NF-ToN-IoT-v2.csv / evaluate.py
Hmehdi515's picture
Upload 5 files
a61db6a verified
import json
import pandas as pd
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
import numpy as np
import re
from typing import Dict, List, Tuple
import logging
from collections import defaultdict
def setup_logging():
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
return logging.getLogger(__name__)
class ModelEvaluator:
def __init__(self):
self.logger = setup_logging()
self.attack_types = {
'benign': ['benign', 'normal', 'legitimate'],
'dos': ['dos', 'denial of service'],
'ddos': ['ddos', 'distributed denial of service'],
'injection': ['injection', 'sql injection', 'command injection'],
'scanning': ['scanning', 'port scan', 'network scan'],
'password': ['password', 'brute force', 'credential'],
'mitm': ['mitm', 'man in the middle'],
'backdoor': ['backdoor'],
'ransomware': ['ransomware'],
'xss': ['xss', 'cross site scripting']
}
def extract_prediction(self, analysis_text: str) -> str:
"""Extract the predicted attack type from model output"""
analysis_text = analysis_text.lower()
# First check if there's an explicit classification
match = re.search(r"classified as (\w+)", analysis_text)
if match:
return match.group(1)
# Check for each attack type in the text
for attack_type, keywords in self.attack_types.items():
for keyword in keywords:
if keyword in analysis_text:
return attack_type
# Default to benign if no attack type is found
return 'benign'
def evaluate_results(self, results_file: str, test_data_file: str) -> Dict:
"""Evaluate model predictions against ground truth"""
# Load results and test data
with open(results_file, 'r') as f:
results = json.load(f)
test_df = pd.read_csv(test_data_file)
# Extract predictions and true labels
predictions = []
true_labels = []
confidence_scores = defaultdict(list)
for result in results:
flow_id = result['flow_id']
true_label = test_df.iloc[flow_id]['Attack'].lower()
prediction = self.extract_prediction(result['analysis'])
predictions.append(prediction)
true_labels.append(true_label)
# Track prediction confidence
confidence = 1.0
if 'possibly' in result['analysis'].lower() or 'potential' in result['analysis'].lower():
confidence = 0.7
if 'suspicious' in result['analysis'].lower():
confidence = 0.8
confidence_scores[prediction].append(confidence)
# Calculate metrics
accuracy = float(accuracy_score(true_labels, predictions))
class_report = classification_report(true_labels, predictions,
labels=list(self.attack_types.keys()),
output_dict=True)
conf_matrix = confusion_matrix(true_labels, predictions,
labels=list(self.attack_types.keys()))
# Calculate average confidence per class
avg_confidence = {k: float(np.mean(v)) if v else 0.0
for k, v in confidence_scores.items()}
# Analyze error patterns
error_analysis = self.analyze_errors(true_labels, predictions, results)
# Prepare metrics for JSON serialization
metrics = {
'accuracy': accuracy,
'classification_report': {},
'confusion_matrix': conf_matrix.tolist(),
'average_confidence': avg_confidence,
'error_analysis': error_analysis
}
# Process classification report for JSON serialization
for class_name, metrics_dict in class_report.items():
if isinstance(metrics_dict, dict):
metrics['classification_report'][class_name] = {
k: float(v) for k, v in metrics_dict.items()
if isinstance(v, (int, float, np.number))
}
return metrics
def analyze_errors(self, true_labels: List[str], predictions: List[str],
results: List[Dict]) -> Dict:
"""Analyze patterns in model errors"""
error_patterns = {
'false_positives': defaultdict(list),
'false_negatives': defaultdict(list),
}
for idx, (true, pred, result) in enumerate(zip(true_labels, predictions, results)):
if true != pred:
# Track the specific flow details for this error
flow_details = {
'flow_id': result['flow_id'],
'source_ip': result['source_ip'],
'destination_ip': result['destination_ip'],
'model_explanation': result['analysis']
}
# Categorize error type
if true == 'benign':
error_patterns['false_positives'][pred].append(flow_details)
else:
error_patterns['false_negatives'][true].append(flow_details)
# Convert defaultdict to regular dict for JSON serialization
return {
'false_positives': dict(error_patterns['false_positives']),
'false_negatives': dict(error_patterns['false_negatives'])
}
def print_evaluation_summary(self, metrics: Dict):
"""Print a human-readable summary of evaluation metrics"""
self.logger.info("\n=== Model Evaluation Summary ===")
# Overall Accuracy
self.logger.info(f"\nOverall Accuracy: {metrics['accuracy']:.4f}")
# Per-class Performance
self.logger.info("\nPer-class Performance:")
class_metrics = metrics['classification_report']
for class_name in self.attack_types.keys():
if class_name in class_metrics:
metrics_dict = class_metrics[class_name]
self.logger.info(f"\n{class_name.upper()}:")
self.logger.info(f" Precision: {metrics_dict.get('precision', 0):.4f}")
self.logger.info(f" Recall: {metrics_dict.get('recall', 0):.4f}")
self.logger.info(f" F1-Score: {metrics_dict.get('f1-score', 0):.4f}")
if class_name in metrics['average_confidence']:
self.logger.info(f" Avg Confidence: {metrics['average_confidence'][class_name]:.4f}")
# Error Analysis Summary
self.logger.info("\nError Analysis Summary:")
error_analysis = metrics['error_analysis']
# False Positives
self.logger.info("\nMost Common False Positives:")
for attack_type, errors in error_analysis['false_positives'].items():
self.logger.info(f" {attack_type}: {len(errors)} instances")
# False Negatives
self.logger.info("\nMost Common False Negatives:")
for attack_type, errors in error_analysis['false_negatives'].items():
self.logger.info(f" {attack_type}: {len(errors)} instances")
def main():
logger = setup_logging()
# Initialize evaluator
evaluator = ModelEvaluator()
try:
# Evaluate results
metrics = evaluator.evaluate_results(
results_file='analysis_results.json',
test_data_file='data/test.csv'
)
# Print evaluation summary
evaluator.print_evaluation_summary(metrics)
# Save detailed metrics
with open('evaluation_metrics.json', 'w') as f:
json.dump(metrics, f, indent=2)
logger.info("\nSaved detailed metrics to evaluation_metrics.json")
except Exception as e:
logger.error(f"Error during evaluation: {str(e)}")
raise
if __name__ == "__main__":
main()