File size: 4,841 Bytes
a61db6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
from unsloth import FastLanguageModel
import pandas as pd
from transformers import TextStreamer
import logging
from typing import List, Dict
import json

def setup_logging():
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(levelname)s - %(message)s'
    )
    return logging.getLogger(__name__)

class NetworkFlowAnalyzer:
    def __init__(self, model_path: str):
        self.logger = setup_logging()
        self.logger.info(f"Loading model from {model_path}")
        
        # Load model and tokenizer
        self.model, self.tokenizer = FastLanguageModel.from_pretrained(
            model_path,
            max_seq_length=2048,
            load_in_4bit=True,
        )
        
        # Enable faster inference
        FastLanguageModel.for_inference(self.model)
        
        # Set up tokenizer for generation
        self.tokenizer.pad_token = self.tokenizer.eos_token
        self.tokenizer.padding_side = "right"
        
    def format_flow_prompt(self, row: pd.Series) -> str:
        """Format a network flow into a prompt"""
        flow_text = f"""Network Flow Description:
Source: {row['IPV4_SRC_ADDR']} (Port: {row['L4_SRC_PORT']})
Destination: {row['IPV4_DST_ADDR']} (Port: {row['L4_DST_PORT']})
Protocol Information:
- Protocol ID: {row['PROTOCOL']}
- Layer 7 Protocol: {row['L7_PROTO']}
- TCP Flags: {row['TCP_FLAGS']}
Traffic Metrics:
- Bytes: {row['IN_BYTES']} inbound, {row['OUT_BYTES']} outbound
- Packets: {row['IN_PKTS']} inbound, {row['OUT_PKTS']} outbound
- Duration: {row['FLOW_DURATION_MILLISECONDS']} milliseconds"""

        # Format in LLaMA-3 style
        return f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>
Analyze this network flow for potential security threats:

{flow_text}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""

    def analyze_flow(self, row: pd.Series, max_new_tokens: int = 256, stream: bool = False) -> str:
        """Analyze a single network flow"""
        # Prepare input
        prompt = self.format_flow_prompt(row)
        inputs = self.tokenizer(
            prompt, 
            return_tensors="pt",
            truncation=True,
            max_length=2048
        ).to("cuda")
        
        # Set up streamer if requested
        streamer = TextStreamer(self.tokenizer) if stream else None
        
        # Generate prediction
        outputs = self.model.generate(
            **inputs,
            max_new_tokens=max_new_tokens,
            streamer=streamer,
            use_cache=True
        )
        
        if not stream:
            return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        return None

    def analyze_batch(self, df: pd.DataFrame, output_file: str = None) -> List[Dict]:
        """Analyze a batch of network flows"""
        results = []
        
        for idx, row in df.iterrows():
            self.logger.info(f"Analyzing flow {idx+1}/{len(df)}")
            
            try:
                analysis = self.analyze_flow(row)
                result = {
                    "flow_id": idx,
                    "source_ip": row["IPV4_SRC_ADDR"],
                    "destination_ip": row["IPV4_DST_ADDR"],
                    "analysis": analysis,
                    "true_label": row.get("Label", "Unknown"),
                    "attack_type": row.get("Attack", "Unknown")
                }
                results.append(result)
                
            except Exception as e:
                self.logger.error(f"Error analyzing flow {idx}: {str(e)}")
                continue
        
        if output_file:
            with open(output_file, 'w') as f:
                json.dump(results, f, indent=2)
        
        return results

def main():
    logger = setup_logging()
    
    # Initialize analyzer
    analyzer = NetworkFlowAnalyzer("cybersec_model_output/checkpoint-4329")
    
    # Load test data
    test_df = pd.read_csv("data/test.csv")
    logger.info(f"Loaded {len(test_df)} test samples")
    
    # Option 1: Stream analysis of a single flow
    logger.info("\nAnalyzing single flow with streaming:")
    analyzer.analyze_flow(test_df.iloc[0], stream=True)
    
    # Option 2: Batch analysis
    logger.info("\nAnalyzing batch of flows:")
    sample_size = min(100, len(test_df))  # Analyze first 100 flows
    results = analyzer.analyze_batch(
        test_df.head(sample_size),
        output_file="analysis_results.json"
    )
    
    # Print some statistics
    logger.info(f"\nAnalyzed {len(results)} flows")
    if "Label" in test_df.columns:
        true_positives = sum(1 for r in results if "malicious" in r["analysis"].lower() 
                           and r["true_label"] == 1)
        logger.info(f"Detected {true_positives} potentially malicious flows")

if __name__ == "__main__":
    main()