NF-ToN-IoT-v2.csv / base_eval.py
Hmehdi515's picture
Upload 2 files
bd7bfb6 verified
import pandas as pd
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from tqdm import tqdm
import logging
import argparse
from pathlib import Path
from sklearn.metrics import classification_report, accuracy_score, roc_auc_score
import json
def setup_logging():
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
return logging.getLogger(__name__)
def format_flow_prompt(row):
"""Format a single network flow into a prompt for the model"""
messages = [
{"role": "system", "content": "You are a cybersecurity expert analyzing network flows for potential security threats. You must classify each flow as either malicious or benign based on its characteristics. Respond with only the word 'malicious' or 'benign'."},
{"role": "user", "content": f"""Analyze this network flow:
Source IP: {row['IPV4_SRC_ADDR']} (Port: {row['L4_SRC_PORT']})
Destination IP: {row['IPV4_DST_ADDR']} (Port: {row['L4_DST_PORT']})
Protocol: {row['PROTOCOL']}
Layer 7 Protocol: {row['L7_PROTO']}
Traffic Volume: {row['IN_BYTES']} bytes in, {row['OUT_BYTES']} bytes out
Packets: {row['IN_PKTS']} packets in, {row['OUT_PKTS']} packets out
TCP Flags: {row['TCP_FLAGS']}
Duration: {row['FLOW_DURATION_MILLISECONDS']} ms
Is this network flow malicious or benign? Answer with only one word."""}
]
return messages
class ZeroShotTester:
def __init__(self, device="cuda"):
"""Initialize the model and tokenizer"""
self.logger = setup_logging()
self.device = device
model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
self.logger.info(f"Loading model {model_name}...")
self.tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=True
)
# Set pad token to eos token
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto",
pad_token_id=self.tokenizer.eos_token_id # Set pad token ID in model
)
def predict_single(self, messages):
"""Generate prediction for a single prompt"""
# Prepare input
encodings = self.tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
)
# Create attention mask
attention_mask = torch.ones_like(encodings)
# Move to device
input_ids = encodings.to(self.device)
attention_mask = attention_mask.to(self.device)
# Generate prediction
with torch.no_grad():
outputs = self.model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=5, # We only need one word
do_sample=False, # Deterministic output
temperature=0.1, # Low temperature for more focused output
pad_token_id=self.tokenizer.pad_token_id
)
# Extract response
response = outputs[0][input_ids.shape[-1]:]
response_text = self.tokenizer.decode(response, skip_special_tokens=True).strip().lower()
# Classify output
return 1 if 'malicious' in response_text else 0
def evaluate_dataset(self, test_path, batch_size=32, max_samples=None):
"""Evaluate the model on a test dataset"""
self.logger.info(f"Starting evaluation on {test_path}")
# Read and process the test set in chunks
chunk_iterator = pd.read_csv(test_path, chunksize=batch_size)
all_predictions = []
all_labels = []
total_processed = 0
try:
for chunk in tqdm(chunk_iterator, desc="Processing batches"):
if max_samples and total_processed >= max_samples:
break
# Generate prompts for the chunk
prompts = [format_flow_prompt(row) for _, row in chunk.iterrows()]
# Get predictions
predictions = []
for prompt in prompts:
try:
pred = self.predict_single(prompt)
predictions.append(pred)
except Exception as e:
self.logger.error(f"Error processing prompt: {e}")
predictions.append(0) # Default to benign on error
all_predictions.extend(predictions)
all_labels.extend(chunk['Label'].tolist())
total_processed += len(chunk)
if total_processed % 100 == 0:
self.logger.info(f"Processed {total_processed} samples...")
# Calculate and log intermediate metrics
curr_accuracy = accuracy_score(all_labels, all_predictions)
curr_auc = roc_auc_score(all_labels, all_predictions)
successful_samples = sum(1 for p in predictions if p is not None)
self.logger.info(f"Current Accuracy: {curr_accuracy:.4f}, AUC: {curr_auc:.4f}")
self.logger.info(f"Successfully processed samples in this batch: {successful_samples}/{len(predictions)}")
except Exception as e:
self.logger.error(f"Error during evaluation: {e}")
if len(all_predictions) == 0:
raise
# Calculate final metrics
accuracy = accuracy_score(all_labels[:total_processed], all_predictions[:total_processed])
auc = roc_auc_score(all_labels[:total_processed], all_predictions[:total_processed])
report = classification_report(all_labels[:total_processed], all_predictions[:total_processed])
return {
'accuracy': accuracy,
'auc': auc,
'classification_report': report,
'total_samples': total_processed,
'predictions': all_predictions[:total_processed],
'true_labels': all_labels[:total_processed]
}
def main():
parser = argparse.ArgumentParser(description="Zero-shot testing of LLaMA 3.1 on network flows")
parser.add_argument("--test_path", required=True, help="Path to test CSV file")
parser.add_argument("--output_dir", required=True, help="Directory to save results")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size for processing")
parser.add_argument("--max_samples", type=int, default=None,
help="Maximum number of samples to test (None for all)")
args = parser.parse_args()
logger = setup_logging()
# Create output directory
output_path = Path(args.output_dir)
output_path.mkdir(parents=True, exist_ok=True)
# Initialize tester
tester = ZeroShotTester()
try:
# Evaluate model
results = tester.evaluate_dataset(
args.test_path,
batch_size=args.batch_size,
max_samples=args.max_samples
)
# Save results
logger.info("\nFinal Results:")
logger.info(f"Total samples processed: {results['total_samples']}")
logger.info(f"Successfully processed samples: {sum(1 for p in results['predictions'] if p is not None)}")
logger.info(f"Accuracy: {results['accuracy']:.4f}")
logger.info(f"AUC: {results['auc']:.4f}")
logger.info("\nClassification Report:")
logger.info(results['classification_report'])
# Save detailed results
with open(output_path / 'zero_shot_results.json', 'w') as f:
# Convert numpy arrays to lists for JSON serialization
results['predictions'] = [int(p) for p in results['predictions']]
results['true_labels'] = [int(l) for l in results['true_labels']]
json.dump(results, f, indent=4)
except Exception as e:
logger.error(f"Error in main execution: {e}")
raise
if __name__ == "__main__":
main()