45225838e-01 -1.50375211e+00 -4.69873130e-01 8.68464589e-01 -1.32853508e-01 4.01997745e-01 2.56668210e-01 1.37516782e-01 1.13914859e+00 -7.00680837e-02 3.76311451e-01 1.49769568e+00 -3.19837660e-01 -1.32355154e-01 9.21023265e-03 -1.70331940e-01 2.55326867e-01 1.06101763e-02 5.21773160e-01 -6.06577694e-01 2.24200606e-01 1.28624821e+00 -5.90484813e-02 -6.74687982e-01 -3.58370721e-01 -1.38607299e+00 5.06151021e-01 8.61131608e-01 2.19653353e-01 -8.23382288e-02 -2.84384876e-01 4.99349833e-02 4.29998457e-01 4.43619877e-01 3.80577356e-01 -2.57985651e-01 2.91309863e-01 -7.72575378e-01 4.39359955e-02 6.90516308e-02 1.04111898e+00 8.58969152e-01 3.33954431e-02 -3.38163733e-01 1.18724203e+00 -1.42418936e-01 5.18171847e-01 4.54452068e-01 -9.66037095e-01 8.64678144e-01 1.93793163e-01 2.16606542e-01 -1.06164026e+00 -1.10989198e-01 -6.63528383e-01 -1.21246409e+00 1.81830227e-01 3.60799640e-01 4.24945384e-01 -7.83741057e-01 1.84389865e+00 4.21973974e-01 4.55590963e-01 4.08709049e-02 1.33048069e+00 8.83594215e-01 3.76200914e-01 -3.08749497e-01 -2.24382222e-01 1.26192451e+00 -1.09835613e+00 -5.11769593e-01 -1.73380539e-01 8.11587423e-02 -9.95225310e-01 1.24539697e+00 2.29123190e-01 -1.25639200e+00 -1.05854368e+00 -1.13826001e+00 -3.67743582e-01 -5.93409501e-02 1.34231478e-01 1.18680842e-01 1.71059445e-01 -1.03261387e+00 6.45310581e-01 -5.21458983e-01 -1.45245627e-01 1.21465400e-01 7.73383752e-02 -4.75873590e-01 -4.54988301e-01 -1.27541292e+00 8.27052355e-01 1.67576745e-01 2.12656841e-01 -4.00822043e-01 -9.03614342e-01 -8.58025789e-01 -1.78979874e-01 5.44285834e-01 -5.97849965e-01 8.04230988e-01 -7.28799045e-01 -1.57460451e+00 8.33040535e-01 -1.50100976e-01 -1.22711450e-01 6.71304822e-01 -3.90549242e-01 -6.08879507e-01 1.13254137e-01 3.68002541e-02 5.77332616e-01 9.56135571e-01 -1.52680218e+00 -7.57895589e-01 -4.14569736e-01 7.49410614e-02 4.86986309e-01 -5.24315005e-03 -4.61553112e-02 -5.38285375e-01 -1.03318536e+00 5.06277084e-01 -7.15107799e-01 -1.47819087e-01 -8.44938383e-02 -1.66475654e-01 2.03233540e-01 6.74546778e-01 -8.60945344e-01 1.07274890e+00 -2.29153037e+00 2.33572200e-01 8.48083571e-02 3.35902214e-01 9.75814834e-02 -4.01659817e-01 -2.21160948e-02 -3.66718531e-01 -1.41324401e-01 -7.25755692e-02 -1.90950960e-01 -3.86853158e-01 2.09562853e-02 -5.79818249e-01 4.68571275e-01 2.49417514e-01 7.82428920e-01 -8.48366797e-01 -3.82618606e-01 1.51951790e-01 8.61817539e-01 -3.82614821e-01 2.33121857e-01 2.50077099e-01 9.55957830e-01 -2.37693354e-01 3.96991730e-01 1.10041809e+00 -3.20459306e-01 -6.70082346e-02 -8.17485511e-01 -3.10005695e-01 2.42459938e-01 -1.42025435e+00 1.81927121e+00 -6.85100019e-01 3.65928680e-01 1.15282796e-01 -6.53868496e-01 1.26072454e+00 -5.51371425e-02 4.14400637e-01 -1.23432386e+00 -2.90899009e-01 2.33620599e-01 -1.97448313e-01 9.06931236e-02 6.64736092e-01 6.04188293e-02 2.17808023e-01 2.35113755e-01 -1.58770666e-01 -1.86516382e-02 -1.42068490e-01 -3.18730902e-03 7.30855465e-01 4.46347982e-01 2.62915134e-01 -1.24945439e-01 8.25632930e-01 -5.85429490e-01 7.96812356e-01 4.85328406e-01 -4.33933316e-03 1.18176448e+00 5.73066529e-03 -4.27019954e-01 -1.09289598e+00 -1.31009018e+00 -3.20408016e-01 9.01789069e-01 6.45272136e-01 -4.85912450e-02 -4.30161536e-01 -4.20445293e-01 -2.19601631e-01 2.71809369e-01 -5.81187725e-01 -3.10576912e-02 -9.89920795e-01 -5.95024586e-01 -2.38258224e-02 5.18363476e-01 8.76639187e-01 -7.46299267e-01 -2.54972696e-01 1.20775215e-01 -5.22563517e-01 -1.46559095e+00 -9.09357786e-01 -2.66225338e-01 -8.55554223e-01 -8.52473617e-01 -8.67951334e-01 -5.98899484e-01 6.67458713e-01 8.84555757e-01 1.13651574e+00 -6.78307610e-04 -1.14129223e-01 5.27657121e-02 -3.08161885e-01 4.31392819e-01 -1.98570207e-01 -1.28835440e-01 2.17051990e-03 1.86062619e-01 -1.65085927e-01 -7.91873276e-01 -9.77499008e-01 7.97356904e-01 -8.81226540e-01 3.88711154e-01 7.78432429e-01 1.05056524e+00 9.89048123e-01 -2.35688761e-02 4.32351977e-01 -6.38341308e-01 3.19122702e-01 -1.16352275e-01 -7.79542267e-01 3.49128753e-01 -8.16628993e-01 5.69858141e-02 6.20587587e-01 -6.01034939e-01 -1.37657320e+00 -6.50357977e-02 5.34880534e-02 -5.62658370e-01 -2.72492133e-02 3.05989571e-02 -2.73196489e-01 -3.52485001e-01 5.93749821e-01 2.63110727e-01 -2.03282863e-01 -6.67388320e-01 5.36910117e-01 4.86730099e-01 1.08618116e+00 -7.96955943e-01 1.37452900e+00 6.32324398e-01 -4.25645970e-02 -5.02917826e-01 -1.03687191e+00 -4.40136731e-01 -7.72261977e-01 8.20281953e-02 6.69370234e-01 -1.31743097e+00 -2.68594384e-01 2.28210598e-01 -9.21483874e-01 -2.07298860e-01 -2.53256828e-01 4.68269616e-01 -5.82282007e-01 4.83770728e-01 -7.26505101e-01 -3.62688720e-01 -4.51373905e-01 -1.25487459e+00 1.19394100e+00 4.58853245e-01 2.41724491e-01 -5.80903709e-01 -4.59266305e-02 5.07613122e-01 6.09270573e-01 2.56921768e-01 5.02807498e-01 -9.47416723e-02 -8.61955047e-01 2.40544319e-01 -8.06637704e-01 2.53908664e-01 3.85030210e-01 -3.12990934e-01 -9.07207966e-01 -5.85222304e-01 -7.75494352e-02 -1.43488362e-01 8.08561802e-01 4.99836095e-02 1.08025002e+00 -1.41894415e-01 -6.62540551e-03 1.00116801e+00 1.45337951e+00 -2.11509559e-02 9.70511913e-01 6.07032478e-01 7.67929614e-01 4.91779506e-01 9.97414887e-01 8.71145278e-02 4.94046032e-01 1.24636459e+00 9.35527533e-02 -5.39934218e-01 -5.94143629e-01 -3.23504061e-01 3.85353893e-01 7.52938449e-01 -2.44284481e-01 3.10890257e-01 -4.02961731e-01 2.17744917e-01 -1.62363195e+00 -9.72881496e-01 5.08073494e-02 2.63980174e+00 1.10698366e+00 -1.17463749e-02 5.58303716e-03 -1.50083527e-01 7.89887488e-01 3.49913448e-01 -5.71427822e-01 1.06890947e-01 -4.37618226e-01 2.29982227e-01 3.56316507e-01 5.63988328e-01 -9.13205862e-01 8.75321269e-01 5.21484566e+00 9.61343110e-01 -1.24096525e+00 1.26047134e-01 7.25511312e-01 7.84904137e-02 -3.08310628e-01 -1.55850336e-01 -8.66787136e-01 4.86100823e-01 4.00462717e-01 -9.76276472e-02 7.11891651e-01 4.47397619e-01 1.14879765e-01 9.10666212e-02 -9.79999602e-01 1.08314705e+00 1.08492129e-01 -1.07359314e+00 8.56923833e-02 -2.22623106e-02 9.35714602e-01 -5.08366041e-02 3.60017687e-01 3.07088584e-01 2.40310475e-01 -9.88355160e-01 4.53144789e-01 5.03146827e-01 1.34632337e+00 -7.20100939e-01 4.85339910e-01 4.46694717e-02 -1.56965387e+00 6.74001221e-03 -4.29709643e-01 4.74998295e-01 2.14849133e-03 4.55257475e-01 -1.01059526e-01 1.02596927e+00 9.07606840e-01 6.76250935e-01 -7.54911721e-01 6.46015882e-01 -1.72406167e-01 -4.54288609e-02 -6.18558340e-02 1.09848070e+00 -1.30462557e-01 -5.46029568e-01 4.90295798e-01 9.07256007e-01 4.75039035e-01 2.67105967e-01 1.59147695e-01 1.00837314e+00 -4.81950454e-02 -5.68950623e-02 -3.02721679e-01 5.93220353e-01 6.27661884e-01 1.31080294e+00 -3.79763663e-01 -1.05186366e-01 -5.56572378e-01 1.07925081e+00 2.96012044e-01 5.19530177e-01 -7.76755273e-01 -1.60078302e-01 5.83424807e-01 1.97576791e-01 3.93531680e-01 -4.84172367e-02 -1.59212053e-01 -1.43616283e+00 2.44587749e-01 -1.10105097e+00 3.35889786e-01 -9.76560771e-01 -1.25872779e+00 7.84336150e-01 -9.96893551e-03 -1.69971144e+00 -7.26161823e-02 9.82355140e-03 -3.60015661e-01 1.16461802e+00 -1.94837081e+00 -1.25398970e+00 -7.68897057e-01 5.85604429e-01 5.71381927e-01 6.36377782e-02 3.08155864e-01 4.56986427e-01 -4.75495338e-01 9.08806741e-01 -2.05112547e-02 3.55385281e-02 1.26037753e+00 -9.91229236e-01 4.83975083e-01 1.04515517e+00 8.50886777e-02 7.04400182e-01 6.13530278e-01 -4.85293180e-01 -1.23926938e+00 -1.18336713e+00 4.31560338e-01 -3.33970040e-01 4.43805456e-01 -1.68698102e-01 -1.35387206e+00 4.90822196e-01 -1.13189429e-01 4.67588127e-01 1.27060369e-01 -1.87486589e-01 -8.33284378e-01 -5.47698975e-01 -1.13278115e+00 7.02047944e-01 1.30338109e+00 -5.79418898e-01 -4.18403566e-01 -1.56812742e-01 1.08723772e+00 -8.61874640e-01 -1.23927033e+00 7.52164423e-01 5.44910431e-01 -1.22382283e+00 1.51612008e+00 -2.67657936e-02 6.85968339e-01 -6.13264203e-01 -3.33866298e-01 -1.25614429e+00 -5.60074151e-01 -5.98482072e-01 -1.12608589e-01 1.37532580e+00 9.58322547e-03 -6.36276662e-01 3.43956739e-01 3.48080516e-01 5.88141978e-02 -7.28604019e-01 -8.27044487e-01 -9.24298704e-01 9.81552526e-02 1.73355207e-01 8.80174041e-01 1.10287547e+00 -5.33319473e-01 1.72928125e-01 -5.06057382e-01 4.73486185e-01 9.64061439e-01 5.08975148e-01 9.17150438e-01 -9.95552838e-01 -4.24310625e-01 -3.96584928e-01 -7.94155002e-02 -1.40771866e+00 -7.39368573e-02 -4.77567464e-01 -2.84880353e-03 -1.11597466e+00 3.50936949e-01 -5.34170032e-01 -4.65574354e-01 4.04484905e-02 -4.90695983e-01 4.59681273e-01 2.35133708e-01 4.07292902e-01 -4.24947828e-01 6.14489317e-01 1.75193965e+00 1.91106111e-01 -2.82236665e-01 -1.41278639e-01 -7.97530413e-01 3.89012873e-01 5.54869533e-01 1.65677443e-02 -3.22099268e-01 -4.33385134e-01 2.05752254e-02 3.87584746e-01 4.20257568e-01 -7.97482312e-01 7.98714086e-02 -2.54162580e-01 4.83336717e-01 -5.93675017e-01 2.53227293e-01 -7.11789608e-01 2.26573855e-01 -4.57477979e-02 -4.35252875e-01 5.60494326e-02 -1.88665777e-01 5.95957637e-01 -3.66822392e-01 3.86521518e-01 1.13602507e+00 8.86532366e-02 -5.92299819e-01 5.14229178e-01 6.23472989e-01 1.19285755e-01 6.35226786e-01 -2.78118879e-01 -6.76302016e-01 -3.09874147e-01 -4.14945930e-01 1.83358938e-01 8.17966223e-01 7.27800906e-01 7.21917391e-01 -1.51206672e+00 -8.37558806e-01 3.37785244e-01 2.26083636e-01 2.94993967e-01 4.84141260e-01 1.00674915e+00 -3.74020301e-02 1.30832285e-01 -2.99468875e-01 -4.92999583e-01 -1.18661726e+00 6.48996174e-01 3.02652299e-01 -4.06219482e-01 -1.10262442e+00 5.45455098e-01 6.30249977e-01 -2.79013216e-01 1.94790348e-01 -1.64088607e-01 -2.46259630e-01 -2.96847224e-01 8.24091077e-01 3.52015555e-01 4.17810902e-02 -8.19085658e-01 -1.09768815e-01 1.02707207e+00 -2.63604611e-01 -1.06194541e-01 1.17068470e+00 -6.57279909e-01 8.19759667e-02 1.44303843e-01 1.08117115e+00 2.16427580e-01 -1.54899752e+00 -8.44987333e-01 -1.63245559e-01 -9.58606005e-01 8.58582184e-02 -6.36464298e-01 -1.31074882e+00 6.80795670e-01 7.33247757e-01 -3.18249106e-01 1.49003994e+00 -1.74531475e-01 8.23993266e-01 -5.63210025e-02 5.43026149e-01 -9.60878074e-01 2.45976016e-01 2.31370121e-01 1.21568048e+00 -1.41951287e+00 3.16734254e-01 -6.83942556e-01 -4.84861791e-01 1.10689437e+00 9.08516109e-01 -3.56151648e-02 1.73014447e-01 1.07788965e-01 8.41445774e-02 1.22509040e-01 -6.44628584e-01 -1.96251214e-01 5.51792085e-01 6.13746464e-01 4.54617947e-01 -2.15755686e-01 -2.37732470e-01 2.62866467e-01 -1.70322746e-01 -1.95128366e-01 4.58631366e-01 3.82442445e-01 -1.27258211e-01 -1.02351475e+00 -5.66362083e-01 5.38752452e-02 -2.15837330e-01 -1.66068092e-01 4.09051031e-02 8.14361691e-01 -5.29357642e-02 8.36981237e-01 7.82682970e-02 -4.78516787e-01 4.70801562e-01 -6.18235767e-01 5.76253057e-01 -2.93909818e-01 -3.61624748e-01 3.66619229e-01 -3.45316201e-01 -9.74479973e-01 -4.71623361e-01 -4.85934287e-01 -1.00672412e+00 -2.47738421e-01 -2.63187319e-01 -2.02207997e-01 3.39532316e-01 5.97567558e-01 3.84045243e-01 4.90936846e-01 1.02075922e+00 -9.43119764e-01 -7.76324213e-01 -7.60495722e-01 -4.71368968e-01 7.04459369e-01 4.68003392e-01 -6.98647916e-01 -4.97833818e-01 -4.18660976e-02]
[10.909940719604492, -2.101102113723755]
942bad4b-c30b-499b-b5bd-2baecf657fc4
multi-image-steganography-using-deep-neural
2101.00350
null
https://arxiv.org/abs/2101.00350v1
https://arxiv.org/pdf/2101.00350v1.pdf
Multi-Image Steganography Using Deep Neural Networks
Steganography is the science of hiding a secret message within an ordinary public message. Over the years, steganography has been used to encode a lower resolution image into a higher resolution image by simple methods like LSB manipulation. We aim to utilize deep neural networks for the encoding and decoding of multiple secret images inside a single cover image of the same resolution.
['Yugant Rana', 'Mansi Anand', 'Japsimar Singh Wahi', 'Abhishek Das']
2021-01-02
null
null
null
null
['image-steganography']
['computer-vision']
[ 1.33080792e+00 3.45213771e-01 1.01009332e-01 -2.15061858e-01 -4.12689418e-01 -3.21230978e-01 5.01589000e-01 -5.01306713e-01 -3.09543729e-01 7.14565575e-01 -7.20570832e-02 -4.21873569e-01 5.59524655e-01 -1.36222816e+00 -7.96947300e-01 -7.89512038e-01 -4.18076187e-01 -3.39477301e-01 2.61324316e-01 -6.48849905e-01 4.40499693e-01 5.56807518e-01 -1.13962817e+00 9.39670444e-01 -1.36685476e-01 1.00766623e+00 -2.25444091e-03 9.82235670e-01 1.67302527e-02 7.92582512e-01 -8.36983681e-01 -4.32401121e-01 6.52928233e-01 -7.67563045e-01 -7.88795054e-01 8.98526013e-02 1.50615335e-01 -5.14308631e-01 -7.45941460e-01 1.44743693e+00 1.32685274e-01 -6.91807508e-01 1.02049738e-01 -5.92069209e-01 -9.20247674e-01 8.89037549e-01 -3.97103578e-01 3.77809927e-02 3.35226893e-01 -1.20807961e-01 4.93134260e-01 -2.26244286e-01 7.45384336e-01 1.28472698e+00 5.02922595e-01 6.95100188e-01 -1.06658769e+00 -9.18272197e-01 -8.21208417e-01 1.24817692e-01 -1.65224826e+00 -4.20422316e-01 7.09477186e-01 3.23734790e-01 9.14149284e-01 5.34477353e-01 6.43567801e-01 6.86144769e-01 9.91085589e-01 1.81862246e-02 1.54817009e+00 -6.42871499e-01 -3.42254251e-01 3.77103686e-01 -7.17070043e-01 8.10538352e-01 6.03408217e-01 4.51970905e-01 -2.88259566e-01 1.29080459e-01 1.10236359e+00 3.57666537e-02 -5.21424055e-01 1.22821033e-01 -1.21057475e+00 1.24958646e+00 6.74899042e-01 5.79827368e-01 2.28179887e-01 3.83004606e-01 2.07490712e-01 8.42458129e-01 -5.19751906e-02 5.72326541e-01 1.67884052e-01 5.10902107e-01 -7.87947536e-01 -2.58835614e-01 1.09995413e+00 5.78444064e-01 6.86174214e-01 2.08577588e-01 6.66740239e-01 1.50874630e-02 3.40380758e-01 7.37400591e-01 2.07831025e-01 -9.35303569e-01 4.13335532e-01 1.46947771e-01 -2.66868800e-01 -1.40810061e+00 1.22829646e-01 1.87513784e-01 -1.22177517e+00 8.13398719e-01 -1.97895288e-01 1.36062980e-01 -1.07463646e+00 1.13132977e+00 -3.20095718e-01 -2.11650327e-01 7.16517150e-01 5.31250000e-01 9.81507182e-01 1.11947739e+00 -6.69359922e-01 -9.72833186e-02 1.23842585e+00 -7.24450707e-01 -8.28498781e-01 -3.90928984e-01 1.17264234e-01 -7.89230525e-01 -2.55586118e-01 2.45873213e-01 -1.24349725e+00 -4.43168342e-01 -1.59736693e+00 -6.34282529e-02 -7.21515834e-01 -7.86819994e-01 1.91780895e-01 1.11669493e+00 -1.20925820e+00 7.95991540e-01 3.26567590e-02 3.31022888e-01 5.71972489e-01 7.54088521e-01 -8.55267882e-01 8.86723306e-03 -1.86533725e+00 8.58336270e-01 1.01513171e+00 3.53729278e-02 -5.66524923e-01 2.83692032e-01 -1.13274121e+00 -2.27603968e-03 -9.13639367e-02 -2.00785905e-01 5.56837320e-01 -1.17720962e+00 -1.47012162e+00 1.27652931e+00 1.94411188e-01 -7.86664009e-01 9.36820433e-02 5.75115323e-01 -8.49633932e-01 2.98408985e-01 -6.22424483e-01 5.88536620e-01 1.55731511e+00 -1.23463023e+00 -6.28277242e-01 -1.67765897e-02 -1.90576278e-02 -2.63647944e-01 3.79169792e-01 1.26497954e-01 3.37680340e-01 -4.46504384e-01 4.90076065e-01 -8.85334969e-01 -9.83285680e-02 -2.24387586e-01 -2.71355927e-01 7.65794933e-01 1.19124973e+00 -8.58600676e-01 7.91474462e-01 -2.26429439e+00 1.16893500e-01 4.54722524e-01 3.87439072e-01 5.27955651e-01 -5.23402207e-02 5.05552530e-01 -1.79612115e-01 5.94285011e-01 -3.58490497e-01 3.32121670e-01 -4.88476574e-01 2.67373204e-01 -5.26656866e-01 7.90123165e-01 -1.59418598e-01 1.09533679e+00 -4.05634075e-01 -4.85199392e-01 3.58118229e-02 1.05932903e+00 -1.99298203e-01 -1.40144497e-01 3.85347188e-01 5.79832911e-01 -1.50461486e-02 2.63449222e-01 1.12968802e+00 -4.38326240e-01 6.25749409e-01 -1.07579557e-02 -1.24749340e-01 2.57146716e-01 -8.97197604e-01 9.87112522e-01 -6.71115667e-02 1.12479210e+00 -2.11685151e-02 -6.61467671e-01 1.05353355e+00 5.49964190e-01 1.05906114e-01 -6.51020050e-01 4.62068081e-01 4.94013309e-01 1.23368740e-01 -4.49181885e-01 7.23997831e-01 -3.59497160e-01 -2.62233794e-01 6.27315223e-01 -6.07915282e-01 -2.59208262e-01 -3.75392258e-01 -3.36598814e-01 9.34713721e-01 -5.03243625e-01 5.90175331e-01 3.40900123e-01 7.01222718e-01 -4.97925311e-01 5.14928065e-02 8.29082251e-01 -3.74211185e-02 6.07492208e-01 1.70102835e-01 -9.02309537e-01 -1.72543013e+00 -5.91836572e-01 -6.72682449e-02 3.12892765e-01 4.90743995e-01 1.10217452e-01 -5.97705483e-01 -2.66957760e-01 -2.84199953e-01 -4.84070260e-05 -3.97814274e-01 -1.41210526e-01 -1.17766798e+00 -3.48517716e-01 9.34017301e-01 -5.26299849e-02 1.47581530e+00 -1.50909269e+00 -9.37167585e-01 2.52023071e-01 -1.42914280e-01 -1.35062516e+00 4.85909581e-02 2.16988698e-02 -7.26755142e-01 -7.32490242e-01 -7.42009699e-01 -1.23387456e+00 7.90372014e-01 4.61467952e-01 7.50907481e-01 5.30892730e-01 -1.74450874e-01 -3.36783737e-01 -3.27221632e-01 -2.13393476e-02 -1.28997147e+00 6.28462732e-02 -2.36281469e-01 -1.67816877e-01 1.33658290e-01 -5.23874104e-01 -4.89081621e-01 3.11101321e-02 -1.30066037e+00 4.26489174e-01 8.62031579e-01 6.52034044e-01 3.46155226e-01 7.43312895e-01 -2.39291787e-01 -9.84807372e-01 1.44975469e-01 5.69625087e-02 -6.46240652e-01 1.33587956e-01 -4.56120193e-01 1.00418575e-01 4.12531972e-01 -3.40363175e-01 -4.71263468e-01 -3.42875004e-01 -1.96136996e-01 2.06980214e-01 -1.45049561e-02 1.88778028e-01 3.26863979e-03 -1.11221731e+00 2.06476420e-01 8.02311361e-01 4.00620580e-01 -1.25025883e-01 1.46131562e-02 8.96656036e-01 5.76714694e-01 5.84532738e-01 1.22361386e+00 9.09152031e-01 3.82938504e-01 -5.89766562e-01 -1.85549766e-01 3.89454156e-01 -5.72826624e-01 1.42837897e-01 8.01627994e-01 -7.14355826e-01 -7.55122960e-01 7.70374119e-01 -1.29843676e+00 6.76935017e-02 1.10206865e-01 -1.62624381e-02 -4.55608726e-01 4.59882110e-01 -8.91785204e-01 -3.74707013e-01 -3.90782744e-01 -1.13040686e+00 5.36547303e-01 2.75138229e-01 1.02869391e-01 -8.11911643e-01 -7.93457255e-02 1.85042173e-01 7.49240398e-01 6.01608992e-01 6.37304723e-01 -3.08335930e-01 -1.17553031e+00 -6.66416109e-01 -4.45505500e-01 3.72033149e-01 3.89605016e-01 -3.68120909e-01 -7.09884524e-01 -7.33822942e-01 4.14083660e-01 1.35142818e-01 1.09825635e+00 -2.44469997e-02 1.10529661e+00 -8.92321289e-01 -1.97739944e-01 1.18664610e+00 1.99936283e+00 7.06310868e-01 1.67661345e+00 9.10830736e-01 4.46210295e-01 1.55754611e-01 -1.97743997e-01 -6.00730292e-02 -1.02847934e-01 2.42830485e-01 5.19453645e-01 -1.37957931e-01 1.62854299e-01 -7.28982016e-02 3.35514039e-01 4.73825604e-01 -2.15582952e-01 -4.14257139e-01 -5.26279747e-01 1.62283964e-02 -8.90555084e-01 -1.37189341e+00 2.40043893e-01 1.82862115e+00 9.29807067e-01 2.97022372e-01 -6.78824186e-01 4.63229775e-01 1.18695271e+00 8.92529786e-01 -1.11483507e-01 -9.32033122e-01 -3.84096622e-01 2.44982749e-01 1.28497005e+00 6.70706630e-01 -1.04161894e+00 8.48998487e-01 7.88905621e+00 5.73512852e-01 -1.70154214e+00 -9.63767916e-02 3.68069738e-01 5.28501511e-01 -4.02167410e-01 -6.47445917e-02 -8.59003186e-01 3.91749829e-01 1.08535421e+00 -9.37256310e-03 8.58103752e-01 2.53771693e-01 -4.41152871e-01 -1.16518229e-01 -5.46946943e-01 7.12494314e-01 2.24629834e-01 -1.73094177e+00 3.11212271e-01 6.37863874e-01 9.18404162e-01 -5.39657772e-01 4.55482960e-01 -2.42899358e-01 -2.37713993e-01 -1.54264081e+00 2.10515276e-01 1.72513634e-01 1.40034401e+00 -8.43861222e-01 8.35948110e-01 3.43085751e-02 -9.39013720e-01 -3.99234407e-02 -5.34046888e-01 -3.56311612e-02 1.91742197e-01 -9.95874107e-02 -6.93231404e-01 1.24876447e-01 5.80184281e-01 2.78622448e-01 -2.91094687e-02 3.71103615e-01 -1.95730537e-01 2.03219518e-01 7.78074414e-02 3.05609047e-01 3.83756578e-01 3.26245204e-02 8.38564694e-01 9.95271206e-01 4.45326924e-01 2.60361075e-01 -4.76671636e-01 7.64254034e-01 -2.75025249e-01 -4.92358327e-01 -1.19757903e+00 -3.21052074e-01 2.02535346e-01 6.98998988e-01 -8.16548049e-01 -4.13033575e-01 -2.26607963e-01 1.22022223e+00 -6.15844309e-01 1.65016279e-01 -6.94109917e-01 -8.38903666e-01 3.32008570e-01 1.20192930e-01 9.67172801e-01 -2.77493447e-01 -1.42078608e-01 -8.10207605e-01 -4.38096732e-01 -1.15781271e+00 -9.17028785e-02 -4.99339283e-01 -2.84153014e-01 8.10481191e-01 -2.77470976e-01 -1.32208848e+00 -3.29080105e-01 -4.77655888e-01 -1.90506026e-01 1.02078366e+00 -1.68528461e+00 -1.00744665e+00 -4.66255322e-02 3.83779168e-01 1.23232342e-01 -6.71545863e-01 1.08683264e+00 -2.27706090e-01 4.11474854e-02 2.89883912e-01 3.44960660e-01 5.77569723e-01 3.56065035e-01 -5.98917782e-01 9.53218520e-01 8.07442248e-01 -2.61311978e-01 4.73922253e-01 8.77267778e-01 -7.65609443e-01 -1.21274757e+00 -5.26058555e-01 1.04230726e+00 2.31161892e-01 1.92857116e-01 -1.92927957e-01 -1.11994326e+00 8.35796356e-01 6.36646271e-01 -1.70885041e-01 3.44082803e-01 -1.11175370e+00 -5.49989462e-01 6.36496320e-02 -1.80413485e+00 3.07977110e-01 3.67537796e-01 -8.65760386e-01 -3.47783208e-01 -3.49405915e-01 9.44145381e-01 -8.61726701e-01 -8.10569882e-01 2.88247198e-01 8.53954434e-01 -1.06407917e+00 1.25610244e+00 1.70728285e-02 9.22961473e-01 -3.30052078e-01 -3.89800876e-01 -6.12959802e-01 -3.21255654e-01 -8.36169958e-01 -7.73410052e-02 3.18302780e-01 2.14967299e-02 -9.24131632e-01 6.53926671e-01 9.15016085e-02 8.44833970e-01 -1.23507321e-01 -1.13084567e+00 -4.99167323e-01 -1.01540007e-01 3.08408588e-01 1.11991525e+00 8.04946542e-01 -3.59429836e-01 -3.27053279e-01 -1.11036015e+00 5.17219663e-01 9.96433377e-01 2.32639667e-02 4.38636869e-01 -8.88623416e-01 1.56002894e-01 -2.14599609e-01 -9.66972947e-01 -6.36002004e-01 -4.23595682e-02 -6.66815281e-01 2.77187768e-02 -1.08173680e+00 5.10662384e-02 -1.22989938e-01 -1.35180607e-01 1.48307174e-01 5.51747918e-01 1.18428934e+00 3.01480383e-01 3.41201276e-01 -1.77013963e-01 -1.29272535e-01 1.52904391e+00 -4.16845173e-01 2.31924474e-01 -7.40899518e-02 -6.52183890e-01 5.74014843e-01 9.71433580e-01 -8.71854842e-01 2.75220513e-01 -1.65610909e-01 6.78223968e-01 3.75871271e-01 4.36019033e-01 -1.08211088e+00 -1.31767496e-01 -6.80899993e-02 4.55680639e-01 -1.79178283e-01 3.17132175e-01 -1.19235075e+00 6.46666884e-01 1.13004267e+00 -4.94196713e-01 -2.00872466e-01 -1.61510110e-01 3.79571259e-01 -2.94160306e-01 -5.83781660e-01 1.15565014e+00 -5.77731669e-01 -1.20496166e+00 -1.52160630e-01 -5.83466053e-01 -6.68360114e-01 8.54747236e-01 -6.92879379e-01 -4.47102726e-01 -6.25485420e-01 -5.69879174e-01 -7.35921085e-01 8.59088778e-01 2.47732982e-01 1.33238733e+00 -1.27345693e+00 -7.07826436e-01 8.73053968e-01 -4.21478212e-01 -3.49436879e-01 -8.43452364e-02 1.30672753e-01 -1.39570951e+00 5.25017083e-01 -7.05854714e-01 -2.04298139e-01 -1.86078298e+00 3.30416352e-01 6.83882236e-01 -4.07744735e-01 -1.04569304e+00 6.98981285e-01 -2.10127890e-01 4.01126236e-01 -2.41169021e-01 4.35607433e-01 -3.63039583e-01 -4.82032567e-01 1.21959984e+00 1.23271108e-01 -5.79956949e-01 -9.51047301e-01 -6.59478456e-02 6.93021655e-01 -1.53291911e-01 -2.97530711e-01 1.24641132e+00 -6.28393471e-01 -7.58815229e-01 -7.42077827e-04 1.63949108e+00 3.41576859e-02 -6.83657467e-01 -1.99425936e-01 -4.47826117e-01 -8.24144483e-01 7.95509070e-02 -3.39283168e-01 -1.17806804e+00 5.47874570e-01 7.50622928e-01 6.75608039e-01 9.71004605e-01 -3.57155710e-01 1.33836472e+00 5.49451649e-01 7.89306819e-01 -6.99722826e-01 -3.30614984e-01 5.02513885e-01 7.15895772e-01 -1.42967427e+00 1.92155212e-01 -2.69080967e-01 -3.30429435e-01 1.59044659e+00 -2.94924647e-01 -2.35328034e-01 5.66651583e-01 4.42108452e-01 1.99701697e-01 -1.83455482e-01 -3.19108009e-01 2.51754373e-01 3.67808789e-02 5.72261930e-01 -1.24251202e-03 -2.17785710e-04 -7.39837810e-02 -5.60831130e-01 -2.66840726e-01 1.85092375e-01 1.12393951e+00 1.13052332e+00 -8.54978502e-01 -1.18121684e+00 -9.48315203e-01 -1.81249499e-01 -9.79747474e-01 -1.82769984e-01 -9.39310193e-02 6.91100359e-01 2.24607959e-01 6.62601471e-01 5.10009490e-02 -6.73528910e-01 -5.05505800e-01 -1.86254919e-01 6.14251196e-01 -1.85705319e-01 -4.06417608e-01 -3.28741431e-01 -2.58334637e-01 -3.51134956e-01 -8.07218373e-01 1.14996746e-01 -1.15350366e+00 -1.07907140e+00 7.41907284e-02 -8.47991854e-02 9.02646244e-01 7.98097014e-01 -2.34171793e-01 4.72860187e-01 1.01688838e+00 -8.16111028e-01 -1.29140541e-01 -3.24353904e-01 -9.20355737e-01 -6.26506582e-02 1.12104249e+00 4.85246569e-01 -5.84083200e-01 1.72667205e-01]
[4.327792644500732, 8.045413970947266]
81677405-05cb-449b-b9f8-0fdc8b3faa5b
adversarial-training-for-low-resource
2306.06384
null
https://arxiv.org/abs/2306.06384v1
https://arxiv.org/pdf/2306.06384v1.pdf
Adversarial Training For Low-Resource Disfluency Correction
Disfluencies commonly occur in conversational speech. Speech with disfluencies can result in noisy Automatic Speech Recognition (ASR) transcripts, which affects downstream tasks like machine translation. In this paper, we propose an adversarially-trained sequence-tagging model for Disfluency Correction (DC) that utilizes a small amount of labeled real disfluent data in conjunction with a large amount of unlabeled data. We show the benefit of our proposed technique, which crucially depends on synthetically generated disfluent data, by evaluating it for DC in three Indian languages- Bengali, Hindi, and Marathi (all from the Indo-Aryan family). Our technique also performs well in removing stuttering disfluencies in ASR transcripts introduced by speech impairments. We achieve an average 6.15 points improvement in F1-score over competitive baselines across all three languages mentioned. To the best of our knowledge, we are the first to utilize adversarial training for DC and use it to correct stuttering disfluencies in English, establishing a new benchmark for this task.
['Pushpak Bhattacharyya', 'Preethi Jyothi', 'Vineet Bhat']
2023-06-10
null
null
null
null
['automatic-speech-recognition']
['speech']
[ 1.91818580e-01 1.12590738e-01 2.39180267e-01 -2.94942081e-01 -1.15614963e+00 -8.89741004e-01 3.63318980e-01 -5.83108842e-01 -3.42308939e-01 1.04486775e+00 6.11684620e-01 -6.30058467e-01 8.72412145e-01 -2.20047142e-02 -7.29078293e-01 -4.05022204e-01 9.52164605e-02 4.89315718e-01 9.93293896e-03 -5.00487328e-01 -4.26254451e-01 1.57250047e-01 -8.46573651e-01 3.94510299e-01 1.17186594e+00 2.28553697e-01 3.71090651e-01 7.46104062e-01 2.68654257e-01 9.91132736e-01 -1.15791571e+00 -4.39345479e-01 3.55793089e-02 -6.61351323e-01 -1.10830176e+00 8.73595253e-02 3.09386224e-01 -2.44746953e-01 -3.97591174e-01 8.95761728e-01 5.58536410e-01 1.44055694e-01 3.28173310e-01 -5.25087357e-01 -7.03469932e-01 9.36638057e-01 9.47985426e-02 6.31447852e-01 4.87589598e-01 3.82273018e-01 7.53269851e-01 -9.97791588e-01 7.51248598e-01 1.26082587e+00 4.29149538e-01 1.33759201e+00 -1.04641998e+00 -5.63088953e-01 5.04846647e-02 3.41705084e-02 -1.21449471e+00 -8.77707124e-01 6.89490378e-01 -2.97133416e-01 1.59413612e+00 5.92422068e-01 1.79602310e-01 1.48892236e+00 -1.36830971e-01 7.82355428e-01 1.00614154e+00 -6.72852635e-01 5.73217496e-02 -5.41213602e-02 2.20092628e-02 3.82060766e-01 -4.25390512e-01 2.28087455e-01 -5.73722422e-01 1.78432196e-01 2.58191347e-01 -4.42011923e-01 -6.38860285e-01 7.32055247e-01 -1.27836049e+00 5.52921951e-01 -8.22671782e-03 6.09449804e-01 -4.25562561e-02 -1.54917806e-01 5.45039833e-01 8.29714239e-01 9.06916440e-01 4.03678685e-01 -6.86515450e-01 -4.43041027e-01 -7.98191011e-01 -1.21240504e-01 6.48326635e-01 9.49139416e-01 2.08833918e-01 6.67028964e-01 -1.81113794e-01 1.37588465e+00 -1.28613979e-01 7.63144016e-01 8.91660333e-01 -6.78271294e-01 9.22880411e-01 -1.01033732e-01 1.09996125e-01 -9.16001350e-02 -5.55078536e-02 -1.01976566e-01 -4.94246066e-01 -9.57307965e-02 3.00623775e-01 -4.52643305e-01 -1.31703913e+00 2.01033807e+00 -7.28925094e-02 4.99835871e-02 5.01225352e-01 9.48220730e-01 7.05797195e-01 9.13215160e-01 1.14171207e-01 -7.23831713e-01 8.55746567e-01 -1.19138288e+00 -1.02114451e+00 -4.01906788e-01 7.20195651e-01 -1.08359075e+00 1.66234350e+00 4.50876385e-01 -1.25623560e+00 -3.72931749e-01 -9.28349137e-01 -9.14269388e-02 5.61347939e-02 -1.00823501e-02 1.85959652e-01 8.30948651e-01 -1.17568135e+00 4.49651837e-01 -9.58470047e-01 -3.43398094e-01 -9.97796506e-02 2.26449057e-01 -4.49628651e-01 -1.88389882e-01 -1.60372508e+00 1.06515920e+00 8.04794058e-02 -1.28765360e-01 -9.49914098e-01 -4.72509265e-01 -7.62045205e-01 -3.58384013e-01 2.04293169e-02 -6.34612143e-03 1.75439739e+00 -1.26242590e+00 -1.72355628e+00 9.00231779e-01 -3.22544754e-01 -4.58373547e-01 5.39780915e-01 -3.84546191e-01 -1.03652847e+00 -2.25409880e-01 -1.67017102e-01 2.01828584e-01 6.28804982e-01 -9.13529813e-01 -2.76604801e-01 -1.82967827e-01 -4.51604337e-01 2.22904742e-01 -1.00631781e-01 6.39244437e-01 -7.82798454e-02 -1.12388217e+00 -1.61517069e-01 -1.06817603e+00 2.16806922e-02 -1.12135136e+00 -4.78585094e-01 -3.61161113e-01 7.49002516e-01 -1.25634611e+00 1.38238263e+00 -2.04475307e+00 1.67991325e-01 -3.11879277e-01 -3.60815138e-01 1.06344938e+00 -1.35125101e-01 4.25844073e-01 -9.56593677e-02 3.48861545e-01 -4.40197915e-01 -5.94120860e-01 -4.04780984e-01 5.31919181e-01 -3.92533869e-01 2.89929569e-01 5.78648925e-01 9.10474181e-01 -1.01509202e+00 -4.58607785e-02 1.87797755e-01 3.07572722e-01 -4.37572569e-01 5.20260274e-01 -3.19072694e-01 8.93195510e-01 1.64712682e-01 5.54898322e-01 6.05563760e-01 5.48787594e-01 2.52442032e-01 4.67570871e-01 -1.36591673e-01 1.17036641e+00 -4.03627902e-01 1.72493064e+00 -7.09145844e-01 4.09170777e-01 6.64463937e-02 -7.48680711e-01 6.68998361e-01 9.44042623e-01 -1.84929311e-01 -5.57476878e-01 -4.93101552e-02 5.31416059e-01 2.55462050e-01 -5.36224723e-01 3.34301919e-01 -5.50378203e-01 -3.00823480e-01 3.19351643e-01 4.61521745e-01 -3.17630023e-01 9.89342406e-02 8.46488699e-02 1.54862976e+00 -1.94263250e-01 2.25061715e-01 -1.28618598e-01 5.76802313e-01 -3.41900550e-02 7.09900022e-01 5.73507071e-01 -4.34665859e-01 9.48664844e-01 5.26113510e-02 -2.46800274e-01 -9.94912088e-01 -1.26512575e+00 1.57897294e-01 1.00481629e+00 -5.45215726e-01 -2.74377227e-01 -1.01830006e+00 -1.00962710e+00 -4.47863221e-01 1.08089113e+00 -8.52532759e-02 -1.26745164e-01 -1.28792787e+00 -4.18277144e-01 9.46559191e-01 3.80395770e-01 8.74543935e-02 -1.60359895e+00 6.22122288e-01 5.06944239e-01 -6.76524282e-01 -1.31299520e+00 -1.03157341e+00 2.67852068e-01 -5.05690634e-01 -6.06094778e-01 -6.45207584e-01 -1.08530092e+00 2.18028381e-01 1.62543342e-01 1.20534837e+00 -4.13731672e-02 1.50445953e-01 -1.61250696e-01 -6.39236271e-01 -2.08546951e-01 -1.42713928e+00 2.64427010e-02 4.35165048e-01 -3.04832250e-01 3.92222762e-01 -6.32209361e-01 2.36011576e-02 2.72903621e-01 -6.09408915e-01 -2.43380815e-01 2.36382291e-01 7.35046804e-01 4.31409329e-01 -5.95126748e-01 8.79932523e-01 -1.15493405e+00 6.24221683e-01 -4.66139108e-01 -1.76506892e-01 1.46643668e-01 -1.38509557e-01 -3.49883782e-03 1.26071191e+00 -5.94873130e-01 -1.28281724e+00 6.04766980e-02 -7.96877265e-01 -4.49461758e-01 -2.83292502e-01 1.05800577e-01 -6.07621133e-01 3.55072826e-01 8.90230775e-01 2.44036019e-01 -2.60987580e-01 -7.47471154e-01 4.69885290e-01 1.40170741e+00 8.94841433e-01 -2.82122642e-01 4.91877526e-01 -1.75544277e-01 -8.78748596e-01 -9.61406648e-01 -8.26090097e-01 -5.40276170e-01 -4.41538066e-01 1.78902652e-02 5.76678872e-01 -1.09852386e+00 -1.83373198e-01 8.01975608e-01 -1.55688059e+00 -4.47521240e-01 -1.69657856e-01 5.86733162e-01 -5.58902264e-01 4.23047185e-01 -1.08061421e+00 -5.88160753e-01 -5.77626288e-01 -1.08893561e+00 5.74122906e-01 -4.17066008e-01 -3.34432721e-01 -7.04975069e-01 3.74960661e-01 6.00941896e-01 4.12616968e-01 -1.60908595e-01 4.35743630e-01 -8.24281454e-01 -9.52393785e-02 1.23819120e-01 4.28216547e-01 1.15093291e+00 5.17829895e-01 -3.10656101e-01 -1.12486172e+00 -2.60754883e-01 2.46631652e-01 -5.80722690e-01 9.71079230e-01 1.15928538e-02 6.38049424e-01 -7.16943443e-01 1.34907022e-01 3.42202127e-01 7.68135965e-01 3.99955332e-01 7.13984728e-01 -3.56501639e-01 8.86335194e-01 3.12133372e-01 5.97284079e-01 2.27021193e-03 7.40876123e-02 7.32295930e-01 -5.47259860e-02 8.03832263e-02 -7.51086950e-01 -2.90701509e-01 1.02808905e+00 1.69284737e+00 -3.64222489e-02 -7.68683910e-01 -8.70643675e-01 9.03865278e-01 -1.39354420e+00 -9.67363238e-01 -2.19234392e-01 2.06363106e+00 1.59644794e+00 -1.23161405e-01 2.19603479e-02 8.48435685e-02 9.42454040e-01 1.76253170e-01 -1.89250126e-01 -9.14801717e-01 -1.46079913e-01 5.63313484e-01 2.14053512e-01 9.80093598e-01 -1.07080674e+00 1.70066237e+00 5.88130188e+00 8.99856031e-01 -1.30189049e+00 6.56644821e-01 4.05663341e-01 -1.78347617e-01 -3.64248604e-01 -2.64410555e-01 -6.77891731e-01 6.85763955e-01 1.56325829e+00 1.58314541e-01 9.25483346e-01 5.48627555e-01 5.47128558e-01 3.67306054e-01 -8.35939407e-01 6.69700623e-01 1.69499859e-01 -8.26239228e-01 -2.05286697e-01 -4.41402614e-01 8.12622786e-01 5.27287424e-01 -1.47183210e-01 3.13294709e-01 7.35876977e-01 -1.15839946e+00 7.89285481e-01 -1.71229631e-01 1.19538677e+00 -9.02275443e-01 6.09254777e-01 3.46975505e-01 -5.26558042e-01 4.00281698e-01 -2.74583757e-01 -1.19459465e-01 3.35948706e-01 7.36705244e-01 -1.34128773e+00 1.76212758e-01 3.67567807e-01 4.24683243e-01 -4.66829836e-02 4.26666737e-01 -6.90239072e-01 1.63417339e+00 -2.97161132e-01 1.45880893e-01 4.59895507e-02 1.51306286e-01 7.32651293e-01 1.61833072e+00 2.48988733e-01 1.17426768e-01 -5.57515435e-02 4.20000225e-01 -3.89601499e-01 2.42373228e-01 -5.76542258e-01 -1.79525718e-01 5.47006428e-01 7.34603941e-01 -1.06924295e-01 -1.87594712e-01 -5.20232856e-01 1.62633753e+00 6.58774137e-01 2.67594308e-01 -5.79270601e-01 -1.62836760e-01 1.09360635e+00 -8.31072032e-02 2.15658858e-01 -4.58833426e-01 -1.03262052e-01 -1.26267827e+00 2.51046121e-01 -1.16506600e+00 9.32918787e-02 -3.70815963e-01 -1.37275696e+00 1.24882543e+00 -6.48437321e-01 -1.21202815e+00 -6.47207439e-01 -2.11050600e-01 -5.73707163e-01 1.15227664e+00 -1.37111771e+00 -1.28617465e+00 2.84318209e-01 6.66479826e-01 1.05550182e+00 -2.45660111e-01 1.07540226e+00 4.22008455e-01 -6.09303951e-01 7.36107647e-01 2.22356364e-01 1.39903948e-01 9.50720012e-01 -1.28189611e+00 1.30692399e+00 1.33059943e+00 3.88310611e-01 3.94346029e-01 7.03135133e-01 -7.30544567e-01 -6.53695345e-01 -1.56903613e+00 1.51417112e+00 -5.13738692e-01 5.70914984e-01 -7.15776801e-01 -1.04270411e+00 9.16450858e-01 2.72100776e-01 1.92736134e-01 5.53572714e-01 -2.00069342e-02 -2.07497537e-01 2.39319369e-01 -1.10687673e+00 4.47137475e-01 1.46281040e+00 -5.55544913e-01 -7.66288817e-01 6.18282497e-01 1.33140326e+00 -4.59309280e-01 -4.83636528e-01 1.49113178e-01 -9.12162364e-02 -7.77939260e-01 6.03515267e-01 -8.32404494e-01 2.48833597e-01 -1.13840945e-01 -1.99224114e-01 -2.06081080e+00 -1.56132683e-01 -1.13850451e+00 4.79620807e-02 1.62462807e+00 6.23772562e-01 -4.24641848e-01 1.97587296e-01 7.34590665e-02 -8.31837714e-01 -1.09868489e-01 -1.21822739e+00 -1.23239493e+00 4.40285772e-01 -5.52021384e-01 3.70663553e-01 9.22406316e-01 3.05220187e-01 4.18502063e-01 -7.62691617e-01 4.11890894e-02 1.14114964e-02 -4.03604329e-01 2.59815574e-01 -6.38593972e-01 -2.23771840e-01 2.70356983e-01 -1.56190723e-01 -8.04737687e-01 6.30238891e-01 -1.03135002e+00 4.83597606e-01 -9.30893898e-01 -3.69421840e-01 -4.92899567e-01 -1.57769740e-01 6.58021808e-01 -4.60586190e-01 4.45239723e-01 1.16299346e-01 2.85726845e-01 -1.85013667e-01 4.81918573e-01 1.08483434e+00 9.47251618e-02 -4.39490318e-01 2.78434336e-01 -4.04090285e-01 5.74148238e-01 1.20357561e+00 -6.22655571e-01 -2.44585663e-01 -6.29495323e-01 -5.76683640e-01 2.45134130e-01 -2.30910495e-01 -9.19575751e-01 -4.00612980e-01 -2.77089715e-01 -2.47891039e-01 7.27637159e-03 6.45601004e-02 -1.98805973e-01 -2.50686575e-02 2.69323975e-01 -2.50963390e-01 -2.83631887e-02 2.49959454e-01 1.50118887e-01 -3.27897847e-01 -9.13995877e-02 9.78276134e-01 -3.12156618e-01 -5.08422554e-01 -1.71168730e-01 -8.33906174e-01 5.36599457e-01 6.40292883e-01 3.66816968e-01 -3.44231576e-01 -3.54798108e-01 -8.03905368e-01 -2.15735078e-01 3.96348834e-01 6.48907363e-01 2.48650312e-01 -1.10150480e+00 -1.09295762e+00 4.67665672e-01 -3.40720126e-03 -2.98298597e-01 1.29410028e-01 4.84009385e-01 -4.87188876e-01 5.68467975e-01 1.08426407e-01 -7.34503642e-02 -1.32960033e+00 5.99657953e-01 2.79632777e-01 -2.21670225e-01 -4.23791260e-01 1.16381872e+00 -3.77491787e-02 -6.78786933e-01 6.49410114e-02 -4.49877769e-01 1.99541137e-01 -5.25032520e-01 5.32383502e-01 1.98879883e-01 8.28412831e-01 -9.51240659e-01 -6.42626226e-01 -1.62426651e-01 -3.38043571e-01 -3.31569642e-01 9.97493446e-01 -3.14139068e-01 1.14646949e-01 3.94037664e-01 1.12021756e+00 7.26061285e-01 -9.98869598e-01 -7.92223066e-02 -1.38220817e-01 -2.18080088e-01 -1.24927297e-01 -1.33404326e+00 -8.28412712e-01 8.04556370e-01 3.07541758e-01 8.17182437e-02 1.00556064e+00 2.26883933e-01 1.31238997e+00 6.68324754e-02 3.51398975e-01 -9.94275868e-01 -2.43260592e-01 1.03395498e+00 1.10734379e+00 -1.09926736e+00 -9.44499910e-01 -6.19624138e-01 -1.04343808e+00 6.11117244e-01 4.21909302e-01 -8.71288031e-02 2.44163066e-01 4.51826185e-01 7.34747648e-01 5.51895380e-01 -7.52973616e-01 -3.61459076e-01 -1.13362577e-02 8.48955512e-01 7.56027400e-01 5.34185886e-01 -7.38761902e-01 6.35555387e-01 -5.40260792e-01 -2.47193038e-01 6.50412917e-01 6.50752425e-01 -3.00675988e-01 -1.60663617e+00 -2.63749480e-01 1.10245369e-01 -8.91911149e-01 -5.82226157e-01 -7.46716619e-01 2.89946169e-01 3.57891284e-02 1.47693086e+00 -1.14514001e-01 -5.13471127e-01 3.94290894e-01 4.29561526e-01 4.08612549e-01 -9.27331984e-01 -8.87673616e-01 2.12916303e-02 5.42373776e-01 -4.87827450e-01 -8.16932768e-02 -7.57030547e-01 -1.23814404e+00 -1.72919586e-01 -2.44498417e-01 2.16723204e-01 4.40609843e-01 1.03667998e+00 2.42058694e-01 3.26355010e-01 7.91907072e-01 -4.53545749e-01 -5.83591342e-01 -1.63860559e+00 -5.68502426e-01 5.64454973e-01 6.51091039e-01 -1.82720408e-01 -6.57309175e-01 3.20509374e-01]
[14.414555549621582, 6.879691123962402]
038c3421-0123-435a-a8ea-8cd032ee60c1
soft-language-clustering-for-multilingual
2306.07610
null
https://arxiv.org/abs/2306.07610v1
https://arxiv.org/pdf/2306.07610v1.pdf
Soft Language Clustering for Multilingual Model Pre-training
Multilingual pre-trained language models have demonstrated impressive (zero-shot) cross-lingual transfer abilities, however, their performance is hindered when the target language has distant typology from source languages or when pre-training data is limited in size. In this paper, we propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally. Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods. On the tasks of XTREME including text classification, sequence labeling, question answering, and sentence retrieval, both base- and large-size language models pre-trained with our proposed method exhibit consistent performance improvement. Furthermore, it provides substantial advantages for low-resource languages in unsupervised sentence retrieval and for target languages that differ greatly from the source language in cross-lingual transfer.
['Jie zhou', 'Yunbo Cao', 'Binghuai Lin', 'Fandong Meng', 'Yi Jing', 'Yongjing Yin', 'Yufan Jiang', 'Jiali Zeng']
2023-06-13
null
null
null
null
['clustering', 'zero-shot-cross-lingual-transfer', 'text-classification', 'cross-lingual-transfer']
['methodology', 'natural-language-processing', 'natural-language-processing', 'natural-language-processing']
[ 9.82724726e-02 -2.71759421e-01 -4.94006783e-01 -3.49069953e-01 -1.68442237e+00 -8.80004227e-01 5.82372069e-01 3.96073192e-01 -9.77655649e-01 8.60287189e-01 3.54581743e-01 -7.53934026e-01 2.86306620e-01 -5.05996644e-01 -8.44245315e-01 -9.48680639e-02 1.27713367e-01 6.68348849e-01 1.19831786e-01 -4.21772420e-01 -1.13815539e-01 -1.26585752e-01 -9.50189948e-01 5.87409556e-01 1.25651371e+00 4.57737029e-01 7.11619914e-01 4.68469501e-01 -4.46986020e-01 6.69544935e-01 -4.24350113e-01 -4.47231352e-01 -2.05606356e-01 -1.79747939e-01 -9.71983016e-01 -3.47073108e-01 5.90149879e-01 7.28758611e-03 -1.49783105e-01 7.51961350e-01 6.29109025e-01 1.12337500e-01 7.88083851e-01 -5.56425393e-01 -1.15445471e+00 1.00757527e+00 -2.84622848e-01 2.27416277e-01 5.70152342e-01 7.88538009e-02 1.04630208e+00 -1.15198767e+00 8.27583909e-01 1.32945013e+00 4.32007641e-01 7.77427018e-01 -1.28231871e+00 -6.43350244e-01 2.88266361e-01 7.87335075e-03 -1.43727636e+00 -7.17000365e-01 3.60673845e-01 -3.71384799e-01 1.55398130e+00 1.09882794e-01 1.15683442e-02 1.27167654e+00 2.80417167e-02 1.13213146e+00 9.78373408e-01 -8.47379267e-01 -6.60977662e-02 3.88558745e-01 1.24084413e-01 6.40819848e-01 -1.69648170e-01 -2.87904233e-01 -9.38747168e-01 -3.60436253e-02 1.22392587e-01 -2.51168966e-01 -3.76168042e-01 1.42782286e-01 -1.15146172e+00 7.88444936e-01 3.49489637e-02 4.99348819e-01 -1.45116612e-01 -1.08034983e-01 8.43498170e-01 6.99784815e-01 7.52869189e-01 5.28883934e-01 -8.86548340e-01 -7.17492923e-02 -1.00961769e+00 -3.27709585e-01 7.08468914e-01 1.26173925e+00 7.91640341e-01 7.58927241e-02 -4.28432524e-01 1.26412380e+00 7.02283233e-02 1.00166893e+00 9.58693922e-01 -1.99368343e-01 9.50226486e-01 4.34341550e-01 -2.56320834e-01 -2.90752977e-01 -3.89282615e-03 -3.31304908e-01 -5.81404626e-01 -7.49306083e-01 4.43688221e-02 -1.69949397e-01 -7.30044603e-01 2.03729796e+00 1.33806188e-02 -2.48567030e-01 6.56012416e-01 4.49458659e-01 9.09555674e-01 8.21041942e-01 5.15245318e-01 -1.95816785e-01 1.43873346e+00 -9.48533475e-01 -4.90878910e-01 -6.27930462e-01 1.09527647e+00 -1.11337388e+00 1.65728247e+00 -1.42402649e-01 -9.84608293e-01 -4.78064477e-01 -6.49010122e-01 -4.41223651e-01 -5.78662574e-01 3.03074419e-01 5.42818666e-01 4.76491094e-01 -1.16778898e+00 -1.03965297e-01 -5.18034101e-01 -6.92699790e-01 7.14297816e-02 -6.00113943e-02 -3.35238308e-01 -5.82218170e-01 -1.55472779e+00 9.78044093e-01 4.86539394e-01 -2.51156092e-01 -9.74449515e-01 -7.55958140e-01 -1.13023031e+00 1.03160828e-01 2.37502545e-01 -5.39426625e-01 1.32095134e+00 -6.97766662e-01 -1.41765714e+00 1.12408245e+00 -3.94052565e-01 -3.65785122e-01 1.30014643e-01 -5.11680782e-01 -4.43327665e-01 7.89809972e-02 4.94648159e-01 7.30683148e-01 6.36284292e-01 -6.94291174e-01 -3.69584322e-01 -1.73031330e-01 -7.34165385e-02 5.13031483e-01 -7.78215170e-01 4.13086385e-01 -7.25869358e-01 -6.47419393e-01 -4.95475978e-01 -7.20090032e-01 9.89090279e-02 -5.77303052e-01 -2.07851470e-01 -6.77798748e-01 5.01932323e-01 -8.69286895e-01 1.37788463e+00 -1.99224150e+00 -3.62710183e-04 -2.17179745e-01 -5.66196084e-01 4.71858084e-01 -5.97591639e-01 1.01838112e+00 2.85209507e-01 2.50588536e-01 -1.46610767e-01 -2.58669227e-01 7.71525949e-02 1.65342227e-01 -6.46840453e-01 -8.19783285e-02 3.28759491e-01 1.18178427e+00 -1.07837296e+00 -7.06356883e-01 -4.99300845e-02 2.88493425e-01 -3.67795855e-01 2.40883514e-01 -3.83016974e-01 2.99498022e-01 -4.35704410e-01 6.35955393e-01 5.57332858e-02 -2.15679675e-01 3.14226657e-01 1.03811257e-01 5.90982623e-02 7.67099202e-01 -3.92137617e-01 2.18841243e+00 -1.05036795e+00 5.18736124e-01 -9.72722173e-02 -6.97573602e-01 7.09380865e-01 6.70506418e-01 5.14998399e-02 -9.84270334e-01 -2.76930600e-01 4.78322178e-01 -2.54965186e-01 -5.69541276e-01 7.91835129e-01 -7.24083334e-02 -4.94401306e-01 7.32155681e-01 5.16082525e-01 -1.07083157e-01 4.98838365e-01 4.93958533e-01 1.01065934e+00 9.39544141e-02 3.61053944e-01 -3.87490481e-01 7.43527293e-01 -6.66084364e-02 1.63115144e-01 8.66471708e-01 2.51565367e-01 4.24516946e-02 -6.15535341e-02 1.74556509e-01 -6.52102053e-01 -1.07618368e+00 -3.14878285e-01 1.89655852e+00 -2.57651478e-01 -5.30940294e-01 -5.96719325e-01 -8.45989466e-01 1.56608477e-01 8.68782938e-01 -9.92078856e-02 -3.20615292e-01 -6.43925726e-01 -4.10285026e-01 9.12291527e-01 4.21715409e-01 1.44106895e-01 -1.24993706e+00 4.54320647e-02 4.30153370e-01 -4.99184579e-01 -1.42733490e+00 -1.00861382e+00 2.16899559e-01 -6.53978527e-01 -7.02244759e-01 -7.07424760e-01 -1.26825690e+00 7.41955638e-01 2.00357541e-01 1.51525593e+00 5.38523607e-02 -5.31769656e-02 8.39561880e-01 -4.42848802e-01 -1.84950709e-01 -4.27208453e-01 6.05593383e-01 2.20515266e-01 -3.27061087e-01 6.41799688e-01 -1.19386323e-01 -1.33754984e-01 7.54432157e-02 -1.02229106e+00 -3.07109028e-01 4.57711816e-01 8.62889767e-01 5.16479552e-01 -5.28880358e-01 9.48616683e-01 -1.02985036e+00 1.00976610e+00 -4.65308875e-01 -3.84311229e-01 9.32329118e-01 -4.87036914e-01 2.37432510e-01 6.86958194e-01 -5.10918617e-01 -1.20744121e+00 -4.41870093e-01 -6.52239546e-02 6.02950715e-02 5.62353581e-02 9.86014187e-01 8.74031633e-02 2.37816900e-01 7.32693255e-01 5.04834890e-01 -4.47773635e-01 -8.24468672e-01 6.27399683e-01 7.94638753e-01 3.58523220e-01 -1.17522204e+00 5.30423284e-01 -2.15100989e-01 -8.58570516e-01 -9.87248778e-01 -1.01323366e+00 -5.61709642e-01 -6.69961989e-01 1.12597279e-01 8.22208762e-01 -1.29189205e+00 -2.04535276e-01 3.00067335e-01 -1.30239642e+00 -5.64579129e-01 -1.41154245e-01 4.88649309e-01 -8.64784867e-02 3.00299019e-01 -9.99510586e-01 -5.86985469e-01 -7.00895786e-01 -1.00775599e+00 1.29639876e+00 -1.58214644e-01 -2.88408846e-01 -1.39947259e+00 1.83437720e-01 4.05880600e-01 4.71634358e-01 -7.27362335e-01 1.31354952e+00 -8.66388023e-01 -4.87134278e-01 -6.20977655e-02 8.29943642e-02 3.91409814e-01 7.13550076e-02 -3.55977893e-01 -7.95497537e-01 -6.71072602e-01 -3.67006540e-01 -1.15766227e+00 7.57620394e-01 7.51767755e-02 7.63050795e-01 -3.67897868e-01 -1.74350977e-01 3.87344033e-01 1.31910908e+00 -1.37327850e-01 1.69201326e-02 2.39753157e-01 5.23212671e-01 6.84172451e-01 5.39942265e-01 -2.01511502e-01 6.42900705e-01 4.61516768e-01 -3.87862653e-01 -6.43391311e-02 -2.06448898e-01 -5.72544515e-01 9.70793426e-01 1.79574168e+00 6.60053134e-01 -3.89505923e-01 -1.00538969e+00 7.23628640e-01 -1.70447028e+00 -5.60328186e-01 4.17986095e-01 2.17683029e+00 1.51056254e+00 -2.16420755e-01 -3.93286824e-01 -7.39518166e-01 4.76448029e-01 1.07172929e-01 -5.87785959e-01 -3.58133078e-01 -4.54646617e-01 3.76540065e-01 2.55943537e-01 7.95183003e-01 -9.18602884e-01 1.61177552e+00 6.21258640e+00 1.25725162e+00 -1.30275500e+00 4.15138155e-01 2.95338988e-01 -6.45101592e-02 -5.98732769e-01 -6.71643540e-02 -1.21421278e+00 3.60417217e-01 9.43501115e-01 -5.19718707e-01 3.58496547e-01 6.30136609e-01 -3.40596139e-01 5.01131900e-02 -1.23021090e+00 6.96997106e-01 3.16711575e-01 -1.01806259e+00 3.06122214e-01 -4.26169485e-01 7.60417223e-01 6.22329712e-01 6.10133372e-02 9.19660151e-01 5.41130841e-01 -8.15214694e-01 4.94117945e-01 2.12857708e-01 1.29690099e+00 -5.78952551e-01 4.35738206e-01 5.76262355e-01 -1.07978499e+00 4.05062079e-01 -4.22067285e-01 3.39470744e-01 2.63069987e-01 2.98481196e-01 -9.94607031e-01 5.83507419e-01 4.25295293e-01 6.54326499e-01 -7.82651484e-01 4.18860465e-01 -5.94139516e-01 9.53182042e-01 -2.74495721e-01 -1.98590219e-01 3.37546557e-01 -8.25920608e-03 3.24870616e-01 1.77330852e+00 2.33599156e-01 -3.20802808e-01 6.15838110e-01 3.40534478e-01 -4.33090538e-01 7.70949125e-01 -8.59873831e-01 -2.66069651e-01 6.42900050e-01 1.03785694e+00 -2.66351759e-01 -6.26529038e-01 -6.46540463e-01 9.10429299e-01 9.31535423e-01 7.43863940e-01 -1.77672744e-01 -2.42947429e-01 3.81051987e-01 -2.70293981e-01 4.80155945e-02 -4.10263181e-01 1.53661877e-01 -1.55668986e+00 2.30737031e-01 -1.13338566e+00 6.12546802e-01 -6.96397066e-01 -1.68165815e+00 7.81612396e-01 -1.43996954e-01 -9.35734272e-01 -6.60664380e-01 -6.21570647e-01 -1.74218938e-01 1.11097789e+00 -1.76841235e+00 -1.35218883e+00 5.78164160e-01 7.92528093e-01 8.61653090e-01 -5.62500417e-01 1.28201234e+00 5.86787343e-01 -5.06299853e-01 8.97801638e-01 4.16328937e-01 3.61114532e-01 1.23018813e+00 -1.05678844e+00 1.97726220e-01 9.98941660e-01 4.94546592e-01 1.05888212e+00 1.60782978e-01 -6.78477407e-01 -1.48079026e+00 -1.33839107e+00 1.49998307e+00 -6.25584483e-01 9.01964128e-01 -6.63321674e-01 -1.16678202e+00 8.97594750e-01 6.49375379e-01 -3.05655926e-01 1.13751543e+00 6.56275392e-01 -5.68285644e-01 -1.61970481e-01 -6.09366477e-01 7.26551712e-01 7.13964343e-01 -1.43631959e+00 -7.38266885e-01 6.99685514e-01 1.02620721e+00 -2.14309931e-01 -8.38531077e-01 1.26697734e-01 1.70345768e-01 -5.56702986e-02 8.04743171e-01 -9.25234556e-01 1.92912400e-01 4.64337319e-02 -2.92189717e-01 -1.34998810e+00 -6.84128031e-02 -5.75670421e-01 1.70863509e-01 1.56125402e+00 7.91168630e-01 -7.22933233e-01 3.72529626e-02 3.32760245e-01 -2.11038932e-01 -5.34893394e-01 -9.76534367e-01 -9.58235204e-01 4.86001462e-01 -6.10015452e-01 3.45608681e-01 1.11341643e+00 2.55052626e-01 9.27622139e-01 -1.57869786e-01 -6.11535981e-02 3.58200908e-01 5.80033846e-02 5.86285949e-01 -7.71823287e-01 -3.88264209e-01 -2.52114266e-01 1.72342077e-01 -1.43505514e+00 7.79750824e-01 -1.65673304e+00 2.18363017e-01 -1.27442896e+00 2.86764920e-01 -5.61086297e-01 -4.66526061e-01 8.44457269e-01 -4.64117318e-01 -7.78130069e-02 -5.66220842e-02 1.97850585e-01 -9.02085483e-01 7.78700531e-01 9.64521825e-01 -1.67251512e-01 7.94716254e-02 -4.60357428e-01 -6.56886935e-01 3.90997708e-01 4.93327707e-01 -6.55604243e-01 -4.97415513e-01 -1.19677246e+00 2.10777283e-01 2.30596572e-01 -1.63441584e-01 -5.16388893e-01 3.07712644e-01 2.33139265e-02 -3.54825519e-02 -4.24722373e-01 3.79498973e-02 -4.39385861e-01 -6.63118362e-01 1.44926846e-01 -7.36760318e-01 3.23725969e-01 4.27802831e-01 2.81041384e-01 -4.50491428e-01 -4.84256685e-01 2.85028547e-01 -2.43914455e-01 -7.71227598e-01 3.53804678e-01 -6.39614940e-01 8.15894306e-01 3.42213243e-01 4.31775957e-01 -4.75156605e-01 -3.64063412e-01 -3.01987708e-01 5.37214816e-01 3.98805946e-01 9.66203451e-01 3.75713140e-01 -1.30537331e+00 -8.80832195e-01 1.61557645e-01 5.89195073e-01 -2.18002394e-01 1.33464798e-01 6.54257059e-01 -5.52613027e-02 9.68589485e-01 3.01814377e-01 -6.95920467e-01 -1.12359965e+00 4.88991529e-01 -3.97745520e-02 -5.24095833e-01 -2.46498510e-01 9.71427560e-01 2.66055942e-01 -1.00432885e+00 2.25752890e-01 -5.40059432e-02 5.02657555e-02 -6.57017678e-02 4.31642860e-01 -2.91846484e-01 1.90165654e-01 -5.70826352e-01 -4.11288530e-01 4.41715330e-01 -4.71124351e-01 -3.79680693e-01 1.09382331e+00 -2.28127167e-01 -3.45855594e-01 6.31936848e-01 1.29580092e+00 3.37654799e-01 -6.52380645e-01 -9.65223849e-01 4.23093617e-01 1.44573515e-02 -1.74779102e-01 -9.43974614e-01 -5.73557854e-01 1.08087933e+00 5.90464212e-02 -3.72660458e-01 9.62633550e-01 2.17956379e-01 1.03676713e+00 9.11711991e-01 5.64235270e-01 -1.29356885e+00 7.28221014e-02 1.18818605e+00 7.71779776e-01 -1.28186142e+00 -3.64291161e-01 2.11959835e-02 -5.64306855e-01 7.65906513e-01 7.82230258e-01 3.75542760e-01 4.27617818e-01 4.40098494e-02 5.27803898e-01 -3.94164100e-02 -1.11616671e+00 -2.75058806e-01 7.54461944e-01 4.09224182e-01 1.11697066e+00 1.10866703e-01 -3.35312754e-01 4.52880293e-01 -2.27910832e-01 -3.37078243e-01 -1.64272353e-01 1.00875413e+00 -3.16910297e-01 -1.43886244e+00 8.60508531e-03 2.09966630e-01 -5.94542444e-01 -9.51350451e-01 -2.20542476e-01 6.22682333e-01 -2.89028257e-01 8.34607840e-01 -1.63920507e-01 5.05660959e-02 1.68721065e-01 6.68998182e-01 4.71232861e-01 -1.18463004e+00 -7.27817059e-01 -1.10593520e-03 3.13894004e-01 -2.74367064e-01 -1.27575681e-01 -5.70678651e-01 -9.97504354e-01 2.81821191e-01 -3.19246888e-01 5.10130048e-01 5.53858221e-01 1.09293723e+00 4.68601078e-01 2.54229933e-01 3.65618527e-01 -2.40111172e-01 -5.73093176e-01 -1.20387185e+00 -2.12052628e-01 3.95716369e-01 1.51132211e-01 -1.10036552e-01 -4.56493683e-02 1.56197578e-01]
[11.301629066467285, 9.73676872253418]
4b1c6f28-ce25-4be5-93fe-72538041e0fe
neural-abstructions-abstractions-that-support
2107.09285
null
https://arxiv.org/abs/2107.09285v1
https://arxiv.org/pdf/2107.09285v1.pdf
Neural Abstructions: Abstractions that Support Construction for Grounded Language Learning
Although virtual agents are increasingly situated in environments where natural language is the most effective mode of interaction with humans, these exchanges are rarely used as an opportunity for learning. Leveraging language interactions effectively requires addressing limitations in the two most common approaches to language grounding: semantic parsers built on top of fixed object categories are precise but inflexible and end-to-end models are maximally expressive, but fickle and opaque. Our goal is to develop a system that balances the strengths of each approach so that users can teach agents new instructions that generalize broadly from a single example. We introduce the idea of neural abstructions: a set of constraints on the inference procedure of a label-conditioned generative model that can affect the meaning of the label in context. Starting from a core programming language that operates over abstructions, users can define increasingly complex mappings from natural language to actions. We show that with this method a user population is able to build a semantic parser for an open-ended house modification task in Minecraft. The semantic parser that results is both flexible and expressive: the percentage of utterances sourced from redefinitions increases steadily over the course of 191 total exchanges, achieving a final value of 28%.
['Li Fei-Fei', 'Christopher D. Manning', 'Kaylee Burns']
2021-07-20
null
null
null
null
['grounded-language-learning']
['natural-language-processing']
[ 8.34822431e-02 8.09481144e-01 2.41182446e-02 -6.46884680e-01 -2.28619978e-01 -9.03022587e-01 1.04591656e+00 1.59255862e-01 -5.14476299e-01 6.83678389e-01 4.53339100e-01 -3.67537707e-01 2.42502004e-01 -1.02392972e+00 -7.37317085e-01 -8.79015401e-02 -5.96844852e-02 7.35212922e-01 1.97450846e-01 -7.03601062e-01 6.37645125e-02 2.65524983e-01 -1.70115352e+00 4.06588614e-01 8.93293381e-01 1.01308197e-01 5.38568914e-01 6.53324783e-01 -6.07172847e-01 9.52894688e-01 -7.23015368e-01 -4.39205289e-01 4.44464013e-02 -4.65649605e-01 -1.12100828e+00 5.98822124e-02 2.58418381e-01 -2.88908035e-01 -4.94528525e-02 9.62481916e-01 5.25534488e-02 5.13512433e-01 4.35328394e-01 -1.29644513e+00 -7.61225879e-01 1.23405278e+00 2.41885126e-01 -5.83917163e-02 7.55816281e-01 5.58900714e-01 1.13797069e+00 -3.81111413e-01 1.02394044e+00 1.62222648e+00 4.32607055e-01 1.01431441e+00 -1.42894781e+00 -4.33905602e-01 5.32438040e-01 -2.96630234e-01 -9.11250412e-01 -3.73055637e-01 4.12854135e-01 -7.25995183e-01 1.43827057e+00 2.82810003e-01 8.78736854e-01 1.19274747e+00 -1.12717785e-01 6.00073516e-01 9.08566535e-01 -6.21550143e-01 2.92212129e-01 5.20927489e-01 3.26404631e-01 9.24677253e-01 1.65736362e-01 3.91321421e-01 -6.74923539e-01 -2.27991283e-01 8.28243732e-01 -2.01303944e-01 -1.37601331e-01 -5.32448053e-01 -1.10551429e+00 9.67829108e-01 3.34909320e-01 5.66009760e-01 2.24107653e-02 2.97062784e-01 4.52839822e-01 4.50711787e-01 -1.23056680e-01 1.08505487e+00 -6.22873068e-01 -4.01357472e-01 -7.25508779e-02 6.62755489e-01 1.12836063e+00 1.08015227e+00 5.87053180e-01 -9.50745270e-02 4.68431041e-02 7.60843933e-01 5.60536563e-01 2.48606235e-01 5.08926988e-01 -1.16564763e+00 1.94327712e-01 7.88755953e-01 1.41474441e-01 -6.17053568e-01 -4.38400865e-01 -3.27571064e-01 1.97408110e-01 5.47011852e-01 4.90364164e-01 -4.33405787e-01 -6.92636311e-01 2.22531080e+00 3.64435077e-01 -3.11317027e-01 5.01617193e-01 5.58102787e-01 9.34968948e-01 5.40665269e-01 7.62250304e-01 9.80551615e-02 1.30131412e+00 -7.30114639e-01 -4.48765397e-01 -6.53599203e-01 1.16833198e+00 -2.01072633e-01 1.49767959e+00 1.88224949e-02 -1.00681591e+00 -3.63465846e-01 -1.09577012e+00 -1.18125476e-01 -4.85873967e-01 -6.69303179e-01 1.20064676e+00 6.62028432e-01 -1.06668139e+00 6.18566930e-01 -9.09921050e-01 -6.52616680e-01 1.00113802e-01 2.94491440e-01 -2.60885894e-01 3.51472884e-01 -1.01450193e+00 1.33112240e+00 7.64553905e-01 -5.11231601e-01 -8.34499598e-01 -6.86350167e-01 -1.25788951e+00 8.38645026e-02 4.05428112e-01 -8.69273186e-01 1.82913601e+00 -1.28260219e+00 -1.84470117e+00 9.84701753e-01 3.47275704e-01 -2.90048033e-01 3.36053103e-01 2.91597303e-02 -3.41088697e-02 -2.79064000e-01 3.20353806e-01 8.80868316e-01 2.26726308e-01 -1.33054233e+00 -8.23387265e-01 -2.80377895e-01 7.42875457e-01 4.67718691e-01 3.54718640e-02 4.69771028e-02 3.06460803e-04 -4.15670723e-01 -2.56092578e-01 -9.90516245e-01 -2.63921827e-01 -2.61493534e-01 -9.97094288e-02 -2.78017074e-01 3.28501433e-01 -5.02335668e-01 7.84051657e-01 -2.17059922e+00 4.59576786e-01 1.32793412e-01 8.21678266e-02 -9.60701331e-02 3.09904180e-02 4.34945017e-01 2.36867443e-02 2.41953284e-01 -2.23751873e-01 -1.79219276e-01 5.56548297e-01 4.06077683e-01 -2.65050530e-01 -8.08220655e-02 -2.48388842e-01 7.91681409e-01 -1.16964233e+00 -2.07488313e-01 2.97288090e-01 3.30238253e-01 -9.59051251e-01 4.30390030e-01 -6.83874786e-01 3.16797853e-01 -5.05110145e-01 2.93611288e-02 -1.12934314e-01 -1.62529536e-02 5.50168991e-01 5.26859641e-01 -1.80256858e-01 5.62786877e-01 -1.14607251e+00 2.00394464e+00 -7.17503309e-01 4.03772801e-01 2.41449904e-02 -3.79067034e-01 7.52283096e-01 2.77478963e-01 -1.67434007e-01 -3.08982641e-01 9.55238789e-02 8.64339247e-02 1.41622052e-01 -5.68343818e-01 3.79869401e-01 -4.23720896e-01 -4.82239634e-01 4.98214483e-01 2.47408986e-01 -6.43456161e-01 3.05721551e-01 5.32080650e-01 8.97424698e-01 4.77996856e-01 4.45587814e-01 -4.29973125e-01 1.56528831e-01 2.70084798e-01 2.14644238e-01 8.23419333e-01 1.06832251e-01 -1.18250944e-01 5.02972007e-01 -6.32059634e-01 -9.15732503e-01 -1.13617146e+00 8.52380469e-02 1.81517613e+00 -8.97870436e-02 -6.43006265e-01 -1.04647338e+00 -5.84364295e-01 -1.22198209e-01 1.38114393e+00 -5.34229398e-01 -2.17610359e-01 -4.48826909e-01 -3.25945288e-01 3.92104924e-01 4.06068325e-01 4.35228676e-01 -1.55663633e+00 -1.32453310e+00 2.34204784e-01 -2.32611410e-02 -9.29549217e-01 -1.83181629e-01 2.98709542e-01 -6.43377960e-01 -8.59210968e-01 8.30393005e-03 -8.14825714e-01 6.64067507e-01 -2.59228021e-01 1.39348912e+00 6.10663295e-01 -1.05932243e-01 7.61870325e-01 -3.44429970e-01 -5.67911863e-01 -9.92375672e-01 1.71710383e-02 -2.16157734e-01 -6.25574946e-01 3.56864363e-01 -5.40873885e-01 4.89456318e-02 -3.06430638e-01 -8.08607221e-01 4.65473622e-01 1.00647733e-01 6.37006879e-01 -2.17754945e-01 -3.37069184e-01 2.59147316e-01 -1.22197986e+00 8.26105356e-01 -3.27238232e-01 -6.34542763e-01 1.27627507e-01 -2.15862915e-01 5.20827472e-01 5.68185747e-01 -2.29969695e-01 -1.45212650e+00 1.93114758e-01 -4.23360541e-02 4.55302387e-01 -4.87643570e-01 5.18244505e-01 -1.18784927e-01 1.41996294e-01 1.06015396e+00 -4.30804230e-02 2.26831958e-01 -1.44571260e-01 7.97546864e-01 4.23879027e-01 5.90067327e-01 -1.13853562e+00 5.60390770e-01 -4.22083819e-03 -5.18645048e-01 -1.00113761e+00 -5.51925004e-01 2.37753931e-02 -3.14321667e-01 -7.79218897e-02 8.10867250e-01 -6.77880585e-01 -9.58760798e-01 1.49194866e-01 -1.15353823e+00 -9.74658430e-01 -5.32123148e-01 2.24151894e-01 -8.01725149e-01 1.01589173e-01 -5.77615619e-01 -6.01295531e-01 1.47946954e-01 -1.28872645e+00 7.04658985e-01 1.75296709e-01 -9.69473720e-01 -1.07913518e+00 6.14569113e-02 1.03781544e-01 3.41019869e-01 2.05479503e-01 1.31171155e+00 -9.45360482e-01 -4.75121021e-01 2.21046910e-01 3.53407651e-01 -1.11636654e-01 -2.61151977e-02 1.71048362e-02 -8.04609835e-01 -5.40243201e-02 -1.22939058e-01 -3.95923704e-01 1.87035844e-01 4.06791642e-02 6.08410656e-01 -3.17181647e-01 -4.33326274e-01 3.83931905e-01 1.12653589e+00 5.01117527e-01 4.43094820e-01 6.87230051e-01 4.29219514e-01 7.16198087e-01 1.25544414e-01 1.76123589e-01 6.15263164e-01 7.44709790e-01 9.22162086e-02 3.43297839e-01 6.87360317e-02 -5.04719555e-01 4.67806935e-01 2.19659299e-01 -7.54811019e-02 3.91100310e-02 -9.38145518e-01 4.24573958e-01 -1.82610881e+00 -1.07013738e+00 2.88527757e-01 2.10475111e+00 1.12782729e+00 2.98469514e-01 9.71482471e-02 -4.83858585e-01 4.71995413e-01 -1.42472303e-02 -2.76985943e-01 -7.36362517e-01 3.94730985e-01 1.75431848e-01 3.67844887e-02 1.16736114e+00 -7.27909029e-01 1.30819392e+00 6.82472849e+00 -4.24961410e-02 -6.89838111e-01 1.94889419e-02 1.58067197e-01 1.33039892e-01 -6.28417134e-01 -3.64516638e-02 -5.93332827e-01 2.69540787e-01 9.44935203e-01 -2.76625454e-01 7.41590858e-01 1.09692419e+00 -1.41159058e-01 -3.21921334e-02 -1.61371493e+00 6.22459590e-01 -1.81812048e-01 -1.39738870e+00 2.40801591e-02 -1.99952230e-01 3.79821956e-01 -1.17948338e-01 -1.91537499e-01 8.29532385e-01 1.25485539e+00 -1.02658331e+00 1.03820682e+00 2.25129023e-01 3.99085581e-01 -5.32219708e-01 1.56351417e-01 5.27681291e-01 -7.87054241e-01 -9.55875441e-02 6.72572181e-02 -4.81078207e-01 3.69610377e-02 -4.28612530e-01 -9.52620447e-01 -8.34510922e-02 4.88873094e-01 2.11136803e-01 -2.40015224e-01 5.22892475e-01 -5.94317615e-01 1.43842772e-01 -3.59872013e-01 -4.31502104e-01 2.46885389e-01 -7.82427844e-03 5.53032637e-01 1.32299352e+00 -1.78612061e-02 4.68266279e-01 5.22087514e-01 9.88292754e-01 1.76406264e-01 -6.40142038e-02 -1.00879121e+00 -1.36692002e-01 6.01040542e-01 8.61517847e-01 -7.77199745e-01 -5.65687895e-01 -3.99252623e-01 8.02103341e-01 5.21794975e-01 3.91835213e-01 -6.15919352e-01 -1.48911059e-01 8.36571157e-01 -1.07658178e-01 2.71727666e-02 -2.82490075e-01 -1.79093182e-01 -1.09429204e+00 -3.86330813e-01 -1.25596929e+00 4.01317835e-01 -8.32534969e-01 -9.14401233e-01 5.79516530e-01 3.47315580e-01 -2.20251828e-01 -7.31372833e-01 -6.80355370e-01 -3.70240211e-01 7.35399723e-01 -6.66874826e-01 -9.95216846e-01 -3.11757892e-01 2.91679174e-01 7.14699566e-01 -2.96127766e-01 1.37259245e+00 -2.01175883e-01 -1.10668302e-01 2.66129881e-01 -5.58700979e-01 5.05049191e-02 4.19525430e-02 -1.40243816e+00 6.97362900e-01 8.17656159e-01 3.73097569e-01 1.08610964e+00 1.17263710e+00 -7.68917918e-01 -1.07516348e+00 -5.63816309e-01 6.93952560e-01 -9.25830185e-01 5.78129649e-01 -4.98115808e-01 -8.00716341e-01 1.42859292e+00 3.58725399e-01 -5.07467747e-01 6.95027649e-01 4.61273700e-01 -5.53193510e-01 5.29672027e-01 -1.07907093e+00 1.04455161e+00 1.39958322e+00 -7.09909022e-01 -1.26008773e+00 3.34474921e-01 1.09080863e+00 -7.74408817e-01 -4.08411145e-01 -1.83562696e-01 3.17737699e-01 -9.55329835e-01 8.66032064e-01 -9.77372527e-01 3.58803958e-01 -1.73900023e-01 -1.93305477e-01 -1.58621657e+00 -3.01391065e-01 -9.56966460e-01 3.27994794e-01 9.69903827e-01 6.51177645e-01 -8.32963049e-01 5.64590037e-01 1.27150035e+00 -4.09124464e-01 -9.89117324e-02 -4.08071339e-01 -5.37332952e-01 9.35086012e-02 -5.41970491e-01 7.69803643e-01 1.00611281e+00 7.24220634e-01 7.16458201e-01 3.51531476e-01 5.22052310e-02 4.15358007e-01 -1.69507489e-01 9.06881690e-01 -1.29284978e+00 -7.11626291e-01 -5.49871325e-01 -1.60706997e-01 -8.81121755e-01 4.81210023e-01 -1.27038252e+00 2.12272108e-01 -1.48981726e+00 1.00388438e-01 -5.97794235e-01 3.56539667e-01 5.63063920e-01 1.05505824e-01 -4.57372010e-01 5.16718030e-01 -5.71960211e-02 -2.73386180e-01 2.41694078e-01 9.38640594e-01 -2.64000930e-02 -5.84236979e-01 -3.78236324e-01 -9.18574214e-01 1.17321181e+00 6.38903081e-01 -2.71649182e-01 -9.02592063e-01 -5.40501833e-01 3.50306034e-01 -4.16592434e-02 3.92916113e-01 -8.04226875e-01 6.94715008e-02 -4.99866158e-01 -2.08224077e-02 2.96179801e-01 8.07399675e-02 -7.94306278e-01 4.01315331e-01 4.19737160e-01 -7.76953518e-01 2.60650255e-02 4.12968814e-01 1.98724300e-01 2.35834420e-01 -4.86843199e-01 5.15975118e-01 -7.33447492e-01 -1.25055707e+00 -1.98127598e-01 -6.51123226e-01 2.32121691e-01 1.16364193e+00 -2.24393815e-01 -2.91246861e-01 -3.10308754e-01 -9.96558607e-01 9.49232057e-02 6.11455798e-01 5.26769459e-01 3.07880998e-01 -9.19036627e-01 -3.42019409e-01 1.74966902e-01 2.05215797e-01 -2.88850144e-02 -2.49317497e-01 -7.34453350e-02 -7.61947215e-01 2.91004688e-01 -4.14631814e-01 -2.87521034e-01 -1.10678005e+00 5.02250016e-01 5.84903717e-01 1.06670782e-01 -9.82294738e-01 1.16042078e+00 5.16635895e-01 -9.19143736e-01 3.40225518e-01 -5.72251737e-01 -2.91439086e-01 -2.42408976e-01 6.60393834e-01 -2.30022222e-01 -2.48752668e-01 -4.58277166e-01 -1.16391934e-01 1.92951877e-02 -2.20548976e-02 -4.62386876e-01 1.42625022e+00 -1.24546159e-02 -1.89072877e-01 5.57473838e-01 7.14681506e-01 -1.38824105e-01 -1.33338475e+00 5.83584532e-02 6.24679253e-02 -4.35286760e-01 -2.89296865e-01 -9.59755063e-01 -4.64759439e-01 3.56419057e-01 1.45530462e-01 4.27160114e-01 3.80289018e-01 3.61866355e-01 3.07928085e-01 7.63443530e-01 7.78638065e-01 -1.02262270e+00 1.68194637e-01 6.68770909e-01 9.87693191e-01 -8.95105362e-01 -2.57149488e-01 -5.76780319e-01 -7.56579936e-01 1.05854332e+00 7.71765888e-01 6.37446046e-02 1.31529719e-01 4.31994557e-01 3.21505480e-02 -5.90673625e-01 -6.93340182e-01 -8.97557125e-04 -3.88422370e-01 1.07044232e+00 5.64464808e-01 4.01240021e-01 -1.01560295e-01 6.20548427e-01 -7.56341696e-01 -4.99260165e-02 7.66928136e-01 1.14281654e+00 -6.08818948e-01 -1.11766338e+00 -1.82409242e-01 -4.94276471e-02 -1.06822744e-01 -8.76515880e-02 -4.03736591e-01 1.06511557e+00 2.78663095e-02 7.72787571e-01 1.08622074e-01 -1.10872991e-01 5.08754611e-01 4.44905668e-01 6.81040823e-01 -1.29471624e+00 -8.64084601e-01 -6.74177468e-01 5.39405763e-01 -5.89387715e-01 -2.59318113e-01 -7.55087078e-01 -1.89050663e+00 -2.93599039e-01 1.31868258e-01 2.27433696e-01 4.56809223e-01 1.12724686e+00 1.16143026e-03 5.23810089e-01 -1.23156384e-01 -7.82029152e-01 -5.05352736e-01 -6.36005461e-01 -2.56394923e-01 6.61095321e-01 1.88399985e-01 -7.21138477e-01 -2.53731042e-01 3.35615814e-01]
[4.131354808807373, 1.1748504638671875]
b02389f6-d6bd-4dda-9c5a-22ce9c886f06
shift-of-perspective-identification-within
1906.02430
null
https://arxiv.org/abs/1906.02430v4
https://arxiv.org/pdf/1906.02430v4.pdf
Shift-of-Perspective Identification Within Legal Cases
Arguments, counter-arguments, facts, and evidence obtained via documents related to previous court cases are of essential need for legal professionals. Therefore, the process of automatic information extraction from documents containing legal opinions related to court cases can be considered to be of significant importance. This study is focused on the identification of sentences in legal opinion texts which convey different perspectives on a certain topic or entity. We combined several approaches based on semantic analysis, open information extraction, and sentiment analysis to achieve our objective. Then, our methodology was evaluated with the help of human judges. The outcomes of the evaluation demonstrate that our system is successful in detecting situations where two sentences deliver different opinions on the same topic or entity. The proposed methodology can be used to facilitate other information extraction tasks related to the legal domain. One such task is the automated detection of counter arguments for a given argument. Another is the identification of opponent parties in a court case.
['Thejan Rupasinghe', 'Amal Shehan Perera', 'Nisansa de Silva', 'Gathika Ratnayaka', 'Viraj Salaka Gamage', 'Menuka Warushavithana']
2019-06-06
null
null
null
null
['open-information-extraction']
['natural-language-processing']
[ 5.41859269e-01 1.86276853e-01 -1.70349717e-01 -4.25384343e-01 -1.08811247e+00 -8.93758833e-01 7.89865017e-01 8.39755416e-01 -5.12338042e-01 1.04714036e+00 5.06151378e-01 -8.17116439e-01 -4.66741979e-01 -6.47044659e-01 -2.54358053e-01 -5.38874328e-01 5.85253119e-01 3.40599805e-01 4.27770615e-01 -2.64658898e-01 1.15103567e+00 5.33238351e-01 -1.16873252e+00 7.66714156e-01 9.55263734e-01 6.51054025e-01 -1.84975043e-01 2.37505749e-01 -6.85702026e-01 1.17135489e+00 -1.06237197e+00 -1.08431661e+00 8.21708515e-02 -2.03870356e-01 -9.66206908e-01 -6.25303462e-02 2.70443887e-01 -1.29003733e-01 3.52153748e-01 1.31216466e+00 5.27419925e-01 -3.28265727e-01 6.92500293e-01 -8.73228669e-01 -2.23195404e-01 9.14911330e-01 -5.11422098e-01 6.82240427e-01 5.22687674e-01 -4.75683630e-01 1.07136989e+00 -5.01781881e-01 8.93505931e-01 1.29189336e+00 1.69197991e-01 3.26152109e-02 -6.05177522e-01 -5.01875937e-01 1.46044567e-01 3.08631152e-01 -8.48636389e-01 -4.59382772e-01 9.37881827e-01 -7.67110407e-01 6.73560321e-01 -8.43374152e-03 3.29347104e-01 8.19360137e-01 3.06933582e-01 6.79159820e-01 1.19078326e+00 -7.08978653e-01 3.78547013e-01 5.31042099e-01 7.27674723e-01 1.06496143e-03 8.49246740e-01 -4.22373652e-01 -1.86371848e-01 -8.22516918e-01 -1.53978378e-01 -4.82955277e-01 -1.15420550e-01 9.67407003e-02 -5.35369873e-01 9.85413730e-01 -1.92736521e-01 9.18751419e-01 -5.17218232e-01 -5.32396019e-01 7.63679862e-01 2.98067331e-01 4.08605546e-01 4.01450694e-01 -4.19510961e-01 -2.52581686e-01 -6.64180160e-01 5.20707011e-01 1.07979441e+00 5.24072230e-01 1.33765951e-01 -7.23591864e-01 -9.91635844e-02 6.14558637e-01 3.63221139e-01 4.70297843e-01 1.78795666e-01 -5.87269962e-01 1.19155967e+00 1.16735244e+00 3.32854837e-01 -1.33786845e+00 -1.08482420e-01 -1.63795590e-01 9.36811976e-03 1.17453717e-01 3.11659515e-01 -4.89275694e-01 -4.67259586e-01 1.06305814e+00 3.50522012e-01 -7.09822774e-01 8.18003356e-01 3.98041546e-01 1.13433528e+00 5.11214018e-01 2.29459435e-01 -3.36408138e-01 1.69481826e+00 -1.23893343e-01 -1.13608801e+00 -1.31940857e-01 3.80245030e-01 -1.30668294e+00 3.11097652e-01 1.98785197e-02 -8.61100972e-01 6.88623935e-02 -8.53198647e-01 -8.88448358e-02 -4.48848218e-01 3.69023114e-01 2.64287174e-01 4.68929827e-01 -1.42241432e-03 2.46077225e-01 -1.01093151e-01 -3.33608180e-01 5.49397230e-01 -1.75017878e-01 -1.32628396e-01 6.92278892e-02 -1.15932775e+00 9.99021947e-01 3.82454902e-01 2.65244991e-01 2.12915510e-01 -9.04124305e-02 -7.13727355e-01 6.57396093e-02 8.12686741e-01 -2.26268187e-01 1.00773311e+00 -5.00523210e-01 -6.97926044e-01 1.17763507e+00 -2.32392192e-01 -4.51919556e-01 6.02164268e-01 -1.76219612e-01 -7.88927972e-01 5.02655089e-01 9.46111619e-01 -3.07683975e-01 5.29219329e-01 -9.62826252e-01 -8.85456562e-01 -6.49146974e-01 4.02722776e-01 -7.48349028e-03 -2.80279499e-02 8.28413427e-01 2.12440360e-02 -5.50484061e-01 1.13990277e-01 -7.02252090e-01 8.15372244e-02 -6.68350756e-01 -5.99018693e-01 -4.56162333e-01 7.46110320e-01 -7.31761575e-01 1.35742307e+00 -1.81530035e+00 -4.27840859e-01 4.71439898e-01 4.52054441e-02 4.49421912e-01 4.74247307e-01 8.42509091e-01 1.62546948e-01 5.76779008e-01 -1.20292187e-01 5.44109225e-01 1.15704145e-02 6.31896704e-02 -5.95720947e-01 4.07128856e-02 3.07589881e-02 5.58044016e-01 -5.81212282e-01 -9.80598032e-01 -1.52385622e-01 6.01273365e-02 1.69666149e-02 -2.61927605e-01 8.00666884e-02 2.24721640e-01 -1.16311574e+00 7.44971097e-01 4.94606048e-01 -9.98913962e-03 4.86636490e-01 -4.64564025e-01 -2.40559682e-01 6.34842575e-01 -1.01770413e+00 9.19884741e-01 -1.34352967e-01 6.55539989e-01 4.47344258e-02 -9.74008560e-01 8.52463007e-01 6.11167848e-01 8.52132663e-02 -5.99482715e-01 7.07168758e-01 6.03083551e-01 2.01490447e-01 -1.10244644e+00 4.78398860e-01 -1.40905142e-01 -2.97321498e-01 4.87753332e-01 -4.23800677e-01 6.32095784e-02 8.95923793e-01 3.38688940e-01 8.06848347e-01 -2.60409385e-01 7.60837913e-01 -1.35011002e-01 9.26769078e-01 3.83445412e-01 5.95046103e-01 6.17168903e-01 -1.64019495e-01 -7.84320012e-02 9.51746643e-01 -5.12460470e-01 -8.05224121e-01 -3.21329147e-01 -4.23234016e-01 2.02929705e-01 1.18486486e-01 -2.55161136e-01 -6.47496283e-01 -9.13252950e-01 -1.50768366e-02 6.57340586e-01 -5.78500688e-01 5.00362456e-01 -5.82854331e-01 -6.15376532e-01 2.04721183e-01 1.22121394e-01 5.33000767e-01 -1.12455797e+00 -1.10148120e+00 3.43819320e-01 -4.55024213e-01 -1.45027244e+00 1.37518883e-01 -1.85909808e-01 -5.63223124e-01 -1.75367427e+00 -5.08388758e-01 -5.21727920e-01 7.18928874e-01 1.87750105e-02 6.12161458e-01 1.04304366e-01 -8.62040967e-02 -8.57132897e-02 -5.66654742e-01 -8.26511204e-01 -7.77381897e-01 1.24775328e-01 -5.46504438e-01 6.38991743e-02 7.73295045e-01 -3.28898132e-01 -1.07689247e-01 5.53261936e-02 -1.18379331e+00 -5.44095397e-01 4.50714290e-01 3.30778569e-01 3.13285962e-02 1.10321842e-01 8.38039219e-01 -1.30583012e+00 1.53505695e+00 -4.07615662e-01 -6.55663848e-01 7.69864798e-01 -2.42333218e-01 1.69494659e-01 2.19310850e-01 -5.31197749e-02 -1.44985509e+00 -6.83615804e-01 -2.32557923e-01 5.41089356e-01 -3.62871140e-01 7.93884456e-01 -1.62325442e-01 2.64881760e-01 5.94560087e-01 -4.14863378e-01 -2.89208949e-01 -1.75210357e-01 -5.16590551e-02 1.09412181e+00 4.66106050e-02 -5.10659575e-01 5.65297127e-01 4.71592665e-01 -1.13515146e-01 -5.43159425e-01 -1.36428285e+00 -5.50668478e-01 -4.96490985e-01 -2.22316056e-01 7.95363486e-01 -4.63341922e-01 -6.05263829e-01 1.58977397e-02 -1.41631866e+00 8.33767593e-01 1.09739512e-01 5.95430791e-01 4.97950166e-02 5.29551685e-01 -2.77677983e-01 -1.04601645e+00 -4.80194658e-01 -1.01164234e+00 6.55887365e-01 2.54444867e-01 -6.26128495e-01 -8.45501781e-01 7.96184465e-02 1.04361010e+00 9.75353643e-02 2.77037650e-01 1.12901449e+00 -1.12957728e+00 8.01834092e-02 -6.99718833e-01 -1.81026995e-01 1.74978092e-01 2.62890339e-01 2.34265700e-01 -6.38546526e-01 2.49287814e-01 2.05559641e-01 -2.64097452e-01 5.39425373e-01 1.79181933e-01 7.23890290e-02 -5.03586173e-01 -4.58446175e-01 -4.55244988e-01 1.35678148e+00 8.35451722e-01 5.72879672e-01 7.52340734e-01 -4.45561707e-02 9.84067917e-01 9.72791433e-01 3.74233335e-01 1.01074241e-01 4.08655822e-01 -3.47809680e-02 2.24387288e-01 3.82184029e-01 5.22646867e-02 6.62170025e-03 2.23192960e-01 -2.26546064e-01 -4.40121680e-01 -1.01150858e+00 8.15632701e-01 -1.87944829e+00 -1.29940248e+00 -4.01091367e-01 1.51595104e+00 3.26007605e-01 5.24431288e-01 -1.58145308e-01 5.44924378e-01 1.02101696e+00 -1.94100589e-02 -2.53990799e-01 -6.96461856e-01 -2.05639720e-01 9.20451805e-02 9.77558121e-02 3.61220330e-01 -9.66605008e-01 7.05238521e-01 5.34148932e+00 7.10174561e-01 -6.75002575e-01 -2.03858793e-01 5.24751008e-01 3.14617902e-01 -4.33486104e-01 3.58518481e-01 -1.00186062e+00 4.91785139e-01 4.31304425e-01 -3.91434371e-01 -7.21176803e-01 6.96836054e-01 2.95803487e-01 -5.45957804e-01 -6.12795711e-01 4.41635460e-01 2.35751942e-01 -1.43987572e+00 2.08710879e-01 2.35133454e-01 6.34717524e-01 -6.39803946e-01 -4.08709347e-01 -7.20326602e-02 1.34414688e-01 -3.13517451e-01 8.66293848e-01 1.99683279e-01 -1.27978235e-01 -5.95475137e-01 1.48175943e+00 4.65019047e-01 -7.84723341e-01 -1.36190951e-01 -2.57120639e-01 -6.64654225e-02 6.76542103e-01 5.72754741e-01 -8.49973261e-01 6.49017751e-01 5.63925803e-01 4.64920759e-01 -2.63869345e-01 8.85468841e-01 -8.27326715e-01 4.11180317e-01 3.96011950e-04 -5.70942700e-01 3.51562828e-01 -1.06902912e-01 5.96079409e-01 8.80007029e-01 2.23570451e-01 5.26436508e-01 -3.17886174e-02 6.75735116e-01 5.35404123e-02 6.19822800e-01 -8.58218312e-01 3.02460138e-03 4.31968361e-01 1.06416190e+00 -1.00077569e+00 -6.59811795e-01 -3.69540185e-01 2.79649317e-01 3.08841951e-02 1.84327707e-01 -5.93399823e-01 -5.87725461e-01 3.46201248e-02 1.73037276e-01 4.46485013e-01 4.30543393e-01 -1.41745314e-01 -1.18136299e+00 7.06597924e-01 -8.59427273e-01 6.30921304e-01 -7.23715603e-01 -1.19225621e+00 8.83936822e-01 1.51824057e-01 -1.24191892e+00 -1.48444057e-01 -5.19046187e-01 -7.33088970e-01 6.49702907e-01 -1.61909688e+00 -6.69705093e-01 2.47596219e-01 2.49715686e-01 3.36727440e-01 -2.32904583e-01 4.94366199e-01 2.86129147e-01 -4.43462044e-01 -2.21474499e-01 -3.23515385e-01 4.32349086e-01 4.91017789e-01 -7.58748114e-01 -1.29663631e-01 9.75687504e-01 -3.09264641e-02 8.23780477e-01 7.66046762e-01 -1.03454685e+00 -5.06620407e-01 -2.02806309e-01 1.69515920e+00 -9.65428278e-02 9.05745566e-01 1.67979941e-01 -7.00192392e-01 2.80309439e-01 5.39350152e-01 -7.00058818e-01 1.11518860e+00 2.96277795e-02 -1.14127301e-01 1.07769221e-01 -1.19364309e+00 4.92119759e-01 4.72264826e-01 -3.84050369e-01 -1.58868527e+00 2.82668024e-01 -9.95043106e-03 -1.73349664e-01 -6.82216287e-01 3.01633179e-01 5.29856145e-01 -6.39922023e-01 6.12840056e-01 -8.85454655e-01 5.41617393e-01 -2.52312303e-01 3.68992612e-02 -7.54349530e-01 3.61298263e-01 -1.98399752e-01 6.72425866e-01 1.47593105e+00 9.42145228e-01 -6.69441700e-01 3.47866565e-01 9.43010509e-01 2.97426015e-01 -3.51262212e-01 -9.54271376e-01 -2.58261830e-01 -1.39035642e-01 -3.57461065e-01 4.01255816e-01 9.14470851e-01 4.68581408e-01 8.01648319e-01 7.59611577e-02 1.50907531e-01 3.88716042e-01 7.93006539e-01 6.22142315e-01 -1.52142513e+00 3.88601720e-01 -2.05917001e-01 -3.41604084e-01 -4.46712166e-01 1.87990516e-01 -5.21015584e-01 -4.47353184e-01 -1.91781414e+00 2.35581726e-01 -1.61311001e-01 1.01085767e-01 2.51538366e-01 -1.23917244e-01 -3.61845255e-01 2.16641545e-01 3.65659386e-01 -3.20192844e-01 4.02073562e-02 1.12137341e+00 -2.09788114e-01 -1.03068464e-01 2.95385271e-01 -1.20316410e+00 1.18316185e+00 8.81479919e-01 -7.40192235e-01 -8.06855634e-02 -2.51741439e-01 6.63094044e-01 1.54786363e-01 1.04320295e-01 -5.49141645e-01 4.10465568e-01 -1.97198033e-01 -1.05883166e-01 -7.64654756e-01 -9.48274434e-02 -8.89368296e-01 -2.98466295e-01 2.80277759e-01 -4.46486473e-01 1.59689322e-01 1.99132383e-01 2.98490971e-01 -7.28700221e-01 -8.88541818e-01 1.27770424e-01 -3.30185652e-01 -2.83406168e-01 -4.84211296e-01 -6.51231170e-01 2.53920108e-01 1.18746185e+00 -2.77599603e-01 -8.38889003e-01 -2.88608223e-01 -8.41533482e-01 1.79443717e-01 -1.02182575e-01 1.87341809e-01 6.12609386e-01 -8.17629755e-01 -9.94933009e-01 -6.09091520e-01 1.70317888e-01 -5.30909479e-01 7.30350316e-02 8.13639462e-01 -5.92680573e-01 5.44274867e-01 5.60186207e-02 -4.21842709e-02 -1.83426249e+00 2.77425647e-01 -1.56593412e-01 -6.73962891e-01 -3.44226837e-01 2.48610914e-01 -3.71368825e-01 -1.03051355e-02 -4.35403027e-02 -4.73664850e-01 -1.05430949e+00 7.13917792e-01 6.28668010e-01 2.76312858e-01 1.30998448e-01 -9.78950322e-01 -5.00140548e-01 8.17800105e-01 -4.44076359e-01 -2.39717498e-01 1.42686582e+00 4.12966125e-02 -4.57630992e-01 2.27526456e-01 8.52487981e-01 7.69161701e-01 -1.76562637e-01 -2.14139849e-01 4.05984372e-01 -4.51321721e-01 -2.44261742e-01 -9.34505522e-01 -6.81135476e-01 6.15021884e-01 -9.15703997e-02 7.06715643e-01 6.71739221e-01 3.70337874e-01 3.18755269e-01 5.44574678e-01 2.52230376e-01 -1.27437389e+00 -5.29263794e-01 3.03026974e-01 1.00091326e+00 -1.29193711e+00 3.19227099e-01 -7.84702659e-01 -6.69000447e-01 1.42917895e+00 9.04393494e-02 3.03907186e-01 6.78423882e-01 1.13718137e-01 6.43103659e-01 -8.31090450e-01 -4.51104045e-01 -2.91889966e-01 4.24123108e-01 -2.13860631e-01 5.02789855e-01 -2.26586118e-01 -1.50135505e+00 4.41729993e-01 -1.16372325e-01 -3.42798233e-02 6.62381351e-01 1.41999531e+00 -4.97915834e-01 -1.25320423e+00 -5.43329597e-01 3.32893074e-01 -1.30414653e+00 -1.98348001e-01 -1.04361117e+00 7.88271189e-01 2.32859090e-01 1.42275906e+00 -3.55002433e-01 3.30155760e-01 5.66623032e-01 -5.39686382e-02 3.08007281e-02 -4.82497185e-01 -8.14885914e-01 8.94042477e-02 8.11527729e-01 8.86542872e-02 -1.20553446e+00 -8.54494989e-01 -1.11779177e+00 1.61588192e-01 -5.85509896e-01 9.10470188e-01 7.33238399e-01 1.40670943e+00 2.31235117e-01 3.41034293e-01 1.38960227e-01 2.09696293e-01 -3.16936284e-01 -9.26613688e-01 -3.15443933e-01 6.38081729e-01 2.45461445e-02 -5.03784537e-01 -4.16144371e-01 -1.01868734e-01]
[9.581527709960938, 9.477852821350098]
4a01a872-578f-419a-a192-8a5f53f48710
variance-preserving-based-interpolation
2306.08527
null
https://arxiv.org/abs/2306.08527v1
https://arxiv.org/pdf/2306.08527v1.pdf
Variance-Preserving-Based Interpolation Diffusion Models for Speech Enhancement
The goal of this study is to implement diffusion models for speech enhancement (SE). The first step is to emphasize the theoretical foundation of variance-preserving (VP)-based interpolation diffusion under continuous conditions. Subsequently, we present a more concise framework that encapsulates both the VP- and variance-exploding (VE)-based interpolation diffusion methods. We demonstrate that these two methods are special cases of the proposed framework. Additionally, we provide a practical example of VP-based interpolation diffusion for the SE task. To improve performance and ease model training, we analyze the common difficulties encountered in diffusion models and suggest amenable hyper-parameters. Finally, we evaluate our model against several methods using a public benchmark to showcase the effectiveness of our approach
['Wenbin Zhang', 'Yu Gao', 'Chin-Hui Lee', 'Jun Du', 'Zilu Guo']
2023-06-14
null
null
null
null
['speech-enhancement']
['speech']
[ 7.13033229e-02 4.95227473e-03 4.07166779e-02 -1.46694947e-03 -8.87132287e-01 -1.49934785e-02 6.84216976e-01 -1.60221875e-01 -4.23992932e-01 6.78584993e-01 4.77710754e-01 -3.88578266e-01 -2.55575866e-01 -4.35417682e-01 -3.85844439e-01 -8.62079918e-01 -3.55700642e-01 -3.76449645e-01 2.44090185e-01 -3.85642856e-01 1.67363077e-01 6.02092266e-01 -1.11513054e+00 1.79627985e-01 1.13903451e+00 8.15936804e-01 3.64742815e-01 9.07791317e-01 1.85261279e-01 6.31261587e-01 -8.62402618e-01 -4.77323085e-01 1.80392534e-01 -6.50503457e-01 -6.71339095e-01 1.91101998e-01 2.82434851e-01 -2.86829859e-01 -4.49457318e-01 1.03523231e+00 9.22894478e-01 6.53754652e-01 9.63592947e-01 -1.17943358e+00 -1.17117131e+00 3.92472804e-01 -6.21926427e-01 5.74173033e-01 9.28501487e-02 -1.24552604e-02 6.76378071e-01 -1.08966172e+00 8.00707042e-01 1.04329228e+00 1.11579144e+00 6.33715451e-01 -1.05769324e+00 -1.74803123e-01 -8.12201574e-02 3.43245268e-01 -1.29694605e+00 -7.18884587e-01 9.29818869e-01 -1.97356477e-01 1.01642108e+00 5.10141432e-01 5.20978808e-01 1.10543573e+00 1.36390910e-01 9.62602317e-01 1.32585883e+00 -5.86198211e-01 3.27184767e-01 2.27055907e-01 9.99111310e-02 4.15184647e-01 -3.84168476e-01 4.41393614e-01 -5.97892284e-01 -1.67882577e-01 8.09954822e-01 -7.00767875e-01 -5.03719151e-01 1.24164494e-02 -8.45233977e-01 6.84509456e-01 2.55522460e-01 4.02616233e-01 -5.05464673e-01 1.35050043e-01 2.89900035e-01 5.03873050e-01 1.05658865e+00 -2.09357962e-02 -1.30525365e-01 -2.14834049e-01 -1.41331959e+00 4.55455244e-01 6.61948800e-01 8.63288343e-01 3.30001980e-01 4.95688051e-01 -7.60808468e-01 1.24806821e+00 3.32574159e-01 3.24753612e-01 4.12204742e-01 -1.16175461e+00 2.72241831e-01 -6.16496265e-01 3.70862484e-02 -8.66591811e-01 -1.43617898e-01 -4.97254908e-01 -1.01662600e+00 2.32319832e-01 2.72192955e-01 -3.88825953e-01 -6.77540720e-01 1.49364960e+00 2.02784687e-01 5.78814328e-01 7.92230144e-02 7.23339617e-01 6.08083546e-01 8.43647182e-01 1.16011731e-01 -6.81646109e-01 8.47227812e-01 -1.31781125e+00 -1.17578304e+00 3.81292105e-01 4.94601876e-01 -9.57355976e-01 9.95970845e-01 3.24951619e-01 -1.46422410e+00 -6.23041868e-01 -8.71542811e-01 -1.96325988e-01 -9.60342661e-02 1.97414830e-01 4.47609514e-01 1.07805419e+00 -1.56728649e+00 8.46968591e-01 -5.65368414e-01 -1.29894644e-01 1.54118687e-01 -8.55917111e-04 9.59289894e-02 3.63813579e-01 -1.24902368e+00 8.02766502e-01 -1.92528412e-01 8.10452700e-02 -7.52647877e-01 -9.67812777e-01 -5.56848645e-01 5.17938808e-02 -1.28832728e-01 -5.39137363e-01 1.26548898e+00 -7.51835406e-01 -1.80899644e+00 4.26776499e-01 -4.31594759e-01 -7.35310495e-01 9.85733151e-01 -1.12207696e-01 -6.29503369e-01 1.39868155e-01 -4.73233163e-01 6.43867850e-01 1.20516467e+00 -1.35913229e+00 -5.18814206e-01 1.53580531e-01 -2.62360483e-01 4.18958478e-02 -6.12535119e-01 2.95121431e-01 -4.34279382e-01 -1.25681794e+00 -2.02393010e-01 -6.99546278e-01 -2.48913556e-01 2.36257255e-01 -2.88058907e-01 -7.88305420e-04 8.93723845e-01 -1.14294195e+00 1.67239499e+00 -2.35346699e+00 2.38186017e-01 1.37479976e-01 2.33446166e-01 3.16458732e-01 -2.05133542e-01 5.71471095e-01 -1.20441385e-01 6.85622245e-02 -6.20846570e-01 -9.99639750e-01 1.34219438e-01 -3.65480930e-02 -4.04882997e-01 3.94331396e-01 1.90414697e-01 7.91684330e-01 -6.21582091e-01 -3.85562479e-01 1.84586182e-01 1.22358048e+00 -7.19948471e-01 -6.11655861e-02 1.59100890e-01 4.64348346e-01 1.49576306e-01 3.64178538e-01 1.01236069e+00 3.29521090e-01 -2.98177987e-01 -1.64363742e-01 -3.11430603e-01 7.38778114e-02 -1.34578240e+00 1.42181575e+00 -6.72725618e-01 1.12165272e+00 2.16868967e-01 -6.26636744e-01 7.93060482e-01 4.03939068e-01 4.65705305e-01 -5.25429666e-01 -3.03710431e-01 2.55386978e-01 -4.27788258e-01 -3.90593559e-01 9.00625229e-01 -7.26649538e-02 7.51129031e-01 4.21215534e-01 1.35670230e-01 -2.00762272e-01 1.48640379e-01 1.55334532e-01 7.04424739e-01 -1.47023022e-01 2.65937626e-01 -3.96614879e-01 6.70281589e-01 -5.47371447e-01 2.42323011e-01 7.76733816e-01 -6.39240026e-01 7.20232129e-01 3.76148045e-01 1.44770443e-01 -1.19386768e+00 -1.14464259e+00 -3.20536107e-01 8.11599910e-01 -1.80199295e-01 -3.91702831e-01 -1.05234027e+00 -5.86883545e-01 -2.30888724e-01 8.67180943e-01 -6.77938342e-01 2.24250585e-01 -4.37233627e-01 -9.78677034e-01 7.45620787e-01 4.55367267e-01 6.85201943e-01 -8.42555225e-01 -1.90458670e-01 1.11053057e-01 -2.30556458e-01 -7.84200549e-01 -8.12882125e-01 -8.41234177e-02 -9.11830604e-01 -3.58480364e-01 -1.54803348e+00 -8.63413990e-01 3.79954189e-01 3.97436410e-01 7.83798397e-01 1.30678415e-01 1.10056579e-01 5.86413622e-01 -2.81093270e-01 -1.70816362e-01 -8.07574987e-01 -1.49423257e-01 -1.10752054e-01 4.91093798e-03 -1.36792008e-02 -4.60143954e-01 -6.47417665e-01 2.98460066e-01 -9.75132048e-01 -2.40550771e-01 9.54169482e-02 8.61945212e-01 6.17006004e-01 6.06031232e-02 6.29905164e-01 -6.04767084e-01 1.61871195e+00 -3.73032689e-01 -3.60919327e-01 1.07769214e-01 -8.03652167e-01 -8.24364424e-02 1.28345892e-01 -8.12264383e-01 -1.32309544e+00 -2.59035707e-01 -8.93109798e-01 -2.83724755e-01 2.25083724e-01 4.59177107e-01 2.85382807e-01 -3.10285777e-01 8.30016971e-01 4.00898963e-01 -1.50068238e-01 -4.85361278e-01 4.88299370e-01 7.22816288e-01 3.23014855e-01 -5.74186921e-01 4.87672329e-01 4.31528181e-01 -1.95309058e-01 -1.46566010e+00 -1.78066224e-01 -3.16044956e-01 -3.70281339e-01 -3.51432085e-01 5.41003168e-01 -7.10982800e-01 -3.40514868e-01 6.37384832e-01 -1.28236997e+00 -7.01969683e-01 -7.79820979e-01 2.76328385e-01 -8.41935515e-01 7.61630118e-01 -9.99227643e-01 -1.17877245e+00 -2.59923190e-01 -1.29683030e+00 8.82084906e-01 9.51263309e-03 7.19680786e-02 -1.59299076e+00 1.17489375e-01 -8.42790604e-02 9.10714686e-01 -1.77754596e-01 4.95064974e-01 -2.65268654e-01 -1.05594471e-01 3.51639360e-01 -1.80643633e-01 7.32028246e-01 -1.65617578e-02 2.59630501e-01 -1.24596405e+00 -2.61124283e-01 4.84060913e-01 2.61840761e-01 9.88294065e-01 8.94988000e-01 1.11053491e+00 -1.55635729e-01 -6.02990426e-02 8.43648314e-01 1.09345388e+00 -4.30763662e-02 9.30516481e-01 2.95311689e-01 1.50618553e-01 6.28997624e-01 3.48842233e-01 5.64047217e-01 1.98068023e-01 7.34088063e-01 -1.93156421e-01 -4.34764683e-01 -8.27139020e-01 -5.38830794e-02 3.59966606e-01 1.31470704e+00 -3.90408456e-01 -3.45485032e-01 -4.58646595e-01 5.50935566e-01 -1.39621294e+00 -1.19786108e+00 -3.50219250e-01 1.91740859e+00 9.82758999e-01 -1.50653690e-01 4.05734837e-01 5.66810668e-01 6.36728704e-01 4.35023874e-01 -1.65643170e-02 -6.27387106e-01 -3.69095504e-01 1.54574320e-01 2.95215607e-01 1.04646599e+00 -1.05983210e+00 7.88754702e-01 8.16442585e+00 1.18100119e+00 -8.83130491e-01 5.05779266e-01 7.54391134e-01 2.89872259e-01 -3.92192423e-01 -3.53675663e-01 -6.55734360e-01 3.86093587e-01 9.91832554e-01 -2.70413846e-01 5.82188725e-01 5.61846256e-01 6.65241599e-01 1.59904093e-01 -5.42164743e-01 7.88466990e-01 -1.19601190e-01 -1.37959111e+00 -2.40101293e-01 5.55903465e-02 1.01085448e+00 -2.33618408e-01 6.86927557e-01 1.54818565e-01 -7.64290243e-02 -6.75671756e-01 6.95720494e-01 3.46210450e-01 7.97096789e-01 -5.73389173e-01 2.47102007e-01 1.29918009e-01 -1.10266709e+00 -1.38896614e-01 -4.95023847e-01 1.75970122e-01 4.83710945e-01 7.40753472e-01 -4.06384200e-01 5.29051483e-01 4.79135603e-01 5.33294141e-01 -2.11640045e-01 1.41330731e+00 -2.84730703e-01 6.39984190e-01 -1.61740914e-01 1.29617646e-01 2.08168864e-01 -2.73084462e-01 8.28893900e-01 1.91008723e+00 7.23774076e-01 -1.07558386e-03 -6.14325941e-01 9.56942797e-01 8.69596824e-02 2.62079120e-01 -4.01911855e-01 2.89316148e-01 2.45253548e-01 8.76395285e-01 -3.69359732e-01 -1.42812073e-01 -4.40735877e-01 1.38080382e+00 4.95848767e-02 8.83008599e-01 -9.66674209e-01 -3.51783752e-01 7.52200246e-01 -2.79942267e-02 3.74877572e-01 -4.99736696e-01 -2.89118677e-01 -8.72547746e-01 -2.46040300e-01 -9.09435928e-01 7.22387731e-02 -8.22707593e-01 -1.12830520e+00 7.66831160e-01 4.27464992e-02 -1.05009782e+00 -1.32350966e-01 -2.92647749e-01 -5.87253153e-01 1.25288677e+00 -1.92965734e+00 -8.96725416e-01 -2.22585946e-01 5.94842613e-01 9.81479645e-01 -4.96616121e-03 5.10106862e-01 6.77564979e-01 -3.56213868e-01 8.30476522e-01 5.29579520e-01 -4.21275765e-01 6.29168749e-01 -1.23984873e+00 7.11475432e-01 9.76107597e-01 1.32701337e-01 5.20226061e-01 1.05715108e+00 -5.52659333e-01 -6.90890610e-01 -8.76213551e-01 1.17553568e+00 -4.11215648e-02 7.27889001e-01 5.03455438e-02 -1.12262809e+00 4.03346628e-01 4.55229580e-01 -1.05898611e-01 3.60833228e-01 -1.46502569e-01 7.68776378e-03 1.85969695e-01 -1.32217395e+00 8.28045249e-01 1.10337639e+00 -5.18975377e-01 -3.05050135e-01 3.32548887e-01 6.67840064e-01 -5.76781571e-01 -9.17589307e-01 1.17884949e-01 3.13988924e-01 -1.33209097e+00 1.31112468e+00 -1.37344509e-01 3.38769168e-01 -2.36332100e-02 -2.10352421e-01 -1.62145960e+00 -2.27546290e-01 -1.19100177e+00 -4.02769148e-01 1.25374615e+00 3.30150276e-01 -5.48182964e-01 4.63618279e-01 4.57537353e-01 -2.35436156e-01 -5.80565214e-01 -1.03485572e+00 -1.00913680e+00 4.40494299e-01 -8.64399135e-01 3.97147834e-01 8.46103668e-01 -1.71577379e-01 -2.89718598e-01 -7.27391005e-01 2.25382626e-01 5.80425799e-01 -7.05262125e-01 4.31120038e-01 -6.04681492e-01 -5.61305225e-01 -6.91850305e-01 -5.87787367e-02 -1.61219823e+00 -6.22414537e-02 -4.99257863e-01 -7.55944550e-02 -1.39005816e+00 -2.44420409e-01 -4.83860105e-01 -2.53246784e-01 -1.81813568e-01 -2.74340302e-01 2.05582976e-01 2.53940940e-01 1.85527802e-01 5.61973788e-02 7.20048964e-01 1.55964196e+00 -1.85822442e-01 -6.52061403e-01 2.58580655e-01 -4.30535138e-01 4.08606261e-01 6.42960548e-01 -3.83891165e-01 -7.16361642e-01 -5.28547466e-01 -1.11526288e-01 9.21919122e-02 3.09872568e-01 -8.85684252e-01 2.57462472e-01 7.56482081e-03 -1.26018664e-02 -3.68799090e-01 5.27498543e-01 -5.02237082e-01 -1.71868748e-03 3.19059551e-01 -6.30950689e-01 5.26325107e-02 3.01520884e-01 4.29641366e-01 -3.06007683e-01 -4.25082386e-01 8.77561212e-01 4.68030274e-01 -6.61618233e-01 1.29335269e-01 -3.14344257e-01 -1.30769208e-01 8.26702952e-01 -1.79547906e-01 -1.81578800e-01 -7.51377285e-01 -9.44472730e-01 -4.12176549e-01 2.05382973e-01 7.95465261e-02 8.43554020e-01 -1.17189360e+00 -9.02801514e-01 3.24547023e-01 -3.07111561e-01 -7.70947754e-01 5.22589028e-01 1.21446776e+00 -5.47143281e-01 1.06684029e-01 3.45451087e-02 -2.43433192e-01 -1.38019848e+00 6.37184680e-01 4.58970189e-01 -1.11159302e-01 -8.00475299e-01 1.20663834e+00 5.12538068e-02 -2.98230513e-03 4.45707887e-01 -3.81675005e-01 -9.99137536e-02 -2.73278058e-01 7.76222467e-01 8.72356832e-01 1.87796839e-02 -6.38910770e-01 -2.30864156e-02 2.39066571e-01 2.58810401e-01 -7.46926844e-01 1.13085711e+00 -4.74526107e-01 1.01618916e-01 2.01258555e-01 1.04123127e+00 4.08258080e-01 -1.63420463e+00 -1.11700080e-01 -1.59962624e-01 -5.50167024e-01 4.41607624e-01 -6.34594619e-01 -1.06994653e+00 1.17237926e+00 8.79969776e-01 4.83918011e-01 1.46975935e+00 -4.83995110e-01 7.52080500e-01 -4.92293052e-02 -1.00023061e-01 -1.15884233e+00 -5.37279807e-02 3.02036583e-01 1.17243445e+00 -7.78452337e-01 -1.84893925e-02 -6.43647790e-01 -8.33164215e-01 1.01241505e+00 -1.35750607e-01 1.75600827e-01 9.30170894e-01 4.90464449e-01 6.29525706e-02 3.92921180e-01 -5.57075083e-01 -2.49322265e-01 4.78471488e-01 1.30675626e+00 6.77435815e-01 -3.33191335e-01 -6.68008149e-01 2.08859995e-01 1.62073389e-01 3.91185693e-02 4.32634801e-01 6.31497264e-01 -3.69139194e-01 -1.13808954e+00 -3.65223289e-01 -8.58447999e-02 -4.78867710e-01 -4.58958685e-01 2.88084727e-02 6.83637142e-01 -3.05208236e-01 1.24569201e+00 -2.54871547e-01 -1.87393591e-01 2.82737762e-01 -2.08193943e-01 4.76742625e-01 7.79108107e-02 -7.43502498e-01 3.74504000e-01 8.92677084e-02 -1.41909182e-01 -5.07725954e-01 -5.87559462e-01 -7.51175821e-01 -7.18081057e-01 -3.01585466e-01 -1.19742475e-01 9.41685319e-01 6.37506664e-01 2.46149868e-01 6.94868565e-01 5.48768759e-01 -7.47223854e-01 -7.51667202e-01 -9.25136924e-01 -8.01389575e-01 3.09836090e-01 4.72321540e-01 -4.61741388e-01 -5.65343738e-01 2.68106967e-01]
[15.0833158493042, 6.0243611335754395]
a14f04c1-fba6-4b4a-ac53-99d1a7df5c5e
generation-of-a-spanish-artificial
null
null
https://aclanthology.org/L18-1400
https://aclanthology.org/L18-1400.pdf
Generation of a Spanish Artificial Collocation Error Corpus
null
["Sara Rodr{\\'\\i}guez-Fern{\\'a}ndez", 'Leo Wanner', 'Roberto Carlini']
2018-05-01
generation-of-a-spanish-artificial-1
https://aclanthology.org/L18-1400
https://aclanthology.org/L18-1400.pdf
lrec-2018-5
['grammatical-error-detection']
['natural-language-processing']
[-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01 -8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01 -2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00 -3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01 -9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01 7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01 7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00 -1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01 3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01 9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01 5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00 -5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01 1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00 7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01 -1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02 -1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01 1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00 1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01 3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01 8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01 9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01 -9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01 -1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01 -2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01 -8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00 1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01 8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00 -6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01 -6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01 3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01 4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02 4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01 1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01 9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01 -1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01 -7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00 -1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02 1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01 -1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01 -1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01 -4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01 -1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01 6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01 -1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00 -7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01 -1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01 3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01 -1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01 1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01 3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00 -2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01 2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01 -1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01 4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01 2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00 1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01 -3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00 7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01 3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01 -2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01 7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01 -2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01 6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00 7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00 -3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01 -6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00 3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01 1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01 -5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01 -5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01 -2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01 -1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01 5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01 -2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01 -4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01 5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01 -6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00 1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01 8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02 -6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01 -1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01 1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01 8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03 3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01 8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01 -1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01 6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01 -9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01 -1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00 -5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02 -5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01 1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01 -4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01 1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01 6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01 5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01 1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01 1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01 1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01 1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00 -8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01 -1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01 6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01 4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00 -1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00 -7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00 2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01 -4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02 1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01 3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01 9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01 7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01 6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01 1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01 -1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00 3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01 9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01 -4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01 4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00 2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01 5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01 2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01 -2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01 -6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01 -1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01 -5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01 -1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00 -6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01 -1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01 1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02 1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01 5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01 -4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01 -1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01 6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01 7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01 1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01 1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01 8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01 8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00 -4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01 -5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02 5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01 -2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00 -3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01 6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01 5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00 3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01 -8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00 -8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01 3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01 -3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05 -1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01 8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02 6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01 5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00 1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01 2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02 -1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01 -4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02 9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01 -8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02 7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01 -3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01 -1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01 -1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01 -2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01 1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03 6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01 -4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01 9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01 8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01 1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01 -1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01 8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01 5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01 9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01 -4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01 1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01 -9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00 5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01 -7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00 -6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01 -5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01 -5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01 4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01 -9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00 -8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00 -5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01 -2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00 -3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02 2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01]
[-7.300709247589111, 3.6335134506225586]
e5f3eedd-c9ad-424c-8b15-da272a4aaba2
unsupervised-dependency-parsing-lets-use
1504.04666
null
http://arxiv.org/abs/1504.04666v1
http://arxiv.org/pdf/1504.04666v1.pdf
Unsupervised Dependency Parsing: Let's Use Supervised Parsers
We present a self-training approach to unsupervised dependency parsing that reuses existing supervised and unsupervised parsing algorithms. Our approach, called `iterated reranking' (IR), starts with dependency trees generated by an unsupervised parser, and iteratively improves these trees using the richer probability models used in supervised parsing that are in turn trained on these trees. Our system achieves 1.8% accuracy higher than the state-of-the-part parser of Spitkovsky et al. (2013) on the WSJ corpus.
['Phong Le', 'Willem Zuidema']
2015-04-18
unsupervised-dependency-parsing-lets-use-1
https://aclanthology.info/papers/N15-1067/n15-1067
https://www.aclweb.org/anthology/N15-1067
hlt-2015-5
['unsupervised-dependency-parsing']
['natural-language-processing']
[ 2.68945962e-01 9.69552875e-01 -5.12502730e-01 -8.94912422e-01 -1.18097603e+00 -7.86531866e-01 4.16243225e-01 5.16405940e-01 -4.58319277e-01 8.79438579e-01 6.34717464e-01 -5.75666070e-01 2.08470702e-01 -6.64860070e-01 -4.85551357e-01 -2.37334877e-01 -2.59182483e-01 9.28263366e-01 6.83800817e-01 -3.06134403e-01 5.15064038e-03 1.47550507e-02 -1.10041237e+00 3.53914291e-01 7.16253519e-01 2.19242424e-01 3.39787215e-01 9.85581756e-01 -7.69809961e-01 1.06579316e+00 -5.24390876e-01 -7.14856029e-01 -1.88923046e-01 -4.42869782e-01 -1.43136477e+00 -1.31075993e-01 4.90892678e-02 -1.38760224e-01 2.07353402e-02 8.08050990e-01 -1.19009092e-01 -1.53522134e-01 2.10252017e-01 -4.84163254e-01 -4.63712573e-01 1.70016682e+00 -2.22920805e-01 4.67160404e-01 4.98003274e-01 -5.40653646e-01 1.58215141e+00 -4.32470411e-01 9.91443157e-01 1.23574185e+00 3.55839610e-01 6.77637875e-01 -1.40280271e+00 -5.17625809e-01 2.75627106e-01 -2.47087151e-01 -6.37157738e-01 -3.80809188e-01 6.38064623e-01 -8.43942016e-02 1.47225010e+00 -1.13331247e-02 1.84188485e-01 7.76838124e-01 -8.21941346e-02 9.18769419e-01 1.26491427e+00 -1.16111696e+00 1.57245159e-01 -2.96529561e-01 9.82962132e-01 5.47461212e-01 2.46201649e-01 2.07109321e-02 -7.00529933e-01 -1.57175049e-01 4.60718364e-01 -6.68782890e-01 5.45154870e-01 3.24835554e-02 -9.38426673e-01 9.35338199e-01 -6.79642558e-02 4.77824569e-01 -3.06414098e-01 -7.98432678e-02 4.65108663e-01 3.49309444e-01 6.01314008e-01 4.61278379e-01 -1.22203588e+00 -2.54446566e-01 -8.33524168e-01 -2.12382764e-01 1.19608748e+00 9.86805201e-01 6.91328645e-01 -3.53490710e-01 8.95673037e-02 7.83035815e-01 5.71358442e-01 2.09499940e-01 3.61623853e-01 -1.05123842e+00 7.22857356e-01 4.28624719e-01 -7.69609511e-02 6.21614186e-03 -5.93048871e-01 -2.29690187e-02 -1.54259712e-01 -1.65539607e-01 3.52850407e-01 -2.23404288e-01 -1.21951866e+00 1.55183208e+00 3.32991749e-01 -2.37899452e-01 6.66984022e-01 2.85597563e-01 1.01222074e+00 4.95745897e-01 8.81031275e-01 -4.66936588e-01 1.45426536e+00 -1.04777682e+00 -7.68321812e-01 -4.99907285e-01 9.77474689e-01 -8.35471869e-01 4.56503779e-01 2.88110614e-01 -1.06268764e+00 -4.68596309e-01 -7.57691324e-01 8.24362636e-02 -2.70759519e-02 -9.01767612e-02 1.06014049e+00 7.49318898e-01 -1.29825938e+00 7.18238294e-01 -1.09719670e+00 -5.61232150e-01 2.18601838e-01 5.69389701e-01 -6.02249742e-01 1.55457124e-01 -1.16068053e+00 1.01478374e+00 8.81431699e-01 -3.28170568e-01 -3.87757957e-01 -2.69504458e-01 -1.04149914e+00 -2.33685806e-01 4.14706916e-01 -1.63489684e-01 1.93102682e+00 -8.70637596e-01 -1.98708987e+00 1.15040672e+00 -4.75344062e-01 -4.76489753e-01 -2.26551309e-01 -8.04509938e-01 -3.29024643e-01 7.87852407e-02 4.61875409e-01 4.81261700e-01 3.87576073e-01 -1.20405078e+00 -8.08105230e-01 -3.02425832e-01 2.91512966e-01 7.34849274e-02 3.12494189e-01 9.32392538e-01 -4.18850571e-01 -4.62845564e-01 4.70352232e-01 -7.54527092e-01 -5.97274482e-01 -1.15391219e+00 -7.05846608e-01 -6.45544887e-01 2.81785607e-01 -1.01580679e+00 1.22818458e+00 -1.85775876e+00 2.19105601e-01 -3.17815505e-02 5.33288419e-02 9.79925692e-02 -2.70845562e-01 6.53779387e-01 -3.36113930e-01 4.87339556e-01 -5.44264972e-01 -5.46585679e-01 -9.67668146e-02 8.59827697e-01 3.08738369e-02 -1.02092408e-01 5.94339430e-01 7.49204636e-01 -1.15177655e+00 -9.53760803e-01 -1.71067882e-02 -1.08517364e-01 -3.94999653e-01 4.82923865e-01 -3.19027126e-01 6.60218716e-01 -6.03058994e-01 6.52710855e-01 4.12055463e-01 5.76900244e-02 1.03701472e+00 2.84739524e-01 -5.59880912e-01 1.13019931e+00 -7.20872223e-01 1.74343324e+00 -2.96260327e-01 2.10034728e-01 -1.59242630e-01 -1.04599476e+00 8.26541841e-01 4.31109548e-01 1.03713766e-01 -3.50347757e-01 8.31547529e-02 1.84358403e-01 -4.25963812e-02 -3.93803477e-01 1.74273938e-01 -1.47133648e-01 -6.99639738e-01 6.25231981e-01 5.44079602e-01 -3.18257138e-02 6.70771837e-01 5.79475284e-01 1.32108009e+00 6.78745508e-01 6.80379808e-01 -3.82483631e-01 4.65219349e-01 4.66142207e-01 6.24672055e-01 8.05571079e-01 -2.14060191e-02 2.54748911e-01 7.98131168e-01 -3.77141565e-01 -9.69088018e-01 -1.10819316e+00 -3.80725235e-01 1.69845903e+00 -3.94200921e-01 -7.63663292e-01 -7.31563091e-01 -1.14624906e+00 -4.80614305e-01 9.31727767e-01 -5.75249672e-01 6.85450137e-01 -1.01581156e+00 -6.37515068e-01 5.04355848e-01 7.98736870e-01 1.04827896e-01 -1.43642116e+00 -4.16760802e-01 6.49882734e-01 -1.32201061e-01 -1.40848219e+00 4.19008493e-01 1.04003108e+00 -1.11032116e+00 -1.06174183e+00 3.39045338e-02 -1.35565388e+00 6.77195728e-01 -4.12550718e-01 1.67388213e+00 2.29295805e-01 2.27971628e-01 1.04861088e-01 -1.21142232e+00 -3.67186189e-01 -1.07102990e+00 3.42463940e-01 -2.32718155e-01 -7.91843235e-01 5.01324236e-01 -5.39845645e-01 1.55652851e-01 -2.92176783e-01 -7.79294848e-01 1.16890632e-01 7.44351149e-01 8.90686035e-01 4.79944617e-01 -4.72896025e-02 2.34315559e-01 -1.91323304e+00 3.25359166e-01 -2.91962266e-01 -5.29110491e-01 4.07915801e-01 -3.81813884e-01 5.52076042e-01 6.74970865e-01 6.50442541e-02 -1.49000216e+00 3.73026162e-01 -6.91413820e-01 6.58284366e-01 -5.83393991e-01 4.59684670e-01 -1.29041702e-01 3.25108618e-01 2.89551377e-01 -1.32952899e-01 -6.51044011e-01 -7.93136001e-01 7.08793998e-01 5.96337080e-01 6.13965273e-01 -8.41686845e-01 9.04817402e-01 4.15060259e-02 -3.27812642e-01 -4.68040437e-01 -1.26804936e+00 -5.55973530e-01 -1.55067372e+00 1.80562645e-01 1.12888563e+00 -7.10901618e-01 1.76000670e-02 1.91430986e-01 -1.49297118e+00 -5.05562901e-01 -3.88032377e-01 4.19672638e-01 -2.13556781e-01 5.22105932e-01 -9.89132404e-01 -8.84793937e-01 -3.47659439e-01 -4.72388387e-01 1.09837329e+00 4.08150822e-01 -5.33469439e-01 -9.41967249e-01 6.01981699e-01 2.16163769e-01 -8.79189298e-02 -3.60276923e-02 1.13004041e+00 -1.13958883e+00 7.34086037e-02 -7.99513683e-02 5.11891320e-02 2.40272120e-01 3.43167447e-02 2.20493183e-01 -8.25807750e-01 2.52092212e-01 -2.97724217e-01 -5.33613563e-01 8.28339696e-01 2.46806443e-01 5.09865880e-01 -3.18776034e-02 -3.06688100e-01 7.03473687e-02 1.16108954e+00 9.81142521e-02 3.96992236e-01 6.49741113e-01 4.95530397e-01 9.05301034e-01 6.13916755e-01 1.86153743e-02 7.09838152e-01 8.24802592e-02 2.49343924e-02 2.65073124e-02 1.87416971e-01 -2.26511016e-01 3.43536884e-01 1.29136062e+00 -3.53993595e-01 6.96793571e-02 -9.43110228e-01 5.15727997e-01 -1.66565788e+00 -5.82668722e-01 -3.69325489e-01 1.71718514e+00 1.04075825e+00 5.84646463e-01 9.92416218e-02 1.22132897e-01 8.49849224e-01 2.78448015e-01 6.72108904e-02 -1.06808412e+00 5.30952401e-02 1.10296881e+00 4.95360851e-01 6.12516224e-01 -1.46658194e+00 1.81205487e+00 7.49187708e+00 -7.74459690e-02 -2.18588144e-01 1.84128061e-01 4.74959105e-01 6.54457152e-01 -2.76539862e-01 6.52376175e-01 -1.01660335e+00 1.26460623e-02 1.51170707e+00 2.66850591e-01 2.18401641e-01 8.67048085e-01 -2.53805280e-01 -3.16832036e-01 -8.68182302e-01 -4.11853977e-02 -1.55925274e-01 -8.80524397e-01 -2.96134830e-01 -3.76841515e-01 3.46132755e-01 3.97757143e-01 -7.14075208e-01 6.62596345e-01 1.40712225e+00 -6.19377077e-01 4.76129442e-01 -1.38546482e-01 5.13178527e-01 -6.97567582e-01 9.03425157e-01 3.73496950e-01 -1.16143179e+00 1.81470603e-01 -4.58514959e-01 -1.73422083e-01 5.77317476e-01 6.66077316e-01 -5.11837125e-01 5.76401353e-01 9.05932605e-01 5.33581972e-01 -5.63475132e-01 3.70322078e-01 -1.22942388e+00 1.35274017e+00 -3.99216384e-01 5.48877940e-02 1.59355581e-01 -1.25176236e-01 3.47840965e-01 1.52131605e+00 -5.25800586e-01 4.26191896e-01 3.16794753e-01 -7.49614909e-02 -9.16016176e-02 3.57769400e-01 -1.81949317e-01 -2.00593308e-01 4.88553792e-01 1.25313580e+00 -1.14663804e+00 -7.40286410e-01 -5.30202746e-01 8.70452166e-01 8.56075346e-01 -2.33205259e-02 -4.30227906e-01 -1.72996759e-01 7.16612674e-03 -5.24581373e-01 6.69579983e-01 -3.74207318e-01 -7.87835270e-02 -1.06354570e+00 -1.68242723e-01 -5.56126058e-01 8.22206616e-01 -4.56154823e-01 -1.32567143e+00 1.00696945e+00 1.92727044e-01 -5.24653494e-01 -4.95124340e-01 -7.15445936e-01 -6.37895286e-01 5.99244177e-01 -1.65135205e+00 -1.22646427e+00 3.80898386e-01 5.65274879e-02 6.45406246e-01 2.68675566e-01 1.51503301e+00 -2.85296023e-01 -5.25724769e-01 2.15151608e-01 -5.36871366e-02 6.19090319e-01 4.24913973e-01 -1.69574678e+00 1.23197865e+00 9.54829216e-01 4.33439046e-01 6.57752395e-01 6.27384722e-01 -9.02206719e-01 -1.13477635e+00 -6.78821385e-01 1.70785177e+00 -6.97169125e-01 1.09048116e+00 -2.85546720e-01 -7.83454955e-01 1.06922388e+00 4.88642216e-01 -1.86240315e-01 1.04452288e+00 7.45023310e-01 -5.23149967e-01 3.72186542e-01 -8.03681731e-01 2.17181325e-01 1.25072062e+00 -3.34486365e-01 -1.41041172e+00 2.53660470e-01 8.85071576e-01 -4.48440880e-01 -1.11908829e+00 4.28439200e-01 5.53111076e-01 -8.38042974e-01 5.94974816e-01 -1.10187900e+00 5.17369449e-01 2.85709172e-01 -3.22181843e-02 -1.21357000e+00 -4.98054206e-01 -6.56534374e-01 1.09826393e-01 1.50453889e+00 9.70494747e-01 -6.55455828e-01 6.60264969e-01 6.41318738e-01 -2.08675027e-01 -2.77161509e-01 -8.50456178e-01 -5.13035059e-01 2.25961834e-01 -6.20915949e-01 3.56783956e-01 8.47926557e-01 5.13241947e-01 6.70080662e-01 2.62178510e-01 2.60218680e-01 6.83803618e-01 6.70650229e-02 6.01564944e-01 -1.52658105e+00 -4.64436948e-01 -6.92532305e-03 -1.22294493e-01 -8.64120781e-01 5.03943384e-01 -8.18815529e-01 5.61206579e-01 -1.75627351e+00 1.16850071e-01 -4.63544369e-01 -4.56630677e-01 7.89215446e-01 -4.35200036e-01 4.20390628e-03 2.28574082e-01 4.40415412e-01 -9.66375589e-01 -1.35902748e-01 8.12916338e-01 2.17764914e-01 -3.05189162e-01 -1.88101575e-01 -9.55665529e-01 9.32577670e-01 1.04511774e+00 -1.11692286e+00 1.62947342e-01 -5.94379842e-01 1.55957758e-01 2.23799437e-01 -4.64140475e-01 -5.77629805e-01 2.72296444e-02 -2.34942846e-02 1.72218591e-01 -6.61866963e-01 -3.16962093e-01 -1.96768478e-01 -3.11659306e-01 2.84324378e-01 -4.31876659e-01 2.17369661e-01 1.75975963e-01 3.06835234e-01 -2.14722618e-01 -6.03927314e-01 5.22852659e-01 -3.77154320e-01 -8.79623532e-01 -3.73467088e-01 -7.69818723e-01 1.98828399e-01 6.52008176e-01 1.72073618e-01 -3.40904772e-01 1.37548342e-01 -1.01083589e+00 1.64971277e-01 1.60120279e-01 2.58719593e-01 9.64711979e-02 -5.78878284e-01 -9.28041518e-01 8.37105364e-02 3.58019173e-02 2.52722800e-01 -4.36730534e-01 3.87056381e-01 -6.93289101e-01 4.39943403e-01 1.85798734e-01 -3.34842056e-01 -1.16487980e+00 1.23536192e-01 -4.33106065e-01 -1.05798793e+00 -7.73367763e-01 9.70850050e-01 -3.12509954e-01 -6.94581985e-01 -1.62634626e-01 -2.90639788e-01 -7.84841657e-01 -2.08938852e-01 3.03830266e-01 -9.87421274e-02 -1.79789156e-01 -7.98811495e-01 -6.69484735e-01 3.57053369e-01 -3.88769418e-01 -4.73494351e-01 1.68474793e+00 1.13294452e-01 -4.32405591e-01 4.24375474e-01 6.41669631e-01 3.95292580e-01 -7.72159994e-01 -2.63181478e-01 9.94172871e-01 1.46046817e-01 -2.28545636e-01 -8.66298974e-01 -4.29590970e-01 2.53650457e-01 -1.02262646e-01 4.61525112e-01 8.06319952e-01 7.86388814e-01 7.89270163e-01 6.09977484e-01 4.61121559e-01 -1.17736685e+00 -4.25418735e-01 9.77063119e-01 1.63622171e-01 -1.21462512e+00 1.36944219e-01 -9.07170415e-01 -8.02094758e-01 1.18901765e+00 3.15104097e-01 -3.97649884e-01 5.73044479e-01 6.17352366e-01 4.16413069e-01 -1.93400025e-01 -6.28655553e-01 -6.65786326e-01 -8.71122926e-02 6.37888908e-01 7.59769976e-01 3.21860164e-01 -7.22351134e-01 9.17893052e-01 -5.56843877e-01 -2.74911195e-01 2.87749946e-01 1.43515956e+00 -5.23613274e-01 -1.99998856e+00 -2.54908979e-01 4.29905385e-01 -7.40052223e-01 -5.17329693e-01 -6.10504746e-01 1.00129342e+00 -1.23130545e-01 1.35632062e+00 8.89590383e-02 -2.48766840e-01 3.59745651e-01 4.56325799e-01 6.21646583e-01 -1.42865109e+00 -6.03952289e-01 1.65059909e-01 9.14888918e-01 -3.64829183e-01 -1.01393831e+00 -8.77451777e-01 -1.69596922e+00 3.74912739e-01 -4.40079540e-01 6.45897985e-01 7.11923063e-01 1.34368742e+00 -2.24600330e-01 4.31359947e-01 6.09667540e-01 -7.24617958e-01 -1.78085357e-01 -1.13636911e+00 -3.85064840e-01 2.48303697e-01 -1.34024069e-01 -3.23760778e-01 -3.49603921e-01 3.51799697e-01]
[10.361613273620605, 9.748448371887207]
c9ad6221-f882-44ae-b450-bf5a6bacb1c8
how-to-evaluate-the-quality-of-unsupervised
1607.01152
null
http://arxiv.org/abs/1607.01152v1
http://arxiv.org/pdf/1607.01152v1.pdf
How to Evaluate the Quality of Unsupervised Anomaly Detection Algorithms?
When sufficient labeled data are available, classical criteria based on Receiver Operating Characteristic (ROC) or Precision-Recall (PR) curves can be used to compare the performance of un-supervised anomaly detection algorithms. However , in many situations, few or no data are labeled. This calls for alternative criteria one can compute on non-labeled data. In this paper, two criteria that do not require labels are empirically shown to discriminate accurately (w.r.t. ROC or PR based criteria) between algorithms. These criteria are based on existing Excess-Mass (EM) and Mass-Volume (MV) curves, which generally cannot be well estimated in large dimension. A methodology based on feature sub-sampling and aggregating is also described and tested, extending the use of these criteria to high-dimensional datasets and solving major drawbacks inherent to standard EM and MV curves.
['Nicolas Goix']
2016-07-05
null
null
null
null
['supervised-anomaly-detection']
['computer-vision']
[ 5.20619750e-02 -1.36556774e-01 -1.86040401e-01 -6.37539387e-01 -5.65631211e-01 -5.25406480e-01 6.12902701e-01 8.25410724e-01 -5.51623642e-01 7.50135660e-01 -4.60245907e-01 -4.86418277e-01 -4.99921888e-01 -7.58492112e-01 4.84880209e-02 -6.04584694e-01 -2.69978821e-01 6.83976293e-01 4.54864800e-01 1.97896525e-01 4.31084067e-01 6.78193033e-01 -2.12305927e+00 8.92783776e-02 1.02666175e+00 9.55144107e-01 -3.65197212e-01 6.84043825e-01 -4.81038541e-01 1.86147124e-01 -5.88911116e-01 -1.88981250e-01 3.04587811e-01 -5.61694622e-01 -5.65002859e-01 -3.95099409e-02 3.72637272e-01 -2.48815089e-01 3.80735457e-01 9.13690090e-01 2.48372287e-01 6.28475770e-02 1.27540708e+00 -1.53415811e+00 -2.95486152e-01 1.96451038e-01 -4.64014143e-01 3.74146998e-01 5.66222131e-01 -2.69243330e-01 6.39396548e-01 -7.01611102e-01 2.96394646e-01 9.62855458e-01 7.27208495e-01 2.30185449e-01 -1.42638421e+00 -3.79520297e-01 -1.64758191e-01 1.83389913e-02 -1.42695773e+00 2.96726339e-02 5.19034386e-01 -6.50222063e-01 4.88261968e-01 4.72823828e-01 5.48450947e-01 6.15364969e-01 2.50535369e-01 3.61168712e-01 1.33917522e+00 -5.82764208e-01 5.00915289e-01 5.44930458e-01 4.69709456e-01 4.52106178e-01 8.73978972e-01 3.47519934e-01 -1.12828977e-01 -6.26697779e-01 2.72497624e-01 -1.58632267e-02 1.18633956e-01 -8.98782730e-01 -8.08669329e-01 9.66532826e-01 -1.38084337e-01 5.89448869e-01 -2.77931213e-01 -5.52912772e-01 6.62177682e-01 4.49160546e-01 6.84922636e-01 5.27833700e-01 -4.64732170e-01 -7.18355328e-02 -1.30063605e+00 4.32017684e-01 8.08086216e-01 5.60542405e-01 6.83223546e-01 1.36282761e-02 -1.58194020e-01 6.91327572e-01 4.57042456e-01 4.10358489e-01 5.61058640e-01 -5.20834804e-01 6.63710609e-02 9.58166480e-01 3.28612983e-01 -9.16844189e-01 -7.99114048e-01 -3.12016249e-01 -5.46315312e-01 3.21081430e-01 9.65970457e-01 4.14600819e-02 -7.80199707e-01 1.32751274e+00 3.95142406e-01 -3.26657623e-01 1.18545532e-01 6.81788385e-01 6.38697982e-01 2.11663753e-01 2.84147799e-01 -6.44398272e-01 1.08830798e+00 -9.40402448e-02 -6.98499799e-01 2.36629844e-01 1.09611666e+00 -4.97625053e-01 1.08558464e+00 6.17420614e-01 -6.47133172e-01 -3.96696508e-01 -1.13816679e+00 4.63821679e-01 -7.92006731e-01 2.93428749e-02 4.68634337e-01 1.21524858e+00 -6.22639239e-01 9.08157527e-01 -7.72280931e-01 -4.79039103e-01 2.55653501e-01 3.78878742e-01 -2.85703927e-01 1.41797930e-01 -9.88926351e-01 8.83847356e-01 4.73701745e-01 -2.37916008e-01 -5.49075902e-01 -3.61902058e-01 -6.77518785e-01 -1.48392186e-01 1.41934026e-03 -2.15102181e-01 9.19088721e-01 -7.83131003e-01 -1.02184761e+00 1.05531895e+00 2.82894343e-01 -5.62353611e-01 7.35754490e-01 -1.06224015e-01 -7.27797449e-01 2.58271635e-01 7.68966880e-03 8.12594667e-02 6.62750006e-01 -1.22284079e+00 -6.40862107e-01 -6.96746409e-01 -2.96070963e-01 -1.51881173e-01 -2.53257394e-01 1.16329350e-01 3.14725935e-01 -5.09372950e-01 4.41570133e-01 -7.46512532e-01 -6.93722293e-02 -1.94550306e-01 -3.74347925e-01 -4.35608894e-01 9.15749252e-01 -3.92896622e-01 1.44605625e+00 -2.10341144e+00 -3.78759295e-01 7.15913534e-01 9.60351825e-02 4.36222047e-01 2.41545707e-01 4.50975180e-01 -1.62595168e-01 1.54995918e-01 -6.18101060e-01 1.85745329e-01 6.99125305e-02 1.88442007e-01 1.51192881e-02 8.27948928e-01 3.04817297e-02 2.44598195e-01 -8.06847036e-01 -6.46685839e-01 2.66692758e-01 8.79606977e-02 -2.67902404e-01 4.67707142e-02 3.99040990e-02 4.25228804e-01 -3.97390425e-01 7.12634385e-01 6.28086925e-01 9.73390117e-02 -3.57780866e-02 1.55800357e-01 -3.02343313e-02 -1.36083513e-01 -1.32141483e+00 1.12536454e+00 -3.69931012e-02 3.86848241e-01 -3.65931749e-01 -1.27509236e+00 1.38625026e+00 2.28772223e-01 6.01468205e-01 -5.04238605e-01 2.46752039e-01 6.20505631e-01 1.09108023e-01 -4.28923160e-01 3.23872507e-01 -2.63171703e-01 -2.21185870e-02 4.86570507e-01 1.24760702e-01 8.47260430e-02 4.52221513e-01 -5.46729229e-02 8.69924545e-01 2.84773689e-02 6.08001530e-01 -5.61870635e-01 8.70638609e-01 2.29405668e-02 3.20814282e-01 7.39749312e-01 -3.29213589e-01 4.17309612e-01 7.65239298e-01 -4.13163304e-01 -1.10099483e+00 -1.08360481e+00 -8.09530795e-01 8.49639118e-01 -3.50276865e-02 -2.47521818e-01 -8.28179419e-01 -9.25280869e-01 2.13497013e-01 8.50135028e-01 -5.48848152e-01 -2.63627142e-01 -1.34107294e-02 -1.13335133e+00 5.19228935e-01 2.21255526e-01 1.23398909e-02 -7.06965566e-01 -8.90019298e-01 -3.29696410e-03 4.00577009e-01 -6.51061773e-01 3.39775980e-01 2.01940686e-01 -1.15823007e+00 -1.45691061e+00 -5.73604047e-01 -1.56397521e-01 6.65981829e-01 -1.74675420e-01 1.11594319e+00 1.39057219e-01 -2.74848580e-01 4.72829491e-01 -6.34255469e-01 -5.87153256e-01 -5.92460871e-01 -5.08818999e-02 4.15084571e-01 1.80628315e-01 7.44162440e-01 -4.51577127e-01 -3.73390019e-01 6.95902050e-01 -1.02708018e+00 -7.61159003e-01 5.48940480e-01 6.67967677e-01 6.40442073e-01 -1.02124140e-01 9.66420889e-01 -1.18517303e+00 6.41175866e-01 -5.54494441e-01 -6.54590130e-01 1.85535848e-01 -1.33820260e+00 1.57400027e-01 4.98533219e-01 -5.27164519e-01 -6.37311161e-01 -5.65516315e-02 2.42994651e-02 -4.43534464e-01 -5.51633358e-01 1.44800812e-01 2.10074330e-04 -6.14263266e-02 1.12935269e+00 -2.10715905e-02 1.09395750e-01 -5.36309242e-01 -1.23660797e-02 8.51258218e-01 1.93956226e-01 -4.39913571e-01 6.88389301e-01 2.99789637e-01 3.49022090e-01 -6.73360109e-01 -7.55915463e-01 -6.70038760e-01 -7.87066698e-01 -1.42281830e-01 6.27636254e-01 -2.71350443e-01 -3.51848722e-01 1.93274707e-01 -4.90539014e-01 2.01260343e-01 -5.68264961e-01 8.39743376e-01 -5.08921921e-01 5.38528621e-01 -7.51099288e-02 -1.37774026e+00 -1.85997233e-01 -7.74095297e-01 6.08574688e-01 1.33122101e-01 -3.31067234e-01 -9.80104148e-01 1.75973997e-01 -2.69557238e-02 3.32738787e-01 5.20768464e-01 9.01881576e-01 -1.52488542e+00 2.72844315e-01 -9.06397104e-01 -8.85115862e-02 3.91908497e-01 3.93046476e-02 1.39507264e-01 -1.03643167e+00 -3.40423882e-01 -5.57876751e-02 4.27282619e-04 6.41046762e-01 3.08412045e-01 1.09538686e+00 -1.58486381e-01 -2.66472310e-01 2.32249945e-01 1.37664628e+00 3.88077706e-01 5.18651426e-01 3.96010131e-01 2.54683375e-01 8.83616388e-01 8.71296585e-01 4.64820832e-01 -5.78175187e-02 4.34232056e-01 2.41338432e-01 1.71767786e-01 4.32375789e-01 -1.25520170e-01 1.78154469e-01 2.67589748e-01 1.37342550e-02 7.86847435e-04 -1.09829271e+00 4.62076962e-01 -1.56653965e+00 -8.09079885e-01 -6.83326483e-01 2.65714812e+00 3.55730534e-01 4.67004627e-01 7.01863170e-01 6.86510563e-01 8.18252325e-01 -2.52058357e-01 -5.78834534e-01 -6.74028933e-01 -4.06385250e-02 2.94030607e-02 4.77649748e-01 1.26171127e-01 -1.09242964e+00 5.48126251e-02 6.89290142e+00 7.83934951e-01 -7.50263751e-01 -1.91324186e-02 4.86221045e-01 2.62681127e-01 -4.94336933e-02 1.69118255e-01 -5.55299878e-01 5.18736124e-01 1.30432522e+00 -1.15079805e-01 -1.91261426e-01 1.07579458e+00 -1.76725715e-01 -5.43737352e-01 -1.11729908e+00 9.96964455e-01 -7.45817274e-02 -5.96028209e-01 -1.14010021e-01 1.73673362e-01 4.16507244e-01 -4.11691129e-01 -7.56385028e-02 2.88713932e-01 -1.85039327e-01 -7.35993505e-01 2.46882021e-01 6.52666450e-01 7.84265876e-01 -7.94769287e-01 1.14890289e+00 3.90144527e-01 -7.99271226e-01 -9.21939686e-02 -2.69653708e-01 7.66413659e-02 -2.90884107e-01 9.07198012e-01 -5.92788696e-01 7.32357562e-01 5.44890463e-01 2.36396089e-01 -8.50928605e-01 1.19768584e+00 2.26884961e-01 4.67402548e-01 -4.34748799e-01 -1.38780490e-01 6.15555383e-02 -3.15199256e-01 6.11565530e-01 1.00051212e+00 2.90055782e-01 -2.11566180e-01 4.23839055e-02 7.76047528e-01 6.95607483e-01 7.70407379e-01 -7.92559147e-01 2.46389471e-02 2.66600668e-01 1.21738887e+00 -1.04597759e+00 -3.33867759e-01 -5.70730865e-01 5.28580964e-01 -2.22346798e-01 -6.60571530e-02 -3.45156103e-01 -4.21300620e-01 2.83266678e-02 4.78477836e-01 -2.88372129e-01 7.62488227e-03 -3.07874173e-01 -9.19597805e-01 -1.19474933e-01 -4.77565885e-01 8.93483400e-01 -2.53725916e-01 -1.65800309e+00 4.87879276e-01 5.68947136e-01 -1.62435687e+00 -3.00976038e-01 -7.08866298e-01 -4.51006413e-01 6.74446166e-01 -9.61166024e-01 -6.69347763e-01 -1.84299007e-01 3.78396481e-01 -3.87462564e-02 -4.28120792e-01 8.86516571e-01 2.28328109e-01 -4.38659221e-01 5.80478013e-01 2.52541244e-01 -8.51669237e-02 5.07142186e-01 -1.46923029e+00 -3.05042386e-01 6.43505573e-01 1.55177400e-01 3.00450623e-01 8.05107951e-01 -5.89497983e-01 -7.65875518e-01 -8.06327581e-01 6.04604363e-01 -5.12107074e-01 3.83526653e-01 -5.33513986e-02 -1.24644625e+00 2.37864360e-01 -4.94207054e-01 1.68445602e-01 1.02496707e+00 2.48614624e-01 -3.12650204e-01 -7.61272982e-02 -1.75705886e+00 7.33591840e-02 5.13025701e-01 -1.73228994e-01 -7.59674311e-01 3.07746261e-01 -6.50723279e-02 -4.20603938e-02 -1.15182710e+00 7.07041025e-01 6.42188609e-01 -1.43242681e+00 7.16059268e-01 -7.75317967e-01 -2.85543084e-01 -2.85655379e-01 -2.05526158e-01 -1.01208353e+00 1.73184007e-01 -2.50866741e-01 -9.46443826e-02 1.14088011e+00 5.26117325e-01 -8.40937376e-01 6.85990155e-01 5.50117970e-01 2.25312293e-01 -7.11377561e-01 -9.12942708e-01 -1.13561082e+00 6.74120262e-02 -5.00229299e-01 5.43111384e-01 1.05367076e+00 1.14670344e-01 2.61470769e-02 7.59702176e-02 -9.37144756e-02 6.86604381e-01 -7.91288018e-02 6.07432485e-01 -2.04797983e+00 1.98352095e-02 -3.23341072e-01 -8.87916148e-01 2.61964556e-02 -1.02050640e-01 -7.94092178e-01 -3.88957292e-01 -1.15774226e+00 4.55218069e-02 -5.78130901e-01 -5.35201490e-01 2.29674235e-01 4.83068638e-02 2.62509197e-01 -1.81450769e-01 4.93645102e-01 -4.12352711e-01 2.67187208e-01 6.85754478e-01 3.75839263e-01 -2.85776794e-01 2.40846008e-01 -1.50785506e-01 8.96754026e-01 1.16312981e+00 -6.50203824e-01 -3.67018431e-01 6.24555171e-01 1.59440041e-01 1.81840491e-02 2.72511244e-01 -1.30734062e+00 -1.94622129e-01 2.09599733e-02 5.04117489e-01 -6.75471127e-01 -2.06396416e-01 -9.01115000e-01 -1.53447744e-02 5.70624113e-01 -2.90810019e-01 2.39584237e-01 -3.31993848e-02 6.80920839e-01 -1.81138024e-01 -6.59396887e-01 1.05501652e+00 -6.84759766e-02 -3.89899492e-01 9.68482643e-02 -3.49866301e-01 6.77368492e-02 1.33296847e+00 -5.65155983e-01 -2.71795187e-02 -1.92754731e-01 -1.03591990e+00 7.59503543e-02 5.50146461e-01 1.68073207e-01 3.82019520e-01 -1.26352799e+00 -5.03378749e-01 2.95661956e-01 5.90149760e-01 -3.65638018e-01 2.35306442e-01 1.17654812e+00 -7.18029559e-01 4.23814803e-01 -3.42219591e-01 -7.83036590e-01 -1.12131107e+00 8.92964959e-01 3.32561851e-01 -2.12080628e-01 -4.68745798e-01 2.14372531e-01 -1.92927673e-01 -5.63813686e-01 6.92350864e-02 -8.89029130e-02 -4.46737468e-01 3.50773007e-01 4.16908652e-01 7.24221885e-01 2.27731600e-01 -6.32568359e-01 -3.47664863e-01 4.21283692e-01 5.79199493e-02 -9.09025073e-02 9.13952708e-01 4.05290984e-02 3.09382360e-02 9.00716007e-01 9.22143102e-01 -8.75757113e-02 -6.88214958e-01 -7.53237605e-02 5.95860839e-01 -4.71968293e-01 -1.04400039e-01 -6.05660617e-01 -6.12919688e-01 8.73214781e-01 1.21174836e+00 9.90980566e-01 1.06222165e+00 -4.62208800e-02 9.84850749e-02 1.50574461e-01 2.30766892e-01 -1.37941003e+00 -2.58130550e-01 -5.98845854e-02 5.70141435e-01 -1.15081060e+00 1.86322078e-01 -3.16605240e-01 -5.16172707e-01 1.26221919e+00 5.76674819e-01 -1.83641970e-01 7.97928095e-01 1.32409140e-01 2.30570305e-02 -1.47849441e-01 -3.42226952e-01 -4.07297909e-01 5.16553223e-01 6.87482119e-01 5.00208795e-01 1.48204446e-01 -1.12141180e+00 5.48530817e-01 -2.32224185e-02 -2.23001540e-01 4.43205893e-01 8.82415771e-01 -6.11965120e-01 -1.10487485e+00 -5.63345790e-01 1.11545658e+00 -7.34298170e-01 4.49752182e-01 -4.51899529e-01 1.01742983e+00 1.90728694e-01 1.11009705e+00 2.64232010e-01 -4.35186177e-01 4.39788103e-01 5.42916238e-01 2.02288762e-01 -4.69502985e-01 -4.23935473e-01 -1.53290808e-01 1.02188550e-01 -4.09374565e-01 -6.56504989e-01 -7.91049421e-01 -1.04754651e+00 -6.55472130e-02 -6.56321466e-01 4.57305282e-01 6.28987372e-01 8.48016620e-01 1.17240725e-02 1.38462678e-01 5.59514999e-01 -4.73595142e-01 -6.77023888e-01 -1.16966677e+00 -1.05750954e+00 5.17577231e-01 1.29023224e-01 -1.05708063e+00 -7.43669271e-01 -3.22893739e-01]
[8.106179237365723, 4.114152908325195]
7a045705-6517-4034-9eef-6c01df28a1b9
two-heads-are-better-than-one-towards-better
2305.17528
null
https://arxiv.org/abs/2305.17528v1
https://arxiv.org/pdf/2305.17528v1.pdf
Two Heads are Better than One: Towards Better Adversarial Robustness by Combining Transduction and Rejection
Both transduction and rejection have emerged as important techniques for defending against adversarial perturbations. A recent work by Tram\`er showed that, in the rejection-only case (no transduction), a strong rejection-solution can be turned into a strong (but computationally inefficient) non-rejection solution. This detector-to-classifier reduction has been mostly applied to give evidence that certain claims of strong selective-model solutions are susceptible, leaving the benefits of rejection unclear. On the other hand, a recent work by Goldwasser et al. showed that rejection combined with transduction can give provable guarantees (for certain problems) that cannot be achieved otherwise. Nevertheless, under recent strong adversarial attacks (GMSA, which has been shown to be much more effective than AutoAttack against transduction), Goldwasser et al.'s work was shown to have low performance in a practical deep-learning setting. In this paper, we take a step towards realizing the promise of transduction+rejection in more realistic scenarios. Theoretically, we show that a novel application of Tram\`er's classifier-to-detector technique in the transductive setting can give significantly improved sample-complexity for robust generalization. While our theoretical construction is computationally inefficient, it guides us to identify an efficient transductive algorithm to learn a selective model. Extensive experiments using state of the art attacks (AutoAttack, GMSA) show that our solutions provide significantly better robust accuracy.
['Somesh Jha', 'YIngyu Liang', 'Jiefeng Chen', 'Xi Wu', 'Yang Guo', 'Nils Palumbo']
2023-05-27
null
null
null
null
['adversarial-robustness']
['adversarial']
[ 5.52940547e-01 1.71123818e-01 -8.51315353e-03 -2.46787500e-02 -1.24083281e+00 -1.02960324e+00 5.69762051e-01 -2.09476352e-02 -4.47681040e-01 7.31847227e-01 -3.24070305e-01 -7.82489061e-01 -7.15038106e-02 -9.03615832e-01 -1.04335034e+00 -1.10286474e+00 -1.36947840e-01 2.24178940e-01 4.07962501e-01 -5.31515539e-01 -4.01772335e-02 6.34863377e-01 -1.29434454e+00 3.18105310e-01 4.86282140e-01 7.52025723e-01 -5.32580495e-01 1.01654255e+00 3.93297642e-01 3.81050467e-01 -6.97200954e-01 -7.47176886e-01 8.60726595e-01 -4.70950007e-01 -7.75008023e-01 -2.53525734e-01 8.29191625e-01 -7.97006786e-02 -8.46542642e-02 1.31420696e+00 7.05409110e-01 -1.90309331e-01 4.00139093e-01 -1.34815061e+00 -4.75861937e-01 8.40644300e-01 -4.01509821e-01 9.94307622e-02 8.26164931e-02 2.61723876e-01 9.96005535e-01 -4.51824725e-01 3.31421167e-01 1.31779242e+00 8.70176435e-01 1.04329002e+00 -1.64862502e+00 -1.02017736e+00 -3.11540123e-02 -1.49328634e-01 -1.14766085e+00 -2.98605412e-01 7.33613729e-01 -2.04680234e-01 6.66713238e-01 7.27354586e-01 3.91525984e-01 1.38571370e+00 -2.01603994e-02 8.61142099e-01 1.35483122e+00 -5.99437237e-01 2.35522464e-01 3.04406106e-01 1.48499966e-01 7.49488652e-01 3.94997060e-01 6.30954146e-01 -7.28743672e-02 -7.16696680e-01 4.42406386e-01 -3.93154502e-01 -3.84676784e-01 -4.13660735e-01 -6.24977708e-01 1.12185502e+00 5.17565370e-01 2.09195182e-01 1.18964419e-01 3.31194729e-01 5.17059326e-01 9.27905977e-01 4.02321190e-01 5.25469780e-01 -5.00673890e-01 3.10863614e-01 -3.87433320e-01 4.49963719e-01 1.02748370e+00 6.16573513e-01 4.78521079e-01 3.69511753e-01 2.96024501e-01 4.85462427e-01 5.51704429e-02 4.43069875e-01 7.64043108e-02 -8.17402840e-01 4.21519071e-01 2.79047545e-02 1.75464619e-02 -7.73835182e-01 -2.98056930e-01 -6.90286100e-01 -8.28460336e-01 6.23493552e-01 7.61883080e-01 -4.26534951e-01 -6.90114915e-01 2.16698313e+00 2.76905268e-01 4.01676208e-01 3.21384400e-01 7.11680114e-01 1.39908493e-01 4.53316301e-01 4.60135490e-02 -3.13774079e-01 9.95344222e-01 -3.10151815e-01 -1.18242390e-01 -1.71267822e-01 1.21748412e+00 -6.65345907e-01 9.16208386e-01 6.82282507e-01 -8.61256063e-01 -1.25865281e-01 -1.28092194e+00 3.68672222e-01 -1.60534874e-01 -6.32812321e-01 9.49221551e-01 1.40996921e+00 -1.01728427e+00 5.24766088e-01 -5.59228539e-01 -2.63302237e-01 6.19533181e-01 5.64232051e-01 -5.62738299e-01 2.49276105e-02 -1.39447749e+00 7.80703902e-01 3.33148003e-01 -1.10550575e-01 -1.08415079e+00 -5.98508954e-01 -5.31365931e-01 -1.25427455e-01 5.46557486e-01 -7.44215786e-01 1.08040142e+00 -1.24786294e+00 -1.37275958e+00 9.16795671e-01 3.56444061e-01 -1.07624531e+00 7.16706336e-01 -9.46146399e-02 -1.99697033e-01 1.95533097e-01 -4.06621963e-01 2.17414200e-01 8.43468070e-01 -1.31217587e+00 -4.54106241e-01 -4.52610970e-01 5.51604390e-01 -1.35061383e-01 -4.42078978e-01 2.27183804e-01 2.95626849e-01 -5.85524857e-01 -5.76140620e-02 -1.24206769e+00 -3.82291287e-01 -3.80241163e-02 -5.34616053e-01 -1.77956834e-01 7.45243430e-01 -4.10782509e-02 7.47864366e-01 -2.26841402e+00 2.24756007e-03 3.54051232e-01 1.87086731e-01 8.17879260e-01 -3.05893958e-01 4.11616534e-01 -3.54001671e-01 5.22756279e-01 -4.76187825e-01 -3.77578229e-01 3.27103725e-03 2.80319721e-01 -9.28050756e-01 8.37183058e-01 6.02420866e-02 8.23150158e-01 -7.58594096e-01 -9.12497938e-02 4.38649952e-02 4.32029426e-01 -8.58231723e-01 -8.42700228e-02 -1.29718199e-01 3.68993282e-02 -1.47909671e-01 5.75015128e-01 7.24125266e-01 1.61171317e-01 2.17837021e-01 1.23543657e-01 4.96228904e-01 9.91312042e-02 -1.06720412e+00 1.02853143e+00 -4.17840928e-01 4.77656722e-01 4.44216251e-01 -1.35772538e+00 6.46239936e-01 3.43444318e-01 -1.25135649e-02 -2.27699384e-01 4.14267600e-01 5.14616013e-01 8.41016173e-02 -1.22921988e-01 6.61993027e-02 -7.08569467e-01 -3.71236950e-01 3.06652039e-01 -1.02447174e-01 -2.15796024e-01 -3.35607678e-01 3.15555006e-01 1.24802089e+00 -7.83970729e-02 -1.12751514e-01 -3.61574709e-01 4.51587558e-01 -6.02800399e-02 6.51511669e-01 1.35567427e+00 -2.71379739e-01 5.15238345e-01 4.46740806e-01 -1.70794174e-01 -7.36002624e-01 -1.18447578e+00 1.84137374e-02 1.12871635e+00 -2.86129992e-02 -2.37261117e-01 -8.17748606e-01 -8.99222136e-01 7.14670196e-02 5.46458602e-01 -6.59831047e-01 -6.34093285e-01 -6.42855942e-01 -1.08660269e+00 1.35716927e+00 4.44398642e-01 2.78156668e-01 -6.53828561e-01 -2.62817800e-01 1.07760075e-02 1.93870395e-01 -8.31671357e-01 -5.92717491e-02 4.32136565e-01 -8.28457057e-01 -1.10781419e+00 -2.64951944e-01 -7.31918693e-01 5.62148750e-01 1.97985053e-01 6.82867348e-01 2.95392185e-01 -6.72599003e-02 2.50702620e-01 -1.35337174e-01 -4.02624369e-01 -9.62015152e-01 -1.13987193e-01 3.67763877e-01 -5.87032810e-02 1.21758543e-01 -7.46420801e-01 -2.32850522e-01 2.15659305e-01 -1.19445646e+00 -6.08774424e-01 4.04139668e-01 9.85378027e-01 1.48639396e-01 -1.87574029e-02 7.62900412e-01 -1.37575161e+00 6.90118849e-01 -2.42231563e-01 -7.62232065e-01 1.17532901e-01 -5.37102520e-01 1.30854389e-02 1.07052696e+00 -8.29760373e-01 -5.49304068e-01 9.94558334e-02 -5.27219176e-01 -5.32312095e-01 -9.55034643e-02 1.92302838e-01 -2.53773212e-01 -6.79045498e-01 1.32976484e+00 2.32784510e-01 -1.02372356e-01 -4.37662750e-01 4.30535913e-01 4.80549723e-01 5.03484786e-01 -9.26613927e-01 1.33240938e+00 5.33068836e-01 3.56947184e-01 -5.72652817e-01 -7.96991587e-01 -2.06724674e-01 -1.45413771e-01 2.42483050e-01 2.88978755e-01 -7.12585688e-01 -9.08292592e-01 4.89762604e-01 -9.30139661e-01 -3.16834003e-01 -3.00117731e-01 2.44394839e-01 -5.93353271e-01 7.25371480e-01 -7.02493489e-01 -1.07219195e+00 -2.25049645e-01 -9.86718237e-01 5.50339699e-01 -2.82161951e-01 1.22870766e-02 -1.09652030e+00 -2.28904709e-02 4.05021787e-01 3.67167771e-01 4.28774238e-01 8.33798766e-01 -1.19647503e+00 -3.24090511e-01 -6.47942662e-01 1.13651626e-01 7.32172728e-01 -2.20928445e-01 -1.60162821e-01 -1.24754715e+00 -6.65590107e-01 2.41387665e-01 -6.50416195e-01 1.13612652e+00 -6.59267083e-02 8.98390889e-01 -6.79652333e-01 -1.13873959e-01 6.74834907e-01 1.46340334e+00 -3.54173221e-02 7.33334482e-01 3.04935992e-01 7.12544203e-01 4.65067238e-01 3.81981194e-01 -1.07698880e-01 -2.99883217e-01 4.94334877e-01 5.70485771e-01 -1.33120373e-01 1.34189889e-01 -1.19486593e-01 6.53566420e-01 2.44980529e-01 6.49912730e-02 -3.68503034e-01 -4.97481614e-01 3.62287283e-01 -1.68583965e+00 -1.30221736e+00 -1.69099763e-01 2.43125105e+00 1.04146981e+00 6.54994607e-01 2.97303736e-01 5.57326078e-01 6.04125142e-01 -1.06051583e-02 -2.26918206e-01 -9.02577102e-01 -4.85335469e-01 5.37963986e-01 8.33651543e-01 8.74161303e-01 -1.15217793e+00 1.04581213e+00 6.74342537e+00 1.17072070e+00 -1.07445490e+00 1.84561402e-01 3.83926094e-01 2.06350181e-02 -3.82043004e-01 2.63605475e-01 -6.85008645e-01 1.11329801e-01 9.02802527e-01 -1.64728165e-01 4.29571956e-01 9.89440203e-01 -5.14024734e-01 2.30527833e-01 -1.21731591e+00 5.97172678e-01 5.53478561e-02 -1.33474505e+00 -2.02436969e-02 9.73618776e-02 5.22255778e-01 -1.42138556e-01 3.05190682e-01 4.86863792e-01 7.57111847e-01 -9.21280205e-01 3.87288839e-01 -1.84244379e-01 4.96541500e-01 -1.05390549e+00 5.90306938e-01 6.63008690e-01 -6.84919715e-01 -2.43188977e-01 -4.48723525e-01 -7.82598630e-02 -3.14164639e-01 5.31062603e-01 -1.03106725e+00 4.59772944e-01 1.92202479e-01 2.78838612e-02 -2.88881302e-01 7.01571703e-01 -3.34179282e-01 1.09145594e+00 -6.41891360e-01 3.65054123e-02 1.62140876e-01 2.15708911e-01 9.19313371e-01 1.44306910e+00 -1.40002921e-01 7.76051134e-02 1.65089309e-01 5.67606270e-01 -1.98749229e-01 -1.71137482e-01 -7.81776071e-01 1.55093655e-01 5.03726661e-01 1.01358426e+00 -5.03677487e-01 -2.27795094e-01 1.03284664e-01 7.57807612e-01 2.49093607e-01 1.76136181e-01 -7.13981450e-01 -3.74220282e-01 7.41859674e-01 7.62003288e-02 2.01215893e-01 -3.46630327e-02 -2.86228359e-01 -1.11303937e+00 -1.58671379e-01 -1.12088537e+00 6.35016203e-01 -1.40120164e-01 -1.39083946e+00 3.84885043e-01 -9.65297222e-02 -1.01884580e+00 -1.59199998e-01 -6.18778884e-01 -5.82873642e-01 8.19229603e-01 -1.11634481e+00 -1.12835896e+00 5.34195065e-01 8.02490413e-01 1.75699249e-01 -3.19908485e-02 9.51850116e-01 6.75631315e-02 -4.16665792e-01 1.18382943e+00 -1.26265762e-02 2.04873472e-01 5.94269395e-01 -1.33483744e+00 3.42642903e-01 1.42409182e+00 3.12451273e-01 8.49928558e-01 1.03151870e+00 -3.43706340e-01 -1.70491159e+00 -9.83789146e-01 4.64891970e-01 -5.75872242e-01 8.47618341e-01 -6.70680225e-01 -1.00658226e+00 7.34037697e-01 -1.40609875e-01 2.51200926e-02 6.66230679e-01 1.42435640e-01 -1.05240226e+00 -1.91125512e-01 -1.46780312e+00 6.75643623e-01 9.71546113e-01 -7.34142303e-01 -5.83784342e-01 5.10072589e-01 7.48677969e-01 -2.16985121e-01 -5.97072780e-01 5.53749740e-01 4.80029315e-01 -9.50859725e-01 1.18923056e+00 -6.71758354e-01 -8.96985084e-02 -2.24492073e-01 -3.41930777e-01 -1.16848946e+00 -5.44988737e-02 -1.13505757e+00 -9.06879678e-02 9.61681008e-01 3.64782333e-01 -1.23759675e+00 6.61364615e-01 4.00934130e-01 -2.13680267e-02 -7.45329976e-01 -1.26724839e+00 -1.17373848e+00 7.01767087e-01 -7.57759154e-01 1.64806888e-01 1.06980908e+00 5.27682295e-03 2.49120340e-01 -5.52351534e-01 3.89101416e-01 7.24469423e-01 -1.48676768e-01 9.82546210e-01 -1.16694546e+00 -7.27763414e-01 -4.48277116e-01 -6.98454201e-01 -8.92433643e-01 3.22683543e-01 -1.08134389e+00 2.52649095e-03 -8.57271791e-01 -9.82630327e-02 -6.01925492e-01 -5.21295547e-01 6.25890911e-01 -9.42828804e-02 6.44138813e-01 2.45255247e-01 5.62531985e-02 -1.31783903e-01 -6.18767366e-02 8.41644883e-01 -2.04977617e-01 -3.80124524e-02 3.17202687e-01 -1.10727382e+00 6.31446183e-01 1.08255947e+00 -7.19297230e-01 -2.90055633e-01 -1.27293900e-01 4.25926656e-01 -1.23664491e-01 6.34732366e-01 -9.76677716e-01 9.51023698e-02 -2.27564014e-02 -3.98795418e-02 1.75911225e-02 4.42730278e-01 -6.20029151e-01 -7.05029890e-02 9.82222140e-01 -6.11337066e-01 -2.96674043e-01 2.76462317e-01 8.06029439e-01 3.47780824e-01 -1.98419079e-01 1.09858322e+00 1.09829679e-01 -7.12923612e-03 2.65832186e-01 -3.28134865e-01 1.85514748e-01 9.67257977e-01 -9.95974317e-02 -5.23113549e-01 -3.07434648e-01 -6.84051394e-01 -1.28698513e-01 5.48825324e-01 3.75636257e-02 5.74930429e-01 -9.86712635e-01 -8.85355651e-01 1.86648205e-01 -1.86740309e-01 -2.83751339e-01 1.45046385e-02 7.73330033e-01 -2.95989096e-01 -2.80000474e-02 2.03560889e-01 -4.67981339e-01 -1.65663803e+00 9.27308083e-01 4.32042390e-01 -1.24935865e-01 -5.73732555e-01 1.38889158e+00 3.99858862e-01 -3.07462484e-01 2.16373071e-01 -1.14939116e-01 4.45722729e-01 -2.81052738e-01 4.67562199e-01 1.31798252e-01 -6.94004353e-03 -4.17553127e-01 -4.51217741e-01 3.49441469e-01 -2.65567482e-01 -2.62000203e-01 1.05824375e+00 4.20018613e-01 8.91517103e-02 1.03491306e-01 1.43015897e+00 4.53449637e-01 -9.22840357e-01 -3.48259270e-01 -1.58516869e-01 -4.55044329e-01 -1.41020820e-01 -7.06206560e-01 -9.19291198e-01 1.03980446e+00 5.76284945e-01 6.78882957e-01 1.23369217e+00 -1.02776617e-01 8.22317719e-01 7.76792884e-01 5.61000168e-01 -6.95242524e-01 -2.05209479e-01 2.92989612e-01 7.33639717e-01 -9.95611668e-01 -4.32332754e-02 -6.16041839e-01 -2.58469671e-01 9.44519877e-01 2.76070923e-01 -4.47925389e-01 4.51177686e-01 4.31907296e-01 2.74300575e-04 2.19430208e-01 -7.96703815e-01 -5.44839837e-02 -1.94217533e-01 8.37782145e-01 -1.55590206e-01 1.67414427e-01 -1.73269734e-01 2.90219069e-01 -3.34348619e-01 -3.85661751e-01 6.63031936e-01 8.60252976e-01 -5.62895894e-01 -1.34900880e+00 -5.94328284e-01 1.06805786e-01 -7.88972795e-01 -3.10313627e-02 -6.56297088e-01 7.53161430e-01 5.83111756e-02 1.15572786e+00 -5.16857624e-01 -6.71610951e-01 1.63641676e-01 1.67496521e-02 7.12043047e-01 -5.68226874e-01 -9.90148306e-01 7.26742893e-02 2.50589490e-01 -4.12446380e-01 -2.91697383e-01 -2.76835084e-01 -9.49546218e-01 -6.39046848e-01 -6.46277368e-01 2.97735244e-01 3.32797945e-01 9.44484174e-01 3.96126844e-02 4.13475819e-02 9.47792292e-01 -4.43026990e-01 -1.22638988e+00 -6.42894208e-01 -4.05916750e-01 3.58259201e-01 5.64983666e-01 -2.14823484e-01 -1.10887241e+00 -3.02372932e-01]
[5.774572849273682, 7.656317710876465]
4facf4e9-2569-4b98-a01f-804eb1285c61
joint-multi-scale-tone-mapping-and-denoising
2303.09071
null
https://arxiv.org/abs/2303.09071v2
https://arxiv.org/pdf/2303.09071v2.pdf
Joint Multi-Scale Tone Mapping and Denoising for HDR Image Enhancement
An image processing unit (IPU), or image signal processor (ISP) for high dynamic range (HDR) imaging usually consists of demosaicing, white balancing, lens shading correction, color correction, denoising, and tone-mapping. Besides noise from the imaging sensors, almost every step in the ISP introduces or amplifies noise in different ways, and denoising operators are designed to reduce the noise from these sources. Designed for dynamic range compressing, tone-mapping operators in an ISP can significantly amplify the noise level, especially for images captured in low-light conditions, making denoising very difficult. Therefore, we propose a joint multi-scale denoising and tone-mapping framework that is designed with both operations in mind for HDR images. Our joint network is trained in an end-to-end format that optimizes both operators together, to prevent the tone-mapping operator from overwhelming the denoising operator. Our model outperforms existing HDR denoising and tone-mapping operators both quantitatively and qualitatively on most of our benchmarking datasets.
['Jan P. Allebach', 'Huaijin Chen', 'Litao Hu']
2023-03-16
null
null
null
null
['demosaicking', 'image-enhancement', 'tone-mapping']
['computer-vision', 'computer-vision', 'computer-vision']
[ 6.34296298e-01 -3.97318423e-01 5.31508446e-01 -4.14444596e-01 -6.00862920e-01 -3.54800105e-01 4.53565381e-02 -3.40302616e-01 -4.25609767e-01 1.81220040e-01 3.46727878e-01 -1.68060198e-01 1.86984271e-01 -7.92743146e-01 -7.38623917e-01 -8.04206491e-01 2.61177421e-01 -1.19186617e-01 2.27724835e-01 -3.59756291e-01 -2.40216218e-02 4.20696080e-01 -1.39051306e+00 5.36702722e-02 1.15317392e+00 1.19825375e+00 4.77142394e-01 9.33636427e-01 1.55318901e-01 1.18789959e+00 -4.82792556e-01 -3.52309734e-01 7.62698710e-01 -3.15487236e-01 -3.75569128e-02 3.33440900e-01 5.51774204e-01 -9.67660308e-01 -7.84935355e-01 1.41266716e+00 7.04168499e-01 1.09063439e-01 1.12987749e-01 -7.12695837e-01 -8.52346599e-01 3.79565269e-01 -9.29350078e-01 -8.67949724e-02 4.39845137e-02 5.75104296e-01 5.65941691e-01 -6.99272573e-01 3.95990998e-01 1.13144088e+00 6.08962297e-01 1.85249031e-01 -1.41165638e+00 -5.72435498e-01 -2.82116681e-01 -2.46603116e-02 -1.23033702e+00 -4.48523134e-01 9.91297901e-01 -1.12662494e-01 5.65438747e-01 3.15982789e-01 5.89170039e-01 7.34923065e-01 1.51663512e-01 3.65340084e-01 1.34225464e+00 -1.47454366e-01 5.09860925e-02 -4.43606853e-01 -3.06639254e-01 1.92820102e-01 -7.23611563e-02 1.66014180e-01 -5.11632442e-01 2.34270707e-01 9.92919683e-01 4.43322323e-02 -6.42061114e-01 -1.76502746e-02 -1.06428182e+00 2.18443930e-01 5.98063827e-01 -1.71525672e-01 -3.28073472e-01 4.73316759e-01 2.25080416e-01 4.73093122e-01 4.76924777e-01 3.33395123e-01 -4.14444715e-01 1.29500732e-01 -9.46355283e-01 -1.19898900e-01 3.91262501e-01 7.12559521e-01 9.21933830e-01 7.83692151e-02 -2.73128808e-01 1.19941306e+00 2.32115179e-01 7.68270671e-01 5.37437433e-03 -1.38211858e+00 4.12545443e-01 2.55695999e-01 1.56359777e-01 -8.54303479e-01 -2.84083039e-01 -3.63669455e-01 -1.36106408e+00 4.05588090e-01 1.32072806e-01 -9.90962982e-02 -1.21092665e+00 1.53148353e+00 1.93716630e-01 2.76646703e-01 -1.72564521e-01 1.45431399e+00 5.54730356e-01 9.43249583e-01 -1.44236207e-01 -3.12623411e-01 1.19518924e+00 -8.13703835e-01 -9.72887993e-01 -4.01533067e-01 -9.47822854e-02 -1.11749327e+00 1.24771142e+00 7.18320847e-01 -1.34711921e+00 -5.54665148e-01 -1.13586402e+00 -9.43317890e-01 1.18502840e-01 4.84147221e-02 2.31846765e-01 3.98156434e-01 -1.14006698e+00 6.04123414e-01 -5.79995155e-01 1.46932393e-01 1.53031930e-01 -1.10326335e-01 -5.41845337e-02 -6.15165949e-01 -1.13844705e+00 7.33164072e-01 -1.19390540e-01 6.56108201e-01 -7.53057957e-01 -8.54605794e-01 -6.60455644e-01 5.31315207e-02 6.02220833e-01 -6.76090419e-01 6.82048261e-01 -8.22092831e-01 -1.64917171e+00 7.89648831e-01 1.45396277e-01 -2.95440465e-01 7.16358364e-01 -3.62025946e-01 -3.85873377e-01 1.28545076e-01 -2.35361725e-01 3.48931998e-01 1.35450888e+00 -1.37611902e+00 -1.87876388e-01 -3.61966103e-01 -2.07821041e-01 2.31413871e-01 -6.51029497e-02 1.45988256e-01 -1.09393120e+00 -9.09728587e-01 4.10127372e-01 -5.88438988e-01 -3.09767514e-01 3.98145288e-01 -4.52570170e-01 6.66185617e-01 9.67142999e-01 -1.07575619e+00 1.09653556e+00 -2.45414519e+00 4.89664525e-02 1.41240567e-01 4.27429765e-01 9.71836746e-02 -3.28594983e-01 -2.08716020e-02 -1.87426150e-01 -1.84790343e-01 -4.05560285e-01 -3.68717313e-01 -2.44706199e-01 2.42994756e-01 -4.26547229e-01 4.79361057e-01 1.88245833e-01 7.05193996e-01 -6.52311921e-01 -9.66376364e-02 5.42851567e-01 7.86771595e-01 -4.20719266e-01 3.55183512e-01 -1.51406467e-01 6.14269495e-01 1.26514152e-01 7.56380737e-01 1.19734454e+00 -1.21450447e-03 6.61569787e-03 -7.03636110e-01 -3.04692954e-01 -1.88088696e-02 -1.32946837e+00 1.52572191e+00 -6.45577192e-01 6.67580903e-01 6.96574032e-01 -3.75528276e-01 1.02361977e+00 -1.39671758e-01 5.13376355e-01 -1.12230837e+00 1.59615040e-01 3.67073208e-01 -2.77963221e-01 -5.39104402e-01 6.05867922e-01 -5.94590716e-02 1.66091532e-01 8.82860422e-02 -3.38471383e-01 -4.39464509e-01 6.35314435e-02 1.56016707e-01 1.27704656e+00 -1.41586646e-01 -1.80264264e-01 -9.64626297e-03 4.11473662e-01 -5.32998979e-01 7.64043987e-01 6.03392065e-01 -1.70888573e-01 1.14732456e+00 5.70744872e-01 -2.83516377e-01 -1.39648294e+00 -1.11848581e+00 7.67633133e-03 1.04832602e+00 5.20714760e-01 -7.10771680e-02 -5.60582221e-01 8.59563723e-02 -2.11831689e-01 4.76839870e-01 -2.85650373e-01 -2.02460125e-01 -6.87952578e-01 -7.49405921e-01 1.85886532e-01 2.93255299e-01 9.26882982e-01 -6.75168693e-01 -4.75584984e-01 2.51508951e-01 -3.18874866e-01 -1.23668826e+00 -9.39696729e-01 5.23824692e-01 -6.71684206e-01 -9.03211057e-01 -7.11139917e-01 -4.15140092e-01 4.92886156e-01 6.08610749e-01 1.24665236e+00 9.37404111e-02 -3.89549434e-01 -7.19582066e-02 -3.52929741e-01 -1.45310313e-01 -1.92162633e-01 -6.13661289e-01 -4.76045102e-01 2.32242033e-01 -1.26183316e-01 -7.31087863e-01 -1.00974035e+00 4.28375185e-01 -1.37243736e+00 2.51344204e-01 6.69167519e-01 8.03128302e-01 7.51867294e-01 5.11868000e-01 -2.12215900e-01 -6.82137191e-01 3.34680438e-01 1.07574336e-01 -9.60899115e-01 4.84612212e-02 -3.33697796e-01 -2.37079993e-01 7.39704072e-01 -4.17842150e-01 -1.19798577e+00 1.41501307e-01 -1.90949783e-01 -7.20343411e-01 2.05673575e-01 2.18234174e-02 -6.17540538e-01 -3.88765544e-01 6.40175819e-01 2.67156988e-01 -9.71234497e-03 -5.25938630e-01 3.19794744e-01 5.38475156e-01 9.61985886e-01 -1.14892133e-01 1.22747087e+00 7.69433618e-01 1.33379716e-02 -9.68988001e-01 -8.46264899e-01 -2.86416352e-01 -1.58350006e-01 -3.79991800e-01 9.68962431e-01 -1.33762622e+00 -5.01256526e-01 1.03819501e+00 -8.97224724e-01 -6.76941812e-01 -1.96964413e-01 1.87758401e-01 -2.06364229e-01 2.99821585e-01 -8.26657653e-01 -5.07126987e-01 -3.02175790e-01 -1.22578204e+00 1.23542559e+00 4.82976347e-01 5.11880100e-01 -3.26052904e-01 -2.85646319e-01 4.38968182e-01 9.08423841e-01 7.47959241e-02 7.38576949e-01 6.38907790e-01 -9.31882858e-01 1.54046193e-01 -7.07740784e-01 7.90017903e-01 -1.40737966e-01 2.21742410e-02 -1.13031185e+00 -2.36036599e-01 3.43044162e-01 -2.32094571e-01 1.20013201e+00 6.45166934e-01 1.56928670e+00 -2.09984519e-02 3.93057585e-01 1.35976803e+00 1.79961383e+00 -2.78414227e-02 1.33105588e+00 3.67786616e-01 9.70637321e-01 4.35223788e-01 4.36479747e-01 4.38357264e-01 2.24358797e-01 5.80608666e-01 6.27689421e-01 -7.16799974e-01 -4.19712007e-01 1.40767112e-01 3.06993753e-01 3.17660391e-01 1.22628391e-01 -2.78973997e-01 -6.61935210e-01 1.61664978e-01 -1.39498472e+00 -6.17212713e-01 -2.94979095e-01 2.13597608e+00 1.08677530e+00 -1.17481545e-01 -2.86083281e-01 -1.04943477e-02 6.77278101e-01 5.12360334e-01 -8.51387680e-01 7.48938844e-02 -6.14051938e-01 1.41958475e-01 9.88348067e-01 5.33858299e-01 -9.79820311e-01 5.63733935e-01 5.43148422e+00 5.79053581e-01 -1.42653930e+00 2.40216032e-02 9.73368526e-01 -4.12513137e-01 -2.32444599e-01 -2.96636801e-02 -1.54655173e-01 6.45918548e-01 3.79871041e-01 3.91231477e-01 1.01813543e+00 5.28559029e-01 6.12536252e-01 -4.03554946e-01 -5.91973782e-01 1.39080787e+00 2.70431265e-02 -6.96148038e-01 -3.63433063e-01 -1.00619845e-01 7.12134302e-01 1.76579133e-01 2.87858248e-01 -6.26578256e-02 3.03616762e-01 -7.29733229e-01 7.18109548e-01 5.41072130e-01 8.62471521e-01 -6.78058684e-01 5.43633044e-01 -1.58811823e-01 -1.00680983e+00 -1.57184586e-01 -5.53636491e-01 4.67518330e-01 4.24325049e-01 1.38491106e+00 9.44218040e-02 2.75038242e-01 1.06680059e+00 5.00690997e-01 -5.30325770e-01 8.35192800e-01 -5.09218931e-01 4.12301123e-01 -3.28750640e-01 9.07478273e-01 -2.40723699e-01 -7.01976001e-01 5.27074575e-01 8.45205367e-01 3.13288480e-01 4.22976822e-01 -5.50794601e-02 8.19181859e-01 -3.93311739e-01 -5.40043831e-01 -5.53277321e-02 1.90106213e-01 1.99335709e-01 1.53140199e+00 -4.94992018e-01 -1.46962956e-01 -5.18414736e-01 1.32708943e+00 -2.51407653e-01 6.12831175e-01 -9.42433119e-01 -5.45846164e-01 8.27140152e-01 3.22092414e-01 1.67253360e-01 -1.99252293e-01 -6.63728833e-01 -1.27502918e+00 3.62421274e-01 -9.47395682e-01 6.10242318e-03 -1.31678522e+00 -1.29064286e+00 3.94744515e-01 -6.69806302e-01 -1.24656940e+00 4.93714482e-01 -4.97405946e-01 -6.31446302e-01 9.44066465e-01 -2.04467273e+00 -8.95009339e-01 -8.41178238e-01 6.60949111e-01 1.93257779e-01 4.32818085e-01 -1.37098029e-01 8.64870608e-01 -7.37916648e-01 9.31833610e-02 2.24722072e-01 2.63007171e-02 1.13156188e+00 -1.23283923e+00 1.67228803e-01 1.40336442e+00 -6.06730580e-01 3.54475379e-01 8.98319602e-01 -6.49467170e-01 -1.78824627e+00 -1.37438643e+00 3.01411003e-01 2.41248414e-01 5.49697042e-01 -5.70119441e-01 -1.24410474e+00 2.84458727e-01 9.10832658e-02 3.48556340e-01 1.25649691e-01 -4.25146729e-01 -4.41371858e-01 -6.39845610e-01 -1.03924024e+00 5.87291420e-01 9.68556404e-01 -6.55906737e-01 1.32818967e-01 4.09671336e-01 7.46126771e-01 -6.75535619e-01 -8.44747007e-01 2.86675602e-01 3.53011519e-01 -1.33082712e+00 1.25265300e+00 5.08250356e-01 7.89793313e-01 -8.24938595e-01 -1.44094333e-01 -1.36183894e+00 -2.87847936e-01 -9.40724671e-01 -3.12761106e-02 1.33026814e+00 3.81994843e-02 -5.17877162e-01 3.76104474e-01 7.68887579e-01 -3.27086449e-01 -9.25886631e-02 -5.07286489e-01 -4.26316798e-01 -4.61418897e-01 -3.66433740e-01 3.78033757e-01 6.94831789e-01 -8.86345923e-01 1.58668295e-01 -9.08413708e-01 4.96269345e-01 1.14277768e+00 6.49596080e-02 7.24517822e-01 -7.94738889e-01 -4.57542539e-01 -1.91981524e-01 2.13076025e-02 -1.21608603e+00 -5.11250138e-01 -2.40591809e-01 5.88875234e-01 -1.42934978e+00 1.05361734e-02 -2.88838178e-01 9.43046138e-02 1.99146643e-01 -4.94512469e-01 6.27821624e-01 2.88598806e-01 2.65318483e-01 -3.98331434e-01 5.30000389e-01 1.42140126e+00 -1.09179027e-01 -2.25016251e-01 -5.72444499e-01 -7.00118005e-01 6.22881413e-01 3.94215375e-01 -2.58771688e-01 -1.02935776e-01 -1.06184459e+00 5.23633361e-01 1.12078749e-01 4.45201397e-01 -9.41137731e-01 4.19266790e-01 -1.08867370e-01 7.68032789e-01 -6.01525128e-01 2.79918462e-01 -1.09684670e+00 3.72102380e-01 1.93654791e-01 -1.34436592e-01 -4.30813104e-01 -2.89295495e-01 5.19915521e-01 -3.35651368e-01 3.63768429e-01 1.43119609e+00 5.47655709e-02 -7.19766736e-01 4.08481866e-01 -1.07264228e-01 -1.43661052e-01 6.86832607e-01 -9.66842696e-02 -5.59183419e-01 -4.98228937e-01 -3.17422688e-01 3.95992547e-01 7.93363869e-01 9.72641110e-02 6.15122437e-01 -9.80842233e-01 -7.41867661e-01 3.86140913e-01 -4.73223850e-02 3.70219707e-01 8.16294849e-01 9.70308721e-01 -9.21844125e-01 -5.09859502e-01 -4.70559001e-02 -3.47583443e-01 -9.37520444e-01 4.35881764e-01 3.49386603e-01 -2.87151664e-01 -7.95279145e-01 8.74343812e-01 1.97431505e-01 -2.09415525e-01 3.18673432e-01 -4.66713667e-01 2.53971040e-01 -9.66023952e-02 8.02041531e-01 5.84876359e-01 1.81184828e-01 -3.01954001e-01 1.53022528e-01 7.76695490e-01 1.29304573e-01 1.52805476e-02 1.55027139e+00 -6.73177600e-01 -5.18029392e-01 7.98435658e-02 1.26210773e+00 -4.45626043e-02 -1.59457576e+00 -3.17443907e-01 -5.57391047e-01 -8.15003932e-01 6.97761476e-01 -7.91050434e-01 -1.54587817e+00 7.40017772e-01 6.34228408e-01 2.07140476e-01 2.03576255e+00 -4.84916478e-01 1.19662142e+00 8.50585476e-02 1.05052009e-01 -1.41678464e+00 2.19057903e-01 4.76990640e-01 8.57863963e-01 -1.35114241e+00 -2.45359391e-02 -6.09239936e-01 -5.89520454e-01 1.09904814e+00 4.75044578e-01 -1.88381881e-01 4.93169904e-01 8.99047315e-01 4.14236277e-01 6.63499087e-02 -5.58729589e-01 -1.72494188e-01 -3.55752893e-02 4.89357114e-01 9.65354219e-02 -2.89507866e-01 4.93019354e-03 5.34200296e-02 9.13273469e-02 8.85349140e-03 6.85881555e-01 6.89861834e-01 -5.20200253e-01 -5.98299980e-01 -7.21899390e-01 5.20010352e-01 -3.61417413e-01 -3.51680279e-01 -8.17179531e-02 2.20687315e-01 2.16271028e-01 1.07353044e+00 1.90212935e-01 -3.20351154e-01 5.66674709e-01 -6.80266321e-01 1.54701471e-01 -1.46023706e-01 -5.47015190e-01 6.18220270e-01 -2.29992211e-01 -1.13652813e+00 -1.75813422e-01 -1.99036106e-01 -8.85049045e-01 -5.16331553e-01 -1.74395844e-01 -6.75520241e-01 7.53363669e-01 4.33238477e-01 1.64040372e-01 7.85011053e-01 1.02178633e+00 -9.36396122e-01 -3.09118211e-01 -8.70053172e-01 -1.04160237e+00 5.10220230e-01 6.08563960e-01 -1.56154737e-01 -7.23392248e-01 1.67923346e-01]
[10.768959999084473, -2.3701319694519043]
72f7ffd0-582f-45bc-adbd-f281b1b8e4ed
vector-space-model-as-cognitive-space-for
1708.06068
null
http://arxiv.org/abs/1708.06068v1
http://arxiv.org/pdf/1708.06068v1.pdf
Vector Space Model as Cognitive Space for Text Classification
In this era of digitization, knowing the user's sociolect aspects have become essential features to build the user specific recommendation systems. These sociolect aspects could be found by mining the user's language sharing in the form of text in social media and reviews. This paper describes about the experiment that was performed in PAN Author Profiling 2017 shared task. The objective of the task is to find the sociolect aspects of the users from their tweets. The sociolect aspects considered in this experiment are user's gender and native language information. Here user's tweets written in a different language from their native language are represented as Document - Term Matrix with document frequency as the constraint. Further classification is done using the Support Vector Machine by taking gender and native language as target classes. This experiment attains the average accuracy of 73.42% in gender prediction and 76.26% in the native language identification task.
['Soman Kp', 'Barathi Ganesh HB', 'Anand Kumar M']
2017-08-21
null
null
null
null
['gender-prediction', 'native-language-identification']
['computer-vision', 'natural-language-processing']
[-2.70248502e-01 -6.22127345e-03 -5.21913886e-01 -5.92980385e-01 -2.41596118e-01 -5.80512106e-01 1.07321906e+00 5.27816296e-01 -7.41043687e-01 5.49865663e-01 4.92685705e-01 -3.37302119e-01 -2.11426038e-02 -7.27771640e-01 2.52368599e-02 -5.64788878e-01 2.16404468e-01 6.42821848e-01 -2.99428433e-01 -3.61068726e-01 7.31495202e-01 3.45482439e-01 -1.89593542e+00 2.94126570e-01 6.06723368e-01 7.04732835e-01 4.48282734e-02 8.42788279e-01 -7.49246240e-01 7.02156842e-01 -6.86400115e-01 -4.15158302e-01 1.21087201e-01 -3.32348615e-01 -7.57484138e-01 -1.54701561e-01 2.88680166e-01 1.54835045e-01 2.08864450e-01 1.13083959e+00 3.73155177e-01 1.09983452e-01 1.17196608e+00 -1.04681718e+00 -3.08541059e-01 1.10374236e+00 -1.02274621e+00 4.55619305e-01 6.28413796e-01 -8.14454556e-01 9.92672622e-01 -9.33825314e-01 5.58022439e-01 1.63974547e+00 3.84595662e-01 3.83423656e-01 -8.80215347e-01 -9.86556590e-01 -5.34132309e-02 5.42733669e-02 -1.58562267e+00 -1.66357651e-01 5.92513025e-01 -1.02544308e+00 5.65821052e-01 6.33704424e-01 4.04345065e-01 8.12581897e-01 2.69459009e-01 3.00805807e-01 1.36846769e+00 -6.60190582e-01 -6.66843131e-02 1.11213827e+00 7.23718047e-01 5.14440298e-01 3.50145191e-01 -4.03597146e-01 -6.94966495e-01 -3.65414470e-01 -1.60957411e-01 -3.51124033e-02 4.20267075e-01 2.08393931e-01 -8.69151354e-01 1.11908066e+00 -2.17326865e-01 9.66201186e-01 3.75261120e-02 -4.92165148e-01 6.07776940e-01 4.15747970e-01 7.52562225e-01 5.78239799e-01 -5.53975403e-01 -1.43739507e-01 -1.03058982e+00 2.28804514e-01 1.01856685e+00 5.76106191e-01 9.17647243e-01 -3.58798325e-01 -4.79406714e-02 9.94555771e-01 4.58153993e-01 5.95258117e-01 1.00924397e+00 -3.23403120e-01 3.85749161e-01 9.27050889e-01 -1.08101785e-01 -1.28539050e+00 -5.00791013e-01 -7.10197508e-01 -6.60939276e-01 -2.76261866e-01 5.03900766e-01 -6.73889399e-01 -6.46015704e-01 1.46193409e+00 1.95995420e-01 -2.58659184e-01 2.65733562e-02 4.10201818e-01 1.03731704e+00 7.62838542e-01 2.73982644e-01 -3.77609849e-01 1.88104177e+00 -5.09662807e-01 -8.14580381e-01 6.13950305e-02 7.79457450e-01 -1.11049652e+00 6.36908174e-01 2.67092973e-01 -3.95045251e-01 -6.46295846e-01 -6.85491621e-01 1.81065872e-01 -1.01466608e+00 5.77400684e-01 6.46181881e-01 1.30664480e+00 -7.45047987e-01 3.50251079e-01 -1.35475218e-01 -8.53459120e-01 -1.24824911e-01 4.16640997e-01 -2.58312434e-01 5.08927047e-01 -1.20122170e+00 7.26360381e-01 6.77446425e-02 -6.85302556e-01 4.71899211e-02 -7.91707337e-01 -6.51136398e-01 -1.27800316e-01 -1.02051713e-01 -2.65417844e-01 9.70938742e-01 -1.13546908e+00 -9.94173169e-01 1.43898714e+00 -3.59702766e-01 -1.39788210e-01 4.38679516e-01 2.07625002e-01 -8.76202285e-01 -4.74622726e-01 5.43987036e-01 1.49224043e-01 7.56503403e-01 -9.05581594e-01 -1.38986087e+00 -7.60773480e-01 -4.72519130e-01 1.51044345e-02 -8.40566158e-01 4.39949661e-01 -2.60153294e-01 -4.83774066e-01 -1.06570702e-02 -1.01607847e+00 6.88594058e-02 -1.04754090e+00 -5.06231785e-01 -6.06561482e-01 6.16705656e-01 -9.14310217e-01 1.71309543e+00 -1.91092598e+00 -2.10755523e-02 7.45263159e-01 3.42327654e-01 2.70934701e-02 6.07795238e-01 6.96139157e-01 4.66266535e-02 3.03252220e-01 2.74548292e-01 -5.60818136e-01 1.77074865e-01 -3.21692139e-01 -1.21973671e-01 2.39938617e-01 -5.31238437e-01 2.14823171e-01 -5.69123864e-01 -6.78909838e-01 -8.35021660e-02 3.52410823e-01 -1.84743375e-01 1.39955550e-01 2.91172534e-01 2.48759747e-01 -5.88141680e-01 4.56434399e-01 5.22296846e-01 3.63940954e-01 1.90656438e-01 -9.30984914e-02 -5.31621456e-01 -5.89277297e-02 -9.88227785e-01 9.16475117e-01 -5.77463448e-01 8.72662663e-01 1.79483127e-02 -4.81058300e-01 1.31402230e+00 2.74050608e-02 5.91755629e-01 -4.03633088e-01 6.09915435e-01 4.10692573e-01 4.48385924e-01 -5.74449897e-01 6.62656188e-01 -2.20732614e-02 -4.72244292e-01 5.34098744e-01 -1.00519955e-01 4.72408593e-01 8.44629169e-01 2.03526780e-01 4.34260964e-01 -3.11979562e-01 4.89350110e-01 -9.31508541e-01 1.10894430e+00 -1.51706293e-01 8.98647830e-02 6.56493783e-01 6.29372075e-02 1.04590751e-01 6.63214028e-01 -3.04988205e-01 -7.83123076e-01 -3.88577193e-01 -4.34598416e-01 1.55138075e+00 -4.21644270e-01 -7.08111882e-01 -6.73292160e-01 -4.26333576e-01 1.93057373e-01 4.63539511e-01 -9.23026681e-01 1.10926226e-01 -1.42869249e-01 -9.07590508e-01 4.26453471e-01 -1.24052338e-01 4.00015414e-01 -6.21553659e-01 -2.43730202e-01 -1.57023609e-01 1.45446002e-01 -8.53574812e-01 -3.44873071e-01 1.15931392e-01 -2.57485241e-01 -8.93694699e-01 -9.36778307e-01 -8.75135839e-01 5.60168803e-01 -3.16942692e-01 9.99225914e-01 4.03645262e-03 -2.24868357e-01 9.58574563e-02 -4.19676661e-01 -8.06344926e-01 -2.72828162e-01 9.29854095e-01 2.68691421e-01 4.52725649e-01 1.01793945e+00 -6.44523025e-01 -2.47907177e-01 -3.87429446e-03 -3.75383556e-01 -1.04422472e-01 2.66350240e-01 1.75179616e-01 -1.27785265e-01 2.91352510e-01 4.51312333e-01 -1.70624614e+00 8.21699798e-01 -8.81909490e-01 -1.67168647e-01 -6.61799088e-02 -8.98234606e-01 -1.32194102e-01 5.46426058e-01 -3.89876902e-01 -8.49930584e-01 2.52906084e-02 -2.66794473e-01 4.91523713e-01 -2.30320245e-01 6.72280788e-01 -6.93135709e-02 1.87666804e-01 5.14459968e-01 1.26273155e-01 -1.10104963e-01 -7.97425091e-01 -4.18285966e-01 1.28128231e+00 -9.62003395e-02 -4.23450977e-01 6.75891757e-01 -1.06961794e-01 -1.19103938e-01 -1.01052225e+00 -1.03151143e+00 -1.03479505e+00 -7.72040546e-01 -2.89823472e-01 8.34119618e-01 -7.77682304e-01 -1.09157908e+00 5.38525045e-01 -5.02365947e-01 3.74544859e-01 3.54369700e-01 4.92725968e-01 1.00261040e-01 3.93797979e-02 -2.94252694e-01 -1.11960459e+00 -4.01083767e-01 -8.41416061e-01 7.34156191e-01 4.72245306e-01 -8.34438324e-01 -1.21471810e+00 1.07288964e-01 5.17351806e-01 3.10851306e-01 1.47041129e-02 9.15908158e-01 -1.27864838e+00 4.96241629e-01 -4.09987658e-01 -2.33709723e-01 -5.41588664e-02 2.17955127e-01 1.49969846e-01 -1.02393293e+00 2.31782459e-02 -2.86584288e-01 1.54435560e-01 6.12083495e-01 9.13689584e-02 9.44671571e-01 -2.77275801e-01 -3.68142724e-01 4.91297483e-01 1.28249586e+00 2.41742015e-01 1.78241283e-02 3.64233971e-01 8.68783593e-01 8.82018030e-01 5.46576142e-01 5.94962060e-01 4.80038077e-01 5.02890944e-01 -2.13290840e-01 1.03556521e-01 3.98795485e-01 -2.79122561e-01 2.04476386e-01 8.70630801e-01 -2.86804531e-02 -1.06028445e-01 -1.24997902e+00 2.48568445e-01 -1.62152696e+00 -1.04165053e+00 -3.45046461e-01 1.92704535e+00 7.24403560e-01 4.34768908e-02 5.84648848e-01 4.92128044e-01 7.73487091e-01 6.01497516e-02 -1.28516644e-01 -1.07872641e+00 2.09292471e-02 1.45363539e-01 8.10951114e-01 8.12976301e-01 -1.23407578e+00 6.01086438e-01 4.83348227e+00 8.72446537e-01 -1.17969871e+00 -1.27414525e-01 8.42315257e-01 1.98059067e-01 -8.34855810e-02 -3.45930815e-01 -1.52399838e+00 6.74739301e-01 1.11540210e+00 -6.27285838e-01 1.49656162e-01 6.69012308e-01 1.51101872e-01 -5.82534969e-01 -6.87297046e-01 1.27731311e+00 4.76280183e-01 -9.22192931e-01 -4.01579589e-02 4.68217015e-01 6.97788119e-01 -4.35078382e-01 1.67523995e-01 5.47110736e-01 6.99706096e-03 -9.89762247e-01 5.30451179e-01 5.33135593e-01 7.46566176e-01 -1.08680034e+00 8.16803873e-01 8.20021272e-01 -9.28632557e-01 -2.73608804e-01 -1.70484588e-01 -2.98704147e-01 -2.74858862e-01 6.22660458e-01 -9.33519363e-01 1.75408542e-01 6.33304477e-01 9.72911298e-01 -8.62576783e-01 4.72878546e-01 5.15607238e-01 8.50403190e-01 -2.07512617e-01 -6.55968070e-01 1.55934185e-01 -5.01195133e-01 3.15347582e-01 1.47103870e+00 5.68361223e-01 -1.74780309e-01 1.87074468e-01 1.33908272e-01 2.88804322e-02 8.86321008e-01 -4.36474919e-01 -3.54911685e-01 3.02905351e-01 1.63097441e+00 -9.29437518e-01 -2.46252313e-01 -1.28455505e-01 5.98360598e-01 -1.05431518e-02 1.31693287e-02 -3.11129451e-01 -6.37852311e-01 5.19643009e-01 5.88626027e-01 -3.45803231e-01 2.17564940e-01 -4.16013569e-01 -9.14936006e-01 -4.97820526e-01 -7.88761020e-01 4.43925172e-01 -1.86956640e-06 -1.10163796e+00 5.74771762e-01 -6.99845180e-02 -7.76768744e-01 -4.17199314e-01 -7.63682783e-01 -3.36581379e-01 1.35653067e+00 -9.20484304e-01 -1.18467450e+00 -1.09616376e-01 3.42934042e-01 4.07530457e-01 -1.10955691e+00 1.02161932e+00 6.68642461e-01 -5.28318644e-01 8.44215870e-01 2.81188458e-01 2.02264547e-01 7.85274804e-01 -1.47156477e+00 -2.53705233e-01 2.17890844e-01 -8.24379772e-02 8.13422203e-01 1.16553986e+00 -7.87326276e-01 -1.00777853e+00 -5.92160821e-01 2.02025723e+00 -6.37593687e-01 7.97656476e-01 -5.86333454e-01 -1.00861406e-02 4.49845195e-01 2.33385623e-01 -7.20428467e-01 1.24313509e+00 5.87981105e-01 -2.11592749e-01 -1.21061586e-01 -1.22910213e+00 3.84901375e-01 5.99459052e-01 -6.10267818e-01 -1.91075787e-01 3.58586967e-01 -8.87348205e-02 1.71327833e-02 -9.21187460e-01 -1.21074758e-01 7.20697045e-01 -8.81327331e-01 7.04222739e-01 -6.14402831e-01 6.74530029e-01 3.68350074e-02 -1.88669801e-01 -1.12710774e+00 -2.68062085e-01 -3.27595472e-01 2.50399470e-01 1.94887710e+00 6.15264356e-01 -5.99174321e-01 8.94452691e-01 5.60856998e-01 5.33210993e-01 -6.96078122e-01 -4.83066797e-01 -1.99075550e-01 1.46098986e-01 -1.97891966e-02 4.60240215e-01 1.10165751e+00 1.36383772e-01 8.30855072e-01 -4.06818449e-01 -4.29287940e-01 4.53889489e-01 7.17338324e-02 7.72105753e-01 -1.69637883e+00 7.79213905e-02 -4.82822806e-01 -3.82257015e-01 -1.11017227e-01 4.91139144e-01 -9.72760797e-01 -6.53803349e-01 -1.09035182e+00 5.56319654e-01 -3.88770461e-01 3.54933087e-03 -5.41078486e-02 1.86142638e-01 3.72061253e-01 -1.67389843e-03 4.99703661e-02 -9.80396271e-02 -1.06560983e-01 8.69357765e-01 -1.47066519e-01 -1.77840039e-01 6.31614208e-01 -1.01384759e+00 7.89901972e-01 9.64931965e-01 -4.50517952e-01 -5.26525855e-01 3.23316425e-01 6.99412405e-01 -1.76272660e-01 -4.99723881e-01 -8.18005979e-01 1.29739508e-01 -2.08429143e-01 5.21545470e-01 -7.56353080e-01 3.36412638e-01 -9.76956546e-01 8.00416693e-02 4.09829974e-01 -5.32067180e-01 3.70303720e-01 -1.98880807e-01 8.03482160e-02 -2.11902142e-01 -3.89207691e-01 5.98578274e-01 -2.09428985e-02 -4.22607005e-01 2.86214620e-01 -8.05080414e-01 -6.35768473e-02 9.10352945e-01 -3.20160717e-01 6.97373673e-02 -2.92819530e-01 -8.03692758e-01 3.23034748e-02 2.03488961e-01 5.46536744e-01 -1.58282220e-01 -1.01412547e+00 -7.25745678e-01 7.90442973e-02 1.75698102e-01 -1.10320139e+00 -3.12998556e-02 6.38284385e-01 -3.96409214e-01 5.97253740e-01 -2.88314730e-01 -1.55589059e-01 -1.96666610e+00 1.24592163e-01 2.62622744e-01 -3.73654693e-01 2.41481990e-01 8.45982432e-01 -5.09747565e-02 -7.22362936e-01 2.48008013e-01 3.23677450e-01 -1.33120406e+00 1.13046861e+00 5.20228386e-01 5.92172742e-01 -4.36486937e-02 -1.17553592e+00 -4.49408442e-01 5.99173784e-01 -3.24481070e-01 -3.57881963e-01 1.28449690e+00 -3.78641516e-01 -5.01235008e-01 1.03800511e+00 1.57597244e+00 8.90086532e-01 6.10113889e-02 -1.33201137e-01 3.99569780e-01 -5.29657483e-01 -1.14746571e-01 -7.39958704e-01 -8.90271962e-01 7.69217670e-01 6.72447264e-01 3.98716986e-01 5.10971010e-01 -1.57388538e-01 4.18327302e-01 1.75077468e-01 1.63105339e-01 -1.47527611e+00 -6.85344756e-01 9.20943797e-01 4.50991064e-01 -1.40700805e+00 1.09158538e-01 -5.01177669e-01 -3.72284353e-01 1.13877547e+00 5.83122671e-01 1.35158449e-01 1.40276027e+00 1.21042155e-01 4.18882221e-01 -4.29409407e-02 -3.92887205e-01 -1.08376183e-01 6.14570320e-01 2.74755806e-01 1.06055820e+00 3.49835426e-01 -1.02123559e+00 1.09710681e+00 -9.66478348e-01 -4.33977127e-01 4.44317758e-01 4.50791329e-01 -5.51675737e-01 -1.30785310e+00 -4.63534206e-01 1.11986816e+00 -1.10633409e+00 2.90002096e-02 -5.71823120e-01 4.60967213e-01 4.45172668e-01 1.00364363e+00 1.63093582e-01 -6.62803710e-01 -5.08231372e-02 2.49781430e-01 -3.51958908e-03 -8.34080160e-01 -1.22472048e+00 -2.30146438e-01 3.79037380e-01 2.26524368e-01 -3.06657970e-01 -1.01376581e+00 -1.08332455e+00 -7.70941556e-01 1.64608762e-01 7.10484803e-01 1.00987375e+00 9.71669495e-01 -1.13962062e-01 2.13762581e-01 8.92921984e-01 -5.42133629e-01 -1.35437503e-01 -1.09701872e+00 -9.50658917e-01 4.66972739e-01 8.13016221e-02 -4.97793972e-01 -5.11373878e-01 -1.29202185e-02]
[9.459895133972168, 10.335882186889648]
f292a505-b7a4-4b60-92a7-1c34b6b5a6e3
cartoongan-generative-adversarial-networks
null
null
http://openaccess.thecvf.com/content_cvpr_2018/html/Chen_CartoonGAN_Generative_Adversarial_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_CartoonGAN_Generative_Adversarial_CVPR_2018_paper.pdf
CartoonGAN: Generative Adversarial Networks for Photo Cartoonization
In this paper, we propose a solution to transforming photos of real-world scenes into cartoon style images, which is valuable and challenging in computer vision and computer graphics. Our solution belongs to learning based methods, which have recently become popular to stylize images in artistic forms such as painting. However, existing methods do not produce satisfactory results for cartoonization, due to the fact that (1) cartoon styles have unique characteristics with high level simplification and abstraction, and (2) cartoon images tend to have clear edges, smooth color shading and relatively simple textures, which exhibit significant challenges for texture-descriptor-based loss functions used in existing methods. In this paper, we propose CartoonGAN, a generative adversarial network (GAN) framework for cartoon stylization. Our method takes unpaired photos and cartoon images for training, which is easy to use. Two novel losses suitable for cartoonization are proposed: (1) a semantic content loss, which is formulated as a sparse regularization in the high-level feature maps of the VGG network to cope with substantial style variation between photos and cartoons, and (2) an edge-promoting adversarial loss for preserving clear edges. We further introduce an initialization phase, to improve the convergence of the network to the target manifold. Our method is also much more efficient to train than existing methods. Experimental results show that our method is able to generate high-quality cartoon images from real-world photos (i.e., following specific artists' styles and with clear edges and smooth shading) and outperforms state-of-the-art methods.
['Yong-Jin Liu', 'Yu-Kun Lai', 'Yang Chen']
2018-06-01
null
null
null
cvpr-2018-6
['real-to-cartoon-translation']
['computer-vision']
[ 3.32455814e-01 -7.44335726e-02 2.16849908e-01 -1.07100628e-01 -3.61012936e-01 -5.06787062e-01 5.64929426e-01 -6.04350507e-01 -5.85396402e-02 8.48930717e-01 -1.53636321e-01 3.18502113e-02 2.51506299e-01 -1.02044237e+00 -9.60598469e-01 -7.01543987e-01 2.83478707e-01 3.18600446e-01 8.82996768e-02 -2.51525491e-01 9.62010920e-02 7.88474500e-01 -1.42978930e+00 2.98155636e-01 1.12064338e+00 9.32567418e-01 1.79496631e-01 3.83541226e-01 -1.78679496e-01 7.83969760e-01 -4.68688309e-01 -8.23777437e-01 5.11490822e-01 -7.39739180e-01 -3.83960396e-01 4.11446959e-01 8.34540367e-01 -2.20532864e-01 -3.34984839e-01 1.20586419e+00 3.70883942e-01 7.35604316e-02 6.95449531e-01 -1.43658471e+00 -1.05026078e+00 2.43521810e-01 -8.19284379e-01 -6.99836135e-01 1.46838486e-01 8.90605673e-02 7.84598947e-01 -8.55669737e-01 9.01794970e-01 1.56721306e+00 7.60384262e-01 6.17811501e-01 -1.44493473e+00 -8.32938790e-01 1.86210379e-01 6.27833605e-02 -1.19685996e+00 -1.61661759e-01 1.08503354e+00 -3.41290295e-01 9.35378578e-03 3.27293873e-01 7.94628024e-01 1.21976244e+00 4.24845427e-01 8.05544019e-01 1.51603210e+00 -2.80419469e-01 1.68796450e-01 3.95761400e-01 -8.62051249e-01 8.26647997e-01 1.99620694e-01 1.88352093e-02 -2.42529050e-01 5.82072102e-02 1.32949555e+00 1.29769847e-01 -3.76890093e-01 -9.15978611e-01 -1.07757592e+00 9.70519066e-01 6.61591291e-01 1.73028708e-01 -3.75656694e-01 1.72137052e-01 1.40542984e-01 2.37188891e-01 3.25663030e-01 5.00017524e-01 7.83306137e-02 1.87305316e-01 -8.73389482e-01 2.59974748e-01 7.72277236e-01 1.15362227e+00 8.54850054e-01 4.69716519e-01 -4.47609238e-02 1.09740806e+00 3.20824012e-02 7.84624040e-01 2.71975905e-01 -9.06957686e-01 2.98338205e-01 3.94397050e-01 7.40699321e-02 -1.34525871e+00 3.28476876e-02 -9.06887203e-02 -1.24741638e+00 6.94957435e-01 2.82095909e-01 -5.32697923e-02 -8.95269811e-01 1.56761026e+00 -4.53120098e-02 1.83052436e-01 -1.10686850e-02 8.73721600e-01 6.51604354e-01 7.10784197e-01 -1.15566894e-01 5.22625521e-02 1.34630418e+00 -1.01420557e+00 -7.63080239e-01 -1.89819634e-01 -1.37285441e-01 -9.71705854e-01 1.50328207e+00 4.43319649e-01 -1.21750009e+00 -6.89844489e-01 -9.13605690e-01 -5.36795706e-02 -3.32419366e-01 2.56360352e-01 5.83563089e-01 8.44855309e-01 -9.95946646e-01 7.58745730e-01 -4.31456029e-01 -2.74683684e-01 5.80054402e-01 1.77110545e-02 -3.28601271e-01 -2.76246488e-01 -1.05566382e+00 7.02589691e-01 2.10754886e-01 4.43639457e-02 -6.04524434e-01 -7.26974189e-01 -8.78976762e-01 7.88855702e-02 3.60324502e-01 -7.47519553e-01 5.64826131e-01 -1.53927469e+00 -1.96434855e+00 8.24980974e-01 1.60116300e-01 -1.85258567e-01 1.02931976e+00 -1.24337636e-01 -4.05246317e-01 1.82326719e-01 1.22304291e-01 8.10790658e-01 1.40275180e+00 -1.75852299e+00 -5.08807719e-01 5.59481308e-02 7.73215853e-03 1.56095818e-01 -3.12277824e-01 -3.23395312e-01 -8.20605576e-01 -1.27336812e+00 -1.34905741e-01 -1.11136925e+00 -2.56847382e-01 3.20926726e-01 -6.11549914e-01 4.19005513e-01 1.07372212e+00 -7.03820467e-01 7.13190615e-01 -2.04952598e+00 3.04511100e-01 3.55064243e-01 -3.47771719e-02 3.19473922e-01 -3.43799144e-01 4.61988091e-01 -6.99751303e-02 8.17325488e-02 -5.43492973e-01 -4.22715157e-01 5.41581996e-02 2.74312705e-01 -4.60122824e-01 2.44610384e-01 2.54202574e-01 8.56323600e-01 -9.25650179e-01 -3.11304361e-01 4.14151907e-01 7.92343974e-01 -5.52773356e-01 2.28018731e-01 -1.61124438e-01 6.37925506e-01 -2.56231219e-01 5.84039927e-01 9.63073015e-01 7.73651749e-02 1.67454109e-01 -4.14253145e-01 5.84900081e-02 -3.99048686e-01 -1.26773584e+00 1.55732286e+00 -7.78782427e-01 6.89421415e-01 6.45638406e-02 -7.25670815e-01 1.04594016e+00 7.77894747e-04 3.08722168e-01 -4.59043652e-01 2.00052440e-01 2.00541571e-01 -3.79104137e-01 -1.12738214e-01 5.13467073e-01 -2.36108407e-01 1.71635766e-02 2.60377198e-01 -1.87604308e-01 -8.28558266e-01 2.37095371e-01 5.25935404e-02 5.70635557e-01 2.32257232e-01 -5.48442639e-02 -2.64542371e-01 6.91424847e-01 -3.88770044e-01 6.99483812e-01 5.12856185e-01 4.59986150e-01 1.03066123e+00 6.38419628e-01 -5.16381860e-01 -1.25693190e+00 -1.00465465e+00 3.08842827e-02 4.32647973e-01 3.04688722e-01 -8.74929279e-02 -9.98085499e-01 -6.75782681e-01 2.07075346e-02 7.24855363e-01 -6.11308455e-01 -6.49158433e-02 -7.33739734e-01 -5.54736376e-01 2.93751240e-01 4.47836995e-01 9.05366123e-01 -1.42517662e+00 -1.77663624e-01 1.74731582e-01 -1.30564108e-01 -1.32745683e+00 -7.88731456e-01 -2.71872878e-01 -7.77744293e-01 -1.07636154e+00 -1.16553390e+00 -8.43571007e-01 9.99816716e-01 1.42663211e-01 1.01687753e+00 -4.95508639e-03 -1.90350622e-01 3.53767425e-01 -3.00153047e-01 -3.68391037e-01 -5.86941957e-01 -2.95932174e-01 -1.14739582e-01 6.35505497e-01 -3.28516185e-01 -7.00124145e-01 -6.08983815e-01 5.27438998e-01 -1.30451107e+00 2.76924074e-01 7.99976468e-01 1.15764940e+00 7.18731642e-01 2.44407400e-01 3.35334510e-01 -1.36420929e+00 5.49714327e-01 1.08120956e-01 -8.47691298e-01 2.05632582e-01 -5.50161302e-01 -1.23404294e-01 1.28673804e+00 -4.39555943e-01 -1.10234272e+00 7.94135556e-02 -1.49763897e-01 -7.99913704e-01 -2.59570386e-02 -1.03674503e-02 -3.73705268e-01 -6.22662425e-01 3.24754238e-01 3.85462582e-01 1.34724692e-01 -3.21656466e-01 5.85339963e-01 1.22166239e-01 5.52536845e-01 -5.94251215e-01 1.47165239e+00 8.39648485e-01 1.22269690e-01 -9.10206795e-01 -4.98531818e-01 8.52751285e-02 -6.62709594e-01 -1.84437141e-01 8.09760869e-01 -7.19770849e-01 -4.83902901e-01 7.97335565e-01 -9.55848038e-01 -5.10591567e-01 -3.70819151e-01 8.33350644e-02 -8.87209833e-01 5.77905774e-01 -5.53437948e-01 -4.48009014e-01 -2.77232826e-01 -1.17532706e+00 1.09314215e+00 3.37315083e-01 1.83037043e-01 -1.10981321e+00 -2.41419762e-01 1.51243389e-01 4.12875026e-01 7.78061867e-01 1.01742721e+00 3.40348572e-01 -8.61549914e-01 -6.62566721e-02 -5.40400326e-01 6.60762072e-01 2.20110118e-01 2.46859174e-02 -7.63414562e-01 -5.49899101e-01 -2.96954930e-01 -2.95096755e-01 7.47934222e-01 2.47736901e-01 1.40071905e+00 -3.26494396e-01 -8.36207867e-02 1.04584551e+00 1.64525104e+00 3.33141208e-01 1.04589093e+00 3.42964470e-01 1.05478239e+00 6.08636439e-01 4.94804114e-01 2.06362560e-01 -2.05325764e-02 7.66260445e-01 3.33581567e-01 -7.07427442e-01 -4.17588204e-01 -5.51850557e-01 3.58923376e-01 5.19184113e-01 -2.28508949e-01 -2.62744576e-01 -2.54732698e-01 3.46828401e-01 -1.72463918e+00 -8.67875636e-01 8.16765726e-02 2.08243847e+00 6.34464204e-01 -1.88089139e-03 4.03160825e-02 -4.14073281e-02 7.26386666e-01 2.81792134e-01 -5.70964992e-01 -4.96453345e-01 -4.00318563e-01 3.84448767e-01 5.75086296e-01 2.01016471e-01 -1.02209651e+00 1.20993245e+00 5.19212055e+00 9.25783932e-01 -1.27941024e+00 -1.65511534e-01 6.56485498e-01 4.18214113e-01 -4.27606821e-01 -1.71010792e-01 -4.28992391e-01 7.48385251e-01 6.08137287e-02 5.54293729e-02 6.74346447e-01 8.23200107e-01 -1.26930214e-02 3.00676942e-01 -8.26469600e-01 1.15764904e+00 3.33292365e-01 -1.37062919e+00 5.23360670e-01 -1.22557014e-01 1.14284992e+00 -6.00425720e-01 4.01559025e-01 6.95459247e-02 4.13433909e-01 -1.01375008e+00 8.28695059e-01 4.71019834e-01 1.13211071e+00 -1.01241958e+00 5.42815864e-01 -1.27468988e-01 -1.07558179e+00 1.29126430e-01 -5.30161619e-01 5.96016467e-01 2.56184876e-01 4.68274653e-01 -3.06853563e-01 7.74491668e-01 7.27023780e-01 8.73801231e-01 -5.05014002e-01 9.64676619e-01 -5.18507719e-01 2.76117146e-01 -7.84794688e-02 6.05838001e-02 4.82571214e-01 -8.47718477e-01 5.76453030e-01 1.08275878e+00 4.67053026e-01 -1.26223236e-01 1.08463973e-01 1.15006506e+00 -2.81066805e-01 1.78088680e-01 -7.40396261e-01 1.14780694e-01 1.25718534e-01 1.27701044e+00 -8.45669806e-01 -2.88719028e-01 -4.06644136e-01 1.35302997e+00 4.82214335e-03 5.99487484e-01 -8.64773631e-01 -6.40117109e-01 5.02195656e-01 1.39246926e-01 4.43630040e-01 3.93338725e-02 -1.89039230e-01 -1.35688722e+00 6.69856742e-02 -1.10812843e+00 -1.06291331e-01 -9.11016226e-01 -1.50485992e+00 9.62767899e-01 -3.51574957e-01 -1.52325475e+00 3.62723470e-02 -8.13094556e-01 -8.88060987e-01 7.83466995e-01 -1.61962128e+00 -1.49716544e+00 -5.77221394e-01 7.66078293e-01 3.98285747e-01 -4.41942364e-01 6.48548305e-01 4.00124073e-01 -4.02664870e-01 6.10639036e-01 3.52668911e-01 2.89272308e-01 8.56653512e-01 -1.34993935e+00 5.02428830e-01 8.50825429e-01 2.30722830e-01 1.93007395e-01 5.50706565e-01 -5.38922012e-01 -1.42799747e+00 -1.37516439e+00 3.74998033e-01 -5.73751293e-02 4.41372097e-01 -5.23245454e-01 -8.18423867e-01 5.30398726e-01 3.17200541e-01 -2.15420902e-01 3.23710382e-01 -3.51868361e-01 -2.19416797e-01 -2.40076393e-01 -1.13923013e+00 9.53473747e-01 8.82976055e-01 -2.97545582e-01 -1.74048662e-01 3.68331105e-01 2.53114223e-01 -4.22055542e-01 -6.29857123e-01 2.36193687e-01 6.40048087e-01 -1.15381885e+00 1.10985470e+00 -1.88709557e-01 4.76739317e-01 -3.79876405e-01 1.73306018e-01 -1.62919974e+00 -3.25989783e-01 -9.10573244e-01 4.60221231e-01 1.22728527e+00 9.52581689e-02 -7.34233558e-01 7.94020593e-01 2.33037710e-01 -2.15393659e-02 -5.72336614e-01 -5.09150684e-01 -9.15632308e-01 3.31567973e-02 8.58407468e-02 6.30328596e-01 1.01724696e+00 -7.76834190e-01 4.70407456e-02 -9.32004392e-01 -1.30048513e-01 8.39316785e-01 4.80027348e-01 1.10967398e+00 -1.12818408e+00 -6.70435354e-02 -5.21477222e-01 -3.23475152e-01 -7.39815772e-01 2.15190604e-01 -6.05335116e-01 -8.09623376e-02 -1.35533774e+00 -1.57739028e-01 -6.99627399e-01 -2.60687172e-02 2.34378740e-01 -1.12434156e-01 7.95849383e-01 5.32372057e-01 2.86001228e-02 -5.96568128e-03 7.78862953e-01 1.80074048e+00 -1.73336864e-01 -8.71695802e-02 2.51330771e-02 -5.05210698e-01 9.14402485e-01 5.71905017e-01 -2.16170385e-01 -3.35198134e-01 -2.74410903e-01 -8.76868144e-02 -4.01158743e-02 4.74443495e-01 -1.05212164e+00 -2.04140589e-01 -8.31840709e-02 5.96290231e-01 -3.78410071e-01 4.79460567e-01 -1.04693115e+00 3.36546540e-01 4.40145254e-01 1.32657867e-02 -6.69619516e-02 1.76333532e-01 6.23849273e-01 -3.77331793e-01 -1.19405374e-01 1.34757245e+00 -1.51444733e-01 -7.14446366e-01 5.94444990e-01 -5.68793453e-02 7.40187839e-02 9.53542590e-01 -1.81580707e-01 9.40461010e-02 -6.50925875e-01 -4.56038088e-01 -3.00625339e-02 9.89945471e-01 5.14704466e-01 7.15007663e-01 -1.68986404e+00 -6.87181652e-01 4.18017775e-01 -1.22067578e-01 -1.86078772e-01 3.37384492e-01 4.94856954e-01 -1.02667463e+00 1.14190601e-01 -8.95300686e-01 -3.19727302e-01 -1.02286768e+00 6.38456106e-01 1.10804625e-01 -2.48718351e-01 -9.55731630e-01 5.38504541e-01 7.17033267e-01 -3.93783391e-01 5.98564968e-02 -1.76249668e-01 -1.26749381e-01 2.03328095e-02 2.26407498e-01 1.83941677e-01 -1.56614915e-01 -6.30339026e-01 1.10830804e-02 1.07375205e+00 2.54887175e-02 6.84167445e-02 1.20681274e+00 1.17456287e-01 -1.44037023e-01 4.60773334e-02 1.00377059e+00 2.96786010e-01 -1.43800104e+00 -1.67566791e-01 -5.14833331e-01 -8.82010460e-01 -1.03383251e-01 -5.78271568e-01 -1.52775621e+00 7.82589793e-01 4.42263544e-01 1.73850104e-01 1.34870505e+00 -5.49151182e-01 1.13729060e+00 7.28802532e-02 4.90029186e-01 -1.03682268e+00 2.03268021e-01 9.70093459e-02 1.29734170e+00 -1.07967985e+00 2.78895302e-03 -6.48229182e-01 -9.07884896e-01 1.17574811e+00 5.66038728e-01 -6.04485989e-01 2.68599689e-01 -2.51558516e-02 2.82096952e-01 1.10704653e-01 -1.48689806e-01 1.47924116e-02 5.31953454e-01 6.84190810e-01 -2.67282681e-04 -3.54562737e-02 -1.35451034e-01 1.56681970e-01 -2.84058303e-01 -2.68867522e-01 5.94651997e-01 4.23223346e-01 1.43433124e-01 -1.28461778e+00 -5.13913810e-01 2.05580011e-01 -2.99785912e-01 -3.72433513e-02 -3.90561253e-01 1.16336834e+00 1.53658897e-01 5.33680677e-01 -2.09742729e-02 -1.23198159e-01 5.77463865e-01 -3.40022892e-01 4.97511417e-01 -3.48066181e-01 -2.91022480e-01 2.15917721e-01 -1.53126106e-01 -7.26118386e-01 -3.75604212e-01 -5.75345039e-01 -6.58949316e-01 -4.44207460e-01 1.43396594e-02 6.51962832e-02 4.77302283e-01 3.36138368e-01 1.68843776e-01 6.54779434e-01 8.80002260e-01 -1.10697186e+00 -8.05518478e-02 -5.48495233e-01 -9.72077906e-01 7.78761029e-01 1.54380249e-02 -8.02750945e-01 -2.75299460e-01 3.16773474e-01]
[11.640449523925781, -0.6584645509719849]
7b8ab5ac-6b27-404b-a7e6-c2e59cfcbb9d
qtran-learning-to-factorize-with
1905.05408
null
https://arxiv.org/abs/1905.05408v1
https://arxiv.org/pdf/1905.05408v1.pdf
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning
We explore value-based solutions for multi-agent reinforcement learning (MARL) tasks in the centralized training with decentralized execution (CTDE) regime popularized recently. However, VDN and QMIX are representative examples that use the idea of factorization of the joint action-value function into individual ones for decentralized execution. VDN and QMIX address only a fraction of factorizable MARL tasks due to their structural constraint in factorization such as additivity and monotonicity. In this paper, we propose a new factorization method for MARL, QTRAN, which is free from such structural constraints and takes on a new approach to transforming the original joint action-value function into an easily factorizable one, with the same optimal actions. QTRAN guarantees more general factorization than VDN or QMIX, thus covering a much wider class of MARL tasks than does previous methods. Our experiments for the tasks of multi-domain Gaussian-squeeze and modified predator-prey demonstrate QTRAN's superior performance with especially larger margins in games whose payoffs penalize non-cooperative behavior more aggressively.
['Yung Yi', 'David Earl Hostallero', 'Wan Ju Kang', 'Daewoo Kim', 'Kyunghwan Son']
2019-05-14
null
null
null
null
['smac-1']
['playing-games']
[-4.80285674e-01 1.42423600e-01 -4.26199764e-01 1.69061601e-01 -9.04649258e-01 -7.13128626e-01 3.13093543e-01 -1.09274589e-01 -7.41925359e-01 1.37241685e+00 6.94748461e-02 -5.68858981e-01 -7.46090591e-01 -4.94242281e-01 -7.96939790e-01 -1.03840733e+00 -7.55474329e-01 6.09026790e-01 -3.54613247e-03 -6.60133958e-01 -8.19675699e-02 8.55263770e-02 -1.13054979e+00 2.75688231e-01 8.79832685e-01 7.18965292e-01 1.16247654e-01 7.95984030e-01 3.81652892e-01 9.99263644e-01 -7.67001450e-01 -4.18252558e-01 7.45299935e-01 -9.57701579e-02 -6.14055991e-01 -3.78097929e-02 -9.95435789e-02 -6.36278629e-01 -1.00215316e-01 8.27064633e-01 4.94416475e-01 3.50398540e-01 6.77373648e-01 -1.92817807e+00 -5.10833383e-01 1.23627663e+00 -1.02104771e+00 5.44284508e-02 2.17782743e-02 2.43773401e-01 1.30685532e+00 -1.86754823e-01 2.61349976e-01 1.44799042e+00 6.23916388e-01 6.94847286e-01 -1.35684097e+00 -4.93029922e-01 4.94009972e-01 -2.38037780e-01 -7.21254170e-01 1.45248696e-01 1.13666929e-01 -3.62046480e-01 1.20444584e+00 -8.54351223e-02 6.56525195e-01 9.13105547e-01 4.54128921e-01 1.23920548e+00 1.11789179e+00 -3.18603069e-02 5.95541775e-01 -3.16659033e-01 -2.88439602e-01 5.03983557e-01 5.19617379e-01 2.72066891e-01 -4.32273120e-01 -7.10760415e-01 8.91727030e-01 1.20831326e-01 -5.69444373e-02 -7.39087522e-01 -1.25923932e+00 1.14894998e+00 2.80984402e-01 6.85773417e-02 -6.16264701e-01 6.86142862e-01 5.93267441e-01 1.02558792e+00 3.72740090e-01 7.33263552e-01 -8.33316803e-01 -3.07150036e-01 -4.66936827e-01 8.78563464e-01 8.78302991e-01 6.86150849e-01 8.82553995e-01 2.94082463e-01 -5.82543835e-02 3.28017920e-01 2.22141176e-01 5.70330799e-01 5.75109124e-01 -1.37284577e+00 7.79847801e-01 2.91724026e-01 5.11669993e-01 -3.64846259e-01 -5.79480588e-01 -4.87056673e-01 -6.39787495e-01 6.70394599e-01 5.66314280e-01 -9.09220040e-01 -3.71631801e-01 2.00970674e+00 3.63141119e-01 -1.47254154e-01 5.05452514e-01 8.53617668e-01 7.45882690e-02 4.32509840e-01 -1.29118130e-01 -3.43325168e-01 1.01055491e+00 -1.16038048e+00 -3.83028865e-01 -2.49408022e-01 8.85977805e-01 -2.06321031e-01 7.98593342e-01 7.57920980e-01 -9.13752317e-01 -7.90225714e-02 -8.44234347e-01 4.58158433e-01 1.95413996e-02 -4.60730568e-02 1.25782001e+00 7.00827956e-01 -1.40813458e+00 7.40819037e-01 -9.47160006e-01 2.55571872e-01 3.83029997e-01 7.23415971e-01 -3.97688955e-01 2.82709628e-01 -1.15360737e+00 6.53425097e-01 4.23916668e-01 -2.10028395e-01 -1.46034968e+00 -7.01400876e-01 -6.03535652e-01 2.28813633e-01 1.01692641e+00 -6.43671393e-01 1.74856913e+00 -1.22670412e+00 -1.80220902e+00 1.16974577e-01 6.63847208e-01 -7.92989969e-01 7.23167717e-01 -3.26879531e-01 2.79846400e-01 -5.72310314e-02 2.54730225e-01 5.03910840e-01 1.17258441e+00 -1.04365098e+00 -7.91510642e-01 -1.21951707e-01 8.66702318e-01 4.80995774e-01 -3.85348052e-01 -3.19694698e-01 5.22132158e-01 -5.60079098e-01 -8.22081327e-01 -9.89268363e-01 -7.83865213e-01 -4.21211213e-01 2.11176783e-01 -4.94356275e-01 4.07729954e-01 -2.98445791e-01 1.06919515e+00 -1.89584696e+00 8.63040745e-01 4.45700400e-02 7.50220358e-01 3.91328335e-02 -6.99146688e-01 9.51295197e-01 6.81314170e-02 -3.87731791e-02 9.14653987e-02 -3.69414061e-01 4.68951881e-01 6.16834939e-01 -3.68843436e-01 5.38707495e-01 1.87539048e-02 9.45595145e-01 -1.15407741e+00 2.93752495e-02 -3.19737583e-01 -2.06263244e-01 -1.12610984e+00 9.94387791e-02 -6.90937400e-01 1.62229896e-01 -7.13867843e-01 2.91427046e-01 5.50235331e-01 7.71523453e-03 4.39556062e-01 4.90485907e-01 5.30376025e-02 -1.46096408e-01 -1.31192875e+00 1.62729931e+00 -3.88916373e-01 1.65677205e-01 6.27657354e-01 -1.13174808e+00 5.48979104e-01 3.67805749e-01 9.49246228e-01 -3.61935943e-01 3.98912095e-03 1.54747769e-01 2.67403752e-01 -1.82783335e-01 6.12035215e-01 -2.38306656e-01 -3.89832288e-01 9.82041180e-01 2.46087983e-01 1.38663566e-02 5.85847974e-01 5.82366288e-01 1.35640311e+00 2.47896999e-01 5.78634799e-01 -5.33640206e-01 1.36093497e-01 -1.51039332e-01 7.63309181e-01 1.10946596e+00 -2.72862881e-01 -3.66022706e-01 1.21516252e+00 -2.46700719e-01 -9.39704061e-01 -9.15415406e-01 5.69323778e-01 1.61184788e+00 -1.94537789e-01 -6.31031930e-01 -6.34152472e-01 -9.74968851e-01 6.87155664e-01 2.94675171e-01 -8.01772535e-01 8.25465471e-02 -3.89491707e-01 -9.06409740e-01 5.50408006e-01 4.51569319e-01 1.89310998e-01 -8.22425008e-01 -8.49060714e-01 3.29259753e-01 7.37964958e-02 -5.00819743e-01 -4.86240238e-01 5.53939700e-01 -7.97681093e-01 -1.00522101e+00 -8.60207856e-01 -2.94329077e-01 4.65731502e-01 3.41914266e-01 8.58606994e-01 -1.95924088e-01 5.01136519e-02 5.93385816e-01 -5.63838601e-01 -3.37196946e-01 -3.55545998e-01 8.29667449e-02 4.16231722e-01 -1.25209600e-01 -6.18507899e-02 -6.25039637e-01 -3.74035120e-01 3.13891500e-01 -1.09039438e+00 -2.62673292e-02 7.61050761e-01 1.24963176e+00 -4.60354649e-02 1.08721107e-01 1.08538187e+00 -6.46626472e-01 1.28053617e+00 -6.17511213e-01 -7.95117021e-01 1.69623315e-01 -3.98471326e-01 3.77527952e-01 9.37577605e-01 -8.52677882e-01 -9.72114921e-01 -8.84184092e-02 2.75055856e-01 -5.49098372e-01 4.06373203e-01 6.07414544e-01 1.98124334e-01 -7.28576779e-02 8.70319843e-01 -2.14037038e-02 4.99639124e-01 -2.55998015e-01 4.96821880e-01 4.01217908e-01 -7.41268992e-02 -1.15403223e+00 7.89666057e-01 1.33154646e-01 -2.83131357e-02 -3.21328431e-01 -2.60521054e-01 -2.00525030e-01 -7.91827291e-02 -2.54330963e-01 4.11884010e-01 -1.15934062e+00 -1.54350996e+00 3.78110856e-01 -8.06860864e-01 -8.30217063e-01 -4.26165134e-01 5.79158604e-01 -1.03636098e+00 4.15431350e-01 -7.39909649e-01 -9.77226317e-01 -1.39260903e-01 -1.15017045e+00 9.69421268e-01 1.13671556e-01 3.71825814e-01 -9.11592662e-01 5.11868477e-01 1.78335458e-01 5.33416808e-01 3.25814225e-02 7.28956819e-01 -5.44890106e-01 -4.89503503e-01 2.55729944e-01 2.38145858e-01 4.24293756e-01 -1.77788585e-02 -2.42881194e-01 -4.21771556e-01 -1.12087679e+00 -5.46733886e-02 -8.60064685e-01 7.87152946e-01 4.26229566e-01 3.83928508e-01 -5.28243721e-01 1.39923906e-03 3.38706732e-01 1.36166716e+00 2.22705409e-01 9.96741429e-02 4.29958642e-01 2.39413738e-01 2.27853164e-01 8.52516890e-01 1.08539844e+00 3.50494504e-01 5.01688719e-01 8.51406157e-01 2.40093350e-01 6.84934974e-01 -1.61318496e-01 1.05571139e+00 4.93373811e-01 -3.76808822e-01 -1.85652897e-01 -5.08016050e-01 2.86975354e-01 -2.70384812e+00 -9.81004417e-01 5.04235566e-01 2.08044910e+00 7.76801705e-01 -1.38641745e-01 8.15450847e-01 -1.91653326e-01 2.52182364e-01 -1.09542441e-02 -9.28861976e-01 -5.56047142e-01 2.65076049e-02 -4.23908792e-02 7.66999960e-01 4.80113029e-01 -1.08814883e+00 8.62795472e-01 6.19492245e+00 1.17356265e+00 -6.83176339e-01 4.29612249e-01 2.73889720e-01 -4.83548284e-01 -2.18447655e-01 -4.37809825e-02 -7.25672126e-01 2.44635642e-01 5.32165527e-01 -4.86498117e-01 1.08083200e+00 1.10621202e+00 1.70195103e-01 -2.31670156e-01 -1.04280961e+00 7.52388954e-01 -3.61828417e-01 -1.05515730e+00 -3.67177308e-01 2.94898689e-01 1.06845272e+00 1.70764416e-01 1.11260302e-01 8.42613101e-01 1.15272212e+00 -8.46956015e-01 6.96881056e-01 -8.33036825e-02 4.67675358e-01 -9.80742991e-01 5.38857698e-01 7.10637093e-01 -1.06963968e+00 -7.11617827e-01 -5.11016130e-01 -6.21438146e-01 -9.80509296e-02 1.26136705e-01 -4.92938548e-01 7.14758933e-01 4.81878251e-01 6.20392084e-01 -1.94497436e-01 6.36773586e-01 -1.28365219e-01 2.45702147e-01 -3.84669840e-01 -2.75525004e-01 7.19040692e-01 -3.81413072e-01 5.41420817e-01 6.87141359e-01 8.50057304e-02 -1.79547116e-01 6.01378560e-01 4.14660156e-01 6.34586811e-02 1.09532371e-01 -4.66688097e-01 -3.85609210e-01 -5.86520471e-02 1.35946643e+00 -6.34825826e-01 -2.99417526e-02 -4.51913357e-01 5.20278692e-01 7.28722632e-01 3.70669454e-01 -1.03544855e+00 -9.05732512e-02 1.17535925e+00 -2.67053455e-01 5.78962207e-01 -4.01991814e-01 3.68994355e-01 -1.62632620e+00 -8.60131755e-02 -1.41948998e+00 4.76869434e-01 -1.85585007e-01 -1.41288030e+00 4.77580070e-01 1.66844904e-01 -1.26862907e+00 -6.26996100e-01 -8.06601942e-01 -3.55563194e-01 3.44820917e-01 -1.29256237e+00 -9.40002441e-01 5.78269839e-01 7.72086084e-01 4.45392668e-01 -6.74274385e-01 5.64167261e-01 1.25864699e-01 -4.53683555e-01 5.27547836e-01 7.44323611e-01 -3.64935458e-01 5.78264952e-01 -1.55538571e+00 3.02561950e-02 6.29400432e-01 -1.80234462e-01 3.10036659e-01 6.57037914e-01 -6.05099022e-01 -1.70903826e+00 -7.13886201e-01 -6.66165203e-02 -2.19407633e-01 1.22053635e+00 -5.09235263e-01 -2.36494407e-01 8.28623295e-01 2.92879134e-01 -4.95857179e-01 4.32070583e-01 2.57029951e-01 -2.65686393e-01 -1.94710746e-01 -9.83837187e-01 6.12826705e-01 9.32623029e-01 -1.35254994e-01 -4.37151313e-01 4.69847262e-01 9.34587002e-01 -2.70264775e-01 -9.03692424e-01 -5.35416752e-02 3.43314081e-01 -8.75349343e-01 7.41546512e-01 -1.04478943e+00 4.70265567e-01 -2.71529406e-01 -7.59135038e-02 -1.82441449e+00 -3.92923474e-01 -1.29159498e+00 -2.40079403e-01 6.23188734e-01 2.68897593e-01 -1.00559390e+00 7.63319314e-01 1.62586540e-01 7.79626817e-02 -7.64959812e-01 -1.24098933e+00 -1.08569312e+00 4.30721134e-01 -8.36249143e-02 4.18508649e-01 6.59215569e-01 4.23393011e-01 3.05137098e-01 -9.94442821e-01 -1.21579103e-01 7.49118745e-01 1.32516697e-01 1.06141055e+00 -7.95816004e-01 -1.20154762e+00 -4.75357473e-01 -9.29214358e-02 -1.12086463e+00 3.70267510e-01 -8.73172581e-01 -1.58102393e-01 -1.14351034e+00 1.85090244e-01 -4.23288584e-01 -1.29264444e-01 8.74929965e-01 2.30581611e-02 -1.92805067e-01 6.59436584e-01 8.25411454e-02 -1.00102329e+00 7.14713514e-01 1.35967207e+00 -9.74957421e-02 -3.46592307e-01 2.35703975e-01 -9.04035091e-01 3.71552110e-01 8.05033028e-01 -4.51714665e-01 -7.57960558e-01 -4.76105273e-01 6.97309971e-01 5.19624352e-01 2.67710667e-02 -5.57259262e-01 6.17989674e-02 -6.76629841e-01 -2.27297530e-01 7.71039873e-02 1.46185637e-01 -7.42791355e-01 1.12257741e-01 8.58856738e-01 -3.32639992e-01 4.37551975e-01 1.45057753e-01 8.23181808e-01 -7.85973519e-02 -2.29879007e-01 4.57601339e-01 -2.26914715e-02 -3.78330708e-01 3.10925961e-01 -8.64878774e-01 1.75575078e-01 1.31975222e+00 2.74651617e-01 -6.24465883e-01 -7.09892035e-01 -7.34618008e-01 8.74166727e-01 1.45658448e-01 2.33272955e-01 4.16775763e-01 -1.09816003e+00 -8.41339231e-01 7.78175071e-02 -3.02737772e-01 -2.08034322e-01 4.00015682e-01 9.75253701e-01 -2.58916944e-01 2.45303124e-01 -6.38482571e-01 -1.11231618e-01 -1.13315797e+00 8.15508068e-01 4.64152604e-01 -9.84037220e-01 -3.67761850e-01 5.94515681e-01 4.23833281e-01 -5.11597037e-01 1.64298311e-01 -4.11706209e-01 1.28024280e-01 1.18893057e-01 3.67701858e-01 4.68831539e-01 -3.29088897e-01 5.75687960e-02 -1.29277155e-01 5.88553352e-03 -2.90537864e-01 -2.74804115e-01 1.54670441e+00 2.00658038e-01 -1.63742349e-01 -1.00935869e-01 5.08699715e-01 -1.56472206e-01 -1.68046689e+00 -2.63322949e-01 -1.69899404e-01 -4.16153729e-01 -2.22349688e-01 -6.73479497e-01 -1.08779252e+00 5.11765242e-01 5.98780848e-02 4.00450140e-01 9.76479113e-01 -2.43485272e-01 3.25744271e-01 9.64384913e-01 8.18250358e-01 -1.16315281e+00 4.50522065e-01 6.76874518e-01 8.64321113e-01 -8.57773066e-01 1.01266298e-02 3.02737087e-01 -1.04056227e+00 9.99733567e-01 7.66682684e-01 -4.03527051e-01 4.34036255e-01 6.49042249e-01 -2.74336725e-01 1.86477035e-01 -1.29231739e+00 -2.18495071e-01 -5.06449819e-01 6.71031415e-01 -2.02083305e-01 4.04068500e-01 -5.33812463e-01 7.69397497e-01 3.06998566e-02 -2.84339432e-02 6.63514435e-01 1.04755020e+00 -5.42656481e-01 -1.35047972e+00 -3.20469648e-01 6.31800354e-01 -3.78042340e-01 1.58301935e-01 -7.95551613e-02 7.23006964e-01 -1.61818475e-01 8.12919378e-01 -2.49442488e-01 -2.51721621e-01 -8.32391754e-02 -3.59232903e-01 6.40017748e-01 -2.95420885e-01 -1.06718862e+00 4.10123467e-01 3.19586210e-02 -5.90551436e-01 -4.17199969e-01 -5.02281666e-01 -9.94199991e-01 -5.66912174e-01 -2.50326067e-01 5.67136705e-01 3.17816526e-01 9.08585370e-01 2.17577115e-01 4.80952293e-01 5.98191798e-01 -1.08655965e+00 -1.53054321e+00 -6.80655003e-01 -1.00752318e+00 1.94022030e-01 4.80692536e-01 -9.16757882e-01 -3.51005942e-01 -6.24233603e-01]
[3.7636032104492188, 2.0688273906707764]
3412bf40-ff2e-4829-bb8a-5d8096b4135d
auto-clustering-output-layer-automatic
1702.08648
null
http://arxiv.org/abs/1702.08648v2
http://arxiv.org/pdf/1702.08648v2.pdf
Auto-clustering Output Layer: Automatic Learning of Latent Annotations in Neural Networks
In this paper, we discuss a different type of semi-supervised setting: a coarse level of labeling is available for all observations but the model has to learn a fine level of latent annotation for each one of them. Problems in this setting are likely to be encountered in many domains such as text categorization, protein function prediction, image classification as well as in exploratory scientific studies such as medical and genomics research. We consider this setting as simultaneously performed supervised classification (per the available coarse labels) and unsupervised clustering (within each one of the coarse labels) and propose a novel output layer modification called auto-clustering output layer (ACOL) that allows concurrent classification and clustering based on Graph-based Activity Regularization (GAR) technique. As the proposed output layer modification duplicates the softmax nodes at the output layer for each class, GAR allows for competitive learning between these duplicates on a traditional error-correction learning framework to ultimately enable a neural network to learn the latent annotations in this partially supervised setup. We demonstrate how the coarse label supervision impacts performance and helps propagate useful clustering information between sub-classes. Comparative tests on three of the most popular image datasets MNIST, SVHN and CIFAR-100 rigorously demonstrate the effectiveness and competitiveness of the proposed approach.
['Ozsel Kilinc', 'Ismail Uysal']
2017-02-28
null
null
null
null
['protein-function-prediction']
['medical']
[ 6.56388342e-01 4.71023679e-01 -4.32527959e-01 -6.96215570e-01 -5.84689915e-01 -4.62712198e-01 5.92104018e-01 6.05700672e-01 -5.49319446e-01 7.32708693e-01 -7.24992082e-02 -1.99607402e-01 -2.38360614e-01 -5.45824885e-01 -9.34881032e-01 -9.91353154e-01 -3.01358663e-02 5.71333230e-01 2.24692389e-01 4.55486536e-01 4.78007421e-02 2.68287361e-01 -1.43222535e+00 4.91357744e-01 1.03428972e+00 9.46878731e-01 3.09695840e-01 5.24219394e-01 -3.77694294e-02 9.61897314e-01 -2.66228348e-01 -1.07306391e-01 8.61029252e-02 -2.03849614e-01 -9.91098821e-01 5.27537525e-01 3.26116920e-01 3.62337798e-01 2.71467209e-01 1.01843929e+00 1.63740501e-01 3.13087106e-01 9.67801869e-01 -1.13611603e+00 -5.24033070e-01 8.15584838e-01 -7.45294631e-01 -2.39589494e-02 -2.89180607e-01 -1.34468392e-01 1.07260036e+00 -6.30192399e-01 6.24202490e-01 1.04182196e+00 5.05699337e-01 2.89290190e-01 -1.55035174e+00 -5.25062025e-01 4.64833111e-01 -1.41551599e-01 -1.42325008e+00 -1.83613032e-01 7.82653511e-01 -7.50455618e-01 5.88696539e-01 -1.34268403e-01 3.94554622e-02 1.04408956e+00 -5.67115434e-02 6.88164771e-01 1.18231523e+00 -4.82837170e-01 4.35901463e-01 5.43621421e-01 6.07422948e-01 7.37304151e-01 1.44947886e-01 -3.60521376e-01 -3.39965940e-01 -1.13145813e-01 3.63773435e-01 1.59407526e-01 -5.95224053e-02 -4.57173318e-01 -1.08818865e+00 9.67839301e-01 5.91068387e-01 2.86589086e-01 -3.38985205e-01 1.46536738e-01 3.15786153e-01 2.20599681e-01 6.05268538e-01 3.42895001e-01 -5.06096423e-01 5.01563013e-01 -1.07445407e+00 -3.55706364e-01 5.83042324e-01 8.63747299e-01 1.05651307e+00 -7.07457736e-02 -2.75331795e-01 8.88821840e-01 4.06696260e-01 -1.74536005e-01 5.29412329e-01 -7.29779303e-01 4.03191954e-01 8.84424806e-01 -1.14002459e-01 -6.64913893e-01 -6.74186885e-01 -8.77770722e-01 -1.11739302e+00 2.82781303e-01 4.64714944e-01 -1.07164443e-01 -1.06730568e+00 1.97215128e+00 4.78852004e-01 4.63691950e-01 1.63580664e-02 6.89985335e-01 4.92365927e-01 4.99252945e-01 3.38189214e-01 -3.39339405e-01 1.21379590e+00 -1.20617557e+00 -4.72702950e-01 -1.51728258e-01 9.24899220e-01 -4.94496256e-01 1.09710670e+00 3.81651342e-01 -6.60085499e-01 -5.85410774e-01 -1.11638868e+00 -9.25573856e-02 -6.44931436e-01 4.84831154e-01 6.24595642e-01 3.73768419e-01 -9.41788554e-01 6.00556016e-01 -1.00989449e+00 -4.32590783e-01 6.58751667e-01 7.31611907e-01 -4.44237560e-01 -8.03553790e-04 -7.70102561e-01 4.54379231e-01 6.38566911e-01 1.19019905e-03 -6.94511235e-01 -3.59507591e-01 -6.26544714e-01 1.93879247e-01 5.21077394e-01 -4.12391335e-01 7.00858474e-01 -1.31209350e+00 -1.22489595e+00 1.04976141e+00 -8.23954716e-02 -6.08538330e-01 3.10747534e-01 6.66641444e-02 1.57024078e-02 7.19702393e-02 -8.23007431e-03 9.87024426e-01 8.90502870e-01 -1.34213257e+00 -5.87334216e-01 -5.62785327e-01 -1.07447570e-02 1.04853839e-01 -4.95435417e-01 -2.41426006e-01 -2.61938184e-01 -6.54405475e-01 1.10199817e-01 -1.02509987e+00 -2.47700468e-01 -9.21394154e-02 -6.58712029e-01 -3.54484677e-01 8.51706088e-01 -3.73016179e-01 9.88232017e-01 -1.97178090e+00 2.85458773e-01 4.10619974e-01 2.94813335e-01 4.61416692e-02 7.30474479e-03 2.15502530e-01 -2.91611552e-01 1.27225384e-01 -5.30414224e-01 -6.45264924e-01 -1.39143482e-01 1.53537571e-01 4.72184196e-02 7.11255133e-01 3.86035413e-01 7.77052701e-01 -5.82872510e-01 -3.66290808e-01 1.04272366e-01 5.36465824e-01 -6.03661358e-01 8.60446095e-02 -4.04352546e-01 7.61757731e-01 -3.32468003e-01 4.32853520e-01 4.27870065e-01 -9.15886402e-01 3.40135783e-01 -2.37335578e-01 1.76545724e-01 1.50872199e-02 -1.14653480e+00 1.76755846e+00 -4.20639336e-01 3.27400386e-01 1.29834607e-01 -1.49149740e+00 6.87278688e-01 3.16854745e-01 5.07129252e-01 -1.98059306e-01 1.32858276e-01 -3.21520641e-02 3.87186669e-02 -2.43007809e-01 8.21456406e-03 -4.96107824e-02 8.70930701e-02 5.14408588e-01 3.49934906e-01 6.06140733e-01 1.51274279e-01 2.27687523e-01 9.76060569e-01 4.79589775e-02 3.06344241e-01 -4.92924362e-01 7.63118505e-01 -7.46106207e-02 5.06947935e-01 7.18883872e-01 -1.40033232e-03 4.15789694e-01 5.53323567e-01 -7.26461187e-02 -9.53639150e-01 -5.90513766e-01 -1.99295536e-01 1.52409434e+00 -7.90176913e-02 -1.70735046e-01 -8.19431901e-01 -8.66416097e-01 -1.31059006e-01 3.53347093e-01 -8.58026862e-01 -2.64483303e-01 -1.66784465e-01 -9.92829025e-01 4.11568671e-01 5.12694299e-01 2.21070752e-01 -9.19220865e-01 -2.22691223e-01 4.55614142e-02 2.35204294e-01 -1.25376749e+00 -2.54566818e-01 1.00872457e+00 -9.46923792e-01 -9.63393152e-01 -2.73464292e-01 -1.02935100e+00 1.06823182e+00 -1.18589446e-01 8.16852987e-01 1.36277288e-01 -1.87432513e-01 1.25509679e-01 -4.60932404e-01 -1.20187454e-01 -4.71458495e-01 5.14569521e-01 5.89037724e-02 5.99236548e-01 3.71164739e-01 -7.65731692e-01 -3.71174783e-01 1.84909075e-01 -1.11694849e+00 1.43890396e-01 6.47611856e-01 9.85885441e-01 7.07720697e-01 2.25723580e-01 7.53392994e-01 -1.59302497e+00 3.71376276e-01 -7.12990284e-01 -7.50645578e-01 3.08344662e-01 -8.69822562e-01 4.38227803e-01 7.57473111e-01 -5.53016603e-01 -8.06049168e-01 5.79036057e-01 1.60359219e-02 -3.86238962e-01 -4.20817643e-01 6.19326174e-01 -2.25831211e-01 7.87966326e-03 6.48348272e-01 -1.52552668e-02 -1.86925426e-01 -7.02644527e-01 3.19683909e-01 7.59661138e-01 5.72352052e-01 -5.60602486e-01 7.07912445e-01 4.41210419e-01 1.42921120e-01 -6.18858218e-01 -1.03361428e+00 -6.38886511e-01 -1.07865500e+00 2.21595079e-01 1.20352077e+00 -1.01035333e+00 -7.99390435e-01 2.70058513e-01 -8.68305683e-01 -4.21362042e-01 -1.05857953e-01 5.08159578e-01 -3.63240689e-01 2.36958846e-01 -6.24768019e-01 -6.25001431e-01 -9.31484550e-02 -1.38213086e+00 1.06251252e+00 2.13964254e-01 6.38343841e-02 -1.37119901e+00 -1.62034139e-01 4.59749669e-01 3.38177159e-02 3.23601991e-01 1.23280811e+00 -1.12038493e+00 -4.20444608e-01 -1.23722382e-01 -3.17886800e-01 4.59674031e-01 2.20800608e-01 -3.31184387e-01 -1.33272755e+00 -4.08754349e-01 -2.40305200e-01 -7.00006068e-01 1.28866541e+00 4.42616433e-01 1.28020442e+00 -3.74695748e-01 -4.39080030e-01 5.81907213e-01 1.45487237e+00 -5.43417968e-02 1.48930922e-01 -3.12261675e-02 1.01429582e+00 7.11369693e-01 2.75299132e-01 1.55375749e-01 1.58782646e-01 6.52834594e-01 3.53531748e-01 -3.26250285e-01 -3.29122394e-02 -8.41045678e-02 3.04995686e-01 7.14120328e-01 2.35364601e-01 -3.84461194e-01 -7.92036712e-01 3.21008682e-01 -2.04653215e+00 -5.23595989e-01 -6.44546002e-02 2.27406979e+00 1.01990438e+00 8.80777687e-02 4.57508713e-02 2.55630314e-01 8.39028895e-01 -1.49635211e-01 -6.11648202e-01 -1.95088834e-01 -1.36763766e-01 7.62205571e-02 6.12277865e-01 6.52274787e-01 -1.34107828e+00 9.23246682e-01 5.18598366e+00 9.33306336e-01 -1.14320123e+00 3.56201977e-01 1.03173447e+00 2.14730397e-01 9.10217762e-02 2.00998895e-02 -8.04924607e-01 4.34187233e-01 1.02902901e+00 4.71715987e-01 3.28365326e-01 7.29680717e-01 2.94867367e-01 -2.36395657e-01 -1.41918015e+00 5.91251731e-01 -2.27970660e-01 -1.28475940e+00 4.26852517e-02 2.34492391e-01 9.00215030e-01 9.13761631e-02 -9.66253318e-03 1.32924944e-01 5.01910090e-01 -1.15764868e+00 3.75907242e-01 3.09851497e-01 6.77715778e-01 -7.06863642e-01 6.44105494e-01 5.44278204e-01 -9.47491705e-01 -1.53597072e-01 -3.36275071e-01 4.65731770e-02 -3.14675421e-01 7.09657609e-01 -9.25012350e-01 3.82219195e-01 3.83291930e-01 7.34183371e-01 -6.84807539e-01 7.88263857e-01 -2.12501839e-01 9.80589449e-01 -2.61253208e-01 4.30335492e-01 4.19285357e-01 -1.81640714e-01 2.27269948e-01 1.31214345e+00 -1.37224868e-01 -1.88495591e-01 7.16351628e-01 8.47942352e-01 -5.75178325e-01 1.31537154e-01 -2.38690674e-01 -1.59585148e-01 2.11091697e-01 1.38906682e+00 -1.21178877e+00 -3.94902140e-01 -3.48504156e-01 9.31104600e-01 7.40443945e-01 4.39379096e-01 -6.91367626e-01 -1.35489792e-01 2.01319069e-01 2.11027637e-01 2.86194086e-01 -1.06711257e-02 -4.39856857e-01 -1.00460553e+00 -1.49647743e-01 -4.63535935e-01 6.39855623e-01 -4.01373535e-01 -1.23013055e+00 4.84603137e-01 -1.41651511e-01 -1.02179003e+00 -1.76185947e-02 -6.18907154e-01 -3.81182939e-01 7.30386794e-01 -1.72148478e+00 -1.35882473e+00 -2.56915212e-01 6.12074435e-01 5.34844041e-01 -1.60697877e-01 6.60057843e-01 5.72198689e-01 -8.68927002e-01 6.02783442e-01 3.82263362e-01 1.38528809e-01 8.34624350e-01 -1.45252597e+00 -2.70772487e-01 7.43194938e-01 3.44799846e-01 5.43937981e-01 4.11478549e-01 -6.32916570e-01 -9.02185619e-01 -1.56572556e+00 5.41980386e-01 -1.38758078e-01 4.08800274e-01 -7.07169712e-01 -1.04758227e+00 7.56771803e-01 1.19938880e-01 2.98917979e-01 6.41236067e-01 7.10293800e-02 -4.40047652e-01 -5.70458658e-02 -9.43870187e-01 1.04835495e-01 6.65590227e-01 -4.32534546e-01 -1.95824713e-01 6.61680639e-01 8.45531285e-01 8.95942301e-02 -8.56648028e-01 3.09320211e-01 1.29067764e-01 -6.84524477e-01 6.86109960e-01 -7.94799089e-01 3.57655883e-01 -5.07223666e-01 -9.85554010e-02 -1.12286603e+00 -2.94016570e-01 -3.81563812e-01 6.43302547e-03 1.36461973e+00 6.51872873e-01 -3.59170884e-01 9.02017653e-01 3.09099466e-01 -2.38094583e-01 -8.16396058e-01 -5.70897758e-01 -4.92658675e-01 5.74045219e-02 -2.87223458e-01 4.50684801e-02 1.26401496e+00 -1.44567147e-01 8.15521717e-01 -4.36491698e-01 3.73601288e-01 7.00211942e-01 4.95324358e-02 4.43520695e-01 -1.61796939e+00 -5.94308734e-01 -2.81374156e-01 -3.23814154e-01 -7.74713874e-01 3.58252674e-01 -1.35181677e+00 -6.15337351e-03 -1.36940348e+00 4.87223804e-01 -7.76402891e-01 -6.02105618e-01 8.45270872e-01 -2.39167050e-01 4.85140800e-01 -2.30211258e-01 3.25029254e-01 -7.75493503e-01 2.56912321e-01 7.91196287e-01 -1.93564594e-01 -2.98475772e-01 9.88644660e-02 -7.39743412e-01 7.61029780e-01 5.14296710e-01 -7.97001719e-01 -5.89456141e-01 -2.74255872e-01 1.30990922e-01 -2.18601227e-01 3.35796386e-01 -8.63131881e-01 4.88211542e-01 -6.17773905e-02 4.06557113e-01 -2.77160048e-01 1.46253556e-01 -9.66220617e-01 -9.25066844e-02 2.34295428e-01 -8.43603790e-01 -4.52947259e-01 -1.38778910e-01 8.37627769e-01 -2.00489044e-01 -1.83001623e-01 1.14133549e+00 -3.11593972e-02 -4.33086336e-01 2.07432747e-01 -2.02446997e-01 -2.74674152e-03 1.09238780e+00 -1.72557369e-01 -2.18670890e-01 -6.56428188e-02 -1.12137008e+00 3.48648936e-01 2.76671171e-01 2.85183698e-01 4.01730910e-02 -1.03099263e+00 -5.42325795e-01 3.30676623e-02 1.93580985e-01 1.70206383e-01 -4.94177314e-03 1.21707296e+00 -1.04601070e-01 4.07325149e-01 -6.18814901e-02 -8.97726357e-01 -1.19209850e+00 6.31107688e-01 1.62296116e-01 -6.24330640e-01 -4.07481432e-01 8.14272583e-01 6.65347695e-01 -5.35934567e-01 5.47883093e-01 -3.59278798e-01 -3.80369604e-01 1.60927966e-01 9.24207345e-02 6.10746332e-02 2.05422804e-01 -6.99173808e-01 -1.92254230e-01 3.00019175e-01 -2.78887510e-01 2.63006598e-01 1.45041144e+00 -2.40392342e-01 -6.03133999e-02 6.46391451e-01 1.43351233e+00 -1.88103721e-01 -1.23713195e+00 -4.86024022e-01 5.40517092e-01 2.00830549e-01 1.99200734e-01 -8.53665650e-01 -1.02421844e+00 9.82481658e-01 6.19388103e-01 -5.53236157e-02 1.03854084e+00 1.29835024e-01 2.38076389e-01 6.23930871e-01 -4.47611958e-02 -1.15216601e+00 4.25853878e-02 2.05125391e-01 2.74702400e-01 -1.36644590e+00 -3.51892971e-02 -4.11514461e-01 -6.16368055e-01 8.04109395e-01 4.35816377e-01 -1.05902515e-01 6.81579173e-01 2.71030784e-01 -1.58654884e-01 -2.03382120e-01 -9.23148394e-01 -1.88717410e-01 4.79140073e-01 3.56723666e-01 6.23601258e-01 -1.22734852e-01 -1.28150538e-01 6.30400419e-01 3.88310581e-01 -1.78512484e-01 4.35855687e-01 8.21253598e-01 -5.16636908e-01 -1.13607144e+00 -1.82700738e-01 7.30232477e-01 -6.59902990e-01 -9.90166962e-02 -3.94684762e-01 4.40573096e-01 2.91701525e-01 7.93518186e-01 -6.92680255e-02 -2.44109064e-01 -2.32506484e-01 3.92986864e-01 1.07463196e-01 -9.74886358e-01 -6.73059404e-01 3.70440692e-01 -1.49174288e-01 -2.84323186e-01 -7.93718874e-01 -3.75924289e-01 -1.53813350e+00 3.67547423e-01 -6.35657251e-01 4.06622022e-01 6.36669040e-01 1.21284819e+00 2.80713201e-01 7.09458828e-01 6.11356914e-01 -6.01415813e-01 -4.21893895e-01 -1.02084816e+00 -7.70068109e-01 5.38113773e-01 2.66995251e-01 -8.01490307e-01 -3.03400904e-01 5.87368906e-01]
[9.406658172607422, 3.200993061065674]
17cad912-3685-4386-938d-fd06204266b6
a-novel-system-for-extractive-clinical-note
null
null
https://aclanthology.org/W19-1906
https://aclanthology.org/W19-1906.pdf
A Novel System for Extractive Clinical Note Summarization using EHR Data
While much data within a patient{'}s electronic health record (EHR) is coded, crucial information concerning the patient{'}s care and management remain buried in unstructured clinical notes, making it difficult and time-consuming for physicians to review during their usual clinical workflow. In this paper, we present our clinical note processing pipeline, which extends beyond basic medical natural language processing (NLP) with concept recognition and relation detection to also include components specific to EHR data, such as structured data associated with the encounter, sentence-level clinical aspects, and structures of the clinical notes. We report on the use of this pipeline in a disease-specific extractive text summarization task on clinical notes, focusing primarily on progress notes by physicians and nurse practitioners. We show how the addition of EHR-specific components to the pipeline resulted in an improvement in our overall system performance and discuss the potential impact of EHR-specific components on other higher-level clinical NLP tasks.
['Ching-Huei Tsou', 'Jennifer Liang', 'Ananya Poddar']
2019-06-01
null
null
null
ws-2019-6
['extractive-document-summarization']
['natural-language-processing']
[ 6.58308625e-01 6.91842318e-01 2.40252152e-01 -4.57994372e-01 -1.22459424e+00 -6.79927707e-01 1.77826136e-02 1.63245893e+00 -3.11747372e-01 5.73682666e-01 1.11689377e+00 -5.76070070e-01 -3.45203668e-01 -3.70435804e-01 -4.23990972e-02 -1.88240871e-01 -2.56274015e-01 7.94101059e-01 -2.68487692e-01 2.69155025e-01 2.37232521e-01 4.55972016e-01 -5.38716495e-01 8.96249413e-01 6.56230807e-01 5.97710609e-01 -9.27729234e-02 1.11980450e+00 -1.57396480e-01 1.35717118e+00 -8.44932735e-01 -1.92174286e-01 -1.01179779e-01 -6.75750732e-01 -9.62973058e-01 2.46542796e-01 2.26381719e-01 -3.19659352e-01 -1.42672032e-01 6.32077038e-01 7.54148841e-01 -1.31017357e-01 3.77611011e-01 -3.34996283e-01 -2.28376493e-01 5.28646469e-01 -2.64514107e-02 3.67448002e-01 7.49680042e-01 2.23701283e-01 8.04062843e-01 -2.69236743e-01 1.06093562e+00 5.59941411e-01 1.15230191e+00 4.21076268e-01 -1.09152234e+00 -1.36649236e-01 -1.62885875e-01 -3.93572003e-01 -9.52209175e-01 -5.70480406e-01 7.78668672e-02 -4.86638576e-01 1.44272232e+00 3.30906421e-01 8.65210474e-01 5.34069777e-01 5.77525198e-01 4.94097024e-01 5.30066788e-01 -3.72478515e-01 2.88878530e-01 1.36882560e-02 6.28717899e-01 5.98614514e-01 5.80817103e-01 -6.59842432e-01 -1.16901949e-01 -8.36520255e-01 3.14897150e-01 3.05612266e-01 -4.64015365e-01 3.39800656e-01 -1.23428273e+00 3.17528725e-01 -1.13818333e-01 2.87170410e-01 -7.07134366e-01 -3.47577751e-01 8.52066338e-01 1.07211433e-03 3.10237229e-01 7.04488695e-01 -7.71952987e-01 -5.22846937e-01 -1.27613795e+00 2.17321530e-01 1.34832358e+00 1.04863679e+00 -1.81134552e-01 -5.45598149e-01 -7.64595211e-01 5.45941770e-01 4.13143151e-02 3.31110135e-02 3.10281396e-01 -8.58372927e-01 6.81517661e-01 9.34125423e-01 1.51383206e-01 -6.48345649e-01 -8.81425679e-01 -2.23916993e-01 -8.23523998e-01 -7.56325305e-01 1.63219452e-01 -6.93162918e-01 -8.70306730e-01 1.00931907e+00 2.87916750e-01 -2.34265089e-01 4.57672745e-01 3.40245605e-01 1.36690605e+00 3.68032187e-01 5.73805213e-01 -8.31033766e-01 1.96163785e+00 -6.25302672e-01 -1.14316845e+00 2.34174579e-02 1.21141434e+00 -1.00776720e+00 3.06302875e-01 2.28071153e-01 -1.35760939e+00 9.13145989e-02 -5.15301347e-01 -3.38356227e-01 -1.28138224e-02 6.24079742e-02 2.89868027e-01 2.64513552e-01 -1.00029552e+00 6.18422151e-01 -1.01617253e+00 -7.32455075e-01 7.10867167e-01 2.59439707e-01 -4.71322298e-01 -1.15905114e-01 -6.34822845e-01 8.94955814e-01 3.37396145e-01 -1.04720429e-01 -8.20127726e-02 -1.26906765e+00 -9.19461906e-01 4.91199702e-01 4.36017156e-01 -1.24541605e+00 1.76235664e+00 -2.32123099e-02 -8.23118210e-01 8.41554642e-01 -5.82075596e-01 -3.89375985e-01 2.60195941e-01 -6.18481897e-02 -3.29798400e-01 5.39652824e-01 -1.50543377e-01 1.79229498e-01 2.08209492e-02 -6.24926984e-01 -6.38169050e-01 -4.33268279e-01 -4.71043468e-01 1.01420537e-01 1.55414985e-02 3.57616782e-01 -2.81355619e-01 -6.44614041e-01 -8.67375359e-02 -8.05926681e-01 -6.16945148e-01 -2.66171753e-01 -6.35619879e-01 -1.03633262e-01 4.16812539e-01 -1.24076605e+00 1.76852262e+00 -2.07720494e+00 -4.84787434e-01 -8.61763433e-02 6.91515565e-01 4.56537575e-01 1.79454818e-01 1.10428977e+00 -2.10035577e-01 3.24638367e-01 -4.25118685e-01 -2.56860584e-01 -4.03358698e-01 -7.24472711e-03 1.27621172e-02 1.41308367e-01 4.29225892e-01 1.25688970e+00 -9.32579815e-01 -7.84320474e-01 -5.31144533e-03 4.94184434e-01 -7.34528482e-01 3.63064259e-01 -5.73326126e-02 5.22340655e-01 -6.68421626e-01 6.04217649e-01 1.35947883e-01 -7.26231575e-01 5.25329292e-01 1.21569121e-02 -4.36349101e-02 9.20919895e-01 -6.18794382e-01 1.53838873e+00 3.67126637e-03 2.53295690e-01 4.16689008e-01 -3.71590257e-01 3.43998343e-01 8.78113747e-01 1.02758205e+00 1.34759635e-01 -3.06509621e-02 -2.35369384e-01 1.20434478e-01 -1.03437984e+00 4.35170531e-01 -2.36776605e-01 -3.25428843e-02 6.85523748e-01 -3.35016280e-01 -2.31352702e-01 1.36905253e-01 5.79708159e-01 1.96210814e+00 -3.08214098e-01 1.30220985e+00 -1.27410874e-01 2.98758000e-01 6.73138857e-01 6.54275298e-01 6.77845955e-01 -2.80155778e-01 6.90120399e-01 5.63702762e-01 -4.12774444e-01 -8.24552417e-01 -6.24004841e-01 -2.99923956e-01 2.27928028e-01 -7.39455640e-01 -1.26615989e+00 -6.71389401e-01 -5.52097976e-01 -1.01295494e-01 6.73773050e-01 -4.35731113e-01 9.05442163e-02 -5.15418589e-01 -7.96004057e-01 6.19099855e-01 6.28005028e-01 -2.47310977e-02 -1.24798393e+00 -1.09905422e+00 8.04279983e-01 -3.62172246e-01 -1.23132539e+00 -5.96079707e-01 2.30292171e-01 -1.24998462e+00 -1.29241586e+00 -4.00209755e-01 -6.63678527e-01 6.84999108e-01 -2.41425246e-01 1.22740746e+00 1.24162190e-01 -9.29790139e-01 7.02739179e-01 -3.72415960e-01 -7.95959711e-01 -7.15261400e-01 -5.29682748e-02 -5.04821599e-01 -7.64585018e-01 6.10087454e-01 -1.82827711e-01 -6.53843760e-01 -6.24348104e-01 -1.11586928e+00 -1.20952845e-01 4.77583230e-01 6.83791459e-01 5.36568165e-01 -9.65624750e-02 4.02537584e-01 -1.52838826e+00 1.24150395e+00 -3.84244233e-01 1.37549296e-01 5.01983047e-01 -6.11152709e-01 2.09555849e-02 5.04821002e-01 1.52796522e-01 -9.29748952e-01 2.30085433e-01 -3.59734923e-01 2.12271780e-01 -6.07206523e-01 8.21938217e-01 2.30814293e-01 6.21840358e-01 3.85848224e-01 1.44282952e-01 8.00619349e-02 -6.19073272e-01 -1.48585454e-01 1.02302027e+00 4.21671122e-01 -5.99737316e-02 1.99199349e-01 1.61668390e-01 8.93944292e-04 -8.41114640e-01 -9.98944402e-01 -9.11310077e-01 -6.15417600e-01 3.92463535e-01 1.18391478e+00 -6.67317808e-01 -9.67285335e-01 -2.19954073e-01 -1.36612976e+00 2.43992489e-02 -8.17883849e-01 4.48738754e-01 -1.47502780e-01 6.28030837e-01 -1.11874425e+00 -6.68422759e-01 -9.62829113e-01 -8.56160164e-01 1.23119032e+00 -3.70949842e-02 -1.02188027e+00 -1.06582260e+00 3.98410529e-01 4.63776231e-01 7.48134628e-02 3.74436736e-01 1.36227167e+00 -1.23856735e+00 -2.39989862e-01 -4.28235292e-01 -1.24457292e-01 -2.46768445e-02 5.79747200e-01 4.29111458e-02 -6.11340225e-01 -1.22173950e-01 2.51670748e-01 -8.13600272e-02 6.68168604e-01 5.42061865e-01 1.02249110e+00 -6.98220968e-01 -4.57964331e-01 3.87505889e-01 1.15111256e+00 4.51187134e-01 3.10691535e-01 -1.28613457e-01 4.81849015e-01 8.05751920e-01 4.27526772e-01 7.12179780e-01 5.70144117e-01 -1.17167188e-02 -2.62794167e-01 -2.56397218e-01 2.17771083e-01 -3.09885759e-02 3.32598872e-02 1.20196748e+00 -3.73127460e-02 -1.99106455e-01 -1.15910494e+00 4.36850131e-01 -1.77611768e+00 -8.34157228e-01 -3.20259660e-01 1.79717958e+00 1.06496227e+00 -3.22201729e-01 -1.57172561e-01 -9.61055979e-02 3.27714533e-01 -2.10858971e-01 -5.05581021e-01 -6.64048970e-01 3.59400004e-01 3.84226292e-01 3.47079158e-01 3.89279485e-01 -9.13555026e-01 5.38042545e-01 6.92728615e+00 9.94008221e-03 -6.49796724e-01 -1.31479561e-01 5.90940475e-01 -4.50637579e-01 -3.54506709e-02 -3.29323351e-01 -7.70824552e-01 1.27992600e-01 1.29166603e+00 -2.27243751e-01 -1.20295882e-01 5.21597505e-01 8.38980317e-01 -2.55536258e-01 -1.50873744e+00 8.45722258e-01 -1.67108569e-02 -1.69667923e+00 -2.88048033e-02 2.17243433e-01 4.54749405e-01 -7.38662668e-03 -5.62826276e-01 -2.92804912e-02 3.27946961e-01 -9.82028902e-01 -1.70404851e-01 5.19821107e-01 7.56693423e-01 -1.90835387e-01 1.03468764e+00 2.81632841e-01 -9.55584049e-01 2.84799598e-02 -4.37068529e-02 1.28031522e-01 4.29230720e-01 6.16150618e-01 -1.69764447e+00 7.31413364e-01 4.29443598e-01 7.85935223e-01 -4.04174477e-01 1.05179882e+00 7.30529949e-02 6.98780000e-01 -4.67924811e-02 2.82413274e-01 1.44690990e-01 -4.50955033e-02 5.11695087e-01 1.76040244e+00 2.56592631e-01 1.12086439e+00 3.93485636e-01 2.70290345e-01 -1.82853326e-01 4.92067903e-01 -5.53380370e-01 -4.90086675e-01 2.67471850e-01 1.35473537e+00 -7.21690297e-01 -8.10860455e-01 -3.20371836e-01 6.00112140e-01 4.79972847e-02 1.20437540e-01 -2.65583396e-01 -2.41343424e-01 4.18429315e-01 3.79773915e-01 2.25059673e-01 2.29137927e-01 -5.07396758e-01 -1.13367307e+00 9.81619507e-02 -1.09434271e+00 9.77563202e-01 -5.68302810e-01 -1.14756382e+00 5.11408329e-01 -3.89549911e-01 -9.85901296e-01 -5.78109741e-01 -3.10871780e-01 -3.58013541e-01 6.94068611e-01 -1.23892188e+00 -5.43373048e-01 -1.59936920e-01 4.45897639e-01 3.18956852e-01 1.16056323e-01 1.26500738e+00 9.50369462e-02 -4.86807346e-01 2.47991338e-01 -9.71779972e-02 4.01473552e-01 9.39726055e-01 -1.25141096e+00 2.68538088e-01 4.01140183e-01 -3.17340106e-01 1.22764695e+00 4.31352168e-01 -9.11068618e-01 -1.25795615e+00 -1.27027214e+00 1.63925481e+00 -7.97543883e-01 3.08803201e-01 9.16635394e-02 -1.14857864e+00 8.84362698e-01 3.30687344e-01 -3.46612453e-01 1.48651552e+00 -4.07655761e-02 1.22429259e-01 2.08581194e-01 -1.37265360e+00 3.67660493e-01 8.07573915e-01 -5.14731407e-01 -1.17563438e+00 5.98160744e-01 8.36910129e-01 -4.03791964e-01 -1.43689275e+00 5.04687071e-01 3.29494357e-01 -3.45991790e-01 7.14407802e-01 -1.24547076e+00 7.71589994e-01 -5.66037968e-02 4.08682883e-01 -1.06042337e+00 -2.54043519e-01 -8.21174383e-01 -6.78795353e-02 9.49484527e-01 4.87669468e-01 -5.35866797e-01 5.96963167e-01 1.10169721e+00 -3.63048226e-01 -7.40419686e-01 -5.59098840e-01 2.41172239e-01 -2.92301565e-01 -2.57387847e-01 1.26412749e-01 1.12685013e+00 7.70784259e-01 5.04062533e-01 3.01060945e-01 1.12784483e-01 1.78573012e-01 1.55587152e-01 3.27827483e-01 -1.33203137e+00 -3.66795301e-01 -5.98220415e-02 -1.93675056e-01 -6.25520468e-01 -4.54037845e-01 -9.19595778e-01 1.99789584e-01 -2.40181947e+00 7.03886032e-01 -1.37560189e-01 -2.01508552e-01 7.84794986e-01 -4.34719950e-01 -2.53307104e-01 1.76612169e-01 3.55436772e-01 -8.19770157e-01 -2.46319011e-01 1.16682899e+00 -6.59154868e-03 -5.42311966e-01 -1.01767611e-02 -1.07270241e+00 5.92242479e-01 5.95053017e-01 -8.15051198e-01 -1.46190777e-01 -2.30594903e-01 5.10100201e-02 6.49946094e-01 -1.42722666e-01 -6.66694701e-01 5.66321552e-01 6.05195276e-02 3.69233876e-01 -7.64138937e-01 -8.84355158e-02 -6.85981810e-01 -1.27233379e-02 8.09035599e-01 -6.35303140e-01 3.13508719e-01 5.10374546e-01 3.97041470e-01 -3.89152974e-01 -1.63698494e-01 4.43270326e-01 -5.62143862e-01 1.66520312e-01 2.81124897e-02 -1.06280887e+00 3.49975675e-01 9.19757545e-01 -1.29252821e-01 -3.91658902e-01 -2.80196190e-01 -1.12777555e+00 4.14568394e-01 4.15424377e-01 -1.27511784e-01 4.61347669e-01 -3.70559931e-01 -8.64911318e-01 -1.77574337e-01 1.96357399e-01 4.17338878e-01 4.19650525e-01 1.07612395e+00 -8.45070124e-01 1.05670452e+00 2.54167229e-01 -3.74607623e-01 -1.86597061e+00 5.95314682e-01 -8.46786499e-02 -1.00442648e+00 -1.09670067e+00 4.20274645e-01 -3.48626962e-03 -3.21512997e-01 2.66454846e-01 -1.04284966e+00 -2.04990998e-01 1.28525347e-01 8.70103002e-01 5.48055097e-02 4.43183690e-01 -2.00834468e-01 -5.78082263e-01 8.35422426e-02 -4.62920129e-01 7.75297582e-02 1.69130301e+00 -5.90943992e-02 -4.26967025e-01 2.40746915e-01 8.69670451e-01 2.65737385e-01 -6.25424683e-01 -2.39755586e-02 5.02264619e-01 3.22624683e-01 -2.41636261e-01 -1.25053918e+00 -3.69327456e-01 7.70470381e-01 -6.70171157e-02 1.19086511e-01 1.11495614e+00 -4.20097187e-02 8.52078795e-01 6.62622809e-01 -2.97859848e-01 -8.16747367e-01 -4.90796596e-01 4.61659133e-01 5.18016160e-01 -8.96182418e-01 4.08145905e-01 -6.52483225e-01 -7.89287627e-01 1.19382763e+00 -8.81209821e-02 5.22087157e-01 7.20679224e-01 6.93213880e-01 3.89947176e-01 -5.44197857e-01 -1.31288719e+00 2.93373287e-01 9.59363505e-02 1.94446385e-01 9.50334311e-01 -4.25197668e-02 -3.46071213e-01 7.22459793e-01 6.84021390e-04 5.57236671e-01 8.28824520e-01 1.54975402e+00 -1.66145325e-01 -1.19512558e+00 -2.99336791e-01 9.90764439e-01 -1.10382032e+00 -6.91532314e-01 -6.78784370e-01 4.80171084e-01 5.53054325e-02 1.09390795e+00 6.19823821e-02 2.40761161e-01 5.84441245e-01 5.26889265e-01 2.35412166e-01 -1.50305271e+00 -1.53466094e+00 2.13158041e-01 5.32104909e-01 -5.70022643e-01 -3.99655998e-01 -9.19065654e-01 -1.71982539e+00 1.20557703e-01 2.59605139e-01 4.81497526e-01 3.99990946e-01 8.53490710e-01 9.26682532e-01 1.00309443e+00 -3.94616991e-01 7.17248842e-02 -5.00709951e-01 -9.87751365e-01 -2.53289312e-01 3.29500496e-01 6.35309935e-01 4.28132355e-01 1.85359403e-01 7.23723829e-01]
[8.518792152404785, 8.601919174194336]
ae533e44-94b7-400d-ab6c-c2561ce39a78
bidirectional-semi-supervised-dual-branch-cnn
2210.08291
null
https://arxiv.org/abs/2210.08291v5
https://arxiv.org/pdf/2210.08291v5.pdf
Bidirectional Semi-supervised Dual-branch CNN for Robust 3D Reconstruction of Stereo Endoscopic Images via Adaptive Cross and Parallel Supervisions
Semi-supervised learning via teacher-student network can train a model effectively on a few labeled samples. It enables a student model to distill knowledge from the teacher's predictions of extra unlabeled data. However, such knowledge flow is typically unidirectional, having the performance vulnerable to the quality of teacher model. In this paper, we seek to robust 3D reconstruction of stereo endoscopic images by proposing a novel fashion of bidirectional learning between two learners, each of which can play both roles of teacher and student concurrently. Specifically, we introduce two self-supervisions, i.e., Adaptive Cross Supervision (ACS) and Adaptive Parallel Supervision (APS), to learn a dual-branch convolutional neural network. The two branches predict two different disparity probability distributions for the same position, and output their expectations as disparity values. The learned knowledge flows across branches along two directions: a cross direction (disparity guides distribution in ACS) and a parallel direction (disparity guides disparity in APS). Moreover, each branch also learns confidences to dynamically refine its provided supervisions. In ACS, the predicted disparity is softened into a unimodal distribution, and the lower the confidence, the smoother the distribution. In APS, the incorrect predictions are suppressed by lowering the weights of those with low confidence. With the adaptive bidirectional learning, the two branches enjoy well-tuned supervisions, and eventually converge on a consistent and more accurate disparity estimation. The extensive and comprehensive experimental results on four public datasets demonstrate our superior performance over other state-of-the-arts with a relative decrease of averaged disparity error by at least 9.76%.
['Qiang Li', 'Xin Yang', 'Dun Li', 'Ying Zhou', 'Zhiwei Wang', 'Hongkuan Shi']
2022-10-15
null
null
null
null
['disparity-estimation']
['computer-vision']
[ 1.14244424e-01 3.66322339e-01 -4.70690191e-01 -6.49041772e-01 -5.11237204e-01 -3.53009224e-01 2.23224431e-01 3.32363509e-02 -3.88897926e-01 6.82420909e-01 4.79706489e-02 -4.13481116e-01 8.24150890e-02 -9.67705667e-01 -8.74001384e-01 -1.08997977e+00 4.64445829e-01 3.00402850e-01 6.62995458e-01 5.05845696e-02 2.28090212e-02 8.41052011e-02 -1.54730582e+00 1.67374954e-01 1.25590897e+00 1.23241997e+00 2.08841637e-01 2.78767705e-01 -2.62292147e-01 7.54212022e-01 -3.67654830e-01 -1.46288514e-01 2.92318314e-01 -1.75082207e-01 -5.39462864e-01 6.63244631e-03 3.08644891e-01 -4.23432827e-01 -2.57334113e-01 1.22197855e+00 2.99183667e-01 -1.37574688e-01 4.64497447e-01 -1.02804184e+00 -5.96309781e-01 5.25934160e-01 -8.57033670e-01 -4.91275564e-02 9.71524641e-02 3.11470598e-01 5.09420812e-01 -7.05724120e-01 1.67357653e-01 1.01424479e+00 4.24299479e-01 6.49662614e-01 -1.22873592e+00 -1.10788190e+00 5.81159770e-01 -7.77452588e-02 -1.22343051e+00 7.64093071e-04 7.07678020e-01 -4.26856339e-01 3.07621330e-01 -1.40261918e-01 7.36538410e-01 7.96446979e-01 -1.16901383e-01 9.45277452e-01 1.15007484e+00 -2.35703185e-01 4.58491668e-02 5.05190849e-01 -8.79819784e-03 9.30829942e-01 2.69633949e-01 4.68253285e-01 -6.41548753e-01 2.14283392e-01 1.05313861e+00 1.31369576e-01 -4.99802023e-01 -6.33965492e-01 -9.82584119e-01 6.74417615e-01 7.74553895e-01 -2.30209321e-01 -3.72285023e-02 -2.10939348e-01 1.87713623e-01 2.24176958e-01 3.27302605e-01 -5.17030917e-02 -6.47078156e-01 1.59692213e-01 -5.71190238e-01 -1.24703020e-01 4.54695910e-01 9.97714996e-01 1.07316089e+00 -1.21789433e-01 -1.31641701e-01 7.09754050e-01 5.27226031e-01 5.95334232e-01 4.68773216e-01 -7.58643270e-01 5.35530925e-01 8.76580477e-01 2.26950203e-03 -6.91836834e-01 -1.91980109e-01 -5.61840475e-01 -8.68657947e-01 5.67620516e-01 5.90842426e-01 -2.28179440e-01 -1.10306907e+00 1.78268373e+00 6.61656737e-01 4.81281072e-01 -3.82157080e-02 1.01254940e+00 9.96440649e-01 5.96604228e-01 -1.75457112e-02 -1.13167055e-01 9.65589643e-01 -1.22067559e+00 -2.47198820e-01 -4.54142801e-02 3.66306722e-01 -6.42160237e-01 1.09570348e+00 6.97604895e-01 -1.08908665e+00 -8.84277523e-01 -1.06175470e+00 -9.52325854e-03 6.23795874e-02 1.54030800e-01 4.29064840e-01 3.06650311e-01 -9.33844626e-01 4.82160687e-01 -9.05691683e-01 3.94873947e-01 6.10159755e-01 3.90935749e-01 8.98625329e-03 -6.28692433e-02 -1.00594282e+00 4.62398797e-01 2.33481467e-01 -1.20081387e-01 -9.29604650e-01 -8.62572551e-01 -9.66365278e-01 9.00444016e-02 2.22851321e-01 -6.94134295e-01 1.25680315e+00 -1.13165855e+00 -1.81962919e+00 8.90483141e-01 -8.90818387e-02 -2.01907039e-01 7.23243415e-01 -8.74982625e-02 -1.64112017e-01 1.63313806e-01 2.23455817e-01 1.13115251e+00 9.12923217e-01 -1.52980709e+00 -1.13417292e+00 -4.60479081e-01 -6.50425151e-04 3.51070285e-01 -4.70668614e-01 -6.22945189e-01 -6.09712303e-01 -4.32076871e-01 5.02096832e-01 -7.02718258e-01 -1.70281410e-01 4.87692654e-01 -4.54157621e-01 -2.56108314e-01 6.96324706e-01 -2.96189394e-02 1.04655063e+00 -2.26474857e+00 -9.65225101e-02 2.72101760e-01 3.50009829e-01 2.34047264e-01 5.74308224e-02 -4.06957686e-01 -1.29089877e-02 -2.37740934e-01 -1.30756319e-01 -2.54266977e-01 -5.09994626e-01 3.60830456e-01 -4.81765002e-01 3.04324567e-01 2.09619790e-01 5.63858390e-01 -1.23545182e+00 -5.92219114e-01 2.62816817e-01 5.10301292e-01 -6.90779150e-01 3.75556856e-01 -7.83007517e-02 8.48027408e-01 -6.79280639e-01 5.40714741e-01 8.94257367e-01 -4.98819381e-01 -4.54034097e-02 -1.67312413e-01 -3.03799719e-01 3.70334566e-01 -1.13693166e+00 1.59395921e+00 -4.18930441e-01 2.84663081e-01 -2.70086844e-02 -9.92501855e-01 1.32188916e+00 1.38537318e-01 2.45573834e-01 -7.81153977e-01 4.08451073e-03 1.67629793e-01 -1.27645105e-01 -4.70030218e-01 1.24026969e-01 -1.42397791e-01 3.56132269e-01 2.96669871e-01 -5.84354997e-02 -3.42467874e-02 -6.13136068e-02 -7.20463023e-02 3.94959301e-01 3.99618208e-01 -1.03101715e-01 -2.56558776e-01 7.51683593e-01 -1.15085967e-01 9.83209193e-01 5.04877388e-01 -3.87416333e-01 5.46077251e-01 5.63429356e-01 -6.44299150e-01 -6.48412645e-01 -1.49465382e+00 -3.86629403e-01 9.46424305e-01 8.15516412e-01 1.94872200e-01 -4.59451228e-01 -1.00654924e+00 1.65199652e-01 3.70355010e-01 -6.30159080e-01 -3.46188217e-01 -5.66206574e-01 -4.30462420e-01 1.95213482e-01 8.21533203e-01 6.81019187e-01 -9.89853382e-01 -5.22662461e-01 -6.94085360e-02 1.39063939e-01 -7.85399914e-01 -4.88195658e-01 4.11256969e-01 -1.12134266e+00 -1.23203695e+00 -7.86980033e-01 -1.33660769e+00 1.10872388e+00 3.81798297e-01 9.64491785e-01 2.25672260e-01 1.23448744e-01 -6.42493144e-02 -1.04259938e-01 -3.79189402e-01 -1.00770466e-01 -6.92638159e-02 1.35247605e-02 -5.18113412e-02 3.95977944e-01 -6.58552468e-01 -9.98177290e-01 6.93889856e-01 -7.59043813e-01 2.18777150e-01 5.49873829e-01 1.04259670e+00 9.22690451e-01 -1.66654304e-01 5.28532565e-01 -9.22321379e-01 8.86331424e-02 -3.78369391e-01 -8.51554155e-01 3.19661610e-02 -9.11560237e-01 1.15382604e-01 7.91765273e-01 -5.23586571e-01 -1.33095169e+00 2.26454690e-01 -1.06569953e-01 -5.80555737e-01 -3.66694957e-01 2.32412830e-01 7.82001466e-02 -2.42935251e-02 5.27196705e-01 3.12587529e-01 9.60603058e-02 -2.58937389e-01 3.80432755e-02 4.77888674e-01 6.62137151e-01 -7.23426640e-01 8.91819179e-01 6.68299913e-01 -3.52652818e-01 -1.64965943e-01 -1.29316330e+00 -3.86479229e-01 -4.49476153e-01 -2.44088292e-01 7.82191157e-01 -1.13296211e+00 -7.25482583e-01 5.94058394e-01 -6.62923694e-01 -6.28798842e-01 -4.52921420e-01 5.37463427e-01 -2.02546060e-01 1.39758348e-01 -7.75025964e-01 -4.33697820e-01 -1.71786591e-01 -1.41191781e+00 1.02515113e+00 1.01458776e+00 1.60735011e-01 -1.09550321e+00 -2.16076840e-02 3.70834172e-01 1.67551413e-01 -1.37535006e-01 9.26213920e-01 -3.09027195e-01 -5.76972604e-01 1.93594769e-01 -4.68405962e-01 3.47027689e-01 3.69603604e-01 1.73955008e-01 -1.08501434e+00 -2.94527531e-01 -2.45498605e-02 -6.10715508e-01 8.94580066e-01 4.73177612e-01 1.56110287e+00 8.27404484e-02 -3.53017956e-01 9.99874532e-01 1.18597460e+00 1.39066845e-01 4.11227882e-01 4.43606406e-01 5.83121717e-01 4.57015127e-01 6.25501037e-01 2.79848337e-01 5.20892620e-01 1.46643668e-01 6.18087173e-01 -4.08286810e-01 -8.52214247e-02 -6.65538311e-01 1.96475774e-01 7.43979216e-01 1.58448458e-01 2.16836780e-01 -6.76574707e-01 2.87726134e-01 -1.58685422e+00 -4.92705971e-01 4.40811478e-02 2.30004239e+00 1.26513600e+00 5.82693934e-01 4.21126597e-02 -3.69588360e-02 6.60139501e-01 2.10656915e-02 -1.05338240e+00 3.47957276e-02 1.09397143e-01 7.73470849e-02 4.29569423e-01 5.69376230e-01 -9.67614889e-01 6.70874298e-01 5.52342749e+00 6.07387185e-01 -1.43235314e+00 -3.47124338e-01 1.10832286e+00 -8.03646147e-02 -5.42289793e-01 -1.50291502e-01 -1.02392709e+00 6.84384882e-01 2.28697643e-01 2.09441245e-01 9.11335573e-02 9.80745018e-01 4.24305536e-02 -2.90925771e-01 -1.06026244e+00 8.27434838e-01 -1.78887591e-01 -1.33306026e+00 1.49195433e-01 -1.73797876e-01 1.12699437e+00 7.56129175e-02 3.00336719e-01 3.60519260e-01 4.96762961e-01 -8.58367562e-01 5.55351973e-01 3.63996863e-01 9.86287534e-01 -7.32080519e-01 6.97242916e-01 6.43731356e-01 -1.10332489e+00 -8.64632055e-02 -2.90349275e-01 6.36002943e-02 3.36061791e-02 6.78251445e-01 -4.36824918e-01 1.68451980e-01 9.25578237e-01 8.80537152e-01 -2.71043807e-01 9.32990015e-01 -7.63272703e-01 5.70563972e-01 -1.99884400e-01 3.20009291e-02 2.74826467e-01 -4.92329001e-01 2.31407255e-01 8.23330402e-01 6.40976503e-02 1.53176621e-01 4.27054614e-01 9.67061698e-01 -1.17991805e-01 -1.61646411e-01 -2.14715973e-02 6.87414289e-01 6.09601438e-01 1.12684965e+00 -5.28644621e-01 -4.90404785e-01 -5.59186637e-01 6.00398004e-01 5.07841051e-01 3.43284845e-01 -7.99491346e-01 -2.39265129e-01 4.82214421e-01 1.39732406e-01 2.87800729e-01 1.96406275e-01 -6.30169868e-01 -9.87087846e-01 5.72731793e-02 -5.29971123e-01 5.55804789e-01 -7.45397627e-01 -1.32214963e+00 4.73740667e-01 -2.70533204e-01 -1.53768480e+00 1.78413942e-01 -7.22693563e-01 -9.95644629e-01 8.96578610e-01 -2.08859301e+00 -6.89971268e-01 -6.99046373e-01 6.65564477e-01 4.31462258e-01 -2.57065818e-02 5.68503976e-01 3.80425036e-01 -5.47402859e-01 7.12874770e-01 -2.27240659e-02 3.06743503e-01 9.75195289e-01 -1.34830058e+00 -1.32889628e-01 4.19874400e-01 -1.49055235e-02 4.64172453e-01 3.24893415e-01 -4.05270219e-01 -8.62372637e-01 -9.99541104e-01 3.82899374e-01 -7.55811781e-02 5.31411946e-01 1.26688555e-01 -1.08250546e+00 5.97828448e-01 -2.16311634e-01 4.26423341e-01 6.14644468e-01 -6.18819594e-02 -5.32167614e-01 -4.92995471e-01 -1.12686801e+00 4.31874067e-01 7.98934460e-01 -2.71648228e-01 -5.81622839e-01 1.25720143e-01 8.77488792e-01 -8.18445146e-01 -6.48450494e-01 4.80124086e-01 5.48526525e-01 -1.46510804e+00 8.61142933e-01 -4.01721358e-01 8.44049573e-01 -5.52630663e-01 3.35476756e-01 -1.36030376e+00 -6.95833266e-02 -2.27248102e-01 -1.04841270e-01 9.56339657e-01 4.95662421e-01 -7.69842207e-01 1.17241621e+00 3.08206558e-01 -3.64779115e-01 -1.39779782e+00 -6.70047164e-01 -4.39723134e-01 2.61156976e-01 -1.25428483e-01 5.72509408e-01 9.37503815e-01 -7.06304386e-02 1.82678178e-01 7.41835386e-02 3.23594838e-01 5.82111299e-01 4.90990639e-01 6.74974740e-01 -1.03847170e+00 -3.37544978e-01 -5.42519331e-01 -1.42364353e-01 -1.88982737e+00 -1.63416684e-01 -7.92173564e-01 1.85161933e-01 -1.18173885e+00 2.09452659e-01 -8.91351938e-01 -4.54335481e-01 4.58837003e-01 -5.18165946e-01 3.06236260e-02 -3.01883936e-01 1.29028201e-01 -5.57719171e-01 6.70155704e-01 1.73196507e+00 -1.08377017e-01 -4.55717891e-01 3.67959410e-01 -8.02508593e-01 1.14294529e+00 7.80367911e-01 -4.59207296e-01 -6.46641970e-01 -6.84051514e-01 4.06655893e-02 6.72763633e-03 1.90369233e-01 -8.19170475e-01 5.23161054e-01 -1.52742177e-01 7.32419014e-01 -6.93117619e-01 -1.65916085e-01 -7.10477054e-01 -5.45075595e-01 5.71745992e-01 -3.97229105e-01 -3.55387121e-01 4.75920811e-02 5.99320889e-01 -3.72373879e-01 -1.34050297e-02 1.07701027e+00 2.50153360e-03 -4.64236706e-01 6.54825032e-01 2.00056568e-01 2.73949236e-01 9.41693783e-01 -2.83094049e-01 -3.03448170e-01 -2.56361514e-01 -6.69092536e-01 7.66942263e-01 3.84321570e-01 3.02120626e-01 6.64793432e-01 -1.23126674e+00 -4.17153627e-01 7.07479179e-01 1.33054107e-01 1.01326132e+00 1.97380677e-01 7.59366691e-01 -3.27679127e-01 4.36831042e-02 -6.71943873e-02 -1.10768843e+00 -7.95887053e-01 3.40589672e-01 4.28058267e-01 -1.56280369e-01 -5.93984067e-01 1.17448127e+00 4.80181664e-01 -7.63731360e-01 5.92380166e-01 -3.46496522e-01 -2.66618252e-01 -2.49763653e-01 6.61187530e-01 9.29690450e-02 -2.47588545e-01 -1.79250687e-01 7.06576277e-03 6.44980133e-01 -2.44743317e-01 4.22303766e-01 1.25404537e+00 -1.34075999e-01 1.47902444e-01 3.80084127e-01 1.01626492e+00 9.72049758e-02 -2.08241296e+00 -3.74828041e-01 -3.53479147e-01 -5.31348884e-01 4.96668965e-02 -8.06902409e-01 -1.49290955e+00 9.70230758e-01 6.24861658e-01 1.04890645e-01 1.14792824e+00 3.55196781e-02 8.66374910e-01 1.06558263e-01 2.18557328e-01 -9.43778276e-01 3.18272352e-01 4.29298639e-01 2.52601266e-01 -1.56977856e+00 -1.53483465e-01 -5.53542078e-01 -7.42951035e-01 1.10879517e+00 1.36841679e+00 -1.51534453e-01 6.92634463e-01 4.63000178e-01 4.70737636e-01 -1.62361953e-02 -6.36250138e-01 1.23219505e-01 3.60569179e-01 5.98916411e-01 3.92081559e-01 -1.25331059e-01 2.44370282e-01 5.40496528e-01 -1.56465068e-01 -5.00878058e-02 2.20355302e-01 5.83086789e-01 -6.36864722e-01 -8.47850263e-01 -2.32666105e-01 5.27842999e-01 3.63816433e-02 -5.76852486e-02 1.98652595e-01 7.10117221e-01 3.68723333e-01 6.92507923e-01 4.26081032e-01 -2.40323767e-01 3.78574193e-01 -3.82876664e-01 2.23284081e-01 -7.04492152e-01 -3.34027380e-01 1.34139389e-01 -4.52469587e-01 -5.15297949e-01 -3.74966294e-01 -4.72784847e-01 -1.68502188e+00 -4.31874804e-02 -3.67328823e-01 1.21160649e-01 2.23513663e-01 9.18787122e-01 6.72275349e-02 6.20462000e-01 1.06866515e+00 -5.89265406e-01 -7.91975141e-01 -4.98192638e-01 -5.04661500e-01 2.66600609e-01 5.03759086e-01 -6.72590494e-01 -5.27746499e-01 -2.45599523e-02]
[9.31240177154541, 1.3928433656692505]
c80758ee-23f8-499f-b383-bdd814619b80
tablesense-spreadsheet-table-detection-with
2106.13500
null
https://arxiv.org/abs/2106.13500v1
https://arxiv.org/pdf/2106.13500v1.pdf
TableSense: Spreadsheet Table Detection with Convolutional Neural Networks
Spreadsheet table detection is the task of detecting all tables on a given sheet and locating their respective ranges. Automatic table detection is a key enabling technique and an initial step in spreadsheet data intelligence. However, the detection task is challenged by the diversity of table structures and table layouts on the spreadsheet. Considering the analogy between a cell matrix as spreadsheet and a pixel matrix as image, and encouraged by the successful application of Convolutional Neural Networks (CNN) in computer vision, we have developed TableSense, a novel end-to-end framework for spreadsheet table detection. First, we devise an effective cell featurization scheme to better leverage the rich information in each cell; second, we develop an enhanced convolutional neural network model for table detection to meet the domain-specific requirement on precise table boundary detection; third, we propose an effective uncertainty metric to guide an active learning based smart sampling algorithm, which enables the efficient build-up of a training dataset with 22,176 tables on 10,220 sheets with broad coverage of diverse table structures and layouts. Our evaluation shows that TableSense is highly effective with 91.3\% recall and 86.5\% precision in EoB-2 metric, a significant improvement over both the current detection algorithm that are used in commodity spreadsheet tools and state-of-the-art convolutional neural networks in computer vision.
['Dongmei Zhang', 'Zhouyu Fu', 'Shi Han', 'Shijie Liu', 'Haoyu Dong']
2021-06-25
null
null
null
null
['table-detection']
['miscellaneous']
[-2.11354792e-01 -2.76211977e-01 -1.74500227e-01 -1.98550642e-01 -9.92061198e-01 -9.18329239e-01 3.29476386e-01 6.43994451e-01 -7.36217201e-02 4.31843609e-01 1.19501874e-01 -4.23744291e-01 -5.83950765e-02 -1.16574776e+00 -8.47335339e-01 -1.84510484e-01 1.16080111e-02 6.06954277e-01 2.40006119e-01 -2.49474674e-01 5.55438578e-01 3.48580569e-01 -1.13190949e+00 5.11594594e-01 1.14992225e+00 1.73605549e+00 -2.52067059e-01 7.70108104e-01 -6.11631811e-01 9.95034933e-01 -8.40840876e-01 -6.70502782e-01 2.58731276e-01 8.89222398e-02 -2.95753658e-01 -1.98464021e-01 6.95396721e-01 -4.43026572e-01 -2.52643257e-01 9.70236719e-01 3.23275328e-01 -1.44402325e-01 7.86742866e-01 -9.12377656e-01 -7.58671224e-01 9.74602997e-01 -7.27351308e-01 4.71574068e-01 5.03010333e-01 -1.11657567e-01 1.21153271e+00 -9.97571766e-01 4.72450942e-01 9.12507832e-01 8.74396682e-01 -1.26179814e-01 -7.60506332e-01 -7.47684240e-01 6.61676899e-02 -7.83713311e-02 -1.32913744e+00 -3.32653612e-01 7.66781449e-01 -6.60811365e-01 1.02623546e+00 2.63812125e-01 5.26454508e-01 6.19506896e-01 4.71151888e-01 1.18213844e+00 4.04407382e-01 -4.05113667e-01 5.13102829e-01 1.75122276e-01 3.18366438e-01 6.61849797e-01 7.07049847e-01 -2.58235067e-01 -7.48101652e-01 9.45426822e-02 9.11190629e-01 6.47483626e-03 9.15206596e-02 -4.42789853e-01 -1.18915868e+00 7.05443323e-01 4.92433369e-01 6.52776286e-02 -2.78006196e-01 -1.03764674e-02 3.97953480e-01 -3.53033692e-02 2.64442742e-01 8.19191515e-01 -2.39944592e-01 -1.62788883e-01 -1.22322536e+00 3.42283130e-01 1.17193389e+00 1.22974586e+00 4.77094680e-01 -5.66731729e-02 -2.91600466e-01 6.12039328e-01 2.75687993e-01 3.38628054e-01 -3.37960422e-01 -4.00744289e-01 1.24186397e+00 1.44514132e+00 2.65244871e-01 -1.17711747e+00 -3.42578888e-01 -4.78528678e-01 -8.16794038e-01 2.52159953e-01 5.94241977e-01 -9.77819711e-02 -6.79638863e-01 7.24090338e-01 4.49742749e-02 -5.59559107e-01 -4.17877614e-01 3.97232980e-01 8.71940613e-01 6.18551970e-01 -4.74889219e-01 1.20027862e-01 1.37008834e+00 -5.85223734e-01 -8.32223833e-01 -1.42435104e-01 3.37277293e-01 -7.32741773e-01 9.62278545e-01 7.47656703e-01 -1.09737134e+00 -5.01698732e-01 -1.80771017e+00 -1.98734075e-01 -8.33731174e-01 3.00174117e-01 7.68025100e-01 8.05688441e-01 -5.09726465e-01 1.57402769e-01 -7.27472425e-01 5.51346503e-02 1.08919561e+00 2.70826161e-01 1.35629937e-01 2.69624203e-01 -9.61288929e-01 7.16223955e-01 2.83829153e-01 2.24091455e-01 -3.52519602e-01 -1.02094662e+00 -6.76335335e-01 4.75575060e-01 6.82261407e-01 -1.47482410e-01 1.20119107e+00 -2.28383794e-01 -1.08715904e+00 6.11408830e-01 2.88205266e-01 -5.32813430e-01 9.30354774e-01 -3.83796930e-01 -3.39911640e-01 -1.58656046e-01 4.82863970e-02 2.63590783e-01 4.26118791e-01 -9.57871079e-01 -8.04404080e-01 -3.97254229e-01 -1.12393163e-01 4.11115326e-02 -2.44632140e-01 -1.67975172e-01 -8.58004928e-01 -6.38565361e-01 9.23752338e-02 -1.54089078e-01 9.07868985e-03 1.63311020e-01 -7.76860297e-01 -1.47294402e-01 4.43662643e-01 -8.02847803e-01 1.74557972e+00 -1.79107475e+00 -5.36825240e-01 4.67515647e-01 5.40629983e-01 8.21414888e-02 6.30781114e-01 3.06193203e-01 2.81229973e-01 -3.54978666e-02 -2.38367841e-01 8.65293667e-03 3.40914696e-01 -5.72636485e-01 -6.01800919e-01 1.61458775e-01 2.67162323e-01 1.09451520e+00 -5.27633011e-01 -5.01009643e-01 3.28259140e-01 9.23857540e-02 -3.28931481e-01 1.42589927e-01 -5.11676431e-01 -2.28436098e-01 -2.03722283e-01 1.16303241e+00 1.01596820e+00 -4.05388117e-01 -1.36779785e-01 -6.65093511e-02 -1.31921068e-01 3.93027067e-01 -1.67017746e+00 1.43613410e+00 -2.70595551e-01 8.28879952e-01 -6.65940642e-02 -6.23974919e-01 1.40408778e+00 -1.09339647e-01 4.19690579e-01 -8.90146971e-01 2.51638025e-01 2.57220626e-01 -1.62969142e-01 -1.15214854e-01 6.84837639e-01 7.55433619e-01 -4.07373697e-01 4.42851037e-01 -2.71457464e-01 -7.01974928e-02 5.36570191e-01 3.61700356e-01 1.09979773e+00 -9.58536044e-02 4.83943284e-01 -3.97226632e-01 4.04196590e-01 1.98307693e-01 2.11112633e-01 9.20403123e-01 -2.47644708e-01 7.39316881e-01 8.11959505e-01 -7.06476748e-01 -8.60035658e-01 -1.31412160e+00 -3.73482317e-01 1.00279486e+00 1.14740081e-01 -4.13833201e-01 -8.34681690e-01 -6.29979849e-01 3.25286359e-01 5.62706053e-01 -7.67041564e-01 3.74524981e-01 -6.37855649e-01 -7.54073739e-01 4.82710779e-01 1.07198262e+00 9.54957485e-01 -8.96516740e-01 -6.95410550e-01 5.18723547e-01 2.33383104e-01 -9.13554251e-01 -6.31098032e-01 5.77061474e-01 -5.96805453e-01 -1.33181238e+00 -3.71999145e-01 -8.07872474e-01 4.87370938e-01 -2.06558794e-01 1.59286761e+00 -6.22458160e-02 -4.59400147e-01 3.05430945e-02 -1.20697087e-02 -8.65741968e-01 -1.58296585e-01 3.87709230e-01 -3.42457026e-01 -4.14000332e-01 6.77453876e-01 -3.55910808e-02 -6.57646596e-01 2.60224938e-01 -6.59836948e-01 -2.08232656e-01 4.47842896e-01 5.79903781e-01 3.66813689e-01 1.35466214e-02 4.46614474e-01 -1.11173820e+00 8.14795792e-01 -1.87769070e-01 -1.15052366e+00 5.85252762e-01 -6.89665020e-01 -5.41246422e-02 8.01748455e-01 -8.70312471e-03 -1.04204500e+00 1.62712798e-01 4.12626378e-02 1.44091994e-01 1.99572459e-01 5.42863011e-01 -4.87551808e-01 2.55979568e-01 9.17480171e-01 8.89721364e-02 -2.45323777e-01 -2.27360159e-01 2.61924744e-01 9.39740181e-01 7.41866231e-01 -3.87467980e-01 6.39617860e-01 4.17000502e-01 -3.49950731e-01 -4.81357545e-01 -6.91898763e-01 -3.72532219e-01 -8.89939189e-01 -3.82998213e-02 5.82815647e-01 -8.04589927e-01 -9.66821909e-01 4.93060768e-01 -1.03883541e+00 7.76042566e-02 2.20029607e-01 1.28063709e-01 -3.09075087e-01 1.50332227e-01 -5.29687464e-01 -9.13587511e-01 -7.91254818e-01 -1.09428477e+00 8.70292902e-01 3.58091712e-01 -4.19367492e-01 -8.93813014e-01 -3.17082927e-02 4.60457951e-01 5.15672386e-01 2.36315802e-01 1.00048208e+00 -8.71756315e-01 -1.18801796e+00 -5.42690456e-01 -4.34631824e-01 -9.67334583e-02 2.88037896e-01 4.48801994e-01 -1.00560856e+00 2.75335349e-02 -3.99387807e-01 -4.33383435e-02 9.47103143e-01 5.51558793e-01 1.08457065e+00 -8.84513184e-02 -4.69889611e-01 9.07821715e-01 1.51664877e+00 7.90501118e-01 6.88952029e-01 5.34360886e-01 7.28179514e-01 2.92486370e-01 5.25120735e-01 6.53963745e-01 2.92635947e-01 2.28329822e-01 2.36587256e-01 -7.87467659e-02 2.44415179e-01 -2.93272465e-01 3.54334116e-02 4.79987919e-01 4.56293553e-01 -4.19523627e-01 -1.23600614e+00 4.42588955e-01 -1.71578074e+00 -5.60222387e-01 6.62255287e-02 2.23392248e+00 8.44777465e-01 9.34526324e-01 1.28477842e-01 3.42181027e-01 8.83741915e-01 8.92271474e-02 -8.04366171e-01 -3.25541079e-01 9.68302414e-03 -4.15340140e-02 5.73208451e-01 1.46411017e-01 -1.57458997e+00 5.48771083e-01 5.95714664e+00 7.35900462e-01 -8.87450874e-01 -8.55391204e-01 9.99326050e-01 4.41588759e-02 -5.52042238e-02 -6.38468862e-01 -1.16405559e+00 7.22424150e-01 4.16014880e-01 -1.59086496e-01 1.88492492e-01 1.13957107e+00 -3.15982252e-01 -2.88641781e-01 -1.66222954e+00 1.25895584e+00 -4.26548831e-02 -2.22017956e+00 2.52202619e-03 -2.26790085e-01 5.87458730e-01 -5.12696087e-01 1.28429174e-01 3.40652943e-01 2.74667233e-01 -1.23638439e+00 9.13932443e-01 3.37106764e-01 9.47793186e-01 -1.00851500e+00 8.19131374e-01 3.84871364e-02 -1.47789240e+00 1.25958979e-01 -2.84544110e-01 1.43073261e-01 -3.21843058e-01 4.97800350e-01 -1.08484340e+00 1.64965913e-01 8.81593764e-01 5.89093447e-01 -7.62814164e-01 1.35268939e+00 1.96955904e-01 4.82263565e-01 -4.54231709e-01 -4.96237487e-01 1.36553748e-02 -1.02594703e-01 1.50647461e-01 1.35204458e+00 5.22165038e-02 -3.67526263e-01 -2.42650926e-01 1.42676365e+00 -3.96380365e-01 4.64805067e-02 -4.79207724e-01 -1.14062883e-01 1.03786850e+00 1.08768547e+00 -1.36001074e+00 -2.29945257e-01 -3.76316607e-01 4.35271919e-01 1.91241369e-01 9.63977128e-02 -8.62377882e-01 -1.03575170e+00 1.93039015e-01 -1.91127113e-03 6.83032811e-01 4.80509587e-02 -1.54490209e+00 -8.81862342e-01 3.62142295e-01 -6.99814558e-01 3.72992247e-01 -4.31652069e-01 -1.32343495e+00 4.92916673e-01 -3.57620388e-01 -1.40707254e+00 -2.31810793e-01 -1.01818871e+00 -8.90912116e-01 7.56584406e-01 -9.78720307e-01 -7.67966032e-01 -6.77538633e-01 2.13247269e-01 5.22683740e-01 -5.04083037e-01 5.57697713e-01 1.07717551e-01 -7.23371327e-01 1.18478060e+00 4.92956161e-01 9.19599771e-01 5.28924525e-01 -1.73477519e+00 1.04060376e+00 1.00324857e+00 2.05050901e-01 9.40723836e-01 3.93209279e-01 -7.53593147e-01 -1.75862360e+00 -8.20776284e-01 3.59787107e-01 -8.21357310e-01 6.23677433e-01 -1.04877579e+00 -9.33924496e-01 5.97685039e-01 6.92490041e-02 -3.00289422e-01 4.13495988e-01 1.63648754e-01 -5.04018128e-01 -4.95665848e-01 -1.18768215e+00 5.65524340e-01 6.10426962e-01 -3.71826351e-01 -5.65582275e-01 -2.27995459e-02 3.47563148e-01 -8.72806311e-01 -8.39614451e-01 1.43475339e-01 7.23224461e-01 -1.07734954e+00 1.00743806e+00 1.51272774e-01 6.69961691e-01 -1.13581307e-01 2.77783405e-02 -8.80709112e-01 -2.14544311e-01 -8.28963697e-01 -4.98801947e-01 1.27751279e+00 8.45252991e-01 -2.23987997e-01 1.33336067e+00 6.03141308e-01 -7.32964501e-02 -9.87388909e-01 -7.21362472e-01 -2.86259651e-01 9.30437520e-02 -4.98653412e-01 9.91446257e-01 6.66317165e-01 1.49188995e-01 3.53645295e-01 2.20800698e-01 -1.16647497e-01 5.97349644e-01 2.00995967e-01 7.18142211e-01 -1.45771289e+00 1.91838235e-01 -8.33641350e-01 -1.44858539e-01 -1.23576689e+00 -6.74867988e-01 -4.19215828e-01 4.30298373e-02 -1.69864702e+00 -6.29357155e-03 -4.66396093e-01 -2.97330648e-01 2.41653994e-02 -2.22965598e-01 -1.10114984e-01 -9.73266084e-03 1.20205142e-01 -7.72465467e-01 8.82060751e-02 1.00118768e+00 -5.97801745e-01 -3.53460371e-01 1.79967105e-01 -9.68328118e-01 4.94150549e-01 4.19857323e-01 4.41128276e-02 -1.60070390e-01 -1.85075760e-01 8.19202900e-01 3.42484452e-02 -2.09819704e-01 -1.12345409e+00 6.48508370e-01 2.16719702e-01 1.15979815e+00 -1.57270193e+00 -1.78544223e-01 -7.42512941e-01 -5.78524530e-01 1.41483471e-01 -4.74551797e-01 2.14955226e-01 3.86122495e-01 5.69769681e-01 -1.49309799e-01 -2.07978114e-03 6.09654844e-01 -1.28886119e-01 -7.89822161e-01 1.65010542e-01 -2.78107435e-01 1.27427980e-01 8.38647485e-01 -7.76870310e-01 -5.49456179e-01 -8.60410631e-02 4.48166206e-02 4.24208283e-01 2.53557146e-01 3.94812107e-01 6.65073156e-01 -1.09579754e+00 -5.17276525e-01 5.03482282e-01 3.30396831e-01 5.92209518e-01 -1.25934705e-01 3.67869616e-01 -1.28960037e+00 6.31630480e-01 -3.31982970e-01 -6.21698618e-01 -7.25295186e-01 4.01694059e-01 2.84285963e-01 -3.89920443e-01 -5.03640711e-01 1.15186083e+00 -4.03780164e-03 -2.09517732e-01 9.93661642e-01 -1.09675932e+00 -3.67262453e-01 4.84578043e-01 7.00875223e-01 5.64569890e-01 8.14179420e-01 3.35862756e-01 -5.71918309e-01 2.36043945e-01 -6.10512555e-01 3.14306796e-01 1.16943312e+00 2.07454309e-01 1.14157900e-01 4.16826814e-01 6.98516011e-01 2.71246821e-01 -1.46819830e+00 -1.16732948e-01 4.72788841e-01 -2.39847273e-01 2.02359371e-02 -1.26583517e+00 -8.29700172e-01 7.54683614e-01 3.60856354e-01 4.03029680e-01 7.08195746e-01 -3.85064721e-01 7.95560718e-01 7.26234496e-01 2.48131528e-01 -1.42201912e+00 1.76615253e-01 5.15120745e-01 8.46343160e-01 -1.47458470e+00 3.52263302e-01 -4.96174961e-01 -6.58404052e-01 1.51816154e+00 8.67097437e-01 -1.66616574e-01 5.70717633e-01 9.57188785e-01 2.47679293e-01 -4.31846440e-01 -6.59376085e-01 2.90344715e-01 4.42991555e-01 3.53721172e-01 6.72050297e-01 2.32518408e-02 3.69280368e-01 9.47438061e-01 -4.75841612e-01 9.21761170e-02 5.08211076e-01 1.02201688e+00 -5.30336797e-01 -3.44323099e-01 -6.08561218e-01 8.27384293e-01 -3.21513563e-01 -1.22906245e-01 -5.36542475e-01 9.62279439e-01 -1.21999897e-01 8.37519705e-01 7.19778657e-01 -4.34060901e-01 1.83805615e-01 -1.73115015e-01 3.12541008e-01 -5.72461963e-01 -8.94839883e-01 -5.73080294e-02 -7.93628469e-02 -1.96348667e-01 3.70246321e-01 -3.67083549e-01 -1.21603298e+00 -3.84931177e-01 -3.27524900e-01 -8.04098397e-02 3.58216435e-01 6.95184588e-01 2.46459395e-01 6.34208143e-01 4.53266531e-01 -3.85955095e-01 -5.97611547e-01 -1.03458261e+00 -7.33314633e-01 8.64689797e-02 2.89712995e-01 -6.90199018e-01 -1.48677498e-01 -3.53827402e-02]
[11.649930000305176, 3.0408682823181152]