Wonjun Park
LOG: DVS Dataset Version 1.0
60ff8bf
import torch
def _normalize(tensor: torch.Tensor, eps=1e-10) -> torch.Tensor:
"""
Helper function to normalize a tensor
Args:
tensor (torch.Tensor): input tensor
eps (float): small value to avoid division by zero
Returns:
normalized_tensor (torch.Tensor): normalized tensor
"""
norm = torch.norm(tensor, dim=-1, keepdim=True)
normalized_tensor = tensor / (norm + eps)
return normalized_tensor
def _calculate_alpha(preds, targets, eps=1e-10) -> torch.Tensor:
"""
Helper function to calculate alpha
Args:
preds (torch.Tensor): predicted sources
targets (torch.Tensor): target sources
eps (float): small value to avoid division by zero
Returns:
alpha (torch.Tensor): alpha value
"""
dot = torch.sum(preds * targets, dim=-1, keepdim=True)
target_energy = torch.sum(targets**2, dim=-1, keepdim=True)
alpha = (dot + eps) / (target_energy + eps)
return alpha
def _calculate_metric(numerator, denominator, eps=1e-10) -> torch.Tensor:
"""
Helper function to calculate sdr and its variants
Args:
numerator (torch.Tensor): numerator tensor
denominator (torch.Tensor): denominator tensor
eps (float): small value to avoid division by zero
Returns:
dB (torch.Tensor): dB value
"""
numerator = torch.sum(numerator, dim=-1) + eps
denominator = torch.sum(denominator, dim=-1) + eps
dB = 10 * torch.log10(numerator / denominator)
return dB
def si_sdr(preds, targets, eps=1e-10) -> torch.Tensor:
"""
Scale Invariant Signal Distortion Ratio (SI-SDR) metric
Args:
preds (torch.Tensor): predicted sources. (batch, time)
targets (torch.Tensor): target sources. (batch, time)
eps (float): small value to avoid division by zero
Returns:
si_sdr (torch.Tensor): SI-SDR value
"""
preds = _normalize(preds, eps=eps)
targets = _normalize(targets, eps=eps)
alpha = _calculate_alpha(preds, targets, eps=eps)
# compute SI-SDR (in dB)
numerator = torch.square(alpha * targets)
denominator = torch.square(preds - alpha * targets)
return _calculate_metric(numerator, denominator, eps=eps)