File size: 8,871 Bytes
61c277c 96ce8d8 61c277c 96ce8d8 61c277c 96ce8d8 61c277c 96ce8d8 61c277c 0bf9aca 61c277c 96ce8d8 0bf9aca 61c277c 0bf9aca 61c277c 96ce8d8 61c277c 0bf9aca 61c277c 96ce8d8 0bf9aca 61c277c 0bf9aca 96ce8d8 0bf9aca 61c277c 96ce8d8 0bf9aca 61c277c 0bf9aca 61c277c 96ce8d8 0bf9aca 61c277c 0bf9aca 61c277c 4f9332f 61c277c 0bf9aca 96ce8d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
# Multiphysics Bench
Dataset: [huggingface.co/datasets/Indulge-Bai/Multiphysics_Bench ](https://huggingface.co/datasets/Indulge-Bai/Multiphysics_Bench)
Paper: [Multiphysics Bench: Benchmarking and Investigating Scientific Machine Learning for Multiphysics PDEs](https://arxiv.org/abs/2505.17575)
We propose the first general multiphysics benchmark dataset that encompasses six canonical coupled scenarios across domains such as electromagnetics, heat transfer, fluid flow, solid mechanics, pressure acoustics, and mass transport. This benchmark features the most comprehensive coupling types, the most diverse PDEs, and the largest data scale.

---
# How to Use
## 1. Dataset Download
Please visit the link [huggingface.co/datasets/Indulge-Bai/Multiphysics_Bench ](https://huggingface.co/datasets/Indulge-Bai/Multiphysics_Bench) to download the dataset (you will obtain `training.tar.gz` and `testing.tar.gz` separately). Extract the files to get the following directory structure:
Run the preprocessing code to convert the training and testing datasets into normalized tensor format. The final directory structure will look like this:
```
Multiphysics_Bench/
├── training/
│ ├── problem_1/
│ ├── problem_2/
│ └── ...
├── testing/
│ ├── problem_1/
│ ├── problem_2/
│ └── ...
└── README.md
```
or you can run the command below to download our datasets:
```
from huggingface_hub import snapshot_download
folder_path = snapshot_download(
repo_id="Indulge-Bai/Multiphysics_Bench",
repo_type="dataset"
)
```
## 2. Multiphysics Problems
### (1). Electro-Thermal Coupling
This dataset contains simulations of the Wave Equation and Heat Conduction Equation. This coupling mechanism underpins various applications, including thermal management in electronic components (e.g., microprocessors), inductive heating (e.g., welding and metal processing), biomedical technologies (e.g., photothermal therapy), and aerospace engineering (e.g., radiative heating of satellite surfaces).
<img src="./assets/TEheat_Data.png" width="50%" />
**How to use**
- **Input (1 channel):** `mater`
- **Output (3 channels):** `Re{Ez}`, `Im{Ez}`, `T`
**Dataset Format**
- `TE_heat/mater/1.csv ... 10000.csv`
- `TE_heat/mater/1.mat ... 10000.mat`
- `TE_heat/Ez/1.mat ... 10000.mat` *(a complex data file containing real and imaginary parts)*
**Dataset Generation**
The dataset generation code is located at:
```
DataProcessing/data_generate/TE_heat/main_TE_heat.m
DataProcessing/data_generate/TE_heat/parm2matrix_TE_heat.m
```
---
### (2). Thermo-Fluid Coupling
This dataset contains simulations of the Navier–Stokes Equations and Heat Balance Equation. Thermo-Fluid coupling is essential in the design and optimization of systems such as electronic cooling (e.g., chip heat dissipation), energy systems (e.g., nuclear reactor cooling), and precision thermal control in manufacturing.
<img src="./assets/NSheat_Data.png" width="52%" />
**How to use**
- **Input (1 channel):** `Q_heat`
- **Output (3 channels):** `u`, `v`, `T`
**Dataset Format**
- `NS_heat/circlecsv/1.csv ... 10000.csv`
- `NS_heat/Q_heat/1.csv ... 10000.csv`
- `NS_heat/u_u/1.csv ... 10000.csv`
- `NS_heat/u_v/1.csv ... 10000.csv`
**Dataset Generation**
The dataset generation code is located at:
```
DataProcessing/data_generate/NS_heat/NS_heat.m
DataProcessing/data_generate/NS_heat/parm2matrix_NS_heat.m
```
---
### (3). Electro-Fluid Coupling
This dataset simulates the Navier–Stokes Equations and Current Continuity Equation. This coupling is foundational to applications such as micropumps and micromixers in microfluidic systems.
<img src="./assets/Eflow_Data.png" width="50%" />
**How to use**
- **Input (1 channel):** `kappa`
- **Output (3 channels):** `ec_V`, `u_flow`, `v_flow`
**Dataset Format**
- `E_flow/kappa/1.mat ... 10000.mat`
- `E_flow/ec_V/1.mat ... 10000.mat`
- `E_flow/u_flow/1.mat ... 10000.mat`
- `E_flow/v_flow/1.mat ... 10000.mat`
**Dataset Generation**
The dataset generation code is located at:
```
DataProcessing/data_generate/E_flow/main_E_flow.m
DataProcessing/data_generate/E_flow/parm2matrix_E_flow.m
```
---
### (4). Magneto-Hydrodynamic (MHD) Coupling
This dataset simulates Ampère’s Law, Continuity Equation, Navier–Stokes Equations, and Lorentz Force. This model finds extensive application in electromagnetic pumps, plasma confinement devices (e.g., tokamaks), astrophysical phenomena, and pollutant transport modeling.
<img src="./assets/MHD_Data.png" width="50%" />
**How to use**
- **Input (1 channel):** `Br`
- **Output (5 channels):** `Jx`, `Jy`, `Jz`, `u_u`, `u_v`
**Dataset Format**
- `MHD/Br/1.mat ... 10000.mat`
- `MHD/Jx/1.mat ... 10000.mat`
- `MHD/Jy/1.mat ... 10000.mat`
- `MHD/Jz/1.mat ... 10000.mat`
- `MHD/u_u/1.mat ... 10000.mat`
- `MHD/u_v/1.mat ... 10000.mat`
**Dataset Generation**
The dataset generation code is located at:
```DataProcessing/data_generate/MHD/main_MHD.m
DataProcessing/data_generate/MHD/parm2matrix_MHD.m
```
---
### (5). Acoustic–Structure Coupling
This dataset simulates the Acoustic Wave Equation and Structural Vibration Equation. The input is the spatial material density (1 channel). The outputs comprise the acoustic pressure field (2 channels), stress components (6 channels), and structural displacements (4 channels), for a total of **12 output channels**.
<img src="./assets/VA_Data.png" width="50%" />
**How to use**
- **Input (1 channel):** `rho_water`
- **Output (12 channels):**
- `Re{p_t}`, `Im{p_t}`
- `Re{Sxx}`, `Im{Sxx}`
- `Re{Sxy}`, `Im{Sxy}`
- `Re{Syy}`, `Im{Syy}`
- `Re{x_u}`, `Im{x_u}`
- `Re{x_v}`, `Im{x_v}`
**Dataset Format**
- `VA/p_t/1.mat ... 10000.mat`
- `VA/Sxx/1.mat ... 10000.mat`
- `VA/Sxy/1.mat ... 10000.mat`
- `VA/Syy/1.mat ... 10000.mat`
- `VA/x_u/1.mat ... 10000.mat`
- `VA/x_v/1.mat ... 10000.mat`
> Note: `p_t`, `Sxx`, `Sxy`, `Syy`, `x_u`, and `x_v` are complex data files containing real and imaginary parts.
**Dataset Generation**
The dataset generation code is located at:
```
DataProcessing/data_generate/VA/main_VA.m
DataProcessing/data_generate/VA/parm2matrix_VA.m
```
---
### (6). Mass Transport–Fluid Coupling
This dataset contains simulations based on Darcy’s Law and the Convection–Diffusion Equation. The input includes the source term `Sc` and the initial state of the system at time `t0` (concentration and velocity), totaling **4 channels**. The output consists of the predicted concentration and velocity fields across **10 future time steps**, resulting in **30 channels in total**.
<img src="./assets/Elder_Data.gif" width="50%" />
**How to use**
- **Input (4 channels):** `S_c`, `u_u(t0)`, `u_v(t0)`, `c_flow(t0)`
- **Output (30 channels):** `u_u(t1-t10)`, `u_v(t1-t10)`, `c_flow(t1-t10)`
**Dataset Format**
- `Elder/S_c/1...1000/0.mat ... 10.mat`
- `Elder/u_u/1...1000/0.mat ... 10.mat`
- `Elder/u_v/1...1000/0.mat ... 10.mat`
- `Elder/c_flow/1...1000/0.mat ... 10.mat`
**Dataset Generation**
The dataset generation code is located at:
```
DataProcessing/data_generate/Elder/main_Elder.m
DataProcessing/data_generate/Elder/parm2matrix_Elder.m
```
## 3. Training and Evaluation
### (1) Merging Dataset
In the 'DataProcessing' folder, we provide the data generation and normalization processing code for each type of problem. Specifically:
- **xxx.m**: MATLAB code for generating dataset
- **xxx.py**: Python code for post-processing (facilitating execution across different baselines)
### Key Notes:
1. **Data Generation** → Use `.m` files (requires COMSOL Multiphysics 6.2 with MATLAB environment)
2. **Data Processing** → Use `.py` files (Python ensures better compatibility with various baseline models)
This design ensures reproducibility of data while simplifying adaptation for different frameworks.
### (2) Training & Evaluation
For **DeepONet** and **PINNs**, navigate to the corresponding problem directory and run `train.py` to start training (Note: you need to set the dataset path in advance, e.g., `Elder_train_128.pt`). To evaluate the model, run `evaluate.py`.
For **FNO**, please refer to the official documentation at [FNO]([http://www.xxx.com](https://github.com/NeuralOperator/neuraloperator)).
For **DiffusionPDE**, please refer to the official documentation at [DiffusionPDE](https://github.com/jhhuangchloe/DiffusionPDE).
### Citing
If you find our dataset or code useful for your research, please cite our paper.
```
@article{yang2025multiphysics,
title={Multiphysics Bench: Benchmarking and Investigating Scientific Machine Learning for Multiphysics PDEs},
author={Changfan Yang and Lichen Bai and Yinpeng Wang and Shufei Zhang and Zeke Xie},
year={2025},
journal={arXiv preprint arXiv:2505.17575},
}
``` |