import pandas as pd import numpy as np from pathlib import Path import argparse import logging from sklearn.model_selection import train_test_split def setup_logging(): logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) return logging.getLogger(__name__) def split_dataset(input_path: str, output_dir: str, chunk_size: int = 100000): """ Split a large CSV file into train, test, and validation sets. Processes the file in chunks to handle large datasets efficiently. Args: input_path: Path to input CSV file output_dir: Directory to save split datasets chunk_size: Number of rows to process at a time """ logger = setup_logging() output_path = Path(output_dir) output_path.mkdir(parents=True, exist_ok=True) # Open output files train_file = open(output_path / 'train.csv', 'w') test_file = open(output_path / 'test.csv', 'w') val_file = open(output_path / 'val.csv', 'w') # Set random seed for reproducibility np.random.seed(42) # Process the CSV in chunks chunk_iterator = pd.read_csv(input_path, chunksize=chunk_size) is_first_chunk = True total_rows = 0 logger.info("Starting dataset split...") for i, chunk in enumerate(chunk_iterator): # Split chunk into train (70%), test (20%), val (10%) train_chunk, test_val_chunk = train_test_split(chunk, train_size=0.7, random_state=42) test_chunk, val_chunk = train_test_split(test_val_chunk, train_size=0.67, random_state=42) # Write header for first chunk only if is_first_chunk: train_chunk.to_csv(train_file, index=False) test_chunk.to_csv(test_file, index=False) val_chunk.to_csv(val_file, index=False) is_first_chunk = False else: train_chunk.to_csv(train_file, index=False, header=False) test_chunk.to_csv(test_file, index=False, header=False) val_chunk.to_csv(val_file, index=False, header=False) total_rows += len(chunk) logger.info(f"Processed {total_rows} rows...") # Close files train_file.close() test_file.close() val_file.close() logger.info("Dataset splitting complete!") logger.info(f"Total rows processed: {total_rows}") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Split large CSV dataset into train/test/val sets") parser.add_argument("--input_path", required=True, help="Path to input CSV file") parser.add_argument("--output_dir", required=True, help="Directory to save split datasets") parser.add_argument("--chunk_size", type=int, default=100000, help="Chunk size for processing") args = parser.parse_args() split_dataset(args.input_path, args.output_dir, args.chunk_size)