text
stringlengths 0
4.99k
|
---|
>>> mae = tf.keras.losses.MeanAbsoluteError( |
... reduction=tf.keras.losses.Reduction.NONE) |
>>> mae(y_true, y_pred).numpy() |
array([0.5, 0.5], dtype=float32) |
Usage with the compile() API: |
model.compile(optimizer='sgd', loss=tf.keras.losses.MeanAbsoluteError()) |
MeanAbsolutePercentageError class |
tf.keras.losses.MeanAbsolutePercentageError( |
reduction="auto", name="mean_absolute_percentage_error" |
) |
Computes the mean absolute percentage error between y_true and y_pred. |
loss = 100 * abs(y_true - y_pred) / y_true |
Standalone usage: |
>>> y_true = [[2., 1.], [2., 3.]] |
>>> y_pred = [[1., 1.], [1., 0.]] |
>>> # Using 'auto'/'sum_over_batch_size' reduction type. |
>>> mape = tf.keras.losses.MeanAbsolutePercentageError() |
>>> mape(y_true, y_pred).numpy() |
50. |
>>> # Calling with 'sample_weight'. |
>>> mape(y_true, y_pred, sample_weight=[0.7, 0.3]).numpy() |
20. |
>>> # Using 'sum' reduction type. |
>>> mape = tf.keras.losses.MeanAbsolutePercentageError( |
... reduction=tf.keras.losses.Reduction.SUM) |
>>> mape(y_true, y_pred).numpy() |
100. |
>>> # Using 'none' reduction type. |
>>> mape = tf.keras.losses.MeanAbsolutePercentageError( |
... reduction=tf.keras.losses.Reduction.NONE) |
>>> mape(y_true, y_pred).numpy() |
array([25., 75.], dtype=float32) |
Usage with the compile() API: |
model.compile(optimizer='sgd', |
loss=tf.keras.losses.MeanAbsolutePercentageError()) |
MeanSquaredLogarithmicError class |
tf.keras.losses.MeanSquaredLogarithmicError( |
reduction="auto", name="mean_squared_logarithmic_error" |
) |
Computes the mean squared logarithmic error between y_true and y_pred. |
loss = square(log(y_true + 1.) - log(y_pred + 1.)) |
Standalone usage: |
>>> y_true = [[0., 1.], [0., 0.]] |
>>> y_pred = [[1., 1.], [1., 0.]] |
>>> # Using 'auto'/'sum_over_batch_size' reduction type. |
>>> msle = tf.keras.losses.MeanSquaredLogarithmicError() |
>>> msle(y_true, y_pred).numpy() |
0.240 |
>>> # Calling with 'sample_weight'. |
>>> msle(y_true, y_pred, sample_weight=[0.7, 0.3]).numpy() |
0.120 |
>>> # Using 'sum' reduction type. |
>>> msle = tf.keras.losses.MeanSquaredLogarithmicError( |
... reduction=tf.keras.losses.Reduction.SUM) |
>>> msle(y_true, y_pred).numpy() |
0.480 |
>>> # Using 'none' reduction type. |
>>> msle = tf.keras.losses.MeanSquaredLogarithmicError( |
... reduction=tf.keras.losses.Reduction.NONE) |
>>> msle(y_true, y_pred).numpy() |
array([0.240, 0.240], dtype=float32) |
Usage with the compile() API: |
model.compile(optimizer='sgd', |
loss=tf.keras.losses.MeanSquaredLogarithmicError()) |
CosineSimilarity class |
tf.keras.losses.CosineSimilarity( |
axis=-1, reduction="auto", name="cosine_similarity" |
) |
Computes the cosine similarity between labels and predictions. |
Note that it is a number between -1 and 1. When it is a negative number between -1 and 0, 0 indicates orthogonality and values closer to -1 indicate greater similarity. The values closer to 1 indicate greater dissimilarity. This makes it usable as a loss function in a setting where you try to maximize the proximity between predictions and targets. If either y_true or y_pred is a zero vector, cosine similarity will be 0 regardless of the proximity between predictions and targets. |
loss = -sum(l2_norm(y_true) * l2_norm(y_pred)) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.