Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
SvenKlaassen commited on
Commit
b7ddf34
·
verified ·
1 Parent(s): 485f8b2

add oracle features

Browse files
Files changed (1) hide show
  1. README.md +16 -12
README.md CHANGED
@@ -101,12 +101,6 @@ The dataset is based on the three commonly used datasets:
101
  - [IMDB dataset](https://huggingface.co/datasets/imdb)
102
  - [CIFAR-10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html)
103
 
104
- All datasets are subsampled to be of equal size (n=50,000). The CIFAR-10 data is based on the trainings dataset, whereas the IMDB data contains train and test data
105
- to obtain 50,000 observations. The labels of the CIFAR-10 data are set to integer values 0 to 9.
106
- The Diamonds dataset is cleaned (values with `x`, `y`, `z` equal to 0 are removed) and outliers are dropped (such that 45<`depth`<75, 40<`table`<80, `x`<30, `y`<30 and 2<`z`<30).
107
- The remaining 53,907 observations are downsampled to the same size of 50,000 observations. Further `price` and `carat` are transformed with the natural logarithm and `cut`,
108
- `color` and `clarity` are dummy coded (with baselines Fair, D and I1).
109
-
110
  The versions to create this dataset can be found on Kaggle:
111
 
112
  - [Diamonds dataset](https://www.kaggle.com/datasets/shivam2503/diamonds)
@@ -115,6 +109,14 @@ The versions to create this dataset can be found on Kaggle:
115
 
116
  The original citations can be found below.
117
 
 
 
 
 
 
 
 
 
118
  ## Uses
119
 
120
  The dataset should as a benchmark to compare different causal inference methods for observational data under multimodal confounding.
@@ -131,20 +133,22 @@ The data fields can be devided into several categories:
131
  - `Y` (`float64`): Outcome of interest
132
  - `D_1` (`float64`): Treatment value
133
 
134
- - **Tabular Features**
135
- - `price` (`float64`):
136
-
137
  - **Text Features**
138
  - `review` (`string`): IMDB review text
139
- - `sentiment` (`string`): Corresponding
140
 
141
  - **Image Features**
142
  - `image` (`image`): Image
143
  - `label` (`int64`): Corresponding label from `0` to `9`
144
 
 
 
 
145
  - **Oracle Features**
146
- - `cond_exp_y` (`float64`): Expected value `Y` conditional on `D_1`, etc.
147
- - `D_1` (`float64`): Treatment value (generated)
 
 
148
 
149
  ## Limitations
150
 
 
101
  - [IMDB dataset](https://huggingface.co/datasets/imdb)
102
  - [CIFAR-10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html)
103
 
 
 
 
 
 
 
104
  The versions to create this dataset can be found on Kaggle:
105
 
106
  - [Diamonds dataset](https://www.kaggle.com/datasets/shivam2503/diamonds)
 
109
 
110
  The original citations can be found below.
111
 
112
+ ### Dataset Preprocessing
113
+
114
+ All datasets are subsampled to be of equal size (`50,000`). The CIFAR-10 data is based on the trainings dataset, whereas the IMDB data contains train and test data
115
+ to obtain `50,000` observations. The labels of the CIFAR-10 data are set to integer values `0` to `9`.
116
+ The Diamonds dataset is cleaned (values with `x`, `y`, `z` equal to `0` are removed) and outliers are dropped (such that `45<depth<75`, `40<table<80`, `x<30`, `y<30` and `2<z<30`).
117
+ The remaining `53,907` observations are downsampled to the same size of `50,000` observations. Further `price` and `carat` are transformed with the natural logarithm and `cut`,
118
+ `color` and `clarity` are dummy coded (with baselines `Fair`, `D` and `I1`).
119
+
120
  ## Uses
121
 
122
  The dataset should as a benchmark to compare different causal inference methods for observational data under multimodal confounding.
 
133
  - `Y` (`float64`): Outcome of interest
134
  - `D_1` (`float64`): Treatment value
135
 
 
 
 
136
  - **Text Features**
137
  - `review` (`string`): IMDB review text
138
+ - `sentiment` (`string`): Corresponding sentiment, either `positive` or `negative`
139
 
140
  - **Image Features**
141
  - `image` (`image`): Image
142
  - `label` (`int64`): Corresponding label from `0` to `9`
143
 
144
+ - **Tabular Features**
145
+ - `price` (`float64`):
146
+
147
  - **Oracle Features**
148
+ - `cond_exp_y` (`float64`): Expected value of `Y` conditional on `D_1`, `sentiment`, `label` and `price`
149
+ - `l1` (`float64`): Expected value of `Y` conditional on `sentiment`, `label` and `price`
150
+ - `m1` (`float64`): Expected value of `D_1` conditional on `sentiment`, `label` and `price`
151
+ - `g1` (`float64`): Additive component of `Y` based on `sentiment`, `label` and `price`
152
 
153
  ## Limitations
154