|
import torch |
|
|
|
|
|
def _normalize(tensor: torch.Tensor, eps=1e-10) -> torch.Tensor: |
|
""" |
|
Helper function to normalize a tensor |
|
Args: |
|
tensor (torch.Tensor): input tensor |
|
eps (float): small value to avoid division by zero |
|
Returns: |
|
normalized_tensor (torch.Tensor): normalized tensor |
|
""" |
|
norm = torch.norm(tensor, dim=-1, keepdim=True) |
|
normalized_tensor = tensor / (norm + eps) |
|
return normalized_tensor |
|
|
|
|
|
def _calculate_alpha(preds, targets, eps=1e-10) -> torch.Tensor: |
|
""" |
|
Helper function to calculate alpha |
|
Args: |
|
preds (torch.Tensor): predicted sources |
|
targets (torch.Tensor): target sources |
|
eps (float): small value to avoid division by zero |
|
Returns: |
|
alpha (torch.Tensor): alpha value |
|
""" |
|
dot = torch.sum(preds * targets, dim=-1, keepdim=True) |
|
target_energy = torch.sum(targets**2, dim=-1, keepdim=True) |
|
alpha = (dot + eps) / (target_energy + eps) |
|
return alpha |
|
|
|
|
|
def _calculate_metric(numerator, denominator, eps=1e-10) -> torch.Tensor: |
|
""" |
|
Helper function to calculate sdr and its variants |
|
Args: |
|
numerator (torch.Tensor): numerator tensor |
|
denominator (torch.Tensor): denominator tensor |
|
eps (float): small value to avoid division by zero |
|
Returns: |
|
dB (torch.Tensor): dB value |
|
""" |
|
numerator = torch.sum(numerator, dim=-1) + eps |
|
denominator = torch.sum(denominator, dim=-1) + eps |
|
dB = 10 * torch.log10(numerator / denominator) |
|
return dB |
|
|
|
|
|
def si_sdr(preds, targets, eps=1e-10) -> torch.Tensor: |
|
""" |
|
Scale Invariant Signal Distortion Ratio (SI-SDR) metric |
|
Args: |
|
preds (torch.Tensor): predicted sources. (batch, time) |
|
targets (torch.Tensor): target sources. (batch, time) |
|
eps (float): small value to avoid division by zero |
|
Returns: |
|
si_sdr (torch.Tensor): SI-SDR value |
|
""" |
|
preds = _normalize(preds, eps=eps) |
|
targets = _normalize(targets, eps=eps) |
|
|
|
alpha = _calculate_alpha(preds, targets, eps=eps) |
|
|
|
|
|
numerator = torch.square(alpha * targets) |
|
denominator = torch.square(preds - alpha * targets) |
|
return _calculate_metric(numerator, denominator, eps=eps) |
|
|