|
import pandas as pd |
|
from unsloth import FastLanguageModel |
|
from transformers import TextStreamer |
|
import torch |
|
import random |
|
import logging |
|
|
|
def setup_logging(): |
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format='%(asctime)s - %(levelname)s - %(message)s' |
|
) |
|
return logging.getLogger(__name__) |
|
|
|
def print_separator(title="", char="=", length=80): |
|
"""Print a separator with optional title""" |
|
if title: |
|
side_length = (length - len(title) - 2) // 2 |
|
print(char * side_length + f" {title} " + char * side_length) |
|
else: |
|
print(char * length) |
|
|
|
def format_flow_prompt(row): |
|
"""Format a single network flow into a prompt""" |
|
flow_text = f"""Network Flow Description: |
|
Source: {row['IPV4_SRC_ADDR']} (Port: {row['L4_SRC_PORT']}) |
|
Destination: {row['IPV4_DST_ADDR']} (Port: {row['L4_DST_PORT']}) |
|
Protocol Information: |
|
- Protocol ID: {row['PROTOCOL']} |
|
- Layer 7 Protocol: {row['L7_PROTO']} |
|
- TCP Flags: {row['TCP_FLAGS']} |
|
Traffic Metrics: |
|
- Bytes: {row['IN_BYTES']} inbound, {row['OUT_BYTES']} outbound |
|
- Packets: {row['IN_PKTS']} inbound, {row['OUT_PKTS']} outbound |
|
- Duration: {row['FLOW_DURATION_MILLISECONDS']} milliseconds""" |
|
|
|
|
|
return f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|> |
|
Analyze this network flow for potential security threats: |
|
|
|
{flow_text}<|eot_id|><|start_header_id|>assistant<|end_header_id|>""" |
|
|
|
def analyze_single_flow(model_path="cybersec_model_output/checkpoint-4329", |
|
test_file="data/test.csv", |
|
index=None, |
|
attack_type=None): |
|
"""Analyze a single network flow and show the model's complete response""" |
|
logger = setup_logging() |
|
|
|
print_separator("LOADING DATA AND MODEL", "=") |
|
|
|
logger.info(f"Loading test data from {test_file}") |
|
test_df = pd.read_csv(test_file) |
|
|
|
|
|
if attack_type: |
|
attack_samples = test_df[test_df['Attack'].str.lower() == attack_type.lower()] |
|
if len(attack_samples) == 0: |
|
raise ValueError(f"No samples found for attack type: {attack_type}") |
|
sample = attack_samples.iloc[random.randint(0, len(attack_samples)-1)] |
|
elif index is not None: |
|
sample = test_df.iloc[index] |
|
else: |
|
sample = test_df.iloc[random.randint(0, len(test_df)-1)] |
|
|
|
|
|
logger.info(f"Loading model from {model_path}") |
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_path, |
|
max_seq_length=2048, |
|
load_in_4bit=True, |
|
) |
|
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.padding_side = "right" |
|
FastLanguageModel.for_inference(model) |
|
|
|
print_separator("SAMPLE INFORMATION", "=") |
|
logger.info(f"Selected flow index: {sample.name}") |
|
logger.info(f"True label: {sample['Attack']}") |
|
|
|
|
|
prompt = format_flow_prompt(sample) |
|
inputs = tokenizer( |
|
prompt, |
|
return_tensors="pt", |
|
truncation=True, |
|
max_length=2048 |
|
).to("cuda") |
|
|
|
|
|
streamer = TextStreamer(tokenizer) |
|
|
|
with open("model_output.txt", "w") as f: |
|
|
|
f.write("=" * 80 + "\n") |
|
f.write(f"NETWORK FLOW ANALYSIS\n") |
|
f.write("=" * 80 + "\n\n") |
|
|
|
f.write("-" * 80 + "\n") |
|
f.write("METADATA\n") |
|
f.write("-" * 80 + "\n") |
|
f.write(f"Flow Index: {sample.name}\n") |
|
f.write(f"True Label: {sample['Attack']}\n\n") |
|
|
|
f.write("-" * 80 + "\n") |
|
f.write("INPUT PROMPT\n") |
|
f.write("-" * 80 + "\n") |
|
f.write(f"{prompt}\n\n") |
|
|
|
print_separator("MODEL OUTPUT", "=") |
|
logger.info("Generating analysis...") |
|
|
|
|
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=256, |
|
streamer=streamer, |
|
use_cache=True |
|
) |
|
|
|
|
|
f.write("-" * 80 + "\n") |
|
f.write("COMPLETE OUTPUT (including special tokens)\n") |
|
f.write("-" * 80 + "\n") |
|
full_output = tokenizer.decode(outputs[0], skip_special_tokens=False) |
|
f.write(f"{full_output}\n\n") |
|
|
|
|
|
f.write("-" * 80 + "\n") |
|
f.write("CLEANED OUTPUT (without special tokens)\n") |
|
f.write("-" * 80 + "\n") |
|
cleaned_output = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
f.write(cleaned_output) |
|
|
|
f.write("\n" + "=" * 80 + "\n") |
|
|
|
print_separator() |
|
logger.info("Output saved to model_output.txt") |
|
print_separator() |
|
|
|
def main(): |
|
|
|
print_separator("STARTING ANALYSIS", "=") |
|
|
|
|
|
|
|
|
|
analyze_single_flow() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print_separator("ANALYSIS COMPLETE", "=") |
|
|
|
if __name__ == "__main__": |
|
main() |