diff --git "a/https:/huggingface.co/datasets/iamgroot42/mimir/tree/main/test/dm_mathematics_ngram_13_0.8.jsonl" "b/https:/huggingface.co/datasets/iamgroot42/mimir/tree/main/test/dm_mathematics_ngram_13_0.8.jsonl" deleted file mode 100644--- "a/https:/huggingface.co/datasets/iamgroot42/mimir/tree/main/test/dm_mathematics_ngram_13_0.8.jsonl" +++ /dev/null @@ -1,1000 +0,0 @@ -" 13, l: 5}.\n26/51\nThree letters picked without replacement from {h: 5, l: 5, y: 1, s: 7}. What is prob of sequence yls?\n35/4896\nWhat is prob of sequence lzml when four letters picked without replacement from {a: 6, m: 4, n: 2, l: 1, t: 1, z: 4}?\n0\nThree letters picked without replacement from {h: 2, a: 2, v: 2, g: 2, l: 3, u: 1}. What is prob of sequence ggl?\n1/220\nThree letters picked without replacement from avavlvllv. What is prob of sequence val?\n1/21\nFour letters picked without replacement from gioqgisa. Give prob of sequence ggio.\n1/420\nTwo letters picked without replacement from {d: 4, h: 6}. What is prob of sequence hd?\n4/15\nWhat is prob of sequence icov when four letters picked without replacement from {f: 9, c: 3, i: 1, v: 3, o: 2}?\n1/4080\nTwo letters picked without replacement from caagymum. What is prob of sequence yu?\n1/56\nTwo letters picked without replacement from kkkkpkkkkkkkkjkkkkkk. Give prob of sequence pj.\n1/380\nFour letters picked without replacement from joekerkvjrre. What is prob of sequence kvkr?\n1/1980\nTwo letters picked without replacement from mpmpmpmppkkp. What is prob of sequence km?\n2/33\nFour" -"461, -621, -763?\n9*k**2 - 205*k - 87\nWhat is the d'th term of -2765, -5471, -8117, -10703, -13229?\n30*d**2 - 2796*d + 1\nWhat is the a'th term of -30, -197, -504, -951, -1538, -2265?\n-70*a**2 + 43*a - 3\nWhat is the n'th term of -152681, -152679, -152677, -152675?\n2*n - 152683\nWhat is the u'th term of -1905, -3818, -5719, -7602, -9461?\nu**3 - 1920*u + 14\nWhat is the t'th term of -277154, -277153, -277152, -277151, -277150, -277149?\nt - 277155\nWhat is the f'th term of 475, 617, 749, 865, 959, 1025, 1057, 1049?\n-f**3 + f**2 + 146*f + 329\nWhat is the z'th term of -58, -180, -360, -604, -918, -1308?\n-z**3 - 23*z**2 - 46*z + 12\nWhat is the g'th term of -1686, -6758, -15220, -27078, -42338, -61006?\n-g**3 - 1689*g**2 + 2*g + 2\nWhat is the f'th term of -1825, -1828, -1841, -1870, -1921, -2000?\n-f**3 + f**2 + f - 1826\nWhat is the q'th term of 348, 694, 1040?\n346*q + 2\nWhat is the l'th term of 458, 970, 1528, 2132, 2782, 3478?\n23*l**2 + 443*l - 8\nWhat is the y'th term of 2679, 2625," -"0.1, -0.2, -2/5?\nk\nLet m = -1.6 - -0.6. Let l = 4 + -6. Let j = -2 - l. What is the biggest value in 2/13, m, j?\n2/13\nLet h = 36 + -36.3. Let k = 3/7 + -13/14. Which is the third biggest value? (a) h (b) -5 (c) k\nb\nLet l = 1.2 + -4.2. What is the third smallest value in -2/3, l, -0.1?\n-0.1\nLet y = -1.84 + 1.54. Which is the second biggest value? (a) -4 (b) y (c) -3/11\nb\nLet t = 740/7 + -106. Let n = -114.5 + 115. Which is the biggest value? (a) n (b) -0.5 (c) t\na\nLet t(z) = z - 1. Let k be t(1). Which is the third biggest value? (a) 2/59 (b) -3/4 (c) k\nb\nLet u = -1.8 + 2. Let i = -0.2 + u. Let n be (0 - -2) + (-2)/(-2). What is the biggest value in -2/11, n, i?\nn\nLet u = -0.187 - -1.187. Let r = -0.29 + -1.01. Let i = r - -0.3. Which is the biggest value? (a) u (b) i (c) 3/7\na" -"2*f - 5*q - 12 = f. Solve f = -u*k - 3 for k.\n-1\nLet g(n) = n**2 + 9*n + 35. Let j be g(-5). Suppose c - 8 = -c. Suppose -c*l + 1 + j = 0. Solve -a - l = a for a.\n-2\nLet k = 13909 - 9186. Solve k*l + 14 = 4725*l for l.\n7\nLet u be 5/25*-2 + 2904/60. Solve 43*l + 25 = u*l for l.\n5\nLet t(h) = 3*h. Let b(i) = -23*i. Let s(c) = -b(c) - 6*t(c). Let z be s(1). Let a(g) = -g**2 - 9*g - 5. Let n be a(-6). Solve -z + n = 4*p for p.\n2\nSuppose -3*q + 2*g - 15 = -27, 4*g = 3*q - 24. Solve q*s + 68 = -17*s for s.\n-4\nLet s(a) = -1261*a - 2522. Let p be s(-2). Solve p = -46*m + 53*m - 7 for m.\n1\nLet h(u) = 41*u - 3668. Let j be h(93). Solve -50*m - 55 = j for m.\n-4\nLet t(f) = 70*f + 1. Let v be t(-1). Let g = v - -75. Solve g*p" -" h.\n-1\nLet d(w) = 3*w**3 - 2*w**2 + 2*w - 1. Let r be d(1). Suppose -2*f - r = -30. Let c(t) = -3*t - 34. Let b be c(-12). Solve -b*x + 4 = f, -o + x + 6 = 0 for o.\n1\nSuppose -23 = -52*y + 81. Solve 0 = -5*l + 5*s - 13 - y, -3*l + 5*s - 19 = 0 for l.\n2\nLet d = -1882 - -1885. Solve 3*t + 6 = 4*n + 11, -7 = -d*t + 5*n for t.\n-1\nLet g = -41 - -37. Let j be g/(-14) - (-24)/14. Solve j*q + 14 = 4, 14 = t - 3*q for t.\n-1\nLet n be (((-12)/(-15))/(-2))/((-62)/2635). Solve 3*g + 5*o - n = 0, -o = g + 4*o - 19 for g.\n-1\nLet p = -23 - -26. Solve 6 = -p*r + 5*k, 0 = 5*r - 0*k - k - 12 for r.\n3\nLet k(r) = 3*r - 42. Let s(m) = 2*m - 42. Let u(n) = 4*k(n) - 5*s(n). Let w be u(-21). Solve -2*y + 4 = 0, 4*q - 3*y +" -"git of 5399?\n9\nWhat is the thousands digit of 20844?\n0\nWhat is the hundreds digit of 10538?\n5\nWhat is the units digit of 26539?\n9\nWhat is the units digit of 57?\n7\nWhat is the ten thousands digit of 21253?\n2\nWhat is the hundreds digit of 15654?\n6\nWhat is the hundreds digit of 5829?\n8\nWhat is the hundreds digit of 91511?\n5\nWhat is the thousands digit of 37669?\n7\nWhat is the tens digit of 775?\n7\nWhat is the tens digit of 1367?\n6\nWhat is the ten thousands digit of 26322?\n2\nWhat is the tens digit of 23490?\n9\nWhat is the tens digit of 3103?\n0\nWhat is the thousands digit of 14957?\n4\nWhat is the tens digit of 14324?\n2\nWhat is the units digit of 251?\n1\nWhat is the tens digit of 853?\n5\nWhat is the hundreds digit of 498?\n4\nWhat is the units digit of 6569?\n9\nWhat is the hundreds digit of 8017?\n0\nWhat is the thousands digit of 38939?\n8\nWhat is the thousands digit of 1008?\n1\nWhat is the tens digit of 2018?\n1\nWhat is" -"1, o: 3}?\n0\nCalculate prob of sequence swpp when four letters picked without replacement from {w: 6, s: 1, p: 12}.\n11/1292\nCalculate prob of sequence icic when four letters picked without replacement from {c: 6, i: 10, e: 1}.\n45/952\nWhat is prob of sequence fp when two letters picked without replacement from {f: 2, a: 2, x: 6, v: 4, p: 3}?\n3/136\nTwo letters picked without replacement from {y: 2, i: 1, d: 2, a: 1, o: 1, s: 1}. What is prob of sequence yi?\n1/28\nFour letters picked without replacement from kwwwddwdkwwwwkkw. Give prob of sequence dkdw.\n9/1820\nTwo letters picked without replacement from {b: 1, m: 2, v: 1, n: 1}. Give prob of sequence mn.\n1/10\nCalculate prob of sequence ffff when four letters picked without replacement from qbbbfbqfbbfbfbqbbfq.\n5/3876\nThree letters picked without replacement from {x: 10, d: 4, l: 3, b: 2}. What is prob of sequence xxl?\n15/323\nFour letters picked without replacement from wwwwww. Give prob of sequence wwww.\n1\nWhat is prob of sequence wvkw when four letters picked without replacement from {b: 1, g: 3, k: 3, w: 2, n: 1, v: 2}?\n1/990\nWhat is" -"re the prime factors of ((-8)/q)/((-1)/(-1))?\n2\nLet y(k) = 5 + 2*k**2 - k**2 - 8*k - 8*k + k. What are the prime factors of y(15)?\n5\nLet l = -11 + -13. Let m be l/(-10) - (-2)/(-5). Suppose -3*c = m*c - 10. List the prime factors of c.\n2\nSuppose -33 = -d + 2*w - w, 4*w = -d + 23. Let v = 20 - d. Let k = v - -25. What are the prime factors of k?\n2, 7\nSuppose 5*n + 1 = 16. Suppose n*h + 139 = -2*y, h = 2*y - 0*h + 119. List the prime factors of y/(-6) + 4/(-12).\n2, 5\nLet v be (-4)/(-18) - 14/(-18). List the prime factors of (-3 - (-15)/3)/v.\n2\nLet o = -6 - -8. Let g(m) = -1 - o*m - 3*m**2 + 7*m + 4*m**2. What are the prime factors of g(-6)?\n5\nLet j(f) = -f + 8 - 2*f + 5*f. Let s(w) = 4*w + 17. Let h(b) = -5*j(b) + 2*s(b). List the prime factors of h(-7).\n2\nLet r(t) be the first derivative of t**4/4 + t**2/2 + 10*t +" -"est value? (a) 1 (b) 5 (c) -0.087\nb\nWhat is the second biggest value in 89, 1, -4?\n1\nWhat is the fourth biggest value in -0.4, -1, -2/3, 0.3?\n-1\nWhat is the second biggest value in 5, 5.248, 1/9?\n5\nWhich is the second smallest value? (a) 2 (b) 5/8 (c) -0.2\nb\nWhich is the biggest value? (a) 4.8 (b) 1/4 (c) 0.5 (d) -0.04\na\nWhat is the smallest value in -3, -2, -140?\n-140\nWhich is the third biggest value? (a) -6/11 (b) 0.17 (c) 0.2 (d) -3 (e) -4/9\ne\nWhich is the third smallest value? (a) 1.2 (b) 0.2 (c) -1 (d) 1/3 (e) 0.1\nb\nWhat is the third biggest value in 0.15, -0.2, -4, -3?\n-3\nWhat is the biggest value in -6, -5, -5/6?\n-5/6\nWhich is the biggest value? (a) -0.3 (b) 4 (c) 0 (d) -3/2\nb\nWhich is the smallest value? (a) -3/2 (b) -2/3 (c) 2/11\na\nWhich is the smallest value? (a) -2.908 (b) 0.1 (c) -2\na\nWhich is the third biggest value? (a) 0.4 (b) -5/3 (c) 1/77\nb\nWhat is the biggest value in -4, -2, 1?\n1\nWhat is the" -" 4158. What is the closest to 1 in m, 0, 0.1, -0.1?\n0.1\nLet m = -13 + 9. Let k = -3161 + 1783. Let x = -1375 - k. What is the closest to -0.3 in m, x, 1/7?\n1/7\nLet f be 23/(-3)*(480/100)/(-8) + -4. Which is the nearest to -0.4? (a) f (b) 2/11 (c) -1/5 (d) 4\nc\nLet m = -1668 - -1663. Let b be -62*(-1)/58 - 1. What is the nearest to b in -0.5, 2, m?\n-0.5\nLet j be ((-382)/(-660) - (-252)/(-462))*3. Which is the closest to j? (a) 10 (b) 2/5 (c) -0.3 (d) 0\nd\nLet c = -1929 - -1929.2. Let m = 2 + 0. What is the nearest to 0 in 31, c, m?\nc\nLet j = -0.016 + 1.616. Let o = j + -7.6. Which is the closest to o? (a) 3 (b) -4 (c) -1\nb\nLet x = 2.2064 + -0.2064. What is the nearest to x in -702, 2/5, 3?\n3\nLet g be (-3)/15*1*(4 - (26 + -22)). Which is the closest to -1? (a) -13/5 (b) 1/2 (c) g (d) 3\nc\nLet v be 6/(-4)*((-400)/(-30))/(-10). Suppose" -"39*a. Let t(u) = 5*i(u) + 3*z(u). What is the second derivative of t(y) wrt y?\n-444*y**2\nLet g(t) be the second derivative of 29*t**6/30 + 23*t**4/12 - 41*t. What is the third derivative of g(f) wrt f?\n696*f\nWhat is the derivative of 22*p - 15 + 33 - 12 wrt p?\n22\nLet b(r) = -24*r**3 - 3*r**2 - 3*r - 21. Let v(j) = 72*j**3 + 8*j**2 + 8*j + 64. Let x(n) = -8*b(n) - 3*v(n). Find the first derivative of x(m) wrt m.\n-72*m**2\nSuppose -4*x - 2*w = -x - 8, -22 = -5*x + w. What is the second derivative of -6*z**4 - 2*z**x + 5*z**4 + 5*z wrt z?\n-36*z**2\nLet k(y) be the first derivative of y**9/504 + y**5/60 - y**2/2 - 2. Let h(j) be the second derivative of k(j). Find the third derivative of h(u) wrt u.\n120*u**3\nLet k = -162 + 162. Let s(p) be the second derivative of 0*p**2 + k*p**3 + 0 + 2*p - 1/6*p**4 - 1/5*p**5. What is the third derivative of s(r) wrt r?\n-24\nLet j(i) be the second derivative of -5*i**4/24 - i**3/2 + 3*i**2/2 - i. Let x(u) be" -"t d = -4 - q. Give y(d).\n1\nLet h(t) = -t - 2. Let x be 2/(-3) - 174/9. Let u be x/(-6)*(6 + -3). Let g = u + -6. Calculate h(g).\n-6\nSuppose 11 = -z + g + 4*g, 2*z = -3*g + 17. Let f(n) = -n + 1. Give f(z).\n-3\nLet a(w) be the second derivative of w**5/20 - 7*w**4/12 + w**3 - 7*w**2/2 + w. Let g be (6 + -2)/(((-16)/(-12))/2). What is a(g)?\n-7\nLet q(r) = r**2 - r. Suppose -16 = -n + 3*b + 2*b, -3*b - 11 = -2*n. Give q(n).\n0\nLet v(b) be the third derivative of 13*b**4/24 + b**3/6 + 12*b**2. Determine v(1).\n14\nLet h(l) = l - 8. Let d be h(6). Let p be 6 - (-2 - d)/(-1). Let t(a) = 2*a - 9. Determine t(p).\n3\nSuppose -1 = -x - 8. Let v(h) = -h**3 - 7*h**2 + 4*h. Determine v(x).\n-28\nLet q(n) = -20*n**3 + 13*n**2 - 11*n. Let r(z) = -10*z**3 + 6*z**2 - 5*z. Let l(s) = -4*q(s) + 9*r(s). Determine l(1).\n-9\nLet v(l) be the second derivative of -l**3/6 + l**2" -"-99 - -97.98. Let j = 11.1789 - -0.0011. Let s = j - u. What is s rounded to 0 dps?\n12\nLet t be 14025/30*32/5. What is t rounded to the nearest 100?\n3000\nLet h(o) = -216*o + 53. Let i be h(-4). Let b = i - -53083. What is b rounded to the nearest 10000?\n50000\nLet r = 2.095 + 30.845. Let s = 33 - r. Let z = -0.05999912 + s. What is z rounded to seven dps?\n0.0000009\nLet y = -61.573 + -13.723. Let x = 75 + y. What is x rounded to two decimal places?\n-0.3\nLet l = 15.2354 - -0.0846. Let f = -0.32 + l. Let d = f - 15.00035. What is d rounded to four dps?\n-0.0004\nLet l(a) be the second derivative of 11*a - 12*a**2 + 0 - 1/2*a**3. Let h be l(-19). Round h to the nearest ten.\n30\nLet t = 8605581.300254 + -8605598. Let f = t - -16.7. What is f rounded to five decimal places?\n0.00025\nLet q = 8833 - 8459.1. Round q to the nearest one hundred.\n400\nLet f = 8.8 + 2.2." -". Let o(a) = 9*a**2 + 2*a - 1. Calculate o(x).\n10\nLet u be -4*(4 + -1 + -4). Let a(m) = m**3 - 3*m**2 - 4*m - 1. What is a(u)?\n-1\nSuppose 4*s + 3*p = -44, 40 = -4*s + 2*p - 4. Let k(m) = -2*m - 5. Let o(v) = 5*v + 14. Let l(b) = s*k(b) - 4*o(b). Let j = 8 + -4. Calculate l(j).\n7\nLet a be (4/(-5))/((-24)/60). Let r(m) = -2*m**3 + m**2 - 3*m + 1. Determine r(a).\n-17\nLet t(l) be the second derivative of -l**3/6 + 3*l**2/2 + 4*l. Give t(-3).\n6\nLet d(b) = -33*b + 3 + 1 - 2 + 34*b. Determine d(-3).\n-1\nLet z(w) = w - 3. Let v be -2*(4 + (-8)/4). Calculate z(v).\n-7\nLet g = 5 + 0. Let c(y) = 2*y + 26. Let o(z) = z + 17. Let i(u) = g*c(u) - 8*o(u). Give i(6).\n6\nLet c(s) = -4*s - 3. Let r be c(-2). Let i = 6 - r. Let p(n) = -5*n + 1. Calculate p(i).\n-4\nLet h(n) = -9*n + 1. Let d(y) = y**2 + 2*y" -"s be (-35)/5 - (-27 + -8). Solve 0 = -4*l - 3*m + s, 5*l - 8*m + 3*m = q for l.\n4\nLet a be 4/(-6) - 332/6. Let u = -54 - a. Solve -n + u*n - 8 = -2*k, 5*n = 3*k + 1 for n.\n2\nLet f(x) = -10*x - 5. Let i be f(-1). Let h be 2/i + -2 + (-54)/(-15). Solve 0 = -2*t + 5*z + 15, 2*t - z + h*z = -15 for t.\n-5\nSuppose n - 2*x + 3 = x, -5*n + 3*x - 3 = 0. Solve -3*z + 7*z - 1 = -5*q, n = 3*z - 4*q + 7 for z.\n-1\nLet h be 16/(-20)*(35/(-14))/1. Solve 3*j + j - 16 = 2*a, 0 = -h*j + 8 for a.\n0\nSuppose -6*j - 7*j = -52. Solve 2*f = -y + 4, 0 = -2*y + 3*f - j*f - 1 for y.\n-2\nSuppose -s + 5 = -4*o, 3*o + s = -0*s + 5. Solve -a + 5*a - 3*k + 3 = o, a - 12 = 5*k for a.\n-3\nSuppose -2*p +" -"= v. Round p to the nearest 1000.\n10000\nLet b = 8.904 - 8.9270135. Let n = 0.023 + b. What is n rounded to 6 dps?\n-0.000014\nLet l = -112.0000039 - -112. Round l to 7 decimal places.\n-0.0000039\nLet b = -0.2445 + 0.0235. Round b to 2 dps.\n-0.22\nLet q = 44.94848354 + 0.05230646. Let u = q + -45. What is u rounded to 4 decimal places?\n0.0008\nLet m be 0/2 + 18300/3. What is m rounded to the nearest 1000?\n6000\nLet w = 528 - 743. Let y = -215.0097 - w. Round y to 3 decimal places.\n-0.01\nLet d be 0/(2 + -2 + 1). Suppose d = 4*q - 3*q - 5. Suppose 0*m - 2*z = -3*m - 54000, -q*m - 90000 = -5*z. What is m rounded to the nearest ten thousand?\n-20000\nLet i = -14 + 27.1. Round i to the nearest integer.\n13\nSuppose -4*n + 0*n - 2*w = 2399998, -n - 3*w = 599997. What is n rounded to the nearest one million?\n-1000000\nLet z = 0.01 - -11.39. What is z rounded to the nearest integer?\n11\nLet" -" 6, h: 5, u: 1, y: 3}. Give prob of sequence du.\n1/51\nThree letters picked without replacement from yossvvowu. What is prob of sequence suo?\n1/126\nThree letters picked without replacement from sfzizfmfsmwmzs. What is prob of sequence fmm?\n3/364\nWhat is prob of sequence pr when two letters picked without replacement from {g: 3, r: 1, p: 2, n: 6, l: 4}?\n1/120\nCalculate prob of sequence tl when two letters picked without replacement from {t: 1, a: 1, l: 2, u: 1}.\n1/10\nThree letters picked without replacement from lllxlxlxlxl. Give prob of sequence xxx.\n4/165\nCalculate prob of sequence kpj when three letters picked without replacement from ddkrdpjpxppx.\n1/330\nWhat is prob of sequence jw when two letters picked without replacement from {o: 5, a: 1, w: 4, c: 1, j: 1}?\n1/33\nThree letters picked without replacement from znvvzvnvxnoozn. Give prob of sequence xnz.\n1/182\nFour letters picked without replacement from {i: 4, j: 3, h: 11}. Give prob of sequence hhij.\n11/612\nTwo letters picked without replacement from ddg. What is prob of sequence dg?\n1/3\nWhat is prob of sequence kk when two letters picked without replacement from kkkkklsjs?\n5/18\nWhat is prob" -"- -6.2. Let v = b + -5. Let h = -197/2 - -987/10. What is the closest to v in h, -2, -0.4?\nh\nLet h = -167 + 1501/9. What is the closest to -18 in -0.1, h, 5?\nh\nLet q = 394 + -394.02. Suppose -3*l = -b - 2*b - 18, -3*b = -4*l + 22. What is the nearest to 2 in q, b, -3?\nq\nLet j = -3.2 + 1.1. Let h = -6.1 - j. What is the closest to -0.4 in 1/4, h, 1/5?\n1/5\nLet h = 558 + -555. What is the nearest to -2 in 1/197, -4, h?\n-4\nSuppose 0 = -2*s + 3 + 3. Suppose s = 3*y - 0. Let w be (-2)/y + 65/26. Which is the nearest to 0.1? (a) -1 (b) w (c) 5/3\nb\nLet l = 12.7 - 12.3. What is the closest to 2 in l, -4, -0.7?\nl\nLet t be (-15)/50*-2 + 0. What is the closest to -0.1 in t, 0, 2?\n0\nLet y be (-10)/3*33/352*-6. Which is the closest to -1/3? (a) 1/2 (b) y (c) 0.1 (d) -1/4\nd\nLet i" -"uppose -3*w = -y*w. Which is the nearest to w? (a) -0.1 (b) -4 (c) -2\na\nSuppose -14 = -5*c - 4. Let z(x) = x - 1. Let u be z(c). What is the nearest to -1 in -0.5, u, -1?\n-1\nLet h = 96 - 289/3. Which is the nearest to -0.1? (a) -3/7 (b) h (c) -0.4\nb\nLet f = -227/35 - -31/5. What is the nearest to 3 in 1, f, -4?\n1\nLet x(c) = c**2 - 11*c + 12. Let w be x(10). Suppose -2*y + 6*y + 12 = 2*k, w*y - 18 = -3*k. Suppose 3*l = l - k. What is the nearest to -1 in 1/5, 1/4, l?\n1/5\nLet d be 6/45*5 + (-26)/12. Let p be (-1)/(-3)*(-18)/(-15). What is the closest to p in -3, d, -2?\nd\nLet p be 1/((9 - 3)*-1). Let q = 1 + 0. Let k = q + -1. What is the nearest to k in p, 2/7, -3?\np\nLet g = -13 - -13. Which is the closest to -2/47? (a) 2/7 (b) g (c) -3\nb\nLet q = 0.1 + -0.1. Let p =" -"as v + i*h**3 + d*h + p*h**2 + w*h**4 and give d.\n-3\nRearrange -3*y**3 + 4*y**2 + y**3 + 3*y**3 to the form q + z*y**3 + s*y**2 + d*y and give z.\n1\nRearrange (-10 - 28 + 65)*(-a + 4*a - a) to the form m + v*a and give v.\n54\nExpress (1 + 0 - 7 + (2 - 2 + 1)*(-1 + 0 - 1) - 1 + 0 + 4)*(-4*v**4 + 3*v**4 + 2*v**4) as d*v**3 + p*v**2 + o*v**4 + j*v + l and give o.\n-5\nExpress -378*x**2 + 1 - 2*x**4 - 2*x**3 + 378*x**2 in the form o + b*x**2 + p*x**4 + l*x**3 + a*x and give p.\n-2\nExpress (2*a + a - a)*(3*a**2 - 4*a**2 + 2*a**2) - a**3 + 2*a**3 + 3*a**3 in the form l*a**3 + h*a**2 + b*a + r and give l.\n6\nRearrange (4508 - 4508 + 85*k)*(-4*k**2 + 2*k**2 + 4*k**2) to n*k + p*k**2 + l*k**3 + b and give l.\n170\nRearrange -2*c**2 + 7 + 2*c**2 + c**2 to the form l*c + p + y*c**2 and give y.\n1\nExpress u**4 + 26*u**2 - 2*u" -"0.8404735\nWhat is twenty-six sevenths of a week in hours?\n624\nWhat is 7718.226l in millilitres?\n7718226\nHow many millilitres are there in one quarter of a litre?\n250\nHow many litres are there in 41426.49ml?\n41.42649\nWhat is 0.09224 weeks in hours?\n15.49632\nWhat is 0.088889 millimeters in centimeters?\n0.0088889\nConvert 18559.452 months to years.\n1546.621\nWhat is 3/32 of a millennium in months?\n1125\nWhat is 1/56 of a week in seconds?\n10800\nConvert 15.92635ml to litres.\n0.01592635\nConvert 47.40715ml to litres.\n0.04740715\nHow many millilitres are there in six fifths of a litre?\n1200\nWhat is 11/4 of a hour in seconds?\n9900\nConvert 2.3422224 milliseconds to minutes.\n0.00003903704\nConvert 6945.107 years to millennia.\n6.945107\nWhat is thirteen quarters of a day in hours?\n78\nWhat is 27/4 of a litre in millilitres?\n6750\nWhat is 27/4 of a millennium in decades?\n675\nConvert 64274.44 centimeters to millimeters.\n642744.4\nWhat is 6/5 of a kilogram in grams?\n1200\nHow many meters are there in 11/8 of a kilometer?\n1375\nWhat is twenty-seven quarters of a litre in millilitres?\n6750\nConvert 259.39164 months to years.\n21.61597\nWhat is 91093.76 litres in millilitres?\n91093760\nHow many microseconds are there" -"ose -3*a + 38 = n, 120 = 5*n - a - p. Is 20 a factor of n?\nFalse\nSuppose -10*f = -9*f. Let t be (3 + f)/((-36)/168). Is 16 a factor of (63/t)/((-3)/32)?\nTrue\nLet w be 6/9 - (-19)/3. Let a(p) = p**3 - 12*p**3 - 9*p + w + 10*p. Is 20 a factor of a(-2)?\nFalse\nLet d be (-156)/(-30) + -4 + (-2)/10. Let q be 2 + d*-8 - 0. Let w = q - -54. Is 16 a factor of w?\nTrue\nLet c(r) = -r**3 + 14*r**2 + 3*r - 14. Let w be c(14). Let z be 3 + w/(-8) - (-79)/2. Suppose -175 + z = -j. Is 34 a factor of j?\nTrue\nLet u(q) be the first derivative of -24*q**2 + 6*q + 3. Let k(h) = 8*h - 1. Let s(b) = 34*k(b) + 6*u(b). Is 12 a factor of s(-4)?\nFalse\nLet b(g) = g**3 - 3*g**2 + 6*g - 3. Let n be b(2). Suppose c + 4*c + n = 0, -2*j + 2*c = -12. Suppose -j*d = 178 - 433. Does 17 divide d?\nTrue\nSuppose -4 + 54 =" -"19\nEvaluate 198 + -92 + -88 - -33.\n51\nWhat is the value of -389 - -363 - (1 + -7) - 3?\n-23\nWhat is 6 + -100 + 10 + 13 + -40 + 2?\n-109\nEvaluate -2 + 11 - (57 + (-9 + 26 - 2)).\n-63\nWhat is the value of (412 - 414 - (1 + 122)) + (28 - 8)?\n-105\nWhat is the value of -84 - -39 - 13 - (19 - 0)?\n-77\nWhat is 2 + -2 + (0 - 0) + -2 + (40 - -1)?\n39\nEvaluate ((1 - (3 - 1)) + 2 - 8) + -6998 + 7045.\n40\nEvaluate 233 + -212 - (0 - -50).\n-29\nWhat is the value of 9 + 0 + (-14 + 15 - -1)?\n11\nEvaluate 261 + -202 + 4 + -37.\n26\n2 + (4 - 1 - 7) + (32 + 41 - 133)\n-62\nWhat is -1072 + 1073 - ((1 - (-3 + -1 - -3)) + 0)?\n-1\nWhat is -30 + (24 - 18) - (5 - -6)?\n-35\nCalculate -1 + -24 + 0 + -33 + (-8" -"0\nLet t = -17.99999936 - -18. What is t rounded to seven dps?\n0.0000006\nLet v = -0.3 - -0.29. Let t = v - -0.04. Let w = t + -0.0265. What is w rounded to 3 decimal places?\n0.004\nLet n = 59313.0076 - 59355. Let k = 0.5 + -42.5. Let u = n - k. What is u rounded to three decimal places?\n0.008\nSuppose -2*k = 3*c + 2 + 4, 5*c = -10. Suppose 5*q = -4*d + 165 + 54, -2*q - 4*d + 90 = k. Round q to the nearest 10.\n40\nLet i(a) be the second derivative of 0 + 13/2*a**3 + 2*a + 2*a**2. Let h be i(4). What is h rounded to the nearest 100?\n200\nLet u = -28.9 + 22. Let s = -12.6 - -2.6. Let l = s - u. Round l to 0 decimal places.\n-3\nLet u = 0.05 - -0.95. Let b = 1.23 + u. What is b rounded to 1 dp?\n2.2\nLet p = 1554671029.954768732 - 1554671033. Let f = -0.045231368 - p. Let c = f - 3. What is c rounded to seven dps?\n-0.0000001" -"*h + 5*q - 18352, p*q = h - 6*h + 30592. Is h prime?\nFalse\nLet z(d) = d**3 - 6*d**2 - d - 7. Let u be z(7). Let w be ((-1)/(-15) + (-14)/u)*-15. Suppose w*x = -h + 6003, 0 = -14*x + 10*x - 5*h + 4794. Is x composite?\nFalse\nIs (-228785544)/(-264) - 39 - (-1)/11 a prime number?\nTrue\nLet y(u) = 3412*u + 990. Is y(49) prime?\nFalse\nSuppose -340*n + 3*p = -342*n + 291641, -3*n + 437459 = 2*p. Is n composite?\nFalse\nLet h = 3 + -3. Suppose 29770 = 5*y - 5*s, -6*y = s - h*s - 35759. Is y a prime number?\nFalse\nSuppose -3*k - 5*b = -5255, -5*k + 7028 = -k - 4*b. Let w = -898 + k. Let z = 1512 - w. Is z prime?\nFalse\nLet z(s) = 70*s**2 + 4*s + 25. Let h = 75 + -69. Is z(h) composite?\nTrue\nSuppose -47*m = 33*m - 115228 - 1042692. Is m a prime number?\nFalse\nLet l(u) = 1374*u**2 + 8*u. Let w(i) = -i**2 + 6*i + 56. Let n be w(11). Is l(n) a prime" -"7).\n-281\nLet n(s) = -s**3 + s**2 + 29*s - 60. Calculate n(3).\n9\nLet h(y) = 3*y**2 + 48*y + 98. Give h(-22).\n494\nLet l(b) = -303*b - 36592. Determine l(-121).\n71\nLet t(w) = -w**3 - 27*w**2 - 39*w - 277. Determine t(-26).\n61\nLet z(y) = -480*y - 9033. Give z(-19).\n87\nLet h(o) = 10*o**3 + 4*o**2 + 10*o + 3. Calculate h(-2).\n-81\nLet h(r) = -r**2 - 33*r - 49. Give h(-26).\n133\nLet i(j) = -j**2 - 130*j - 3550. What is i(-39)?\n-1\nLet s(d) = 2*d**2 + 148*d + 1487. Give s(-62).\n-1\nLet l(m) = 42*m - 4915. Determine l(117).\n-1\nLet l(w) = -245*w - 333. Determine l(-2).\n157\nLet p(c) = -47*c**2 + 1127*c + 3. Give p(24).\n-21\nLet l(s) = 254*s + 2286. Determine l(-9).\n0\nLet u(c) = -c**2 - 10*c - 9. Calculate u(6).\n-105\nLet u(n) = -31*n - 1998. Calculate u(-78).\n420\nLet h(r) = -r**2 + 127*r - 3995. Give h(58).\n7\nLet x(t) = 538*t**3 + t**2 + 6*t + 6. Give x(-1).\n-537\nLet o(s) = 2*s**2 - 313*s - 462. Give o(158).\n12\nLet d(o) =" -"6))/(515515/4862 - 107) and d/(-2) + 10/32.\n176\nLet n be -1 - ((-52 - 0) + -1). Suppose 8072 = 246*m + 15095 - 49335. Suppose -3*p = -m + n. What is the least common multiple of p and 8?\n40\nLet f(g) = -6*g + 29. Let r be f(4). Suppose 0 = -r*s + 5*y + 270, -8*s + 3*s = -4*y - 268. Calculate the smallest common multiple of 22 and s.\n572\nLet t = -10124/5 + 637577/315. Let r = 4805 + -33697/7. Let g = r - t. Calculate the common denominator of -151/6 and g.\n18\nLet z(j) = -15*j + 26. Let s be z(-12). Suppose -803 = -3*l - l - g, l + 2*g - s = 0. What is the lowest common multiple of 15 and l?\n600\nLet b = -80511628/7 - -2418156001/210. Let m = 13362 - b. Calculate the common denominator of 131/84 and m.\n420\nLet k = 11902 - 9914. Calculate the least common multiple of 12 and k.\n5964\nLet b(c) = 5*c - 13. Let j be b(3). Let s(x) = 3*x**3 + 2*x - 7. What is the smallest" -"uct of -4 and -0.035?\n0.14\nMultiply -14 and -2.8.\n39.2\nWork out -1.98 * -0.5.\n0.99\n-264*-0.08\n21.12\nWhat is -1927 times 0.5?\n-963.5\nProduct of 5 and 8.72.\n43.6\nMultiply 0.3 and 15.91.\n4.773\n0.04 * 7.1\n0.284\n-2*0.0215\n-0.043\n1.1*-76\n-83.6\nMultiply -1927 and 2.\n-3854\n0.2*-0.1282\n-0.02564\nCalculate -0.3*-26.1.\n7.83\n0.9 times -86\n-77.4\nWhat is -249 times 2?\n-498\n0.029*-50\n-1.45\nProduct of 0.4 and -6.\n-2.4\n0.1 * 0.12\n0.012\nWhat is the product of 13 and 568?\n7384\nMultiply 15633 and -0.1.\n-1563.3\nCalculate 0.0955*-2.\n-0.191\nWork out 26 * 0.5.\n13\nWhat is the product of 830 and -5?\n-4150\n-0.6*27\n-16.2\nWhat is 0.317 times -0.2?\n-0.0634\n-4 times 0.36\n-1.44\nMultiply -0.3 and -17.84.\n5.352\nWhat is the product of 0.1 and -0.65?\n-0.065\nWhat is 1981.3 times 0.4?\n792.52\nWork out -994.7 * -0.3.\n298.41\nCalculate 407.4*-0.2.\n-81.48\nWhat is the product of -1.01 and 4?\n-4.04\nWhat is the product of -1165 and 5?\n-5825\nMultiply -16 and -104.\n1664\n-257*0.1\n-25.7\n-301 times -5\n1505\nMultiply 10 and -16.\n-160\nMultiply -4 and 86.\n-344\n16511 times -0.5\n-8255.5\nMultiply -0.1 and 102.\n-10.2\n0.224 times 0.3" -"2\nLet c(r) = r**2 - 17*r + 28. Calculate c(17).\n28\nLet d(g) = g**3 - 12*g**2 - 65*g + 13. Give d(-4).\n17\nLet c(j) = -2*j + 231. What is c(-4)?\n239\nLet c(r) = 78*r - 767. What is c(10)?\n13\nLet v(j) = j**2 + 34*j + 169. Give v(-6).\n1\nLet p(y) = 2*y**3 - 13*y**2 - 79*y - 92. What is p(11)?\n128\nLet i(s) = s**3 + 38*s**2 - 43*s - 165. Calculate i(-39).\n-9\nLet m(p) = -96*p + 372. Determine m(3).\n84\nLet g(b) = -21*b**3 + 4*b**2 + 5*b - 9. Determine g(-2).\n165\nLet t(z) = z**3 + 4*z**2 + 15*z + 42. What is t(-5)?\n-58\nLet v(t) = -101*t - 893. Determine v(-8).\n-85\nLet p(i) = 13223*i - 224789. Calculate p(17).\n2\nLet p(z) = 118*z**2 + 14982*z - 501. Calculate p(-127).\n7\nLet x(m) = -9*m**2 - 1046*m - 3279. Determine x(-113).\n-2\nLet s(v) = 54*v + 671. Give s(-12).\n23\nLet v(w) = 140*w - 47. Determine v(1).\n93\nLet o(f) = f**3 + 9*f**2 + 40*f + 292. Give o(-12).\n-620\nLet r(o) = -o**2 - 147*o - 4482. Determine r(-104)." -"h is the second biggest value? (a) 2 (b) o (c) -3/5 (d) 0\nd\nLet x = -1.69 - -1.6. Let w = -2.09 - x. Which is the third biggest value? (a) 0.5 (b) w (c) -5\nc\nLet h = 1.22 - 0.22. What is the third smallest value in -2, h, -1/10?\nh\nLet z = 7 + -7.5. Let r(y) = -y + 11. Suppose 4*f + 1 = 29. Let u be r(f). Which is the third smallest value? (a) -1 (b) z (c) u\nc\nLet g = 137 + -132. Let i = 0.2 + 0. What is the second biggest value in i, g, -1/4?\ni\nSuppose 2 = 5*q - 3. Suppose 0 = 4*l + l. Let j be l - (2 - 36/14). Which is the third biggest value? (a) j (b) q (c) -0.2\nc\nLet h = -57 - -41. Let z = h + 20. What is the third biggest value in z, 0.1, 1/7?\n0.1\nLet g = -113 + 109. What is the third biggest value in g, 5, -0.13?\ng\nLet u = 2140/9 + -238. Let s = 11 - 7." -"31 (c) -0.1 (d) -5/13\nc\nWhat is the second smallest value in 1125797, 5, 0.12?\n5\nWhat is the smallest value in -4, 1739, 5.58?\n-4\nWhich is the smallest value? (a) 0 (b) -5 (c) -3 (d) 2 (e) 0.06 (f) -1032 (g) -1.25\nf\nWhat is the smallest value in -3/154, -1/4, -3, -0.3, 0, 129?\n-3\nWhat is the biggest value in 0.3, -1.94, -1/4, 1, 0.94, 0.02, -3?\n1\nWhich is the third smallest value? (a) -2151 (b) -6297 (c) -0.08\nc\nWhich is the second biggest value? (a) 15/11 (b) 1/2 (c) -1/4 (d) 0.04 (e) -0.5 (f) -13\nb\nWhich is the second biggest value? (a) -5 (b) -3/8 (c) -173/142\nc\nWhich is the third smallest value? (a) -0.4627 (b) -0.2483 (c) 10\nc\nWhat is the fifth smallest value in 3, -9/7, 5/4, 0.8, 85?\n85\nWhich is the fourth biggest value? (a) 9 (b) 2/5 (c) -1/2 (d) -0.4 (e) 1/6575 (f) 3\ne\nWhich is the biggest value? (a) 2442.9 (b) 2/33 (c) -122\na\nWhat is the biggest value in -0.2, 4, -0.06, 0.5, 1, 139?\n139\nWhat is the third smallest value in -9646, -2/5, -18, -0.03?" -"creasing order.\n-9, 2, 4, 151\nSort 1/4, 6, -1/2, 0.3, -48867.\n-48867, -1/2, 1/4, 0.3, 6\nPut -4, 3/8, 7, -9.21 in increasing order.\n-9.21, -4, 3/8, 7\nPut -8, -4, -9, 3, 2 in descending order.\n3, 2, -4, -8, -9\nSort 3, -0.04, -1, -6, -5/9, 4 in increasing order.\n-6, -1, -5/9, -0.04, 3, 4\nSort 47, -186, 22 in descending order.\n47, 22, -186\nSort 0.2, -55, -2/5, 152 in descending order.\n152, 0.2, -2/5, -55\nPut -5, 2/3, -0.053, 7, -2/9 in descending order.\n7, 2/3, -0.053, -2/9, -5\nSort 3, 1/26, 25/2, 1 in increasing order.\n1/26, 1, 3, 25/2\nPut 109, -12, -4 in ascending order.\n-12, -4, 109\nPut -2, 3, -4, -8, -7, 29 in increasing order.\n-8, -7, -4, -2, 3, 29\nSort 2, 0, -10635 in descending order.\n2, 0, -10635\nSort -1, -124, 5, 2, -7.\n-124, -7, -1, 2, 5\nSort 89, 3565, -1/4, -5 in decreasing order.\n3565, 89, -1/4, -5\nSort -1, 4, 29 in ascending order.\n-1, 4, 29\nSort 13, -2, -3, 96694.\n-3, -2, 13, 96694\nSort 47, -17264, 3.\n-17264, 3, 47\nSort 4, -5, 10, 1155, 0 in descending" -"+ 19 - 6. Suppose 3*z + 3 + 3 = 0. Sort z, 5, b in descending order.\n5, z, b\nLet q(k) be the first derivative of k**2/2 + 8*k - 4. Let f be q(-9). Put 4, f, 1 in decreasing order.\n4, 1, f\nSuppose 0 = -2*s - y - 3, 3*s = y - 5*y + 3. Put 3, -2, s in increasing order.\ns, -2, 3\nLet x = 12 - 121/10. Suppose 0 = -k + 6*k. Sort x, -0.3, k in descending order.\nk, x, -0.3\nLet i be 2/(-9) - 4/(-18). Let r be 1*(-5 - -1 - -3). Sort i, r, 4 in descending order.\n4, i, r\nLet v = -3.2 + 2.4. Sort -5, v, -0.2.\n-5, v, -0.2\nLet q = -0.17 - 5.73. Let x = q - -6. Sort x, 2, -1/3.\n-1/3, x, 2\nLet c(o) = -o + 7. Let h be c(6). Let a = 11 + -8. Suppose 0 = 4*l - 4, 0 = -2*r + r - a*l + 6. Sort r, h, -4 in descending order.\nr, h, -4\nLet q(x) = -x**3 + 8*x**2 - x" -"range 3*o**2 + 11*o**2 + 4*o**2 + o**2 to d*o + p + z*o**2 and give z.\n19\nExpress 19*o - 109 + 109 as m + t*o and give t.\n19\nExpress -3*x + 2*x - 3*x + (1 - 1 - 2*x)*(-8 - 4 - 7) as j + b*x and give b.\n34\nExpress (-1 - 1 - 1)*(-9*i**3 + 0*i**3 - 3*i**3) + i - i + i**3 as p*i**3 + c + v*i**2 + h*i and give p.\n37\nExpress -3 - 11*r**2 + 2*r**2 + r**3 + 2 + 8*r**2 + 2*r in the form m + u*r**2 + o*r + s*r**3 and give s.\n1\nRearrange 14*a - 4*a**3 - 10*a + 2 + 3*a**3 to t*a**2 + c*a + q + r*a**3 and give t.\n0\nExpress -x + 10 + 3*x**3 - 11 + 2*x in the form z*x**3 + t*x**2 + p*x + a and give p.\n1\nExpress -5 + 3 + 2 - 13*s as o + q*s and give q.\n-13\nRearrange p - 20*p**4 + 24*p**4 + 0*p + 2*p**2 - p**3 + 4 - 1 to v*p**2 + m*p + q*p**3 + x*p**4 + y" -"million?\n-10000000\nLet j = 4 - 7. Let w be ((-426)/(-7))/j + (-32)/(-112). Let q be (75/w)/((-1)/504). Round q to the nearest one hundred.\n1900\nLet z = -0.1708105 - -0.17776. What is z rounded to three dps?\n0.007\nLet u = -4510432819.998773 - -4510435118. Let f = 2298 - u. What is f rounded to four dps?\n-0.0012\nSuppose q = 6, 101517 = 4*d + 2*q - 672655. Round d to the nearest ten thousand.\n190000\nLet i = 259.27526221702 + 3.72473723598. Let t = 263 - i. Round t to seven dps.\n0.0000005\nLet j = 2268 + -2268.6351. What is j rounded to one decimal place?\n-0.6\nLet h = -0.203402238 - -0.2034. What is h rounded to seven dps?\n-0.0000022\nLet v = -54763888915155.0000245 + 54763918757289. Let f = -29842127 + v. Let c = f + -7. What is c rounded to six decimal places?\n-0.000025\nSuppose -17 = -4*c + 7. Let j be 8/(-12)*9/(3 - c). Suppose 0*a = -j*a - 4*x + 16680, -4*a - x = -33360. What is a rounded to the nearest one thousand?\n8000\nLet r = -555.613 - -0.613. Let z = r + 555.000611." -"2 + 2*x - 9\nCollect the terms in -437063*j + 145691*j + 145691*j + 19*j**2 - 18*j**2 + 145685*j.\nj**2 + 4*j\nCollect the terms in -79408268625*w**2 - 3 + 3 + 79408268624*w**2.\n-w**2\nCollect the terms in -515*r - 509*r - 511*r - 510*r + 2604*r - 565*r.\n-6*r\nCollect the terms in 18*x**3 + 294 - 18*x**3 - x**3 - 31*x - 294.\n-x**3 - 31*x\nCollect the terms in 2 - 2 + 542*u - 257*u - 266*u.\n19*u\nCollect the terms in 9770028115892 - 9770028115892 - 2*d**2.\n-2*d**2\nCollect the terms in 24698 + 4425 - 49 + 19*p.\n19*p + 29074\nCollect the terms in -6336 + 6355 + 1200*g - 1201*g.\n-g + 19\nCollect the terms in -149607158636 + 149607158636 - 339*s.\n-339*s\nCollect the terms in 2828*f**3 - 1424*f**3 + 684 - 1415*f**3 - 684.\n-11*f**3\nCollect the terms in 7*l - 4*l - l**2 + 10*l + 9*l**2 - 13*l.\n8*l**2\nCollect the terms in 228*o + 18608*o**2 + 54 - 54.\n18608*o**2 + 228*o\nCollect the terms in -555634*r + 6*r**2 - 5 + 555634*r - 2*r**2 - 10.\n4*r**2 - 15\nCollect the terms in 120*g + 20*g**2" -"u**3 + 1. Let w be j(-1). Let i be 3 + -1 - 0 - 0. Let p(b) = -w*b + 0*b**i + b + 1 + 0 + b**2. Determine p(2).\n1\nLet o(v) be the third derivative of -v**6/120 + v**5/15 + v**4/24 - 5*v**3/6 - v**2. Suppose x = 4, 4*f + 2*x - 4 = 5*f. Determine o(f).\n-1\nLet x(l) = -l - 5. Let t be x(-10). Suppose d - 12 = t*d. Let i = d + 4. Let u(f) = -6*f. Determine u(i).\n-6\nLet q(b) = -b**3 - 2*b**2 + b - 4. Let g(a) be the third derivative of a**4/24 + a**3/6 - a**2. Let v be g(-1). Let n = v + -3. What is q(n)?\n2\nLet v = -3 + 0. Let u be 2 - (5 + 6/v). Let i(j) = -6*j. Determine i(u).\n6\nSuppose -2*n = 16 - 6. Let h(y) be the third derivative of -y**5/60 - y**4/4 + y**3/3 + y**2. Calculate h(n).\n7\nLet w = 28 + -23. Let d(u) = u**2 - 7*u + 5. Calculate d(w).\n-5\nLet s(x) be the third derivative of x**6/120 - 7*x**5/60" -"et t = -26 - z. Let u be a(t). Calculate r(u).\n4\nLet u(t) = 7*t**2 + 2. Suppose -4*q + 5*s - 29 = 0, 121*q - 18 = 124*q - 3*s. What is u(q)?\n9\nLet j(h) = -142*h - 313. Let i(t) = 708*t + 1578. Let o(z) = -2*i(z) - 11*j(z). Calculate o(-2).\n-5\nLet y(b) = b**2 + b. Let a = -148 - -154. Let t(z) = -2*z**2 - z. Let l(o) = a*t(o) + 13*y(o). What is l(-6)?\n-6\nLet i(a) be the first derivative of -a**3/3 + 8*a**2 - 33*a - 1197. Calculate i(14).\n-5\nLet m(q) = -q**2 + 7*q + 4*q + 2*q**2 - 7 - 5*q. Suppose -2*y + 0*o - 55 = -5*o, -5*y = -3*o + 128. Let x be (-1)/(3 + 70/y). Give m(x).\n-12\nLet r = 5218 - 5215. Let z(u) = -u + 6. Let h be z(3). Let m(w) = w + 3 - 3 - h. Determine m(r).\n0\nSuppose -3*k = -2*p + 9, -k + 6 - 9 = -p. Let n be 0 + p - 30/(-6). Let m(z) = -3*z + 2. Determine m(n).\n-13\nLet" -"7\nSuppose 5*b + 2*l - 910 - 805 = 0, -4*b + 1385 = -l. Let z = b - -123. List the prime factors of z.\n2, 3, 13\nLet l(y) = -15*y - 72. Let i be l(-5). Suppose 4*g + i*a - 616 = -a, -2*a = -2*g + 300. What are the prime factors of g?\n2, 19\nSuppose 4*s - 18*s = 2688. Let q = -2 - s. What are the prime factors of q?\n2, 5, 19\nSuppose -o = -3*q - 14, 0 = 5*o + 3*q - q - 19. Suppose 80 = 1145*m - 1150*m. What are the prime factors of 598/o - m/40?\n2, 3, 5\nSuppose 16 = c - 3*y - 2, -2*c - 4*y - 14 = 0. Let j be (-14)/21 - 7/c. List the prime factors of j/2 + 1 + (-1316)/(-8).\n2, 41\nLet z = 8350 - -2106. List the prime factors of z.\n2, 1307\nLet u(k) = -72*k + 29*k + 39 + 35 + 120*k. What are the prime factors of u(13)?\n5, 43\nSuppose -12*u - 5 = -7*u, -2*f - 1968 = 2*u. Let s =" -"order.\n-1, -2, -8\nSort 0.5, -1461.6, 3/4 in decreasing order.\n3/4, 0.5, -1461.6\nSort 1, -2, 21.\n-2, 1, 21\nSort -4/3, 189, -0.2 in decreasing order.\n189, -0.2, -4/3\nPut 0.4, -0.1, -0.2, -0.03, -5 in decreasing order.\n0.4, -0.03, -0.1, -0.2, -5\nPut 4/5, 0.5, 1/19, 2/7 in ascending order.\n1/19, 2/7, 0.5, 4/5\nPut 5, -3, 10, 8 in ascending order.\n-3, 5, 8, 10\nSort -77, -2, 3, -4 in increasing order.\n-77, -4, -2, 3\nSort -2/15, -156, -4, -8.\n-156, -8, -4, -2/15\nSort 5, -8, 2 in descending order.\n5, 2, -8\nPut 2, -5, 0 in descending order.\n2, 0, -5\nSort 7, 20, 0.5, 2/3 in decreasing order.\n20, 7, 2/3, 0.5\nSort -0.1, 45, -4 in ascending order.\n-4, -0.1, 45\nPut 497, -0.2, 0.3 in decreasing order.\n497, 0.3, -0.2\nPut -1, 5, -6 in descending order.\n5, -1, -6\nSort -2/29, -36, -1, -4.\n-36, -4, -1, -2/29\nSort -103, -5, 4, -18.\n-103, -18, -5, 4\nSort -13, 4, 27 in descending order.\n27, 4, -13\nSort 4, 45, -5, 0, 7 in decreasing order.\n45, 7, 4, 0, -5\nPut -8.9, -1, -0.4, 4 in" -"*3\nFind the third derivative of 18*t - 18*t + 29*t**5 + 22*t**2 wrt t.\n1740*t**2\nLet c(u) be the second derivative of -u**9/378 + u**5/60 + u**3 - 5*u. Let z(f) be the second derivative of c(f). Find the second derivative of z(i) wrt i.\n-160*i**3\nLet k(z) = -5*z**3 + 6*z**2 + 3*z - 3. Let g(u) = 4*u**3 - 6*u**2 - 2*u + 2. Let s(y) = -6*g(y) - 4*k(y). Find the third derivative of s(c) wrt c.\n-24\nLet s(q) = 0 - q**3 - q - q**2 + 0 + 0*q**2. Let p(i) = 6*i**3 + 5*i**2 + 5*i + 3. Let n(w) = 2*p(w) + 10*s(w). What is the derivative of n(z) wrt z?\n6*z**2\nLet r(i) be the third derivative of -i**5/60 - i**4/8 - 9*i**2. What is the second derivative of r(k) wrt k?\n-2\nLet d(k) be the third derivative of 1/3*k**3 - 1/24*k**4 + 0 - k**2 + 0*k. What is the derivative of d(r) wrt r?\n-1\nSuppose 0*j + 3*j - 12 = -5*p, -j = -3*p - 18. What is the second derivative of j*b**4 + 8*b**3 - 8*b - 8*b**3 wrt b?\n108*b**2\nSuppose -2*l =" -"*o = 3*o + 11. Solve -3 = w*x + 9 for x.\n-2\nSuppose 0*x + 352 = 8*x. Let a = 9 - -15. Let w = x - a. Solve 5*y - w = y for y.\n5\nSuppose 5*j - 3*k + 6*k + 75 = 0, -73 = 4*j + 5*k. Let r be 3*(j/9 - -1). Let z be 2 + 1 - 0/r. Solve 0 = -z*o - 0*o + 15 for o.\n5\nLet r be 6/5*(-240)/(-96). Suppose 15 = 3*w + a - 6, 5*w - 3*a = 21. Let s(p) = -p**3 + 5*p**2 + 6*p + 2. Let q be s(w). Solve -q*n = n + r for n.\n-1\nLet p(m) = 2*m**2 - 2*m - 3. Let l(g) = -2*g**2 + 2*g + 2. Let s(a) = -6*l(a) - 5*p(a). Let i be s(2). Solve -3 = -i*c + 4*c for c.\n1\nLet d = 17 + -12. Let m = 9 - d. Solve m*o = -0*o for o.\n0\nSuppose -2*q + 14 = 3*o - 5, -5*o + 30 = 3*q. Solve 0 = o*x - x for x.\n0\nLet r be" -"1611?\n5271615\nIn base 16, what is -880e + -270?\n-8a7e\nIn base 6, what is -30403332 - 21?\n-30403353\nIn base 9, what is -28466616 + 4?\n-28466612\nIn base 10, what is 504998 - -68?\n505066\nIn base 5, what is -33 + -323302124?\n-323302212\nIn base 2, what is 101 + -111011100101001000001?\n-111011100101000111100\nIn base 16, what is -e6d + -2277?\n-30e4\nIn base 7, what is -10146 + 1054214?\n1044035\nIn base 6, what is 115 + 1240023545?\n1240024104\nIn base 6, what is 30 + -22133325?\n-22133255\nIn base 2, what is 1001000001100100001111110001 - 1?\n1001000001100100001111110000\nIn base 15, what is -12d8376 - -2?\n-12d8374\nIn base 15, what is -e + -15b2d1?\n-15b2e0\nIn base 14, what is -3c8d8cb + -3?\n-3c8d8d0\nIn base 8, what is 6207262 + -30?\n6207232\nIn base 16, what is 1 + 9ff99f?\n9ff9a0\nIn base 4, what is 3022110 - -11?\n3022121\nIn base 13, what is -3 - -191492?\n19148c\nIn base 3, what is -12210110011021221 + 22?\n-12210110011021122\nIn base 11, what is 345250 - 25?\n345226\nIn base 10, what is 50569 + -29?\n50540\nIn base 6, what is 1 + 1414122245?\n1414122250" -".2184 - r. Round p to 3 dps.\n0.019\nSuppose -3*f = -0*f + 25884441. Let s = f + 1928147. Round s to the nearest one million.\n-7000000\nLet k be 1/3 - 66/9. Let j = k + 11. Suppose 0 = j*b + 202222 - 82222. What is b rounded to the nearest one hundred thousand?\n0\nLet y = 21 + -13. Let q = 8.0000037 - y. What is q rounded to six dps?\n0.000004\nSuppose 7*k + 517 = 139. What is k rounded to the nearest ten?\n-50\nLet x be 15/(-1)*536000/6. Round x to the nearest one hundred thousand.\n-1300000\nLet t = -9688.63259826 + 9678.7326. Let b = -9.9 - t. What is b rounded to seven dps?\n-0.0000017\nSuppose 0*u + 8 = 2*u. Suppose -u*y - 88000 = -0*y. Round y to the nearest ten thousand.\n-20000\nSuppose -4*k = k - 4364580. Let f = 1322916 - k. What is f rounded to the nearest one hundred thousand?\n500000\nSuppose 0 = o - 0*o + 5200000. Round o to the nearest one million.\n-5000000\nSuppose -5*g - 5*j - 4755 = -3*g, -4*j + 7098 = -3*g." -"e highest common factor of 1230 and 510.\n30\nCalculate the greatest common factor of 408 and 1088.\n136\nWhat is the highest common divisor of 1196 and 52?\n52\nCalculate the highest common factor of 243 and 1053.\n81\nCalculate the greatest common factor of 1566 and 3.\n3\nWhat is the greatest common divisor of 7345 and 65?\n65\nCalculate the greatest common factor of 108 and 1728.\n108\nCalculate the greatest common divisor of 80 and 5.\n5\nCalculate the greatest common divisor of 551 and 928.\n29\nWhat is the highest common divisor of 17 and 4709?\n17\nWhat is the highest common factor of 16912 and 224?\n112\nCalculate the highest common divisor of 176 and 2772.\n44\nWhat is the highest common divisor of 12977 and 19?\n19\nCalculate the greatest common divisor of 15436 and 8.\n4\nCalculate the greatest common divisor of 299 and 234.\n13\nWhat is the greatest common divisor of 1119 and 24?\n3\nWhat is the greatest common factor of 156 and 52?\n52\nCalculate the highest common factor of 942 and 7222.\n314\nCalculate the greatest common factor of 80 and 380.\n20\nCalculate the highest common" -"se\nSuppose l = -5*a + 5 + 8, -5*l + 23 = 4*a. Let f be ((-4)/a)/(3/(-261)). Suppose 0 = -0*u - 3*u + f. Is u a prime number?\nFalse\nSuppose 0 = -2*f + 3*m + 11, -4*f + 9*f - 2*m = 33. Suppose 0 = a - f + 2. Suppose -4*x - p = -x - 61, -a*x + 3*p = -111. Is x prime?\nFalse\nSuppose -2*t + 5*b + 787 = 0, -4*b = -2*t + 583 + 207. Is t prime?\nTrue\nSuppose 2*r + 3*r = 10. Suppose 2*s - t + r = -3*s, -5*s = t - 2. Suppose z - 6*z + 5*j + 170 = s, z - 31 = 4*j. Is z a composite number?\nTrue\nSuppose 2*b - 220 = -6*m + 2*m, -b = 4*m - 110. Let f = -11 - -14. Is 6/f + b + 1 a prime number?\nTrue\nIs (4 + -2)/((-2)/(-521)) composite?\nFalse\nLet q(i) = -8*i**3 - 2*i - 1. Let g be q(-1). Suppose -3*m - 29 = 4*n, 0 = m + 3*n - 2*n + g. Is (m - 0)*(-4 + 2) a" -"ltiple of 73980 and 924750.\n1849500\nCalculate the lowest common multiple of 347248 and 26.\n4514224\nCalculate the lowest common multiple of 1575 and 50365.\n2266425\nWhat is the lowest common multiple of 199260 and 169740?\n4582980\nWhat is the lowest common multiple of 7360 and 6005024?\n60050240\nCalculate the lowest common multiple of 3 and 79500.\n79500\nWhat is the least common multiple of 296 and 7275162?\n29100648\nCalculate the smallest common multiple of 88998 and 9828.\n1601964\nWhat is the common denominator of 93/36158 and 47/33642?\n608213718\nFind the common denominator of 145/3515388 and -7/8.\n7030776\nWhat is the lowest common multiple of 186 and 7136479?\n42818874\nFind the common denominator of -1/30 and -103/6281830.\n18845490\nCalculate the common denominator of 43/245258028 and 26/21.\n1716806196\nWhat is the smallest common multiple of 154014540 and 10?\n154014540\nWhat is the least common multiple of 3931732 and 4493408?\n31453856\nWhat is the lowest common multiple of 11187363 and 5085165?\n55936815\nCalculate the common denominator of -34/531 and -26/8847699.\n26543097\nFind the common denominator of 155/6552 and 47/245016.\n22296456\nCalculate the lowest common multiple of 33 and 7696245.\n84658695\nWhat is the lowest common multiple of 429750 and 150?\n429750\nWhat" -"ve w*x - 18 - 4 = 0 for x.\n2\nSuppose -3*g - 4*w + 132 = 0, -103 - 42 = -4*g + 5*w. Let j be 3*(-1 + g/12). Solve 15 - 15 = j*x for x.\n0\nSuppose -24 = -2*i - 2*p, 24*i - 11 = 23*i - 2*p. Solve i*v = 21*v - 16 for v.\n2\nLet s(q) = q**2 - 5*q + 4. Let k be (-5)/4*(-20)/5. Let z be s(k). Let p be 3 + 7/((-91)/13). Solve 0 = -p*d + z*d - 10 for d.\n5\nLet h be (0 - 8/12) + 2/(-6). Let v be (-3)/2*(-1 + h*1). Suppose -2*z - v*z = p - 16, 5*z - 36 = 4*p. Solve -z*x - x = -20 for x.\n4\nLet k be -18 + 12 + (0 - -5). Let b be 64/14 - (k + (-8)/(-14)). Solve -b*m = -8*m - 12 for m.\n-4\nLet v(m) = -70*m + 6884. Let s be v(98). Solve s*j + 2*j - 156 = 0 for j.\n6\nLet h = 123 + 52. Let k = 177 - h. Solve k = -s + 3 for s." -"tes before 12:02 AM?\n1:46 PM\nHow many minutes are there between 1:35 AM and 10:52 AM?\n557\nHow many minutes are there between 9:35 AM and 1:44 PM?\n249\nWhat is 496 minutes after 3:32 PM?\n11:48 PM\nHow many minutes are there between 10:15 PM and 8:06 AM?\n591\nWhat is 374 minutes before 10:51 PM?\n4:37 PM\nWhat is 204 minutes after 9:57 AM?\n1:21 PM\nHow many minutes are there between 2:37 AM and 5:51 AM?\n194\nHow many minutes are there between 1:19 AM and 7:13 AM?\n354\nWhat is 195 minutes after 2:46 PM?\n6:01 PM\nHow many minutes are there between 1:38 PM and 10:41 PM?\n543\nWhat is 454 minutes after 2:04 PM?\n9:38 PM\nHow many minutes are there between 6:27 PM and 5:57 AM?\n690\nWhat is 401 minutes before 12:44 AM?\n6:03 PM\nHow many minutes are there between 7:31 PM and 12:40 AM?\n309\nHow many minutes are there between 7:45 AM and 1:56 PM?\n371\nHow many minutes are there between 11:48 AM and 6:19 PM?\n391\nWhat is 647 minutes before 10:38 PM?\n11:51 AM\nWhat is 324 minutes after 6:16 PM?\n11:40 PM\nHow many" -"a composite number?\nTrue\nIs 50633 a composite number?\nTrue\nIs 745 composite?\nTrue\nIs 144961 a prime number?\nTrue\nIs 459874 a prime number?\nFalse\nIs 38491 a prime number?\nFalse\nIs 877 composite?\nFalse\nIs 11269 a prime number?\nFalse\nIs 48163 a composite number?\nFalse\nIs 364801 prime?\nTrue\nIs 241369 composite?\nTrue\nIs 107171 composite?\nFalse\nIs 1217 prime?\nTrue\nIs 646607 prime?\nFalse\nIs 13291 composite?\nFalse\nIs 3691 a prime number?\nTrue\nIs 415238 composite?\nTrue\nIs 65287 a prime number?\nTrue\nIs 14017 composite?\nTrue\nIs 4847 prime?\nFalse\nIs 111919 composite?\nFalse\nIs 13853 a prime number?\nFalse\nIs 2779094 prime?\nFalse\nIs 599213 composite?\nFalse\nIs 571 prime?\nTrue\nIs 15253 composite?\nTrue\nIs 564733 a composite number?\nTrue\nIs 2267 a composite number?\nFalse\nIs 240991 a prime number?\nFalse\nIs 8861 a composite number?\nFalse\nIs 551455 a composite number?\nTrue\nIs 9103 a prime number?\nTrue\nIs 3517 prime?\nTrue\nIs 554747 a composite number?\nFalse\nIs 15073 a composite number?\nFalse\nIs 10123 a prime number?\nFalse\nIs 22978 prime?\nFalse\nIs 30449 a composite number?\nFalse\nIs 790781 a prime number?\nTrue\nIs 2495 composite?\nTrue" -"he common denominator of -42/115 and -52/5?\n115\nCalculate the lowest common multiple of 20680 and 22.\n20680\nCalculate the lowest common multiple of 10 and 42.\n210\nCalculate the smallest common multiple of 392 and 588.\n1176\nWhat is the smallest common multiple of 10 and 9816?\n49080\nCalculate the least common multiple of 24 and 597.\n4776\nWhat is the lowest common multiple of 183 and 9?\n549\nWhat is the smallest common multiple of 12 and 96?\n96\nCalculate the common denominator of 161/2700 and 44/225.\n2700\nWhat is the common denominator of -73/5894 and -87/6736?\n47152\nCalculate the smallest common multiple of 456 and 342.\n1368\nWhat is the least common multiple of 28 and 70?\n140\nWhat is the common denominator of 55/164 and 127/410?\n820\nFind the common denominator of -72/385 and -107/105.\n1155\nWhat is the lowest common multiple of 141 and 6?\n282\nWhat is the common denominator of -101/112 and -27/4?\n112\nWhat is the common denominator of -20/477 and -121/12?\n1908\nCalculate the least common multiple of 8 and 686.\n2744\nWhat is the smallest common multiple of 194 and 18?\n1746\nCalculate the lowest common multiple of 45 and" -"(l) be the third derivative of 29*l**6/120 + l**4/24 - 8*l**3 + 4*l**2. Differentiate a(r) with respect to r.\n87*r**2 + 1\nLet n(o) = 45*o**3 - o + 2*o - 44*o**3. Let m(t) = 2*t**3 + 42. Let s(v) = -m(v) + 5*n(v). What is the first derivative of s(c) wrt c?\n9*c**2 + 5\nLet p(r) = 30*r**2 - 4*r + 225. Let b(h) = 2*h**2. Let g(c) = -7*b(c) + p(c). Find the first derivative of g(i) wrt i.\n32*i - 4\nLet h(a) = -a**3 + a**2 - a - 1. Let z(m) = -44*m**3 - 6*m**2 + 6*m + 20. Let s(y) = -6*h(y) - z(y). Differentiate s(j) with respect to j.\n150*j**2\nLet l(z) = -8*z**3 - 4*z**2 + 7*z - 28. Let a(t) = -7*t**3 - 3*t**2 + 8*t - 27. Let d(c) = 4*a(c) - 3*l(c). Differentiate d(b) wrt b.\n-12*b**2 + 11\nFind the second derivative of 3*z - 21 - 320*z**5 + 0*z + 4*z - z wrt z.\n-6400*z**3\nLet p(y) = -3*y - 3. Let l = 2 - 5. Let x be p(l). What is the third derivative of 2*c**2 + 5*c**2 - 3*c**2 - 2*c**6 +" -"sest to 0.2 in 3, c, 5?\nc\nSuppose -3*n + 0*t = t + 7, 4 = -t. Let a = -1 - -0.9. What is the nearest to -0.1 in -2/3, n, a?\na\nSuppose 3*q + 24 = 7*q. Let o = 4 - q. Let u be (1/5)/(o/2). What is the closest to -1 in 5, 4, u?\nu\nLet g = -0.8 - -0.82. Let m = 2.02 - g. Which is the nearest to -0.2? (a) 0.3 (b) -3 (c) m\na\nLet g be 432/(-693) - 4/14. Let t = g - -29/44. Which is the closest to t? (a) 4 (b) 7 (c) -0.3\nc\nLet x = -0.14 - -9.14. Let w = -13 + x. Let z = 4.6 + -5. Which is the closest to 1/2? (a) -2/25 (b) z (c) w\na\nSuppose -1 = y + q + 1, 0 = -4*y - 2*q. Let l be y/((-10)/(-7)) - 1. Which is the nearest to 0? (a) 2 (b) l (c) -0.5\nb\nSuppose 9*n = -4*l + 4*n - 2, 2*n + 8 = 2*l. Suppose 2*k = 4*k - l. Let p = -0.1 +" -"ow many centuries are there in 71688.99 decades?\n7168.899\nConvert 165772.2 millennia to years.\n165772200\nHow many millilitres are there in twenty-seven halves of a litre?\n13500\nHow many milligrams are there in 0.811686ug?\n0.000811686\nHow many kilograms are there in 406814.1 grams?\n406.8141\nWhat is 0.8460355 millennia in centuries?\n8.460355\nConvert 210.9285ml to litres.\n0.2109285\nWhat is 8795.431ml in litres?\n8.795431\nWhat is 1/20 of a century in years?\n5\nHow many nanograms are there in 3/40 of a microgram?\n75\nHow many millilitres are there in 4512.955 litres?\n4512955\nWhat is three eighths of a week in minutes?\n3780\nWhat is 6/5 of a meter in millimeters?\n1200\nHow many nanograms are there in 7/2 of a microgram?\n3500\nWhat is seven halves of a microgram in nanograms?\n3500\nWhat is fourty-one halves of a tonne in kilograms?\n20500\nWhat is 3/40 of a millisecond in microseconds?\n75\nConvert 0.3015626 kilograms to milligrams.\n301562.6\nHow many seconds are there in 1/10 of a day?\n8640\nConvert 1213.791831 nanoseconds to weeks.\n0.0000000000020069309375\nWhat is 31/5 of a decade in months?\n744\nWhat is 827352.8cm in kilometers?\n8.273528\nWhat is 3/5 of a micrometer in nanometers?\n600\nWhat is eleven" -"1/4\nd\nWhat is the fourth biggest value in 8, 0.4, -6.06, -2, 4.2?\n-2\nWhich is the fourth biggest value? (a) 4 (b) 6.2 (c) -1 (d) 3 (e) -0.6\ne\nWhich is the third smallest value? (a) -42 (b) -75.2 (c) -0.1\nc\nWhat is the fifth biggest value in -2, 0.4, -1/6, 332, -5, -2/7?\n-2\nWhat is the biggest value in -175, 11, -6/11, -0.1?\n11\nWhat is the sixth smallest value in 3, 5, 1.1, -0.28, -3/2, -5?\n5\nWhat is the second smallest value in 1/4, -5, -0.1, -2/3, -2016?\n-5\nWhat is the third smallest value in 5, -1/7, 3/7, 4911, 3?\n3\nWhat is the third biggest value in -0.4, 0.7, 3239?\n-0.4\nWhich is the second smallest value? (a) 17 (b) 84.27 (c) -1/9\na\nWhat is the fifth biggest value in 3, 5, 4, -1899, -9, -5?\n-9\nWhich is the biggest value? (a) 4/9 (b) 5 (c) -0.1 (d) 0.1 (e) 0.5 (f) 0.9\nb\nWhat is the third smallest value in 232, 8/15, -16?\n232\nWhich is the second smallest value? (a) 4 (b) 0.3 (c) 0.7 (d) 1/13 (e) 1\nb\nWhich is the third biggest value?" -"n three letters picked without replacement from kxxxxkkxkx.\n3/10\nTwo letters picked without replacement from {f: 2, m: 4, i: 3, r: 6, g: 3}. What is prob of picking 1 g and 1 r?\n2/17\nThree letters picked without replacement from fffqqfq. What is prob of picking 2 f and 1 q?\n18/35\nFour letters picked without replacement from {m: 3, w: 7, v: 5, a: 1}. Give prob of picking 1 a and 3 m.\n1/1820\nCalculate prob of picking 2 k and 1 o when three letters picked without replacement from {o: 1, k: 2, c: 4}.\n1/35\nThree letters picked without replacement from {v: 4, k: 2}. Give prob of picking 1 v and 2 k.\n1/5\nThree letters picked without replacement from nengnnnnnellgnngne. What is prob of picking 2 n and 1 e?\n45/272\nFour letters picked without replacement from {f: 15, j: 4}. Give prob of picking 2 j and 2 f.\n105/646\nThree letters picked without replacement from ddzzddyydddzzzz. What is prob of picking 2 z and 1 d?\n3/13\nThree letters picked without replacement from fffaffeffefeeeeek. Give prob of picking 2 e and 1 f.\n21/85\nThree letters picked without replacement from" -" k - 93, 55 + 56 = -3*o - 5*k. Let x(t) = -5*t + 6. Is 16 a factor of x(o)?\nFalse\nSuppose 4*q - 3*q - 90 = 5*r, -90 = 5*r + 3*q. Let g be 22/5 + r/45. Suppose 185 = g*h - 15. Does 25 divide h?\nTrue\nLet b(u) = 244*u**2 + 20*u + 74. Is 10 a factor of b(-3)?\nTrue\nSuppose 9*v - 13*v = 12*v - 103584. Is v a multiple of 78?\nTrue\nLet i(l) = -l**3 + 22*l**2 + 82*l - 30. Let z be ((-6)/(-6))/(7/175). Is 29 a factor of i(z)?\nTrue\nLet x = -7547 - -10679. Is x a multiple of 27?\nTrue\nLet f be 36/180 + 20074/5. Suppose 4*o - 5*k - f = 0, -1999 = -5*o - 4*k + 3030. Does 8 divide o?\nFalse\nLet m(k) be the first derivative of -k**3/3 - 3*k**2/2 + 8*k - 9. Let g be m(0). Suppose 2*x = g*x - 450. Does 11 divide x?\nFalse\nSuppose 2*l - 7565 = -8*d + 7*d, 4*l - 15100 = 4*d. Is 105 a factor of l?\nTrue\nSuppose -511903 = -87*o + 452666. Does 246" -"8?\n-46\n-100 (base 2) to base 11\n-4\n-2 (base 8) to base 5\n-2\nConvert 10 (base 6) to base 4.\n12\n-1 (base 11) to base 10\n-1\nb (base 12) to base 4\n23\nWhat is -15 (base 12) in base 7?\n-23\nConvert -3b (base 12) to base 2.\n-101111\n2 (base 5) to base 9\n2\nConvert 2 (base 14) to base 8.\n2\nConvert 8 (base 15) to base 16.\n8\nConvert 1100 (base 2) to base 8.\n14\nConvert -2 (base 8) to base 10.\n-2\nWhat is -167 (base 11) in base 9?\n-235\nWhat is 20 (base 12) in base 3?\n220\nWhat is -1 (base 3) in base 11?\n-1\nWhat is 4 (base 12) in base 14?\n4\nWhat is -5 (base 9) in base 3?\n-12\nConvert -2320 (base 4) to base 8.\n-270\n110 (base 5) to base 12\n26\nWhat is 0 (base 4) in base 14?\n0\n5 (base 7) to base 14\n5\nConvert 11 (base 3) to base 15.\n4\nWhat is -3 (base 6) in base 10?\n-3\nConvert 21 (base 16) to base 10.\n33\nConvert -10 (base 12) to" -" + -1241?\n-1242\nIn base 9, what is 2 - -50?\n52\nIn base 8, what is 2 - -5634?\n5636\nIn base 15, what is -1 - -34?\n33\nIn base 6, what is 2 - -142?\n144\nIn base 7, what is 16 - -13?\n32\nIn base 7, what is -4 + 54?\n50\nIn base 11, what is -4 - 561?\n-565\nIn base 11, what is -10 - 3a?\n-4a\nIn base 7, what is -12 + 4?\n-5\nIn base 6, what is 15314 + -10?\n15304\nIn base 14, what is -94 - 67?\n-11b\nIn base 12, what is -5 + 146?\n141\nIn base 10, what is 4 - 3540?\n-3536\nIn base 3, what is 12 + 2102110?\n2102122\nIn base 10, what is -388 + -4?\n-392\nIn base 4, what is -1133302 - -11?\n-1133231\nIn base 3, what is -1 - -10?\n2\nIn base 6, what is -1045 - -11?\n-1034\nIn base 9, what is -407 + -2?\n-410\nIn base 14, what is 3 + 37?\n3a\nIn base 13, what is -1623 - 2?\n-1625\nIn base 10, what is 0 + -2227?" -"-2\nLet l(x) = 2*x**2 - 148*x - 741. Let v be l(-5). Put -3, 2, -4, -1, v in increasing order.\n-4, -3, -1, 2, v\nLet d = -7 - -11. Let f = -3327.6 - -3328. Sort f, d, 6.5 in ascending order.\nf, d, 6.5\nSuppose -b + 2*g = 0, -b + 0*g + 3 = g. Sort 0, -34, b, 22, 3 in decreasing order.\n22, 3, b, 0, -34\nLet y = -0.0444 - 100.0556. Let d = -110.17 - y. Let a = 10 + d. Sort 0, a, 0.1 in descending order.\n0.1, 0, a\nLet w be (-1)/2*(-9 - 171/(-18))*-4. Sort w, 17, 11 in increasing order.\nw, 11, 17\nLet i(p) = 193*p**2 - 576*p. Let t be i(3). Sort -0.08, t, -1/8 in decreasing order.\nt, -0.08, -1/8\nLet o(z) = z**2 - 46*z - 1497. Let j be o(-22). Put 2, 1, j, -6, 5 in ascending order.\n-6, j, 1, 2, 5\nLet f = -61.78 + -1.22. Let y = f - -64.6. Sort y, -1, -4 in descending order.\ny, -1, -4\nLet n = 604 + -604.0613. Sort n, 1/3, 0 in decreasing" -"\nWhich is bigger: -162 or -169?\n-162\nWhich is greater: 679 or 683?\n683\nIs 171 > 171?\nFalse\nIs 184 <= 184?\nTrue\nWhich is greater: -3/4 or 262/11?\n262/11\nIs 34 bigger than -1/13?\nTrue\nWhich is smaller: -1 or 17.8?\n-1\nWhich is smaller: 1 or 54/121?\n54/121\nWhich is bigger: 8 or 16/7?\n8\nIs -2/27 > 1618?\nFalse\nIs 98 < 4?\nFalse\nWhich is smaller: 11 or -345?\n-345\nWhich is smaller: 28 or 13?\n13\nAre 277 and 124 equal?\nFalse\nWhich is bigger: -0.12 or -584?\n-0.12\nAre 25 and 15 nonequal?\nTrue\nWhich is smaller: 262/13 or 20?\n20\nIs -0.015 greater than -0.4?\nTrue\nIs 3535 greater than or equal to 0.1?\nTrue\nIs -88 greater than -84?\nFalse\nAre 1147/4 and 288 unequal?\nTrue\nIs 2389 > 2392?\nFalse\nIs 1086 less than or equal to 2?\nFalse\nIs -47 >= -43?\nFalse\nIs -45 at most -629/14?\nTrue\nDoes -1216/17 = -72?\nFalse\nAre -1993 and -1993 non-equal?\nFalse\nIs -46/31 < 0?\nTrue\nAre 48/89 and 2 unequal?\nTrue\nWhich is greater: 2650 or 2648?\n2650\nWhich is greater: 21 or -1/92?\n21\nWhich is smaller: 0.1" -"lse\nSuppose 0 = 6*p - 25 + 7. Suppose -6*t = y - 2*t - 99, 0 = y + 2*t - 97. Suppose g = -4*b + y, 0*g - 185 = -2*g - p*b. Is g a multiple of 4?\nFalse\nLet i(n) = -28*n - 1. Let c be i(1). Let d = c - -176. Is 49 a factor of d?\nTrue\nLet n(h) = 22*h**2 - 3*h + 1. Let r be n(-3). Let q = r + -73. Is q a multiple of 27?\nTrue\nLet r(u) = 7*u**2 - 3*u + 4. Let x be r(0). Suppose x*w - 4084 + 947 = -5*q, 5*w = 15. Is q a multiple of 25?\nTrue\nLet h(a) = 3*a**2 - 3*a. Let o(r) = -1. Let w(k) = h(k) - 4*o(k). Let y(f) = f**3 + f**2 - 4. Let g be y(0). Does 24 divide w(g)?\nFalse\nSuppose 15*y - 360 = 19*y. Let n = -74 - y. Is 8 a factor of n?\nTrue\nSuppose -11*t - 25 - 8 = 0. Let x = -3 + t. Is (x/(-4))/(711/(-240) - -3) a multiple of 4?\nTrue\nLet k(m) =" -"se 13, what is -3543 - -6?\n-353a\nIn base 16, what is -1fd88 - 6?\n-1fd8e\nIn base 3, what is -101 - 21220221?\n-21221022\nIn base 12, what is -330550 - -2?\n-33054a\nIn base 16, what is -73b + -30?\n-76b\nIn base 3, what is 12 - -10100220110?\n10100220122\nIn base 3, what is 212 + 122222?\n200211\nIn base 11, what is -2853 - 8?\n-2860\nIn base 5, what is 110 - -42443?\n43103\nIn base 15, what is 2 + -db60?\n-db5d\nIn base 11, what is -52 - 393?\n-435\nIn base 3, what is 2 - -1112221?\n1120000\nIn base 9, what is 4 + -8646?\n-8642\nIn base 12, what is -7b35 + -8b?\n-8004\nIn base 9, what is -4 + -52525?\n-52530\nIn base 9, what is 1413338 - 3?\n1413335\nIn base 2, what is -1000011 + 10100100110000?\n10100011101101\nIn base 2, what is -1001000111110 - -10101?\n-1001000101001\nIn base 6, what is -535542 - 32?\n-540014\nIn base 15, what is 1c88 + 2?\n1c8a\nIn base 13, what is 1 + 91a68?\n91a69\nIn base 2, what is 1 + -1001000100001011?\n-1001000100001010\nIn base 8," -"982*s**2 + 315980*s**2 - 631960*s**2.\n2*s**2\nCollect the terms in -2690846 + 2*t**2 + 2690846.\n2*t**2\nCollect the terms in 11 - 39 + 13 + 15 - 946*i**2.\n-946*i**2\nCollect the terms in 592*o - 36 - 31 + 93 - 26.\n592*o\nCollect the terms in -498 - 3*i - 8*i + i.\n-10*i - 498\nCollect the terms in 78 + 4*h**2 - 24 + 4*h**2 - 9*h**2.\n-h**2 + 54\nCollect the terms in 14*u**2 - u - 9*u**2 + 134 - 67 - 67.\n5*u**2 - u\nCollect the terms in 45391*o + 45390*o - 136173*o + 45394*o.\n2*o\nCollect the terms in 4404 + 771*l - 4404.\n771*l\nCollect the terms in -103 - x + 601 - 1095 + 597.\n-x\nCollect the terms in -25717*k**2 - 9*k**3 + 25719*k**2 + 8*k**3.\n-k**3 + 2*k**2\nCollect the terms in 932*z + 370*z + 2 + 576*z - 479*z.\n1399*z + 2\nCollect the terms in -26*r - 22*r - 22*r - 141*r + 212*r.\nr\nCollect the terms in -2468*m**2 + 825*m**2 + 825*m**2 + 825*m**2.\n7*m**2\nCollect the terms in -59*n**2 + 199*n**2 - 64*n**2 - 79*n**2.\n-3*n**2\nCollect the terms in" -"-2, -4 in descending order.\n10, -2, -4\nPut 11, 0.4, 1 in ascending order.\n0.4, 1, 11\nSort 0, -44, -2, 3 in descending order.\n3, 0, -2, -44\nSort 2, 13, -2, 4.\n-2, 2, 4, 13\nSort -4, 2, 6.\n-4, 2, 6\nSort -5, 3, -15, -2 in ascending order.\n-15, -5, -2, 3\nSort 7, 3/4, -3, 1/8, 5 in descending order.\n7, 5, 3/4, 1/8, -3\nSort 0.2, 13/3, 2 in ascending order.\n0.2, 2, 13/3\nSort -4, 0.06, 3, -3 in descending order.\n3, 0.06, -3, -4\nPut 395, -2/15, -2 in ascending order.\n-2, -2/15, 395\nSort -2/5, 2/29, -2, 5.\n-2, -2/5, 2/29, 5\nSort 58, 3, 0 in descending order.\n58, 3, 0\nPut -9, 2, -1 in descending order.\n2, -1, -9\nSort 1, 0.5, 195, -1.\n-1, 0.5, 1, 195\nSort -6, 5, 4 in descending order.\n5, 4, -6\nSort -47, 20, 2 in ascending order.\n-47, 2, 20\nSort -2/5, 2, -18, -4/3 in decreasing order.\n2, -2/5, -4/3, -18\nSort -5, 1.1, -1/4, 21/5 in ascending order.\n-5, -1/4, 1.1, 21/5\nSort -3, 0, 2, 1656 in increasing order.\n-3, 0, 2, 1656\nPut 4," -") 3\na\nWhich is the closest to 1? (a) -3 (b) 6/5 (c) 1/2 (d) 1/4\nb\nWhich is the closest to 1? (a) 1.5 (b) 3 (c) -31/3 (d) 0\na\nWhich is the closest to 18? (a) -2 (b) 0 (c) 3\nc\nWhat is the nearest to -0.4 in -3, 0.4, 2?\n0.4\nWhat is the closest to 4 in 3, 4, -5, -4?\n4\nWhich is the closest to -2/7? (a) -4 (b) -1/2 (c) 0.59 (d) 4\nb\nWhich is the closest to 0? (a) -0.19 (b) -2 (c) -4\na\nWhat is the nearest to 1 in -2.1, -0.2, 3/2?\n3/2\nWhat is the nearest to 1 in 1/2, -6, -0.05, -0.2?\n1/2\nWhat is the closest to 11 in -0.4, -1/13, -1, -1/5?\n-1/13\nWhich is the closest to -0.2? (a) 0 (b) -3/41 (c) 0.4 (d) -0.3\nd\nWhich is the closest to -0.01? (a) 0.3 (b) -2/9 (c) -2/7 (d) -2/3\nb\nWhat is the closest to -12 in -4, 0, -2?\n-4\nWhat is the closest to -2/5 in 652, 3, -4?\n3\nWhat is the nearest to 0 in -157, 0.05, 3?\n0.05\nWhich is the nearest to" -"et g(n) be the third derivative of -n**5/60 + n**4/3 + 11*n**3/6 - n**2. Let c be g(9). Solve 0 = -4*p + 20, -c*w = 5*p + 9 - 38 for w.\n2\nSuppose 0 = i - 3 - 1. Suppose 8*c + 35 = 13*c. Solve -4*m + i*a - 11 = c*a, -5*m - a = 11 for m.\n-2\nSuppose 7 + 0 = i. Suppose -5*x - i = -22. Let p(v) = -3*v - 2. Let s be p(-2). Solve 8 = -x*w + w, -5*b = -s*w - 21 for b.\n1\nSuppose 27 = 2*m - 5*m. Let w be ((-2)/(-3))/((-2)/m). Solve -2*k + 8 = 4*g - 2*g, k + 12 = w*g for k.\n0\nLet y(g) = g**2 - 2*g - 1. Let o be y(-1). Suppose 26 = 3*d - o*d. Solve 4*p = -2*t + d, 0*p - p = -2*t + 1 for p.\n5\nSuppose -9 = -3*j, 2*o = -0*o + j + 13. Solve -1 = x - 2*t, 4*t + o = 4*x - 0*t for x.\n5\nSuppose -2*x + m - 3*m = -32, -3*x + 44 = 4*m." -"4*t - n*l - 1. Solve w = -t*i + 5, 3*i - 4*w + 3 = -2*w for i.\n1\nLet q(c) = -362*c + 1814. Let i be q(5). Solve -2*z - 3*y = -i*z - 1, 5*z = -3*y + 29 for z.\n4\nLet j = -847 + 851. Suppose -17*r = -174 + j. Solve 3*g + r*x = 5*x - 27, -3*g = -4*x for g.\n-4\nSuppose -2*h + 3 = c + 5, -15 = 5*h. Let w(a) = a**3 - 9*a**2 + 24*a - 122. Let s be w(8). Solve 10 = -4*p + 2*q - c, p + s = q for p.\n-1\nLet s(w) = 7*w + 55. Let m be s(-9). Let i(c) = -10*c - 75. Let h be i(m). Solve 2*n + h*k = -19, -2*k + 6*k = -n - 14 for n.\n-2\nLet o = -6108 - -6113. Solve o*u - 3 - 2 = -5*q, 2*u = q - 13 for q.\n5\nLet y = 19456 - 19454. Solve -y*q - 10 = -2*c, 2*c - 6*q - 27 = -1 for c.\n1\nLet g(x) = -44*x - 1317." -"q be f(p). Solve -3*u + 7 = -h, 4*h + 0 = -q*u + 2 for u.\n2\nLet k = 57 - 53. Solve -k*f + 4*r - 8*r = 0, 2*r + 12 = f for f.\n4\nSuppose 5 = t + u, -6 = -2*u - 0. Solve a - z - 2 = 1, 0 = 5*a + t*z + 20 for a.\n-2\nLet c = 17 - 12. Suppose -4*s + 0 + 0 = 0. Solve c*z - 5*g + 20 = -s*z, -5*z - 5*g = 30 for z.\n-5\nLet k be (-27)/(-12) + (-1)/4. Solve -n - 3*l - k*l - 6 = 0, -12 = -2*n + 2*l for n.\n4\nSuppose 5*u = 4*m - 0 - 5, -4*m + 14 = -2*u. Let r be (-2)/(-8) - 20/16. Let b be r/(1/(-1)) + 3. Solve i - b*f = -3, -4*f - u = i - 0*i for i.\n-3\nLet t = 4 + -7. Let k = 3 + t. Suppose -2*d + 15 = 3*j, -9 = -k*d - 2*d - j. Solve -7 = 4*v - 3*q + d, 6 =" -"-38 at least as big as l?\nTrue\nLet g = -18.9 + 12.9. Is g smaller than -32?\nFalse\nLet v(k) = -k**3 - k**2 - 4*k + 8. Let d be v(-4). Let g = 66 - d. Is g <= -3?\nTrue\nLet s = 1566 + -1577.19. Let z = s - -1.19. Which is greater: -1/5 or z?\n-1/5\nLet k be (-11)/7*(-12 + 5). Suppose -3*l + 4 = -2*l. Suppose -20 = l*p, -3*w - 3*p - 6 = -2*w. Which is greater: w or k?\nk\nLet c = 12 - 9. Let v(t) = 7 - 2 - 3 + 4*t + 2*t**2 - c*t**2. Let g be v(4). Does g = 3/5?\nFalse\nLet t = -0.1 + 3.1. Let m = t - -14. Which is bigger: 0.1 or m?\nm\nLet f be ((-88)/(-28) + -6)/((-44)/14). Is f equal to 0?\nFalse\nLet c = 7 + -15. Let b be (-1830)/c*7/35. Let v = b + -46. Which is smaller: 1 or v?\nv\nLet g = 44 - 25. Which is smaller: 23 or g?\ng\nLet d = -41524/23 + 1805. Which is smaller: d" -"nutes before 1:38 PM?\n7:39 AM\nHow many minutes are there between 12:09 AM and 1:25 AM?\n76\nWhat is 568 minutes after 4:04 PM?\n1:32 AM\nHow many minutes are there between 8:02 PM and 10:08 PM?\n126\nWhat is 588 minutes after 9:43 PM?\n7:31 AM\nWhat is 56 minutes before 12:48 AM?\n11:52 PM\nWhat is 611 minutes before 8:42 AM?\n10:31 PM\nHow many minutes are there between 1:22 PM and 4:59 PM?\n217\nHow many minutes are there between 8:15 PM and 10:05 PM?\n110\nHow many minutes are there between 5:49 PM and 11:13 PM?\n324\nWhat is 453 minutes before 1:10 AM?\n5:37 PM\nWhat is 480 minutes after 5:34 PM?\n1:34 AM\nHow many minutes are there between 11:16 PM and 9:47 AM?\n631\nHow many minutes are there between 9:06 PM and 2:30 AM?\n324\nWhat is 388 minutes before 9:33 AM?\n3:05 AM\nHow many minutes are there between 1:16 PM and 11:41 PM?\n625\nWhat is 399 minutes after 1:15 PM?\n7:54 PM\nWhat is 327 minutes after 7:54 AM?\n1:21 PM\nHow many minutes are there between 7:58 PM and 9:40 PM?\n102\nWhat is 458 minutes after" -" -266, -537, -808, -1079, -1350, -1621?\n-1892\nWhat is next in 41, 47, 63, 95, 149, 231?\n347\nWhat is next in 33, 61, 89, 117, 145, 173?\n201\nWhat is next in 61, 52, 67, 118, 217, 376, 607?\n922\nWhat is next in 2559, 5115, 7671?\n10227\nWhat is the next term in -13, -121, -315, -607, -1009, -1533, -2191?\n-2995\nWhat is next in -29, -69, -113, -161?\n-213\nWhat comes next: 32, 25, 18?\n11\nWhat comes next: -308, -616, -922, -1226, -1528, -1828?\n-2126\nWhat comes next: -13, -2, 43, 140, 307, 562, 923?\n1408\nWhat is the next term in -86, -183, -280, -377?\n-474\nWhat is the next term in -468, -933, -1398, -1863, -2328?\n-2793\nWhat is the next term in -983, -978, -967, -950, -927?\n-898\nWhat is the next term in 208, 412, 610, 802, 988, 1168, 1342?\n1510\nWhat comes next: -3513, -3510, -3507, -3504, -3501?\n-3498\nWhat comes next: -803, -3192, -7165, -12716, -19839, -28528, -38777?\n-50580\nWhat is next in -32, -41, -62, -101, -164, -257, -386, -557?\n-776\nWhat comes next: 11, 82, 273, 644, 1255, 2166?\n3437\nWhat is the next term in 250, 494," -"0000.\n-61000000\nRound -0.3061642 to three decimal places.\n-0.306\nRound 363.8141 to zero decimal places.\n364\nWhat is -0.00022651 rounded to four dps?\n-0.0002\nRound 586.8006 to zero dps.\n587\nRound -5.7676 to one decimal place.\n-5.8\nRound -32417.2 to the nearest 10000.\n-30000\nWhat is -0.02155587 rounded to 2 dps?\n-0.02\nRound 165909940 to the nearest one million.\n166000000\nRound 718.8657 to the nearest integer.\n719\nWhat is 73997800 rounded to the nearest one million?\n74000000\nRound 0.0000544498 to seven dps.\n0.0000544\nRound 3162.512 to the nearest 1000.\n3000\nWhat is 24.4139 rounded to 1 dp?\n24.4\nWhat is -0.0000004866336 rounded to 7 dps?\n-0.0000005\nRound 0.028805 to 3 decimal places.\n0.029\nWhat is -130.91965 rounded to 2 decimal places?\n-130.92\nRound -420.99 to the nearest ten.\n-420\nWhat is -0.000382635 rounded to five dps?\n-0.00038\nWhat is -46097.525 rounded to the nearest 100?\n-46100\nRound 0.000000176076 to 7 decimal places.\n0.0000002\nWhat is 82564.07 rounded to the nearest 10000?\n80000\nWhat is -54942753 rounded to the nearest one hundred thousand?\n-54900000\nWhat is -0.00001182554 rounded to 5 dps?\n-0.00001\nWhat is 12131260 rounded to the nearest one million?\n12000000\nWhat is -1789.958 rounded to the nearest one hundred?" -"*r - 16 = -46. Let c(b) = -4*b**3 - 6*b**2 - 6*b - 6. Give r*c(j) + 6*s(j).\n10*j**3\nLet u(w) be the first derivative of w**2 - 6*w + 32. Let g(v) = v - 1. What is -6*g(n) + u(n)?\n-4*n\nLet k(v) = 5*v**2 + 11*v - 11. Suppose -2 = l + 5*m - 3, -4*l = 5*m + 11. Let g(f) = -f**2 - 2*f + 2. Calculate l*k(a) - 22*g(a).\n2*a**2\nLet n(m) = -3*m**2 - 1. Let i(j) = 7*j**2 + 1. Suppose 83 = 4*b + 95, -3*q + 2*b + 12 = 0. Give q*i(t) + 5*n(t).\n-t**2 - 3\nLet f(v) be the third derivative of 0 - 16*v**2 + 1/6*v**3 - 1/24*v**4 + 0*v. Let y(t) = 2*t - 3. Give -4*f(a) - y(a).\n2*a - 1\nLet g(h) = 7*h**2 - 2*h - 1. Let j(f) = 13*f**2 - 4*f - 2. Let t = -190 + 185. Calculate t*g(k) + 3*j(k).\n4*k**2 - 2*k - 1\nLet t be -2*(-4)/((-32)/100). Let z = -33 - t. Let r(y) = 4*y - 14. Let f(p) = 5*p - 15. Let i(n) = -3*f(n) + 4*r(n). Let c(j)" -"fifths of a litre?\n3600\nConvert 26834.08 days to seconds.\n2318464512\nHow many millilitres are there in 11.9476 litres?\n11947.6\nWhat is seven quarters of a millennium in years?\n1750\nHow many micrometers are there in 6/5 of a centimeter?\n12000\nHow many months are there in 3/5 of a decade?\n72\nHow many millilitres are there in 7/2 of a litre?\n3500\nWhat is 7/2 of a litre in millilitres?\n3500\nWhat is 6/5 of a decade in months?\n144\nWhat is three eighths of a kilometer in meters?\n375\nHow many centuries are there in 44945.83 years?\n449.4583\nHow many years are there in 16215.051 months?\n1351.25425\nConvert 2454.147 kilograms to grams.\n2454147\nHow many kilometers are there in 74074.69um?\n0.00007407469\nHow many litres are there in 989.4619 millilitres?\n0.9894619\nConvert 730.2185 meters to millimeters.\n730218.5\nWhat is 3/5 of a microgram in nanograms?\n600\nHow many centimeters are there in 0.881188 millimeters?\n0.0881188\nWhat is 308.473 centimeters in nanometers?\n3084730000\nWhat is 182.34108 months in decades?\n1.519509\nConvert 41477.37 centuries to millennia.\n4147.737\nWhat is seven eighths of a milligram in micrograms?\n875\nConvert 24204.48 days to hours.\n580907.52\nHow many grams are there in 999.5691ng?\n0.0000009995691" -"= -0.775 - -448.775. Let c = r - 451. What is the second smallest value in -3/10, 3, c?\n-3/10\nLet x = -491.7 + 492. Let b = 2/177 + 344/885. What is the second smallest value in b, 1/2, 0.2, x?\nx\nLet r = 56.63 - 57.03. Which is the third biggest value? (a) -2 (b) -3/7 (c) 0.02 (d) 5 (e) r\ne\nLet q = -192.54 + 148.54. Which is the second smallest value? (a) -0.1 (b) 0.4 (c) q (d) -1/4 (e) 3/11\nd\nLet s = 0.066 - 0.286. Let m = s - -0.52. Which is the second biggest value? (a) m (b) 27 (c) 3\nc\nLet v = 19829 - 19834. Which is the fifth smallest value? (a) 2/55 (b) 0.1 (c) v (d) 1 (e) -9\nd\nLet j = -0.46805 + 0.06805. Let p = -0.08 - 3.92. What is the biggest value in 10, p, j?\n10\nSuppose 0 = -5*j - 2*q - 31, -3*q + 7 = 5*j + 41. Let m = 1.83 - -0.17. Which is the second smallest value? (a) j (b) -8 (c) 1 (d) m\na\nSuppose 0 =" -"4?\nFalse\nIs 2179459 >= 2179460?\nFalse\nWhich is smaller: -1 or 3/621154?\n-1\nWhich is bigger: 3/68557 or -1?\n3/68557\nIs -8826 greater than -8862?\nTrue\nIs -21250 > -21250?\nFalse\nWhich is greater: 0.0308 or 154?\n154\nWhich is bigger: -8223460 or -8223459?\n-8223459\nWhich is smaller: -2 or 4562863?\n-2\nIs -107859 equal to -107860?\nFalse\nAre -368314 and -1473259/4 equal?\nFalse\nIs -1 less than or equal to 1/837090?\nTrue\nIs -486564 less than -486564?\nFalse\nAre -3/6980083 and 1 non-equal?\nTrue\nWhich is smaller: -27626 or -27625?\n-27626\nIs 3584 at least 3541?\nTrue\nWhich is smaller: 195745 or 195744?\n195744\nWhich is smaller: 27.644 or 1/47?\n1/47\nAre -255/22 and -13 non-equal?\nTrue\nWhich is smaller: -58202 or -58200?\n-58202\nWhich is greater: -147 or -277?\n-147\nWhich is bigger: 2189 or 15318/7?\n2189\nIs -15531 less than -15530?\nTrue\nAre -621 and -810 equal?\nFalse\nIs -13265 bigger than -225502/17?\nFalse\nWhich is smaller: -8 or -1219/187?\n-8\nAre 0 and -4/50047 unequal?\nTrue\nIs 10866 at least as big as 1.7?\nTrue\nWhich is bigger: -255.6 or -88?\n-88\nIs 1 at most 3/56308?\nFalse\nWhich is bigger: 0 or -136507?\n0" -"to 2/7 in 2.3, x, 1/3?\n1/3\nLet w = 0.039 + -0.039. Let j = 1058 - 1001. Which is the nearest to w? (a) j (b) -5 (c) 3\nc\nLet s = 1397/24 - 479/8. What is the closest to -30 in 3, s, 1, 0?\ns\nLet b = 2350/17 + -2352/17. What is the nearest to -1 in b, -23.5, -2?\nb\nLet q(l) = 13*l + 182. Let x be q(-14). What is the closest to -0.6 in x, 1.9, 1/6, 2/5?\nx\nLet o be 2/(-5) + (-429)/65. Let i(j) = 6*j + 37. Let z be i(o). What is the closest to 0.27 in 1/2, -1, z?\n1/2\nLet l(i) = 5*i - 16. Let s(n) = 3*n + 3. Let g be s(2). Let k be l(g). Let p = k + -34. What is the closest to 0.1 in 1/12, p, 2?\n1/12\nLet u be 6/8 - (-2)/8. Let i = 468 + -467. Let d = 121 + -1088/9. What is the nearest to i in u, 3, d?\nu\nLet u = 9.183 - 8.383. What is the closest to -4 in 2, -5, u, -4?\n-4" -"and 102?\n204\nWhat is the least common multiple of 6 and 389?\n2334\nCalculate the common denominator of 79/2 and 119/100.\n100\nCalculate the least common multiple of 156 and 4.\n156\nCalculate the common denominator of 149/4860 and 101/900.\n24300\nFind the common denominator of 143/6 and -23/36.\n36\nWhat is the lowest common multiple of 162 and 45?\n810\nCalculate the least common multiple of 3 and 320.\n960\nCalculate the common denominator of 37/5394 and -10/39.\n70122\nWhat is the least common multiple of 20 and 618?\n6180\nCalculate the common denominator of 83/102 and 13/204.\n204\nWhat is the smallest common multiple of 24 and 57?\n456\nFind the common denominator of -47/10 and -20/14229.\n142290\nWhat is the lowest common multiple of 4536 and 3024?\n9072\nWhat is the lowest common multiple of 5 and 7715?\n7715\nCalculate the common denominator of 63/92 and 121/80.\n1840\nCalculate the smallest common multiple of 70 and 7.\n70\nWhat is the common denominator of -63/100 and -73/1100?\n1100\nWhat is the common denominator of 77/144 and -23/6?\n144\nCalculate the least common multiple of 2610 and 261.\n2610\nCalculate the least common multiple of 1 and" -"he smallest value in -10, 4, p, 7/10?\n-10\nLet s = 23/21 + -10/7. Let b = -211211 - -211325. What is the biggest value in 1/8, s, b?\nb\nLet m = 190 - 189. Let j = -53.9 - -54. What is the third biggest value in m, 0, j?\n0\nLet p = 4.5 + 0.5. Let t = 86522 - 86522.3. What is the third smallest value in 1/3, t, p?\np\nLet h = -812.7 - -813. Let b = 0.01 + 1.99. What is the fourth biggest value in -3, b, 3, h?\n-3\nLet t = -164 - -134. Let f = t + 27. Which is the smallest value? (a) f (b) -2/3 (c) -2/15\na\nLet j = 119.6 + -118. Let m = 1.8 - j. What is the fourth smallest value in -5, m, -1/3, 0.1?\nm\nLet k = 0.18 + 0.007. Let n = k + 1.013. Which is the second smallest value? (a) n (b) -0.5 (c) -4/7\nb\nLet f = -2822 - -2817. Which is the smallest value? (a) f (b) 18.4 (c) 4 (d) -0.2\na\nLet l = 8 - 10." -"1\nIs -1/9 equal to -1?\nFalse\nIs 14074 greater than 14074?\nFalse\nWhich is smaller: 34 or 8?\n8\nIs -0.1 at most -0.1?\nTrue\nIs -1 at least 2/37809?\nFalse\nAre 1 and -7/73 non-equal?\nTrue\nIs 1594 <= 1595?\nTrue\nIs -9 < -7?\nTrue\nIs -9/10060 bigger than -1?\nTrue\nWhich is smaller: 0.299 or 1/4?\n1/4\nWhich is smaller: 95/4 or 25?\n95/4\nWhich is bigger: 0.144 or 67?\n67\nWhich is bigger: 1 or -28.9?\n1\nWhich is smaller: 205 or -5?\n-5\nWhich is greater: 27 or 107/4?\n27\nIs -740/27 equal to -28?\nFalse\nWhich is smaller: 5466/7 or 780?\n780\nWhich is smaller: -4/15 or -23?\n-23\nWhich is smaller: -74 or -147?\n-147\nIs -2/5 greater than or equal to -2666/3?\nTrue\nIs 12/143 > 0?\nTrue\nWhich is greater: 25 or 16?\n25\nWhich is bigger: -83 or -82?\n-82\nIs -0.0401 >= -0.3?\nTrue\nIs -2/11 <= -118/13?\nFalse\nWhich is greater: -72/25 or 0?\n0\nWhich is smaller: 9373 or 9374?\n9373\nIs 1 not equal to -23/523?\nTrue\nIs -1/592 bigger than 0.1?\nFalse\nIs -66 smaller than -86?\nFalse\nWhich is bigger: -19/5 or 6?" -"z*d + 3*d - 95. List the prime factors of d.\n19\nSuppose -3*p + 2*n + 5 + 4 = 0, -2*p = 5*n - 6. Suppose -17 = -p*i - 5. Suppose 0 = -f - 4*s + 6, 0*s = i*s. What are the prime factors of f?\n2, 3\nLet r(y) = y**2 + 1. Let n(z) = -5*z**2 + 3*z - 7. Let u(c) = -n(c) - 4*r(c). What are the prime factors of u(-3)?\n3, 7\nList the prime factors of 1*51/9*3.\n17\nSuppose 0 = -3*x + 101 - 2. Suppose -2*i - 13 = -3*i - 2*a, 3*i - 3*a = -6. Suppose -3*z + x = -i. List the prime factors of z.\n2, 3\nSuppose -184 = -0*t - 4*t. Suppose 5*o = y - 34 + 4, o - t = -5*y. List the prime factors of y.\n2, 5\nLet o be (3/(-4 + 3))/(-1). Let n be -1*(-1 + o) - 4. Let k = n - -28. List the prime factors of k.\n2, 11\nSuppose 9*a - 120 = 5*a. List the prime factors of a.\n2, 3, 5\nWhat are the prime factors of" -"o and p.\n880\nLet w(z) = 218*z**3 + 7*z**2 + 7*z + 5. Let m be w(-2). Let j = m - -3535/2. Let r = -38505/286 - -1713/13. Calculate the common denominator of j and r.\n22\nLet h be (-6)/(-27) - 212/(-18). Suppose 3*n = 6*n - h. Find the common denominator of -40/29 and ((-1356)/180)/(n/(-10)).\n174\nLet r = 498 + -476. Calculate the smallest common multiple of r and 55.\n110\nSuppose -4*d - 52 - 272 = -3*m, 0 = -d + 4*m - 94. Calculate the common denominator of (22/363)/((-8)/d) and 35/6.\n66\nSuppose -2*m - 3 = 1, -4*l + 214 = 5*m. What is the least common multiple of l and 7?\n56\nSuppose 204 = 4*m - 5*x, -5*x - 32 = -m + 4. What is the smallest common multiple of 88 and m?\n616\nLet c = -5 + 2. Let p(u) = -u**2 - 5*u - 2. Let y(j) = -j**3 - 22*j**2 + 25*j + 54. Calculate the smallest common multiple of y(-23) and p(c).\n8\nCalculate the common denominator of -2 + 10239/804 + -11 and -21/22.\n2948\nLet h = -10744/3 - -1085279/303. What" -"rs of 383305?\n5, 13, 5897\nWhat are the prime factors of 14521529?\n11, 19, 69481\nWhat are the prime factors of 13172225?\n5, 11, 19, 2521\nWhat are the prime factors of 28115938?\n2, 751, 18719\nWhat are the prime factors of 151392?\n2, 3, 19, 83\nList the prime factors of 234063.\n3, 8669\nWhat are the prime factors of 30609362?\n2, 7, 137, 15959\nWhat are the prime factors of 1150816?\n2, 35963\nList the prime factors of 26631727.\n113, 235679\nList the prime factors of 6050021.\n73, 179, 463\nList the prime factors of 31678.\n2, 47, 337\nList the prime factors of 3049796.\n2, 101, 7549\nWhat are the prime factors of 68169?\n3, 31, 733\nWhat are the prime factors of 20165362?\n2, 7, 149, 1381\nList the prime factors of 954861.\n3, 318287\nWhat are the prime factors of 9337481?\n607, 15383\nList the prime factors of 1807397.\n1807397\nList the prime factors of 83530.\n2, 5, 8353\nWhat are the prime factors of 485644?\n2, 317, 383\nList the prime factors of 36319163.\n37, 981599\nList the prime factors of 231992.\n2, 47, 617\nList the prime factors of 738263.\n738263\nWhat" -"for v.\n-8\nSolve 3022*f = -303*f - 4504 + 52381 + 141648 for f.\n57\nSolve -1211*t + 95464 = -26783 + 13257 for t.\n90\nSolve -167931*t + 167875*t = -784 for t.\n14\nSolve -200031*j + 199982*j = -392 for j.\n8\nSolve -2565*u + 2531*u - 1462 = 0 for u.\n-43\nSolve 1405*n - 3671*n - 41500 = 31012 for n.\n-32\nSolve 0 = 296*o - 1246*o + 2755 + 6745 for o.\n10\nSolve 301*z - 7642 = 7709 for z.\n51\nSolve -200616 = 1212*n - 3784*n for n.\n78\nSolve 40*w + 1330 - 1894 = 87*w for w.\n-12\nSolve -1150*a + 9746 + 14563 = -26803 - 30538 for a.\n71\nSolve -1548*u = 447*u + 247*u for u.\n0\nSolve -210*o - 343*o = 56*o + 53*o - 3972 for o.\n6\nSolve 236214 = 23952*r - 184061 - 561757 for r.\n41\nSolve -4285*z + 1577 = -4348*z - 1825 for z.\n-54\nSolve -632268*z - 4900 = -632128*z for z.\n-35\nSolve 144266 = -4621*d - 117225 - 89798 + 46303 for d.\n-66\nSolve 8661*m + 71898 - 491094 - 550836 = 0 for m." -"ber?\nFalse\nSuppose -6*r - 1191416 = -18*r + 4*c, -5*r + 4*c + 496407 = 0. Is r prime?\nFalse\nLet k be (-4)/(-3 + -1)*(43 + 0). Let q = k - 49. Is ((-3)/9 + 5770/q)/(-2) composite?\nTrue\nLet l be (0 - (-2 + 10*2)) + -2. Let y = 417 - l. Let v = y + 194. Is v composite?\nFalse\nSuppose 2*x + 2*m - 14 = 0, 4*x - 1 + 8 = 3*m. Let l be 12/(-8)*4/(-3)*x. Suppose c - 629 = 4*r, -4*c - l*r = -7*c + 1911. Is c composite?\nFalse\nSuppose w = -2*i + 36199, 9*w = 5*w - 4*i + 144784. Is w a composite number?\nTrue\nLet z = -755 + -1918. Let h = -1054 - z. Is h prime?\nTrue\nLet p = 676173 + -70864. Is p composite?\nFalse\nLet j(l) = 8*l**2 + 3*l - 8. Let s be j(-4). Suppose 162 = -3*r - 2*k - 0*k, -5*k + s = -2*r. Let m = 11 - r. Is m a composite number?\nTrue\nSuppose -93*l + 90*l = 3*u - 20136, 3*l - u - 20124 = 0." -" in base 9?\n-5347\nWhat is -232215 (base 7) in base 13?\n-15c30\nWhat is 144 (base 8) in base 16?\n64\nConvert -101001000110110 (base 2) to base 14.\n-7954\nWhat is -21000 (base 4) in base 3?\n-210100\nConvert 112035 (base 6) to base 11.\n7181\n-35170 (base 10) to base 9\n-53217\nConvert -196 (base 16) to base 7.\n-1120\nWhat is 348 (base 15) in base 5?\n10433\nWhat is 11312000 (base 4) in base 5?\n1231221\nWhat is 2a1b (base 14) in base 7?\n30534\n1011 (base 4) to base 10\n69\n-4087 (base 10) to base 3\n-12121101\nWhat is -11111011 (base 2) in base 14?\n-13d\nConvert -1112312 (base 4) to base 6.\n-41422\n216112 (base 7) to base 6\n452311\nConvert 15701 (base 11) to base 7.\n121363\nConvert 7871 (base 13) to base 4.\n10012313\nWhat is -1243 (base 5) in base 9?\n-240\nConvert -221 (base 11) to base 9.\n-324\nConvert -768 (base 14) to base 2.\n-10110111000\nWhat is -13531 (base 14) in base 6?\n-1004411\n-333 (base 13) to base 7\n-1413\nConvert 364 (base 7) to base 6.\n521\nWhat is -11010012 (base 3) in base 4?" -" Which is smaller: -18 or p?\np\nLet s(o) = o**3 - 6*o**2 - 44*o + 20. Let j be s(10). Let l be (-16)/(-40) + (-12)/j. Is 15/41 != l?\nTrue\nSuppose 2*k + 4*q - 1 = 17, k - 2*q = -7. Let c be ((-2255)/55)/(0 - k*-5). Let a = -1527/185 - c. Is -1 > a?\nFalse\nLet h = -2874066/17 + 169164. Which is smaller: h or -1/2?\n-1/2\nLet r = 1.7 - 1.48. Let p = 0.0197 + -0.0197. Is r greater than or equal to p?\nTrue\nLet b = 61.9 - 87.6. Let s = b + 25.6. Are -1/16 and s unequal?\nTrue\nSuppose -3*w - 2*l + 34 = 0, -2*w - 7*l + 5*l = -24. Let z be 2/w - (-8 - 11172/(-35)). Which is bigger: z or -312?\nz\nLet r = 3973/118944 + 1/2016. Let k(y) = y**2 - 54*y. Let f be k(54). Is r less than or equal to f?\nFalse\nLet v = -0.151 + -14.849. Let k = -4 + -19. Let b = v - k. Is b less than or equal to 2/5?\nFalse\nSuppose -4*s + d" -"1, 33119, 45089?\n921*t**2 - 3*t - 19\nWhat is the z'th term of 4847, 9700, 14553, 19406?\n4853*z - 6\nWhat is the z'th term of 121, 134, 139, 136, 125?\n-4*z**2 + 25*z + 100\nWhat is the j'th term of 179, 755, 1725, 3089, 4847, 6999?\n197*j**2 - 15*j - 3\nWhat is the v'th term of 164162, 164168, 164178, 164192, 164210, 164232, 164258?\n2*v**2 + 164160\nWhat is the w'th term of 197499, 395007, 592515, 790023?\n197508*w - 9\nWhat is the h'th term of 367, 571, 809, 1087, 1411, 1787, 2221, 2719?\nh**3 + 11*h**2 + 164*h + 191\nWhat is the u'th term of 83128, 83107, 83076, 83029, 82960, 82863, 82732, 82561?\n-u**3 + u**2 - 17*u + 83145\nWhat is the l'th term of -2516, -4932, -7348, -9764, -12180, -14596?\n-2416*l - 100\nWhat is the q'th term of 134790, 269566, 404328, 539070, 673786?\n-q**3 - q**2 + 134786*q + 6\nWhat is the q'th term of 1278, 1751, 2224, 2697?\n473*q + 805\nWhat is the c'th term of 199, 616, 1253, 2110, 3187, 4484, 6001?\n110*c**2 + 87*c + 2\nWhat is the q'th term of 287, 994, 2171, 3818, 5935," -"ate the remainder when 16810 is divided by 2399.\n17\nCalculate the remainder when 2001 is divided by 167.\n164\nCalculate the remainder when 5975 is divided by 1482.\n47\nWhat is the remainder when 7636 is divided by 1686?\n892\nWhat is the remainder when 26318 is divided by 26175?\n143\nWhat is the remainder when 213427 is divided by 441?\n424\nCalculate the remainder when 6534 is divided by 2175.\n9\nCalculate the remainder when 358304 is divided by 13.\n11\nWhat is the remainder when 2184 is divided by 121?\n6\nWhat is the remainder when 896 is divided by 41?\n35\nCalculate the remainder when 3592 is divided by 3281.\n311\nCalculate the remainder when 63222 is divided by 1470.\n12\nCalculate the remainder when 262 is divided by 7.\n3\nCalculate the remainder when 531198 is divided by 256.\n254\nCalculate the remainder when 10004 is divided by 386.\n354\nCalculate the remainder when 8877 is divided by 1640.\n677\nCalculate the remainder when 59208 is divided by 191.\n189\nWhat is the remainder when 1213 is divided by 54?\n25\nCalculate the remainder when 29939 is divided by 1035.\n959\nWhat is the remainder" -"e cube root of 2405770 to the nearest integer?\n134\nWhat is the cube root of 2125627 to the nearest integer?\n129\nWhat is the third root of 8650651 to the nearest integer?\n205\nWhat is the fifth root of 19395593 to the nearest integer?\n29\nWhat is 6901889 to the power of 1/4, to the nearest integer?\n51\nWhat is 122710 to the power of 1/3, to the nearest integer?\n50\nWhat is 367610 to the power of 1/3, to the nearest integer?\n72\nWhat is the third root of 854321 to the nearest integer?\n95\nWhat is the fifth root of 684906 to the nearest integer?\n15\nWhat is 584265 to the power of 1/3, to the nearest integer?\n84\nWhat is the sixth root of 47411 to the nearest integer?\n6\nWhat is the fifth root of 13236571 to the nearest integer?\n27\nWhat is 985915 to the power of 1/8, to the nearest integer?\n6\nWhat is the cube root of 1432210 to the nearest integer?\n113\nWhat is 258698 to the power of 1/9, to the nearest integer?\n4\nWhat is 351036 to the power of 1/2, to the nearest integer?\n592\nWhat is 156560" -"et h = v + 132.8. Sort b, h, 0 in increasing order.\nb, h, 0\nLet w = 567 + -563. Put -5, 0, -4, w in increasing order.\n-5, -4, 0, w\nLet q be ((-3)/(-2) + -1)*2. Let j(m) = -8*m + 23. Let c be j(3). Let t be ((-13)/(-39))/(c*q). Sort -4, t, 5/4 in descending order.\n5/4, t, -4\nSuppose 3*m + 4*b + 442 = -2*m, 4*m + 2*b + 356 = 0. Let a = m + 90. Sort 2, a, 3, -3.\n-3, a, 2, 3\nLet n = -551/7 + 79. Let f = 0.2 - 0.4. Let o = 3593 + -35929/10. Sort f, n, o in increasing order.\nf, o, n\nLet l = -3 + 8. Let p = -877 + 879. Sort 7, l, p in increasing order.\np, l, 7\nLet n be 8 + (-17)/((-34)/(-20)). Put n, 13, -5 in increasing order.\n-5, n, 13\nSuppose 12*g - 10*g - 5 = l, g - 2*l = 10. Put 1, -2, -5, g in descending order.\n1, g, -2, -5\nLet f = 3/338 + -47/24336. Sort 4/5, 2/5, f.\nf, 2/5, 4/5\nLet c(q)" -"6)/(36/(-21)).\n564\nLet s = 6088243/7339464 - -2/83403. Calculate the common denominator of s and 3/32.\n352\nLet f = 16618 - 398887/24. Find the common denominator of f and -101/112.\n336\nWhat is the lowest common multiple of 2*(7/2 + (-2)/(-2)) and (2 + -1)*(52 + -1)?\n153\nSuppose 19*c + 120 = 25*c. What is the smallest common multiple of 100 and c?\n100\nLet w(s) = -s**3 - s**2 + 2*s - 6. Let p be (-18)/6*(1 + 0). What is the lowest common multiple of w(p) and 21?\n42\nLet n = 6 + -4. Suppose 0 = -n*s - 6. Calculate the common denominator of 37/10 and 38*(s - (-34)/8).\n10\nLet v = -85 + 87. What is the common denominator of 37/12 and v*((-4)/((-144)/67) - -1)?\n36\nLet v = -272 - -1643/6. Calculate the common denominator of 66/15*(7 + (-1413)/204) and v.\n102\nLet t = 15 + -9. Let s(g) = -2*g + 16. What is the smallest common multiple of s(t) and 5?\n20\nSuppose 4 = 3*d - 5. Let j be (1/d)/(10/(-150)). Let c = 2 - j. What is the lowest common multiple of c and 11?" -". Let n be l(7). Suppose 4*c + 2*c = 18. Suppose -2*a - 8 = 0, -2*j - c*a = j. Solve -2*z = j + n for z.\n-4\nLet y be (6/(-24))/(2/(-8)). Let i be (8/6)/((-2)/(-9)). Suppose 0 = -4*s + s + 3*m + i, 2*m = 5*s - 16. Solve -s*l = -y - 7 for l.\n2\nLet f be (-104)/(-39) - 2/3. Solve -7*v - 5 = -f*v for v.\n-1\nLet a(o) = o**2 + 23*o - 101. Let q be a(4). Solve -10*l = -q*l for l.\n0\nLet n(w) = 2*w**2 + 13*w - 5. Let u = -4 + -3. Let o be n(u). Solve -2*r = o*r - 8 for r.\n2\nSuppose 0 = j - 2 - 7. Let i(c) = -5*c - 41. Let k(s) = -1. Let d(o) = i(o) - 5*k(o). Let a be d(-8). Solve -j - 11 = -a*g for g.\n5\nLet l = -968 + 979. Solve l - 3 = 2*h for h.\n4\nSuppose -2*m - 81 = -29*m. Solve p = -0*p - m for p.\n-3\nLet l(u) = -u**2 + 7*u + 2. Let" -" -0.36 + c. Let n = s - 14.992. Round n to 3 dps.\n0.008\nLet q = 1592 - 1711.9. Let r = -159 - q. Round r to the nearest 10.\n-40\nLet h(f) = -f. Let v be h(1). Let s be (0 + (-4 - 0))*v. Suppose -s*z + 6*z = 12800. Round z to the nearest one thousand.\n6000\nLet c = 7.18691278 + -1.18691244. Let w = -6 + c. What is w rounded to seven dps?\n0.0000003\nLet s = -162905.9977 + 162918. Let i = 46.00242 - s. Let u = -34 + i. What is u rounded to 4 dps?\n0.0001\nSuppose -5*j - n - 4*n = 0, 3*n = j - 12. Let o be 15*(-350)/j*8. Round o to the nearest ten thousand.\n-10000\nLet u = 0.1391 - -8.4109. What is u rounded to the nearest integer?\n9\nLet d = 97.3 + -6.3. Let w = -356533.0178 - -356442. Let b = w + d. Round b to three decimal places.\n-0.018\nLet f = -1275.113 - -1275. Round f to 1 dp.\n-0.1\nLet z = 14.56 + -15.95984. Let s = 1.4 + z. Round" -" by p?\n3\nSuppose 38*d = 35*d - 2*o + 43078, 4*o + 57484 = 4*d. Calculate the remainder when d is divided by 22.\n20\nLet j(i) = 48*i**2 - 39*i - 363. Calculate the remainder when j(-8) is divided by 24.\n21\nSuppose 0*u - 2*u = -10. Suppose 0 = -5*i - 549 - 461. Let h = 221 + i. Calculate the remainder when h is divided by u.\n4\nLet f(c) be the third derivative of -c**5/60 + 3*c**4/8 + 41*c**3/6 - 76*c**2. Calculate the remainder when f(11) is divided by 11.\n8\nSuppose 0 = 8*c - 90 + 58. Calculate the remainder when 84 - -6*(-4)/(-8) is divided by c*((-595)/(-126) + (-2)/9).\n15\nWhat is the remainder when 266 is divided by (-273)/(-52) - ((-6)/(-20))/((-6)/(-5))?\n1\nLet u = 347 - 99. Let j = u - 186. Calculate the remainder when j is divided by 14/21*(-3)/(-2) - -10.\n7\nLet m(s) = -177*s + 936. Suppose 3*t = -3*g + 606, -3*g = t - 0*g - 202. Calculate the remainder when t is divided by m(5).\n49\nLet y(t) = 15*t**2 - 76*t - 7. Let c be y(7). Calculate the" -"- 28. Calculate the remainder when (12/(-18))/(g/402) is divided by 35.\n32\nSuppose 5*o = -2*q + 311, -3*q - 216*o = -208*o - 469. Let a(l) = -l**2 + l + 50. Calculate the remainder when q is divided by a(0).\n43\nLet a = 529 + -527. Suppose -a*i + 5*h = -300, -h + 6 = 2. What is the remainder when i is divided by 23?\n22\nWhat is the remainder when 957 is divided by (8 + (-312)/36)*-87?\n29\nLet f be 9024/(-64)*1*(-1)/3. Let j = 305 - f. Calculate the remainder when j is divided by 69.\n51\nSuppose 16*b - 10095 = 11*b - 4*x, 0 = -4*b + 5*x + 8035. Calculate the remainder when b is divided by 12.\n11\nLet i(u) = 3*u + 43. Let h be i(-13). Suppose 0 = -2*q - 5*v + 16, 2*v - h = 3*v. What is the remainder when 52 is divided by q?\n16\nLet r(v) = -v**3 - 14*v**2 + 9*v + 27. Let g be r(-7). Let x = g - -427. What is the remainder when 154 is divided by x?\n10\nSuppose 2*j - 2 = 2*g," -"p(b) be the first derivative of -1/3*b**s - 1/2*b**2 + 2*b - 9. Factor p(z).\n-(z - 1)*(z + 2)\nLet s(n) be the second derivative of n**5/100 - n**4/30 - 2*n**3/15 + 4*n**2/5 - 7*n - 3. Suppose s(w) = 0. What is w?\n-2, 2\nSuppose 0 = -2*o - l - 1, l = -5. Let y = 3/3778 + 18869/26446. Determine s so that -y*s**o - 2/7*s + 3/7 = 0.\n-1, 3/5\nLet r = 45095/7 + -6433. Factor 0*o + r*o**2 + 96/7*o**3 + 36/7*o**4 + 0.\n4*o**2*(3*o + 4)**2/7\nLet d = 3 - -1. Let x(k) = -k**2 + 28*k + 32. Let m be x(29). Suppose u**m + 1 + 3 - d - u**2 = 0. What is u?\n0, 1\nLet a(d) be the third derivative of d**6/72 - 4*d**5/9 + 65*d**4/72 + 25*d**3/3 - d**2 + 14. Factor a(u).\n5*(u - 15)*(u - 2)*(u + 1)/3\nLet h(b) be the first derivative of -4*b**5/5 - 23*b**4 - 172*b**3/3 - 42*b**2 + 42. What is c in h(c) = 0?\n-21, -1, 0\nLet o(j) = j**2 + 20*j - 49. Let z(h) = -h**2 - 41*h + 97." -" o(h) = 6*h**3 + 5*h**2 - 14*h - 10. Let k(x) = -x**3 - x**2 + 3*x + 2. Calculate -11*k(n) - 2*o(n).\n-n**3 + n**2 - 5*n - 2\nSuppose 0 = -2*y + 18 + 4. Suppose -4*w = y - 3, 2*d + 6 = -5*w. Let j(o) = 1 + 2 + o - 3*o + 0 + o**d. Let l(z) = 2*z**2 - 3*z + 4. Give -3*j(q) + 2*l(q).\nq**2 - 1\nLet o(n) = -12*n**3 + 3*n**2 - 3*n - 3. Let s(f) = f**3 + f**2 - f - 1. What is -2*o(p) + 6*s(p)?\n30*p**3\nLet l(v) = v**2 - 1. Suppose 4*r = 3*r + 4. Let a(n) = -n**2 + n + 4. Give r*l(p) + a(p).\n3*p**2 + p\nLet h(z) = -2*z + 7. Let y(i) = -i + 6. Suppose -7*j = 6 - 27. What is j*h(q) - 4*y(q)?\n-2*q - 3\nLet h(n) = 8*n + 4. Let d(o) = 3*o + 1. Give -7*d(k) + 2*h(k).\n-5*k + 1\nLet q(o) = 3*o**3 - 4*o**2 - o - 4. Let n(p) = -2*p**3 + 3*p**2 + 3. Give 4*n(v) + 3*q(v).\nv**3 -" -"*q = -190*y - 55. Suppose 2*o - o - 2 = 0. Suppose 12 = -2*h + 4*d, 2*h - 1 = -d + 2. Solve -c - o*c + y = h for c.\n3\nSuppose 0 = -456*n + 474*n - 36. Solve -h = n*h for h.\n0\nSuppose 13 + 50 = 21*b. Solve 4 = b*x - 4*x for x.\n-4\nLet o be (3 - (-6)/(-2))/(-3 + 2). Solve o = -j - 0*j + 1 for j.\n1\nSuppose -2*f = 0, -5*n + 0*f = -3*f - 305. Suppose 3*k - 84 - 19 = 4*c, -2*k - 5*c = -n. Solve -4*l - k + 13 = 0 for l.\n-5\nSuppose -4*w + 2*w = -6*w. Suppose -4*p - 5 + 13 = w. Solve 8 = 2*d + p for d.\n3\nSuppose -4*h = h + x + 15, -9 = 3*h + 4*x. Let i be (-3)/5*(-90)/54. Let m be -2 + i - (h + 2). Solve -z + 0*z - 5 = m for z.\n-5\nLet x = 13 + -11. Let h = x + -2. Suppose w + h*w = 5." -"1/10, to the nearest integer?\n2\nWhat is 971 to the power of 1/7, to the nearest integer?\n3\nWhat is the square root of 25570 to the nearest integer?\n160\nWhat is 48040 to the power of 1/3, to the nearest integer?\n36\nWhat is 2286 to the power of 1/2, to the nearest integer?\n48\nWhat is the third root of 25146 to the nearest integer?\n29\nWhat is 70701 to the power of 1/9, to the nearest integer?\n3\nWhat is the fifth root of 62588 to the nearest integer?\n9\nWhat is the ninth root of 1562 to the nearest integer?\n2\nWhat is the third root of 1331 to the nearest integer?\n11\nWhat is the square root of 16212 to the nearest integer?\n127\nWhat is the cube root of 12348 to the nearest integer?\n23\nWhat is the cube root of 1182 to the nearest integer?\n11\nWhat is the cube root of 536 to the nearest integer?\n8\nWhat is 1134 to the power of 1/8, to the nearest integer?\n2\nWhat is the square root of 78940 to the nearest integer?\n281\nWhat is 21815 to the power of 1/3, to" -"multiple of 27876 and 621?\n250884\nWhat is the common denominator of 51/5956 and 17/2978?\n5956\nFind the common denominator of -141/6380 and 91/540.\n172260\nFind the common denominator of -15/107 and 51/9362.\n1001734\nWhat is the common denominator of 133/108 and 64/2727?\n10908\nWhat is the common denominator of -55/43608 and 61/138?\n43608\nCalculate the common denominator of -89/932 and -17/400.\n93200\nCalculate the lowest common multiple of 325422 and 3222.\n325422\nWhat is the lowest common multiple of 629468 and 629468?\n629468\nCalculate the common denominator of -89/71535 and 23/786885.\n786885\nCalculate the lowest common multiple of 43590 and 79915.\n479490\nFind the common denominator of 53/39440 and 149/144.\n354960\nFind the common denominator of -89/51446 and -37/8870.\n257230\nWhat is the least common multiple of 504 and 25492?\n3211992\nCalculate the common denominator of -29/138556 and -21/4288.\n2216896\nCalculate the least common multiple of 411 and 6213.\n851181\nWhat is the smallest common multiple of 119136 and 5984?\n1310496\nCalculate the lowest common multiple of 11529 and 549.\n11529\nCalculate the lowest common multiple of 4356 and 2244.\n74052\nWhat is the common denominator of 55/14584 and -37/440?\n802120\nFind the common denominator of -125/284466 and -32/7." -"ggest value? (a) 11 (b) -4 (c) v (d) 4\nd\nLet i = 217.4 - 217. Which is the smallest value? (a) i (b) 0.1 (c) 2\nb\nLet u = -518.01 - -518. What is the biggest value in 7, -2, u?\n7\nLet s = 0 + -0.2. Let h = -1.243 + 1.343. Let f = 7 + -5. Which is the smallest value? (a) f (b) s (c) h\nb\nSuppose 5*j + 135 = 5*c, -39 = -3*c - 4*j + 21. Let q be ((-2)/c)/(0 + 1)*2. What is the biggest value in 1, q, -0.03, 5?\n5\nLet m = 0.0276 - -0.0124. What is the smallest value in m, 2/9, 0?\n0\nLet j = -25.1 - -25. Let l = 4.8 - 5.1. What is the biggest value in 0.3, l, j, -8?\n0.3\nLet w = 70.92 + -73. Let o = -0.08 - w. What is the third smallest value in -3/5, -4/7, o?\no\nLet r = -2 + 2.5. Let u be (-9)/(-6)*5/(-6)*(-352)/(-110). What is the fourth smallest value in r, -2, u, -3/5?\nr\nLet q = 47 - 189/4. Suppose -1 = 72*t -" -"hat is the hundreds digit of 12*(12/20 + 302/d)?\n1\nWhat is the hundreds digit of (-1039)/((-1 - -4)/(-3))?\n0\nLet c(u) be the second derivative of -u**5/20 + u**4/4 - u**3/6 + 49*u**2/2 - 23*u. What is the units digit of c(0)?\n9\nLet j(h) = 49*h**3 - h**2 + h - 1. Suppose 2*c + 12 = -2*q + 32, 0 = -2*q + 2*c. Suppose -4*a = q*p + 20 - 5, 14 = -p - 3*a. What is the units digit of j(p)?\n8\nWhat is the units digit of 3396/24 + (-2)/4?\n1\nSuppose 2 = 3*r + 2. Suppose r*z - 182 = -2*h + 2*z, 0 = -2*h - 2*z + 194. What is the tens digit of h?\n9\nSuppose 3*c = -5*l + 1128 + 37, 5*c - 1933 = -4*l. What is the hundreds digit of c?\n3\nSuppose 3*x + v - 800 = -2*x, -3*v = x - 160. Suppose -x = -i - s, 2*i + 68 = s + 376. Suppose i = -j + 5*j. What is the units digit of j?\n9\nLet z(l) = -l**2 - 8*l - 12. Let v be z(-5)." -"-0.009\nLet t = -4095.47 - -7232.38. Let n = 3345 - t. Let x = 209 - n. What is x rounded to 1 dp?\n0.9\nLet i = -0.0538 - -49.3538. Let q = -33 + i. Let r = -16.29999757 + q. Round r to seven decimal places.\n0.0000024\nLet l = 1059 + -968. Let q = -547 - -347. Let o = q + l. Round o to the nearest 10.\n-110\nLet w = -2618055 - 2965094. Let y = -5583270.9999808 - w. Let l = -122 - y. Round l to 6 decimal places.\n-0.000019\nLet f = 38761 - -85991. What is f rounded to the nearest ten thousand?\n120000\nLet r = 6758 + -6651.2. Round r to the nearest integer.\n107\nLet x = -1089 - -1202.8. Let j = x + -5.8. Let y = -108.0000138 + j. Round y to 6 dps.\n-0.000014\nLet i = -3.327782917 - -3.3278. What is i rounded to 6 decimal places?\n0.000017\nSuppose -4*z - 10 = -46. Let n be 152246/(-8) + z/12. What is n rounded to the nearest one thousand?\n-19000\nLet g(c) = -27*c**3 + c**2 + 10" -"n'th term of 475, 1926, 4345, 7732?\n484*n**2 - n - 8\nWhat is the r'th term of -548, -536, -522, -506, -488, -468?\nr**2 + 9*r - 558\nWhat is the g'th term of 751, 1513, 2273, 3031, 3787, 4541, 5293?\n-g**2 + 765*g - 13\nWhat is the j'th term of 52, 125, 210, 313, 440, 597?\nj**3 + 66*j - 15\nWhat is the t'th term of -274, -273, -272, -271, -270?\nt - 275\nWhat is the z'th term of -493, -485, -471, -451, -425?\n3*z**2 - z - 495\nWhat is the f'th term of 385, 383, 379, 373, 365, 355?\n-f**2 + f + 385\nWhat is the n'th term of -321, -327, -325, -309, -273, -211?\nn**3 - 2*n**2 - 7*n - 313\nWhat is the y'th term of 330, 331, 332, 333, 334?\ny + 329\nWhat is the f'th term of 104, 102, 100, 98, 96?\n-2*f + 106\nWhat is the y'th term of -10, -3, 4?\n7*y - 17\nWhat is the l'th term of -543, -544, -545, -546?\n-l - 542\nWhat is the o'th term of 1137, 1139, 1139, 1137, 1133?\n-o**2 + 5*o + 1133\nWhat" -"t m(g) = p(g) - 3*v(g). Let n be m(r). Solve 5*o - o - n = 0 for o.\n1\nSuppose 3*u - 2 = 4. Solve a = -u*a for a.\n0\nSuppose -15 = -5*f, -v + f - 2 + 1 = 0. Suppose -2*i = -v, -5*j = -4*j - 5*i + 1. Solve j = 5*n + 14 for n.\n-2\nLet h(s) = 2*s - 6. Let u be h(4). Let o(t) = -1 - t + 6*t**2 - t**3 - u*t**2 - 2. Let m be o(3). Solve 5*i = m*i - 10 for i.\n-5\nLet m be -8*(10/(-4) + 2). Suppose -w + m*g = -24, w - 24 = -w + 2*g. Suppose 0 = -4*c - r + 12, -c + 0*c + 2*r = 6. Solve -c*j = -4*j - w for j.\n-4\nSuppose t - 15 = -2*t, 5*t = -3*x + 31. Suppose -x*u + 21 + 19 = 0. Solve 0*h - u = 5*h for h.\n-4\nSuppose -p - 2 = 5*u, -5*u - 6 = 3*p - 0*u. Let w be ((-6)/(-4) + -1)*2. Let b be (w + p/4)*10." -"the fourth root of 3016 to the nearest integer?\n7\nWhat is 4911 to the power of 1/9, to the nearest integer?\n3\nWhat is the square root of 394 to the nearest integer?\n20\nWhat is the square root of 102 to the nearest integer?\n10\nWhat is the eighth root of 5723 to the nearest integer?\n3\nWhat is 116 to the power of 1/7, to the nearest integer?\n2\nWhat is the seventh root of 1191 to the nearest integer?\n3\nWhat is the ninth root of 259 to the nearest integer?\n2\nWhat is 4550 to the power of 1/3, to the nearest integer?\n17\nWhat is 74994 to the power of 1/7, to the nearest integer?\n5\nWhat is 1388 to the power of 1/5, to the nearest integer?\n4\nWhat is 1400 to the power of 1/3, to the nearest integer?\n11\nWhat is the square root of 1517 to the nearest integer?\n39\nWhat is 10628 to the power of 1/3, to the nearest integer?\n22\nWhat is the third root of 9772 to the nearest integer?\n21\nWhat is the third root of 15929 to the nearest integer?\n25\nWhat is 8749" -"the lowest common multiple of 210 and 6888?\n34440\nWhat is the least common multiple of 52996 and 6?\n158988\nCalculate the least common multiple of 285975 and 381300.\n1143900\nFind the common denominator of -47/3 and -88/440925.\n440925\nCalculate the least common multiple of 7190 and 58.\n208510\nWhat is the common denominator of 97/164502 and 34/20007?\n1480518\nWhat is the lowest common multiple of 2059 and 4118?\n4118\nCalculate the lowest common multiple of 4 and 670788.\n670788\nCalculate the common denominator of -55/914292 and 38/233.\n914292\nWhat is the least common multiple of 1503 and 30227?\n272043\nFind the common denominator of -7/4 and 85/58054.\n116108\nCalculate the lowest common multiple of 92 and 9016.\n9016\nCalculate the lowest common multiple of 17732 and 88908.\n12713844\nWhat is the lowest common multiple of 33 and 33?\n33\nCalculate the common denominator of 105/52 and -97/838.\n21788\nWhat is the lowest common multiple of 13448 and 164?\n13448\nCalculate the lowest common multiple of 7848 and 300.\n196200\nWhat is the smallest common multiple of 2 and 113858?\n113858\nWhat is the least common multiple of 870317 and 1118979?\n7832853\nWhat is the smallest common multiple of 114920" -"/v).\n63\nLet g = 33 + -36. Calculate the common denominator of 6/(-9)*(-606)/56 and (24/160)/(g/218).\n70\nCalculate the common denominator of 1032/108 + -10 + 2*2 and -3/145.\n1305\nLet w = -19/16 - 245/16. Calculate the common denominator of ((-8)/19 - 3) + -8 + 12 and w.\n38\nLet c(g) = -g**3 - 2*g**2 + g + 15. Suppose -2*v - 3 = z - 0*z, -3*v + 3 = -z. Calculate the lowest common multiple of c(v) and 3.\n15\nLet p = 28/2125 - -30329/439875. Calculate the common denominator of p and -25/6.\n414\nLet y(k) = -19*k**3 - 7*k**2 - 4*k - 3. Let d be y(-12). Let i be d/(-60) - 4/(-10). Let j = i + 541. Find the common denominator of 5/3 and j.\n12\nLet w(v) = -v**3 - 2*v**2 + 5*v + 4. Let s be w(-3). Let m be 7 - -1*(s - 1). Suppose 4*r = -0*r + m. Calculate the common denominator of -117/10 and r.\n10\nSuppose -189 = -12*u + 87. Suppose -8*t + u + 25 = 0. Calculate the least common multiple of t and 6.\n6\nLet a be ((-45)/(-105))/((-2)/499) +" -"c\nWhat is the closest to -0.06 in 54, -2, -1/12, 13?\n-1/12\nWhich is the nearest to 1/1764? (a) 0.5 (b) -52 (c) -4 (d) -3 (e) 27\na\nWhich is the closest to 11/2? (a) 0.061 (b) -2.7 (c) -1.2\na\nWhat is the nearest to 0 in -117/7, -10, 4, 6, 2/21?\n2/21\nWhich is the closest to -7345? (a) -1/4 (b) -279 (c) 8\nb\nWhich is the nearest to 5? (a) -1/9 (b) -0.1 (c) 0.1 (d) 0.052 (e) -0.326 (f) -0.3\nc\nWhich is the closest to 637300/11? (a) -2/3 (b) 2 (c) 0\nb\nWhat is the nearest to -0.05 in 4, -2/17, 44929?\n-2/17\nWhat is the closest to -3/2 in -0.2, -6/73, -3, -4, 7/432?\n-0.2\nWhat is the closest to 1/3 in 2/7, -0.2, -2.5, -1, 10/3927?\n2/7\nWhat is the nearest to 19/8 in -1/8, 0.08, 0, -2?\n0.08\nWhich is the closest to 2? (a) 110 (b) -0.2 (c) 0.4 (d) -3/2 (e) 2/453\nc\nWhich is the closest to -150? (a) -0.06107 (b) -2/5 (c) -0.09 (d) -1/2\nd\nWhich is the nearest to -5? (a) -1/13 (b) 27 (c) 4183\na\nWhat is the closest to" -"dreds digit of w?\n4\nSuppose 8*z + 1922 = 7*z + 15924. What is the units digit of z?\n2\nLet n = -587 - -971. What is the hundreds digit of n/(((-3)/14)/(15/(-20)))?\n3\nLet l(c) = c + 1. Let r(j) = j**2 - 19*j + 136. Let g(y) = -2*l(y) + r(y). What is the hundreds digit of g(23)?\n1\nSuppose 0 = -113*p + 438*p - 24474409 + 169609. What is the ten thousands digit of p?\n7\nWhat is the thousands digit of (-1)/10 + (-16 - (-190982)/20)?\n9\nLet h = 989 - -26885. What is the units digit of h?\n4\nLet t(q) = 6 - 16 - 19*q + 14*q**2 + q**3 - 11. Suppose 47*d = 157*d + 1408 + 242. What is the tens digit of t(d)?\n3\nLet g = -45 - -20. Let u(f) = -4*f - 56. Let h be u(g). Suppose 2*y = -2*i + h, -3*i - y - 25 = -89. What is the tens digit of i?\n2\nLet q be -2*(-2)/(4/22). What is the tens digit of (-8)/(-44) + 810/q?\n3\nSuppose b + q - 6248 = 0, -18*b = -12*b" -"at is -1 - -20103?\n20102\nIn base 8, what is 63 + 0?\n63\nIn base 15, what is 5da + -1?\n5d9\nIn base 16, what is -188 + -1?\n-189\nIn base 14, what is 2 + 3c3?\n3c5\nIn base 7, what is -5 + -1113?\n-1121\nIn base 4, what is 11 - 1000?\n-323\nIn base 8, what is -4447 + -4?\n-4453\nIn base 3, what is -121100 - -1?\n-121022\nIn base 12, what is 131 - -1?\n132\nIn base 13, what is -2 + 23?\n21\nIn base 13, what is -4 - 822?\n-826\nIn base 7, what is -3 + -616?\n-622\nIn base 16, what is -3 + 11?\ne\nIn base 16, what is -2 - -24?\n22\nIn base 5, what is 12421 - -1?\n12422\nIn base 9, what is -2 - 56?\n-58\nIn base 12, what is 1 + 4a?\n4b\nIn base 3, what is -22020 - -10201?\n-11112\nIn base 6, what is 111 - -3?\n114\nIn base 5, what is -1120 - 1?\n-1121\nIn base 4, what is -2012 + -12?\n-2030\nIn base 12, what is" -"2, 3, 11\nSuppose 4*t = 4*o - 60, -2*t - o = -t + 9. Let k be (t/(-10))/((-9)/60). List the prime factors of (25/4)/((-2)/k).\n5\nLet i = 8 + -6. Let v be i/((-5)/2 - -3). Suppose -v*z - 125 = -4*m - z, -3*m + z = -100. List the prime factors of m.\n5, 7\nLet i(j) = 9*j + 25. Let g(z) = -5*z - 13. Let d(s) = 13*g(s) + 6*i(s). List the prime factors of d(-10).\n7, 13\nSuppose 2*d = 5*s + 500, -50*d = -47*d - 2*s - 750. What are the prime factors of d?\n2, 5\nLet j(l) = -13*l + 8. Suppose 4*r - i = 8, -4 + 14 = 5*r - 2*i. Suppose 2*c + 26 = -5*m, 3*m + m + r*c + 22 = 0. What are the prime factors of j(m)?\n2, 3, 5\nLet m = 31 - 31. Suppose -w - 4*f = -11, -4*f - 4 = -m*w - 4*w. Suppose -2*h = -w*h + 8. What are the prime factors of h?\n2\nLet a(x) = -5*x**2 + 20*x + 6. Let g be (-50)/(-14) + 4*3/28. List" -"\nWhat is the value of (0 - (-6 + -2 + (-7 - -15))) + 37?\n37\nWhat is (4 - 10) + (0 - 0 - (-28 + 22))?\n0\nWhat is the value of 4 + (-2 - 0) - 6 - (10 - 4)?\n-10\nEvaluate 3 + 3 + 1 + (-4 - -6) + -3.\n6\n(-1 - ((-4 - -6) + 2 + 3)) + 11\n3\n0 - (0 - -12) - -1\n-11\n(-8 - (1 - 1)) + (36 - 37) + 15\n6\nEvaluate -3 - (9 - (-6 - 4 - -13)).\n-9\nEvaluate 2 + -15 - (-126 + 125).\n-12\nEvaluate 1 - 1 - ((-16 - -26) + (-1 - 1)).\n-8\nWhat is 10 - (-2 + -1) - (26 + (23 - 39))?\n3\nWhat is the value of -6 + (-3 - (-4 + 1) - (0 - -5))?\n-11\nCalculate 35 + -14 - 22 - 2.\n-3\nEvaluate 26 - -17 - (1 + 30).\n12\nCalculate 60 + -59 + -1 + -2 + 2.\n0\nWhat is -8 + -5 + 16 - 5?\n-2\nEvaluate (-17 - -5)" -"What is the cube root of 1189 to the nearest integer?\n11\nWhat is the third root of 51740 to the nearest integer?\n37\nWhat is the square root of 39 to the nearest integer?\n6\nWhat is 607 to the power of 1/5, to the nearest integer?\n4\nWhat is the square root of 6618 to the nearest integer?\n81\nWhat is the third root of 56256 to the nearest integer?\n38\nWhat is the third root of 22593 to the nearest integer?\n28\nWhat is 1317 to the power of 1/3, to the nearest integer?\n11\nWhat is the third root of 66509 to the nearest integer?\n41\nWhat is 3345 to the power of 1/2, to the nearest integer?\n58\nWhat is the square root of 854 to the nearest integer?\n29\nWhat is the third root of 32936 to the nearest integer?\n32\nWhat is the sixth root of 17500 to the nearest integer?\n5\nWhat is 125199 to the power of 1/2, to the nearest integer?\n354\nWhat is the third root of 842 to the nearest integer?\n9\nWhat is 992 to the power of 1/7, to the nearest integer?\n3\nWhat is the" -"nd i to the nearest 100.\n800\nLet f = 16.041 - 16. Let t = 0.0410047 - f. Round t to 6 decimal places.\n0.000005\nLet u(l) = 488890*l**2 - 2*l - 4. Let z be u(3). Round z to the nearest one million.\n4000000\nLet m(b) = -b**3 - 10*b**2 + 11*b - 4. Let z be m(-11). Let s(u) = 6*u**3 + 3*u**2 - 8*u + 4. Let g be s(z). Round g to the nearest one hundred.\n-300\nSuppose -3*n + 0*n + 6 = 0. Suppose 0 = -2*k, -4*h + 23 - 187 = n*k. Round h to the nearest ten.\n-40\nLet b = -20 - -19.958. Let d = b - 0.948. What is d rounded to one dp?\n-1\nLet n(l) = -l - 18. Let h be n(-18). Round h to the nearest ten.\n0\nLet f = 29 + -5. Suppose 3*t + f + 16 = -j, 70 = -4*t + 2*j. What is t rounded to the nearest 10?\n-20\nLet g = 0.005 + -0.06. Let t = g - -7.855. Round t to the nearest integer.\n8\nLet y(x) = x**2 - x. Let v" -"ding order.\n4, 3, -0.1, -4, -254\nSort -1, -3, 4, 1, -10 in increasing order.\n-10, -3, -1, 1, 4\nPut 5, -3.7, -0.3592, 0.3 in decreasing order.\n5, 0.3, -0.3592, -3.7\nPut 3, -45, -22 in descending order.\n3, -22, -45\nSort 30, -0.4, -0.1, -1, 5.\n-1, -0.4, -0.1, 5, 30\nSort -8, 1, 1992, -4 in descending order.\n1992, 1, -4, -8\nPut 14, -0.3, 3/65, 0.3, 0 in descending order.\n14, 0.3, 3/65, 0, -0.3\nPut 1, 21, 0, -4 in decreasing order.\n21, 1, 0, -4\nPut -1, -4/3, -8.73, 1.4 in decreasing order.\n1.4, -1, -4/3, -8.73\nPut 4, 1/2, -15, -264.7 in ascending order.\n-264.7, -15, 1/2, 4\nPut -2, -0.3, 3/517, -24, 2/5 in decreasing order.\n2/5, 3/517, -0.3, -2, -24\nPut -3, -45, -1, -13 in ascending order.\n-45, -13, -3, -1\nSort 14, -9, 55, 0, -5 in descending order.\n55, 14, 0, -5, -9\nSort -4, -2, -48, -21, -12 in increasing order.\n-48, -21, -12, -4, -2\nSort 0, -10, 485, 4 in ascending order.\n-10, 0, 4, 485\nPut 0.3291, -2/13, -2/3 in ascending order.\n-2/3, -2/13, 0.3291\nSort -84, 2/11, -0.018.\n-84, -0.018, 2/11\nSort" -"/2. Let v be (-2)/5*q + 3. Sort 5, v, 0.\nv, 0, 5\nLet w be -3 + 6 - (1 - 3). Put -1, w, 3 in ascending order.\n-1, 3, w\nLet w be (-195)/(-315) + 4/(-14). Let n = 0.2 + -0.7. Let g = -0.1 - n. Put 3, g, w in decreasing order.\n3, g, w\nLet w(x) = -x - 1. Let c be w(-3). Suppose 3*l + c = -7. Put -2, 4, l in decreasing order.\n4, -2, l\nLet y(l) = l**3 - l**2 + l - 3. Let m be y(0). Suppose -q - 2*q + 15 = 0. Sort m, -5, q.\n-5, m, q\nLet p = 1/42 - -9/14. Sort 0.1, 0.3, p in decreasing order.\np, 0.3, 0.1\nLet b = 109/132 - 10/11. Sort -3/5, 0, b, 2/13.\n-3/5, b, 0, 2/13\nLet f = 1/40 - 83/120. Let u = 23.8 - 24. Put 4, u, f in decreasing order.\n4, u, f\nLet r be ((-75)/12)/5*-4. Sort 7, -3, r in decreasing order.\n7, r, -3\nSuppose 3*g - 4 = -2*y, 0 = -5*y - 5*g + 15. Let h =" -" (d) -5/4\nb\nLet f = 291.859 - 292. Let m = 0.059 - f. What is the second biggest value in -4, -10/9, m?\n-10/9\nLet k = -175 - -1227/7. Suppose -10 = -b - o, 1 = b - 2*o + 3. What is the third smallest value in -2/5, k, b?\nb\nLet u be 119 + 3 + 104/(-13). Which is the smallest value? (a) -0.3 (b) -5 (c) 1 (d) u\nb\nLet x = -0.0042 - 0.3958. Which is the biggest value? (a) x (b) 0.4 (c) -105\nb\nLet l = -1366 - -1375. Which is the biggest value? (a) 0.31 (b) 3 (c) l\nc\nLet l(o) = o**2 - 41*o - 387. Let n be l(49). Which is the third biggest value? (a) 0.02 (b) n (c) 1 (d) 2\nc\nLet y = 52.9 - 54.9. Let f = -549/7 + 78. Which is the third smallest value? (a) 0.3 (b) -0.05 (c) f (d) y\nb\nLet z = -2.1 - -1. Let k = 0.9 - z. Let b = -0.1 - -0.2. What is the second biggest value in k, b, 0.3?\n0.3\nLet k be" -"1010000111?\n101100011010000101\nIn base 3, what is -102121121 + -1000?\n-102122121\nIn base 8, what is 265 + -1775?\n-1510\nIn base 4, what is 33132 - 11?\n33121\nIn base 4, what is 1303231033 + 2?\n1303231101\nIn base 10, what is -51 - -4707?\n4656\nIn base 9, what is 11886 - 13?\n11873\nIn base 4, what is -231 - -230203?\n223312\nIn base 9, what is 5 - 663114?\n-663108\nIn base 13, what is 694 - -497?\nb5b\nIn base 3, what is -1 - -21002001?\n21002000\nIn base 12, what is -6b + -54?\n-103\nIn base 10, what is 6409 - -44?\n6453\nIn base 12, what is a6 + -3502?\n-3418\nIn base 5, what is -3 + 241402330?\n241402322\nIn base 16, what is -5f7 - 46?\n-63d\nIn base 5, what is 11324 - 32?\n11242\nIn base 9, what is 10418384 - -3?\n10418387\nIn base 15, what is 11 - -145c?\n146d\nIn base 7, what is -4244 - 11350?\n-15624\nIn base 10, what is 140581 - -5?\n140586\nIn base 14, what is -10 - 3046?\n-3056\nIn base 10, what is 13 - -49847?\n49860" -" 5871718.94199926. Let h = -0.058 - y. What is h rounded to 7 dps?\n0.0000007\nLet i = -0.0527 + 0.05270813. Round i to seven dps.\n0.0000081\nLet d = 2472 - 1258. Let i = -1219.03 + d. Let t = i + 5. Round t to one decimal place.\n0\nLet b = -4.49276 - -4.5. What is b rounded to 3 decimal places?\n0.007\nSuppose 2*i - 11*i = -45. Suppose 2*p + i*o - 15615 = 0, -o - 7785 = -p + 4*o. What is p rounded to the nearest one thousand?\n8000\nLet c(d) = d**3 - 62*d**2 + 40*d - 222. Let p be c(62). Round p to the nearest 10.\n2260\nLet j = -55.017 + 55. Let w = -29606.983021 - -29607. Let f = w + j. What is f rounded to five dps?\n-0.00002\nLet n = -857.0001577 + 857. What is n rounded to four dps?\n-0.0002\nLet w(x) = 6 + 19*x - 3 - 7*x + 9*x. Let o be w(3). Let u be 60/12*o/(-10). Round u to the nearest ten.\n-30\nLet j = 54.019 + -53. Let s = j - -22.945. Let f" -"207 = x*c + 967. Is 22 a factor of c?\nFalse\nSuppose -2*j + 2*p + 673 = -205, -3*j + 4*p = -1316. Suppose j = 2*g - 3*s, 5*g - 4*s - 550 - 557 = 0. Does 6 divide g?\nFalse\nLet f(z) = 27*z - 13. Let r be f(1). Suppose 0 = -3*s - 4*l + 1346, -12*l - 1798 = -4*s - r*l. Does 47 divide s?\nFalse\nSuppose -2020*z + 119196 = -2016*z. Is z a multiple of 33?\nTrue\nLet p(t) = -4*t**3 + t**2 + 3466. Is 5 a factor of p(0)?\nFalse\nSuppose 0 = 15*b + 201 - 81. Is 6 a factor of (b/(-120)*-18)/((-1)/495)?\nTrue\nLet a(o) be the second derivative of -o**5/20 + o**3/2 + o**2 - 12*o. Let s be a(-1). Is 19 a factor of 3 - -84 - (-2 - (-1 + s))?\nFalse\nLet a(h) = -350*h + 438. Does 62 divide a(-3)?\nTrue\nSuppose -6*h = -3*h - 12. Suppose 2*g = h*g - 284. Suppose 0*p - p = -5*k - g, -2*k = -5*p + 618. Is 29 a factor of p?\nFalse\nIs 9 a factor of 30/180" -"1, a: 1, v: 1, h: 1}. Give prob of sequence qv.\n1/20\nFour letters picked without replacement from mmrrr. What is prob of sequence mmrm?\n0\nTwo letters picked without replacement from {g: 10, e: 4, c: 2, d: 3}. What is prob of sequence ce?\n4/171\nTwo letters picked without replacement from {a: 5, o: 2, r: 7}. Give prob of sequence ao.\n5/91\nCalculate prob of sequence daud when four letters picked without replacement from {u: 10, d: 3, a: 2}.\n1/273\nFour letters picked without replacement from {n: 5, w: 8, t: 2}. Give prob of sequence twnt.\n2/819\nWhat is prob of sequence hayy when four letters picked without replacement from ahhpyhqqyh?\n1/630\nFour letters picked without replacement from {j: 4, r: 3, b: 5}. What is prob of sequence jrjr?\n1/165\nWhat is prob of sequence rlrl when four letters picked without replacement from rrlrlllrrrll?\n5/66\nWhat is prob of sequence mier when four letters picked without replacement from reremeeeimiremermi?\n7/1530\nCalculate prob of sequence dddr when four letters picked without replacement from rddrrtdrdd.\n1/21\nTwo letters picked without replacement from {w: 2, t: 2, v: 1, a: 1}. Give prob of sequence tw." -"1000011000101111\nIn base 5, what is 1113003 + 11024?\n1124032\nIn base 10, what is 77104 - 8?\n77096\nIn base 3, what is -2122002 - -11200?\n-2110102\nIn base 10, what is -904 - 246979?\n-247883\nIn base 8, what is 33 - -11315174?\n11315227\nIn base 12, what is -2896 - 13ab9?\n-16793\nIn base 14, what is -6310 + -1d6?\n-6506\nIn base 6, what is 5504342 - 15?\n5504323\nIn base 4, what is -131131132 - -33331?\n-131031201\nIn base 12, what is -3481186 + 12?\n-3481174\nIn base 16, what is fbe0ed + 3?\nfbe0f0\nIn base 11, what is -1 - -34a80a6?\n34a80a5\nIn base 7, what is -2 + 516610330?\n516610325\nIn base 2, what is -10101100000 + -110010111100011?\n-110101101000011\nIn base 10, what is -500416 - -372?\n-500044\nIn base 16, what is -7416d + 10?\n-7415d\nIn base 6, what is -4 - 423551010?\n-423551014\nIn base 8, what is 21 + -2371755?\n-2371734\nIn base 16, what is 1a - -8055e?\n80578\nIn base 16, what is -4bb8 + -14d2?\n-608a\nIn base 3, what is 1200202121110 - 1210?\n1200202112200\nIn base 12, what is 1bb7a5 + -6?\n1bb79b\nIn" -") = 4*i + 1. Calculate the smallest common multiple of w and o(2).\n855\nLet k = -10427/5 - -5130029/2460. Calculate the common denominator of k and -103/36.\n1476\nWhat is the common denominator of 13/136 and (-400)/(-700) - (-293)/(-2142)?\n1224\nLet b = 110567/10 - 11060. Let l(o) = -657*o. Let j be l(-1). Let z = j + -6601/10. Calculate the common denominator of z and b.\n10\nSuppose -4*c = y - 96, 37 - 13 = c - 2*y. Calculate the smallest common multiple of c and 699/(-466)*(1 - 27).\n312\nSuppose -1248 = -u - 19*u - 6*u. What is the smallest common multiple of u and 408?\n816\nLet l = -42784 + 1240894/29. Let g = 2817/203 - l. Find the common denominator of g and -44/7.\n7\nCalculate the smallest common multiple of 17/136 + 17157/24 and 143.\n715\nLet c = 16 + -7. Suppose -2*o = -5*q - 83, 269*o - 2*q - 152 = 266*o. Suppose o*l + 161 = 1133. What is the least common multiple of l and c?\n18\nSuppose -440*z = -5*g - 436*z + 594, 438 = 4*g + 3*z. What is the" -"smaller: k or -5/3?\nk\nSuppose -5*r = -4 - 6. Let m be r*2/(-4) - 2. Let k = 4 + m. Is -2/7 less than or equal to k?\nTrue\nLet t be 4/(-9)*(440/(-56) + 7). Which is smaller: t or 0?\n0\nSuppose 4 = 5*v - v. Suppose -2*k - 10 = 5*x, 3*k - 1 - v = x. Let m = 2 + -4. Is x at most as big as m?\nTrue\nLet r(m) = -8*m - 3. Let j(g) = 7*g + 3. Let d(z) = 3*j(z) + 2*r(z). Let i be d(-2). Is i greater than or equal to -7?\nTrue\nLet f be (-2)/(-7) + (-10)/35. Suppose 0 = 4*v + k - 18, -5*k = -2*v - 2 - f. Is v smaller than 4?\nFalse\nLet k(s) = -s**3 + 5*s**2 + s - 5. Let n be k(5). Which is smaller: 1/19 or n?\nn\nSuppose 2*o = -g, -3*o - 2*g = -2*o - 3. Which is smaller: -0.01 or o?\no\nLet i = 31157/2328 + -5/582. Let v = i - 961/72. Is -1 smaller than v?\nTrue\nLet g = 4.1 + -4." -" 1\nLet u(v) = v**4 - v**2 + v + 1. Let w(o) = 7*o**4 + o**3 - 6*o**2 + 6*o + 6. Let m(x) = 6*u(x) - w(x). Solve m(t) = 0.\n-1, 0\nLet w(b) be the second derivative of 1/42*b**4 + 0 - 1/140*b**5 - 1/42*b**3 + 0*b**2 + b. Find z, given that w(z) = 0.\n0, 1\nLet f(w) = 5*w**2 + 4*w - 5. Let h(q) = -4*q**2 - 3*q + 4. Let t(j) = 3*f(j) + 4*h(j). Factor t(d).\n-(d - 1)*(d + 1)\nLet u be -3 + 6 + (5 - 2). Let y be 3/(-18) + 61/u. Suppose -9*m + 3 - 6*m**2 - 3*m**3 - 3*m**2 + 4 - y = 0. Calculate m.\n-1\nLet s be 2/20*((-150)/12)/(-5). Find z such that 1/4*z + 1/2 - 1/2*z**2 - s*z**3 = 0.\n-2, -1, 1\nDetermine z, given that -13*z**3 + 3*z**2 + 4*z + 14*z**3 - 7*z**2 = 0.\n0, 2\nLet p(k) be the second derivative of 9/5*k**5 + 0*k**2 + 4/3*k**3 + 0 + 11/3*k**4 - 3*k. Factor p(v).\n4*v*(v + 1)*(9*v + 2)\nLet a(u) be the first derivative of -2*u**5/35 + 3*u**4/14 - 2*u**3/21" -"12.\n11\nSuppose -472*x + 2940 = -442*x. Calculate the remainder when x is divided by 26.\n20\nSuppose 14*o = 17*o - 39. Let r be (-132)/(((-4)/6)/1). Suppose -5*k = -4*d - r, -4*k = 4*d - d - 146. Calculate the remainder when k is divided by o.\n12\nLet m(i) = -i**2 - 12*i - 9. Let s be m(-4). Let w = s - -9. What is the remainder when w is divided by 7?\n4\nLet x = -29 - -44. Calculate the remainder when x is divided by 102/36 - 3/(-18).\n0\nSuppose 24*w - 2442 = 2*w. What is the remainder when w is divided by 30?\n21\nSuppose 2*o + 0 = -10. Let j be (-8)/32 + o/(-4). Suppose -d + 3 = -j. Calculate the remainder when 5 is divided by d.\n1\nLet t(i) = i**3 + 43*i**2 - 2*i - 8. What is the remainder when t(-43) is divided by 25?\n3\nSuppose 5*x - 1445 = -0*x + h, -5*x = 2*h - 1430. Let a(o) = o**2 - 3. Calculate the remainder when 3/((-28)/x - 6/(-27)) is divided by a(-4).\n11\nLet n = -648 +" -"What is -297.98 rounded to the nearest ten?\n-300\nRound -0.01379 to two decimal places.\n-0.01\nRound 85811000 to the nearest one hundred thousand.\n85800000\nRound -0.007509 to three decimal places.\n-0.008\nRound -0.00382401 to three decimal places.\n-0.004\nWhat is 0.000000248 rounded to 7 decimal places?\n0.0000002\nWhat is -0.2321 rounded to 2 decimal places?\n-0.23\nRound -54.34 to the nearest ten.\n-50\nRound 158240 to the nearest 10000.\n160000\nRound 0.0000017669 to seven decimal places.\n0.0000018\nWhat is 0.000000042 rounded to 7 decimal places?\n0\nRound 0.03954 to 3 dps.\n0.04\nRound -5300 to the nearest one thousand.\n-5000\nWhat is 0.0000058975 rounded to six dps?\n0.000006\nRound -0.059003 to three dps.\n-0.059\nRound 0.13312 to three dps.\n0.133\nRound 0.5672 to 1 dp.\n0.6\nRound -0.00008657 to 5 decimal places.\n-0.00009\nRound -0.000005937 to seven dps.\n-0.0000059\nRound 37100 to the nearest ten thousand.\n40000\nRound 0.009939 to three dps.\n0.01\nWhat is -881660 rounded to the nearest one hundred thousand?\n-900000\nWhat is -0.00052703 rounded to five dps?\n-0.00053\nWhat is -28363000 rounded to the nearest 1000000?\n-28000000\nWhat is -0.003122 rounded to four decimal places?\n-0.0031\nRound 397220000 to the nearest 1000000.\n397000000\nRound -0.0000037815" -"\n3\nSuppose -5*q - 69 = 2*g - 130, -9 = -3*g. Solve 12*b - b = q for b.\n1\nSuppose 2*o - 466 = -314. Suppose 3*x + 3*k - o = -22, -4*x + 3*k = -107. Solve 4*n = -x + 11 for n.\n-3\nSuppose 2*m + 335 = 333. Let n be (-34)/238 - ((-29)/7 - m). Solve 0 = -n*j + 5*j + 4 for j.\n-2\nLet l = 151 + -101. Solve 63*p = l*p + 65 for p.\n5\nLet d be (-3 - -10) + (-2 - 2/2). Suppose -d*i + 2*m = -2*i - 22, -3*i + 47 = 4*m. Solve -3*c + 2 = -i for c.\n5\nLet b = -259 + 541. Let a = b + -276. Solve -j - j = a for j.\n-3\nLet l(k) = 127*k**2 + 887*k - 6. Let z be l(-7). Solve -6*q = -z*q - 14 for q.\n-7\nLet p(k) = 55*k**2 - 2*k + 3. Let c be p(2). Let g = -214 + c. Solve g*l - 14 = 12*l for l.\n-2\nSuppose -19*x = 61 + 623. Let t be (0" -"/(-18) + (17 - -1). Let d be 2/4 - 3/6. Suppose -5*z - 2*r + 82 = 0, 2*z - 3*z + 3*r + 13 = d. What is the highest common divisor of z and s?\n16\nLet c(h) = 26*h**2 - 7*h - 13. Let g = 37 - 39. Let t be c(g). What is the highest common divisor of 45 and t?\n15\nLet l be (-28*14/343)/(2/(-42)). What is the highest common factor of l and 123?\n3\nLet l(q) = -2*q**2 - 14*q + 1047. Let r be l(0). Calculate the highest common factor of r and 3.\n3\nSuppose 65*w - 73008 - 191152 = 0. Calculate the greatest common factor of w and 4.\n4\nLet q(i) = -13*i + 36. Let d be q(4). Let k be (-9)/(-6) - 488/d. What is the highest common factor of k and 4?\n4\nLet c(l) = -8*l - 204. Let k be c(-27). Let n = 78 - 18. What is the greatest common factor of n and k?\n12\nLet t = -1261 - -2122. Calculate the greatest common divisor of 21 and t.\n21\nSuppose -5*l + 67*z - 69*z +" -" -1.535635915 rounded to the nearest integer?\n-2\nWhat is -3.69275428 rounded to 0 dps?\n-4\nWhat is 3562694.4 rounded to the nearest 10000?\n3560000\nRound 1039.78845 to the nearest ten.\n1040\nWhat is -0.000006709327 rounded to 7 dps?\n-0.0000067\nRound 3.18389838 to four decimal places.\n3.1839\nRound -5.64190545 to 0 decimal places.\n-6\nRound 533.8528911 to 2 decimal places.\n533.85\nWhat is 2.92625351 rounded to the nearest integer?\n3\nRound 0.0029047547 to 3 decimal places.\n0.003\nWhat is 1.24091414 rounded to 2 dps?\n1.24\nRound -0.0152316332 to six decimal places.\n-0.015232\nRound 3549.38073 to the nearest one hundred.\n3500\nRound -0.00000472469674 to 6 dps.\n-0.000005\nRound 102929.585 to the nearest 1000.\n103000\nRound 6.7284437 to three decimal places.\n6.728\nWhat is 0.000330980552 rounded to 4 dps?\n0.0003\nRound 0.0183946784 to 4 dps.\n0.0184\nWhat is -884.4875 rounded to the nearest one hundred?\n-900\nRound 0.049203374 to 5 dps.\n0.0492\nWhat is -0.0003792646682 rounded to 7 dps?\n-0.0003793\nRound 156.837573 to two dps.\n156.84\nRound 62197.7973 to the nearest ten.\n62200\nWhat is -5561.737 rounded to the nearest one thousand?\n-6000\nWhat is 3742.74133 rounded to the nearest 100?\n3700\nRound 8654.3289 to the nearest one thousand.\n9000\nRound -10272.514386 to" -" = -26. Let o(g) be the first derivative of g**4/4 + 2*g**3 - g**2/2 - 5*g - 4. Give o(n).\n1\nLet v(f) = -f**2 - 8. Let p(o) = o**2 - o + 9. Let d(k) = 4*p(k) + 5*v(k). Give d(-2).\n0\nLet s(f) be the second derivative of -1/12*f**4 - 2/3*f**3 + 0 + 43*f - 1/2*f**2. Calculate s(-3).\n2\nLet x(z) = -z**2 - 2. Let p(q) = -99*q + 4. Let t be p(1). Let g = t + 98. Calculate x(g).\n-11\nLet v(t) = 3*t + 6. Suppose -n = 3*n - 36. Let s be ((-56)/6)/(((-204)/(-18))/(-17)). Let z = n - s. Determine v(z).\n-9\nSuppose 45 - 5 = 20*j. Let m(p) = -2*p**3 - 2*p**2 + p + 1. Determine m(j).\n-21\nLet x(s) = -20*s + 23. Let w(k) = 16*k - 25. Let m(a) = -4*w(a) - 3*x(a). Determine m(7).\n3\nLet y(v) = -3*v - 4. Suppose 3*h - 700 = 5*h. Let u be h/21*12/10. Let w = -17 - u. What is y(w)?\n-13\nLet p be 135/6*(2 - (-4)/(-3)). Suppose -5*f + p*f = -60. Let v(w) = -3*w - 7. What is v(f)?" -" Let m(i) be the first derivative of i**3/3 - 9*i**2/2 + 5*i + 215. Determine m(y).\n-13\nSuppose 3*x + 156 = 144. Let g(k) = -6*k - 2. Calculate g(x).\n22\nLet r be -3 + 10 + 1 - -2. Let y = r + -10. Let b(n) = -n**2 - n + 12. Give b(y).\n12\nLet a(n) = -3*n**2 + 3*n + 2. Let s(d) = 2*d**2 + d - 1. Let h(t) = -a(t) - s(t). Determine h(4).\n-1\nSuppose 68*r - 4 = 66*r. Let h(z) be the second derivative of -z**5/120 + z**4/12 - z**3/2 + z. Let l(q) be the second derivative of h(q). Give l(r).\n0\nLet b(n) = -n**2 - 2*n + 3. Let x(q) = -6*q**2 - 11*q + 16. Let g(a) = -22*b(a) + 4*x(a). Let w(h) = 12*h + 159. Let v be w(-13). Give g(v).\n-20\nLet w(b) = -3*b + 1. Let z(v) = v. Let j(y) = w(y) + 2*z(y). Suppose -4*i - 1 = 3*g - 4*g, -4*g = -i - 4. Give j(i).\n1\nLet l(b) = -21*b**2 + 11*b + 4. Let s(c) = -58*c**2 + 31*c + 12. Let v(j)" -"09. Let l(o) = 2*o**2 - o - 5. Calculate the remainder when b is divided by l(4).\n21\nSuppose -12*q + 1465 - 205 = 0. Calculate the remainder when 418 is divided by q.\n103\nWhat is the remainder when (-2732)/(-21) - 4/42 is divided by 19?\n16\nSuppose 203*o = 192*o + 44. Let n = 44 + -16. Suppose -w - w = -n. What is the remainder when w is divided by o?\n2\nSuppose -7 = 5*d - 17. Suppose -d*h - 2 = 0, 4*x - 2*h - 15 = -3*h. Calculate the remainder when 30 is divided by x.\n2\nSuppose 4*s + 2 = 10. Let q = s + 1. Suppose x + 4*h + 14 = 0, -q*x - h + 6 + 7 = 0. Calculate the remainder when 15 is divided by x.\n3\nSuppose m - 59 = -3*x, 0 = -5*x + 46 - 21. Let d(p) = -p**2 + 5*p + 3. Let k be d(4). Suppose 2*s + 45 = k*s. Calculate the remainder when m is divided by s.\n8\nLet z be ((-33)/(-6) + -5)*1*-134. Calculate the remainder when 47 is" -"ts digit of t?\n6\nLet t(o) = -o**2 + 4*o. Let h be t(3). Let w = -23 - -23. Suppose 5*a - h*u = 17, 5*a + 6*u - u + 15 = w. What is the units digit of a?\n1\nSuppose 5*l = -126 + 16. Let n = 35 + l. What is the tens digit of n?\n1\nLet f(q) = q**3 - 6*q**2 - 7*q - 7. Let l be f(7). Let p = 22 + l. What is the tens digit of p?\n1\nLet q = -3 - -3. Suppose q*b - b - 5*r + 35 = 0, 10 = 2*r. What is the tens digit of b?\n1\nLet t(x) = 2*x + 9. Let g be t(-8). Let l = 10 + g. Let d = l - -1. What is the units digit of d?\n4\nLet d = 21 + -22. What is the tens digit of 3/(3/(-47))*d?\n4\nSuppose -4*v = -2*c - 3*v, -5*v + 9 = -c. Let h = c + 14. What is the units digit of ((-18)/h)/(4/(-10))?\n3\nSuppose -5*r - k + 50 = 4*k, 0 = -r -" -"33 PM?\n12:57 AM\nHow many minutes are there between 6:45 AM and 8:23 AM?\n98\nHow many minutes are there between 7:16 PM and 3:43 AM?\n507\nHow many minutes are there between 1:55 AM and 7:36 AM?\n341\nHow many minutes are there between 5:02 PM and 9:57 PM?\n295\nWhat is 652 minutes after 9:16 PM?\n8:08 AM\nHow many minutes are there between 1:50 PM and 4:02 PM?\n132\nHow many minutes are there between 6:34 PM and 4:18 AM?\n584\nWhat is 71 minutes after 3:24 PM?\n4:35 PM\nWhat is 313 minutes before 2:30 PM?\n9:17 AM\nWhat is 587 minutes before 12:15 PM?\n2:28 AM\nHow many minutes are there between 11:47 AM and 6:25 PM?\n398\nWhat is 344 minutes after 8:55 PM?\n2:39 AM\nWhat is 445 minutes before 12:11 AM?\n4:46 PM\nHow many minutes are there between 2:55 PM and 7:01 PM?\n246\nHow many minutes are there between 1:16 PM and 12:43 AM?\n687\nHow many minutes are there between 9:14 AM and 2:07 PM?\n293\nWhat is 77 minutes before 7:32 AM?\n6:15 AM\nHow many minutes are there between 1:27 PM and 12:30 AM?\n663\nWhat" -"crometer in nanometers?\n250\nWhat is 1.742025 meters in kilometers?\n0.001742025\nWhat is 294468.2 centimeters in micrometers?\n2944682000\nHow many millimeters are there in 3/5 of a centimeter?\n6\nWhat is seven sixths of a decade in months?\n140\nHow many kilograms are there in 0.0142845ug?\n0.0000000000142845\nConvert 940.5545 millilitres to litres.\n0.9405545\nHow many meters are there in 316619.5cm?\n3166.195\nConvert 61783.56 kilometers to centimeters.\n6178356000\nHow many millilitres are there in 13/5 of a litre?\n2600\nWhat is 841605.8 decades in centuries?\n84160.58\nConvert 4571.437 litres to millilitres.\n4571437\nWhat is 155.65122 seconds in hours?\n0.04323645\nHow many milligrams are there in 12/25 of a gram?\n480\nHow many millilitres are there in seventy-two fifths of a litre?\n14400\nHow many years are there in one twentieth of a millennium?\n50\nHow many hours are there in 1/6 of a day?\n4\nWhat is fifty-two fifths of a litre in millilitres?\n10400\nConvert 0.1171174 centuries to decades.\n1.171174\nHow many millilitres are there in 272.7969l?\n272796.9\nWhat is eleven halves of a century in decades?\n55\nConvert 6206.965 millimeters to meters.\n6.206965\nHow many milliseconds are there in six fifths of a minute?\n72000\nWhat is seven quarters" -"01 = 4*y - i. Let d be (-42)/(-5)*(-3 - 1497982). Let n = d - y. What is n rounded to the nearest 1000000?\n-6000000\nSuppose -9 - 63 = 6*b. Let x(n) = -5*n - 3*n**3 - 10*n**2 - 5 - 3 + 4. Let m be x(b). Round m to the nearest one thousand.\n4000\nLet f = -2954317.99999936 + 2954317. Let j = f + 1. What is j rounded to 7 decimal places?\n0.0000006\nLet m = 0.0171 + -0.017100898. Round m to seven decimal places.\n-0.0000009\nLet g = 4245 + -4245.000005907. Round g to six dps.\n-0.000006\nLet a = -0.5 + 2.5. Let i = -23432606.4 - -23432604.40000017. Let p = i + a. What is p rounded to 7 decimal places?\n0.0000002\nLet z = 197 + -196.68. Let a = 6 + -6.4. Let d = a + z. Round d to 1 decimal place.\n-0.1\nLet v(o) be the first derivative of -3448*o**2 + 12*o + 15. Let g be v(-3). What is g rounded to the nearest one thousand?\n21000\nSuppose 0 = -2*v - 8, -2*t - v + 281 = -241. What is t rounded to" -"alse\nDoes 7 divide -6 - -3 - (-8 + -2)?\nTrue\nLet u be (4 - -1)/(1 - 0). Suppose 2*f = -u*c + f + 117, -4*c - 2*f = -90. Is 8 a factor of c?\nTrue\nSuppose -2*h = -10, 0 = -3*p + 3*h + 2 - 5. Let a = 0 + p. Suppose -3*j + a*y + 4 = -9, 0 = 5*j - 4*y - 19. Is 3 a factor of j?\nTrue\nLet y(r) = -r**2 + 6*r - 3. Let q be y(5). Suppose q = i - 1. Suppose -i*h + 105 = 2*h. Does 10 divide h?\nFalse\nIs 10/(-45)*-3*180 a multiple of 19?\nFalse\nSuppose o = 17 + 15. Is o a multiple of 16?\nTrue\nSuppose 3*u + u - 36 = 0. Is 11 a factor of (50/(-3))/((-6)/u)?\nFalse\nLet p = 33 - -55. Is 22 a factor of p?\nTrue\nLet w(f) = f**2 + f + 11. Does 14 divide w(8)?\nFalse\nLet r(s) be the second derivative of 1/6*s**3 + 0 - 2*s + 2/3*s**4 - 1/20*s**5 + s**2. Is r(8) a multiple of 10?\nTrue\nSuppose -18 = -2*w" -"\n1\nSolve 6 = -2*b + 5*b, 0 = -5*f + 5*b + 15 for f.\n5\nSolve -5*d - q - 17 = 0, 3*q + 19 = -5*d - 2 for d.\n-3\nSolve -4*n = 8*j - 10*j + 16, -n - 3*j + 3 = 0 for n.\n-3\nSolve 7*z = 6*z + m + 10, 4*m + 30 = 2*z for z.\n5\nSolve -4*z + 229*v + 32 = 231*v, v - 24 = -3*z for z.\n8\nSolve -4*b = 3*h - 6 - 10, -4 = -b - 5*h for b.\n4\nSolve -2*d = -2*o + 2, -4*o + 2 = -5*d - 3 for d.\n-1\nSolve 0*q - 5*a = -5*q - 30, -4*a = -8 for q.\n-4\nSolve 5*k - 3*x + 2*x - 10 = 0, 5*x + 26 = k for k.\n1\nSolve -4*s + 5 = 5*m, -m + 5 = 3*s + 4 for s.\n0\nSolve -3*k - 3*b = 2*k - 10, 2*k - 4 = 5*b for k.\n2\nSolve -3*h - 5*f - 16 = 0, -4*h + 2*f = -3*f - 37 for h.\n3\nSolve" -"2*w, k*h - 36 = 2*h + 4*w. Sort h, v, -5, 5.\n-5, v, 5, h\nLet n = -1931 - -1924. Let i be ((-70)/(-21))/(-10)*1*-9. Sort i, -4, n in decreasing order.\ni, -4, n\nLet z = -0.5 + -4.5. Suppose 96 = -44*u - 388. Sort u, 0.4, z in decreasing order.\n0.4, z, u\nLet g be ((-18)/(-15))/(12/120). Suppose 2*n = -20*i + 24*i, 0 = -3*i + g. Sort 5, -7, n, 4.\n-7, 4, 5, n\nLet w = -14604 + 14607. Sort w, -1, 0, -4, -53.\n-53, -4, -1, 0, w\nLet x = -13.89 - -0.59. Let f = 10.2298 - -0.0702. Let v = f + x. Put v, -15, -1 in decreasing order.\n-1, v, -15\nLet t be 0*(1 - (-4)/(-6)). Suppose 2*y + 3*y - 180 = t. Let n be 8/(-12)*y/(-40). Put n, -3/10, 0.3 in increasing order.\n-3/10, 0.3, n\nLet z be ((-7)/42)/(1/(-54)). Sort -3, -4, z, -2, 3 in ascending order.\n-4, -3, -2, 3, z\nLet r(y) = -y**3 - 24*y**2 + 81*y + 2. Let m be r(-27). Let u = 103504/89 - 1163. Let k = -341/445 + u." -"o + 1. Let n(i) = 7*i. Let h(x) = 6*m(x) - 7*n(x). Let t(j) = 20*j - 17. Suppose 2*v - 18 = -v. What is v*t(s) + 17*h(s)?\ns\nLet h(k) = 1. Let v(f) = 10*f - 3. Calculate 3*h(o) + v(o).\n10*o\nLet o(g) = g**2 - g - 1. Let b(l) = 2*l**2 - 2*l - 3. Calculate 3*b(z) - 7*o(z).\n-z**2 + z - 2\nLet a(h) = -h - 7. Let r(p) = -p + 4. Let o(t) be the third derivative of t**4/24 + t**3/6 + 2*t**2. Let c(b) = 2*o(b) + r(b). Determine 5*a(u) + 6*c(u).\nu + 1\nLet m(x) = x + 6. Let c(y) = -4*y - 31. What is 2*c(d) + 11*m(d)?\n3*d + 4\nLet d(c) = -4*c**2 + 9*c - 1. Let o = 23 + -21. Let j(x) = 3*x - 4*x + 6*x - 1 + 2*x**2 - 4*x**o. Determine -3*d(t) + 5*j(t).\n2*t**2 - 2*t - 2\nLet c(g) = 11*g**2 - 11*g - 6. Suppose 5*m - 4*m - 12 = 0. Let i be 3/(9/m) + -2. Let n(q) = -2*q + 0*q**i - 1 + 3*q**2 - q**2. Calculate" -"e f(-9). Suppose i = 1 + u. Calculate the smallest common multiple of i and 8.\n40\nCalculate the common denominator of -13/5 and (-118)/(-36)*84/(-140).\n30\nLet f be (-12)/(-4) - 1/(-1). Suppose -2*y = 8*u - f*u - 60, -66 = -4*u - 5*y. Calculate the smallest common multiple of u and (0 - 12)*2/(-4).\n42\nLet q = 16465 - 197471/12. Suppose 24 + 81 = -3*f. What is the common denominator of (f/18 + 2)*13 and q?\n36\nLet f = 18 + 4. What is the lowest common multiple of 14 and f?\n154\nLet v = -20 + 34. Suppose -5*k + 37 = -23. What is the smallest common multiple of k and v?\n84\nLet s = 5/66 - -38/33. Let f = -23/202 + 1358/6161. Let a = 3723/305 - f. Find the common denominator of s and a.\n110\nCalculate the common denominator of (-3)/(-9)*78/(-40) and -55/48.\n240\nLet j be 2/(-6) + 404/(-3). What is the common denominator of -26 and j/8*2/6?\n8\nSuppose 0 = 5*q - 3*q. Suppose -3*h = -q*h + 4*v - 3, v = 4*h - 4. Suppose j - h = -0. Calculate" -" letters picked without replacement from {o: 4, e: 3, d: 5}. What is prob of picking 1 d and 1 o?\n10/33\nCalculate prob of picking 1 r, 1 k, and 1 g when three letters picked without replacement from rbbrkrqbrbgrbkkqgbr.\n12/323\nThree letters picked without replacement from {d: 5, w: 3}. What is prob of picking 2 d and 1 w?\n15/28\nThree letters picked without replacement from glvhltglvvlhggtvv. Give prob of picking 1 h and 2 l.\n3/170\nCalculate prob of picking 1 t and 2 q when three letters picked without replacement from {q: 10, t: 2}.\n9/22\nWhat is prob of picking 1 a and 3 d when four letters picked without replacement from {d: 5, p: 2, a: 1, o: 1}?\n5/63\nThree letters picked without replacement from {l: 9, j: 7}. Give prob of picking 3 j.\n1/16\nThree letters picked without replacement from blrbrblbrsbbib. Give prob of picking 1 s, 1 l, and 1 i.\n1/182\nWhat is prob of picking 1 m and 1 q when two letters picked without replacement from {q: 2, i: 4, m: 3, d: 1}?\n2/15\nCalculate prob of picking 3 k and 1 c when four" -"et g = -1226 + 7357/6. Which is the biggest value? (a) -0.3 (b) g (c) y\nb\nLet f(x) = x**3 + 12*x**2 - x - 1. Let v be f(-12). Let i = -4 + v. Suppose 2*z - 7 - i = 3*y, -4*z = 4*y + 12. What is the second biggest value in z, 2, -0.5?\nz\nLet v = 4.0299 - 0.0299. What is the second smallest value in -4, -3/16, 0.1, v?\n-3/16\nLet v = -20.5 - -22.5. What is the second smallest value in -0.1, v, 22?\nv\nLet s = -124 + 123.48. Let v = -3.48 + s. What is the second biggest value in -0.19, v, 4?\n-0.19\nLet z be (-1660)/(-275) + (1 + -2)*6. Which is the biggest value? (a) -2/5 (b) z (c) -3\nb\nLet g = -24.5 - -25. Suppose 0 = 2*n, 2*t - 1 = -3*n + 3. Which is the third biggest value? (a) -0.4 (b) g (c) -1 (d) t\na\nSuppose 5*u = 10*u + 55. Let v = u - -9. What is the third biggest value in -0.3, -2/7, v?\nv\nLet o = -2203/33 -" -"at is the square root of 1833 to the nearest integer?\n43\nWhat is 802 to the power of 1/5, to the nearest integer?\n4\nWhat is 24735 to the power of 1/3, to the nearest integer?\n29\nWhat is 181 to the power of 1/2, to the nearest integer?\n13\nWhat is 14568 to the power of 1/2, to the nearest integer?\n121\nWhat is 25624 to the power of 1/2, to the nearest integer?\n160\nWhat is the eighth root of 81187 to the nearest integer?\n4\nWhat is 2096 to the power of 1/2, to the nearest integer?\n46\nWhat is the eighth root of 56714 to the nearest integer?\n4\nWhat is the square root of 10505 to the nearest integer?\n102\nWhat is the third root of 177 to the nearest integer?\n6\nWhat is the square root of 277 to the nearest integer?\n17\nWhat is 242 to the power of 1/8, to the nearest integer?\n2\nWhat is 29357 to the power of 1/3, to the nearest integer?\n31\nWhat is 8660 to the power of 1/3, to the nearest integer?\n21\nWhat is 36074 to the power of 1/6, to the nearest" -"a factor of 1723609805?\nFalse\nIs 2386310 even?\nTrue\nIs 47576060 a multiple of 7?\nTrue\nIs 42 a factor of 215838714?\nTrue\nIs 1242 a factor of 510085337?\nFalse\nIs 56156184 a multiple of 804?\nTrue\nDoes 39 divide 1200132309?\nFalse\nIs 163861048 a multiple of 26?\nTrue\nDoes 982 divide 98021276?\nTrue\nIs 105129420 a multiple of 60?\nTrue\nDoes 324 divide 37675234?\nFalse\nIs 4 a factor of 421929?\nFalse\nDoes 4 divide 346162426?\nFalse\nIs 4019520 a multiple of 316?\nTrue\nIs 13 a factor of 16701581?\nTrue\nIs 276023995 a multiple of 110?\nFalse\nIs 206 a factor of 20771824?\nFalse\nDoes 38 divide 2349239382?\nTrue\nIs 14810173 a multiple of 4?\nFalse\nDoes 19 divide 733581398?\nFalse\nIs 15 a factor of 790193856?\nFalse\nIs 67397936 a multiple of 934?\nFalse\nDoes 91 divide 91740376?\nTrue\nIs 4335259528 a multiple of 40?\nFalse\nDoes 13 divide 2390282?\nFalse\nIs 9 a factor of 34032406?\nFalse\nIs 17105886 a multiple of 2723?\nTrue\nIs 708959223 a multiple of 1103?\nFalse\nDoes 745 divide 14958855?\nTrue\nIs 7356085 a multiple of 3?\nFalse\nDoes 152 divide 195670672?\nFalse\nIs 35 a factor of 120098720?\nTrue\nIs" -"et q be g(11). Let y be (6/10)/(q/25). Solve 0 = -y*h + 5*h + z - 1, -5*h + z + 6 = 0 for h.\n1\nLet o = -2 + 6. Suppose -3*r - 18 = 3*s, 0*r + 29 = -5*s - o*r. Let h = s - -8. Solve 3*p = -h*n + 24, 0*n + 2*n - 21 = -3*p for n.\n3\nLet a(z) = -3*z**2 - 1. Let k be a(-1). Let v(x) be the second derivative of -x**3/3 - x**2 - 2*x. Let y be v(k). Solve 3*d + 18 - y = -4*u, u = 5*d + 20 for u.\n0\nSuppose -v = -5*i + v + 44, 6 = 2*i + 5*v. Solve 4*w = -4*l - 32, -3*l = -i*l - 20 for w.\n-4\nSuppose 3*h - 16 = -4*c, 0 = -4*c + 3*h - 3 - 5. Let m be (9/(-6))/(c/6). Let g = -7 - m. Solve 2*f = -g*f - 2*x, -4*f - x = 0 for f.\n0\nSuppose -2*k - 3 = -2*j + 11, 3*k + 1 = -j. Solve -4*d + j*c = 45, -40 = 7*d -" -" - 65 = -4*d. Is d composite?\nTrue\nSuppose 0 = -3*n + 4*z + 635, -4*z = 4*n - 6*n + 418. Is n a prime number?\nFalse\nSuppose 2 = i - 6. Suppose 0*h - 2*r + 168 = 2*h, -4*r = -4. Let z = i + h. Is z prime?\nFalse\nSuppose 0*v - 9 = -3*v. Suppose -2*o + 4*l = 16, -19 = -v*o - 3*l - 7. Let h(a) = -a**3 + a**2 + a + 35. Is h(o) a composite number?\nTrue\nLet t be (-1636)/(-4) + (-1 - 2). Suppose 3*o - 2*a = -t + 135, 4*a = 3*o + 281. Is 5 - o - 6/(-2) composite?\nTrue\nLet o = 2452 + -1235. Is o a prime number?\nTrue\nSuppose 10*b = 5*b. Is (b + 4)/((-2)/(-131)) a composite number?\nTrue\nLet a = 7 - 5. Let h(w) = -3 - w**2 + 2 + 8*w - 1 - a*w. Is h(5) a composite number?\nFalse\nSuppose -6*z - 4 = -5*z + 2*r, -3*r = -2*z - 29. Let j(g) = g**2 - 15*g + 11. Let q(x) = -x**2 + 7*x - 6. Let" -"hat is 250 + 2?\n252\nIn base 9, what is -54 - -1?\n-53\nIn base 7, what is -502 + -1?\n-503\nIn base 11, what is -3a + -12?\n-51\nIn base 12, what is -1092 - 2?\n-1094\nIn base 14, what is 795 - -3?\n798\nIn base 9, what is -17 - 2?\n-20\nIn base 3, what is 0 - 10022?\n-10022\nIn base 7, what is 555 - 44?\n511\nIn base 8, what is 47 + -24?\n23\nIn base 9, what is 42 - 118?\n-66\nIn base 16, what is 1d8b - 0?\n1d8b\nIn base 2, what is 1101011 + 10100100?\n100001111\nIn base 10, what is -3 + 505?\n502\nIn base 2, what is -100 - -11010?\n10110\nIn base 15, what is 5 - 13?\n-d\nIn base 7, what is 23 - 1242?\n-1216\nIn base 15, what is -15 - 238?\n-24d\nIn base 10, what is 5 - -811?\n816\nIn base 5, what is -1122 + -2?\n-1124\nIn base 11, what is -2 + -70?\n-72\nIn base 3, what is 102100211 - -10?\n102100221\nIn base 8, what is" -" w = 35 + -33. Find the third derivative of -11*a**5 + 24*a**2 - 66*a**2 + 20*a**w wrt a.\n-660*a**2\nFind the second derivative of -2829*s**4 - 295*s - 99*s + 2828*s**4 - 26*s**3 - 120*s - 75*s wrt s.\n-12*s**2 - 156*s\nSuppose 2*q = 4*q - 8. Let l(w) = -q*w + 2 - 3*w + 10. Let c(b) = 7*b - 13. Let s(g) = 6*c(g) + 7*l(g). Differentiate s(n) wrt n.\n-7\nSuppose -3*i = -2*i - 3. Let k(t) = t + 2. Let m be k(i). Find the second derivative of -6*n**3 + 39 + m*n - 39 wrt n.\n-36*n\nSuppose 132 = 50*s - 268. Let j(q) be the first derivative of 10*q + 0*q**2 + 2/3*q**3 + s. Find the first derivative of j(w) wrt w.\n4*w\nFind the first derivative of 3 - 440*j**2 - 224 + 218*j**2 + 222*j**2 - 231*j**4 wrt j.\n-924*j**3\nLet o(c) be the third derivative of 0*c - 1/10*c**6 + 0 - 11/3*c**3 + 0*c**5 + 6*c**2 + 0*c**4. What is the derivative of o(a) wrt a?\n-36*a**2\nLet c(j) be the second derivative of 49*j**5/20 + 61*j**4/6 - 136*j. Find the third derivative" -"2/3. Let i = -5.6 + 27.6. Let l = -1.094892 - -2.094892. Which is the nearest to g? (a) 0.4 (b) i (c) l\na\nLet m = 32970 + -32960. Let l = 15.9 + -15. Let u = l - 1. Which is the closest to u? (a) 2 (b) m (c) 0.1\nc\nLet y = 1096/3983 + 6/569. Suppose -2*t + 23 = -53. Which is the closest to t? (a) 0.5 (b) -2/11 (c) y\na\nLet s = 0.091 + -7.891. Let f = 8.1 + s. Let r be -2 - 1/5*-11. Which is the nearest to r? (a) -3 (b) -4 (c) f\nc\nLet z be (3/(-13))/((-99)/(-66)). Let v = 1.85 - 0.57. Let w = 0.28 - v. What is the nearest to 0.5 in z, w, 1/4?\n1/4\nLet u = -313.5 - -310.5. Let h be 1*-1 + 105/120 + 0. What is the nearest to h in u, -2, 0.5, -2/7?\n-2/7\nLet s = 14029.92 + -14030. Which is the nearest to 2/7? (a) -0.3 (b) s (c) -5 (d) 6/5\nb\nSuppose 0 = -5*q + 17*d - 22*d + 45, -5*q + 3*d" -"pose b*t - 30 = 5*t. Solve -2 = -h, 2*h - t*h - 2 = -4*u for u.\n1\nLet f be (-1*(3 + -5))/(1/2). Suppose 2*y + f*y = 24. Solve -30 = -y*p - 2*v - 8, 4*v + 16 = 4*p for p.\n5\nLet t = -32 - -35. Suppose -4*r + t = -3*r. Solve -r*x + 6 = 0, -4*w - x - 1 = -3 for w.\n0\nLet z be 4/(-6) - (-60)/9. Suppose -z = -j - j. Solve -f + 2 = 2*l - j*l, -l = -2*f + 7 for f.\n5\nLet h = 7 + -2. Suppose h*u - 32 = u. Solve u = -4*j, 2*b - b + 5 = -2*j for b.\n-1\nSuppose 5*j - 2*u - u = 16, 3*j + u - 18 = 0. Let o(h) = -2*h**2 + 11*h + 3. Let b be o(j). Solve 5*g + l + 2 = 0, -5*l + l = 3*g + b for g.\n0\nSuppose -186*v = -158*v - 84. Let k(n) = -n - 2. Let q be (-2)/(-8) - 27/12. Let r be k(q). Solve v*w -" -"**2 + 0*g wrt g.\n-12\nLet r = 22 - 18. Let g(y) be the first derivative of -1/4*y**r + 2 + y**2 + 0*y + 0*y**3. Find the second derivative of g(d) wrt d.\n-6*d\nLet t be 5/((-15)/(-6))*2. What is the second derivative of -10 + 10 - t*j**2 - 4*j wrt j?\n-8\nLet u(n) = n**3 + n - 1. Let p(x) = 13*x**3 - 3*x**2 + 6*x - 6. Let t(g) = -p(g) + 6*u(g). What is the third derivative of t(w) wrt w?\n-42\nLet d(p) be the third derivative of -p**5/15 + 5*p**4/24 - 6*p**2. What is the second derivative of d(f) wrt f?\n-8\nLet m(t) = -t**3 - t**2 - t - 1. Let l(u) = -4*u**3 - 3*u**2 - 3*u. Let x(h) = -l(h) + 3*m(h). Differentiate x(w) with respect to w.\n3*w**2\nLet t(u) be the second derivative of -u**6/30 + 5*u**2/2 - 8*u. Find the first derivative of t(w) wrt w.\n-4*w**3\nLet k(h) be the second derivative of 0 + 8*h - 2/3*h**3 + 0*h**2 + 1/12*h**4. What is the second derivative of k(f) wrt f?\n2\nWhat is the second derivative of -4*k - 34*k**2" -"derivative of -3*b + 0 + 0*b**5 + 0*b**3 + 0*b**2 + 0*b**6 - 2/21*b**7 - 1/6*b**4. What is the third derivative of u(d) wrt d?\n-240*d**2\nLet p(z) = 9*z**2 + 6*z. Let m(k) be the first derivative of -5*k**3/3 - 3*k**2/2 + 2. Let g(o) = 11*m(o) + 6*p(o). Find the second derivative of g(i) wrt i.\n-2\nSuppose 2*d - 6*d = 4, 3*x = -2*d + 43. Suppose -2*n - 3*n = -x. Find the second derivative of m - n*m**3 - 3*m + 5*m wrt m.\n-18*m\nLet l be (-1 + 1)/(1 - 0). What is the third derivative of 0*k**4 + l*k**4 - 6*k**5 + 8*k**5 + 3*k**2 wrt k?\n120*k**2\nLet z(o) be the second derivative of -4*o + 0 + 0*o**4 - 1/2*o**2 + 0*o**5 + 0*o**3 + 1/10*o**6. Differentiate z(r) wrt r.\n12*r**3\nSuppose 5*t + 21 = c + 2*t, 0 = c + 3*t + 9. What is the third derivative of -7*q**6 - 4*q + 3*q**6 + c*q**2 + 4*q wrt q?\n-480*q**3\nLet n(y) = y**2 + 5*y + 7. Let k(m) = -2*m**2 - 6*m - 8. Suppose -4*g = -17 - 3. Let x(h)" -"41702 - 42604 for n.\n-22\nSolve 0 = 1495*h + 40114 + 6249 + 16427 for h.\n-42\nSolve 764*m + 115*m - 1156 + 127300 = -289*m for m.\n-108\nSolve -621 = 1551*s + 2612*s - 3692 - 1092 for s.\n1\nSolve -64580*h = -64362*h + 1090 for h.\n-5\nSolve -62*r + 222*r = 3949 - 1069 for r.\n18\nSolve -1901*g = -190*g - 56463 for g.\n33\nSolve 0 = -265*p - 8900 + 950 for p.\n-30\nSolve -1125*x + 4140 - 17640 = 0 for x.\n-12\nSolve 1123*l - 13995 = 52262 for l.\n59\nSolve 2865*l - 2823*l - 114 - 165 = 99 for l.\n9\nSolve -81*t - 20*t + 43*t = 81*t + 87*t for t.\n0\nSolve 26625 = 92818*y - 93193*y for y.\n-71\nSolve -212 = 278*p + 79 + 1377 for p.\n-6\nSolve -128*k - 1851 = -208*k + 3589 for k.\n68\nSolve -135720 = 117097*u - 118402*u for u.\n104\nSolve 181617*o - 309 = 181564*o + 221 for o.\n10\nSolve -58*f + 143220 = -2228*f for f.\n-66\nSolve 831*t + 110205 = -409*t - 80221 +" -"derivative of -y**2 - 25*y + y**2 - y**4 - 1214*y**3 + 797*y + 1106*y + y**5 wrt y?\n20*y**3 - 12*y**2 - 7284*y\nWhat is the third derivative of -32*g + 14*g**2 - 131*g**4 + 12*g**3 - 348*g**4 - 12*g**3 wrt g?\n-11496*g\nLet i(w) = w**3 + 13*w**2 - 34*w - 1. Let q be i(-15). Find the third derivative of 53*u**2 + 163*u**3 - 47*u**3 - q*u**3 - 30*u**3 wrt u.\n162\nLet n(f) be the third derivative of 1 + 99/20*f**5 - 86*f**2 - 12*f**3 + 0*f + 0*f**4. What is the first derivative of n(y) wrt y?\n594*y\nWhat is the second derivative of 434 - 1793*a**2 - 152 + 295 + 244*a**2 - a + 226*a**2 wrt a?\n-2646\nSuppose 3*i = 2*o - 7, 21*i - 17*i - 4 = o. What is the third derivative of 3*m**2 - 3 + 158*m**3 - m**2 - 12 - o + 1 wrt m?\n948\nLet l(v) be the third derivative of 0*v + 0*v**4 - 18*v**2 + 23/20*v**5 + 0 - 15*v**3. What is the derivative of l(h) wrt h?\n138*h\nLet i(m) be the first derivative of 23*m**6/120 - 37*m**3/6 - 73*m**2/2 -" -"- (4 + 11 + -15 + (-5 - (-1 - 0)))\n-46\nWhat is 486 + -415 - (59 - -1)?\n11\nCalculate 21 + (-3 + -11 - (-18 - -6)).\n19\nCalculate 88 - (-43 + 87) - 50.\n-6\nWhat is -32 + (-14 - (64 + -73))?\n-37\n-21 - (41 + -24 + 11)\n-49\nWhat is the value of 11 + (0 - (-19 + 15)) + 15?\n30\nWhat is (4 - 7) + 2 + -2 - ((9 - 41) + 38)?\n-9\nCalculate 11 + 54 - (5 + 24) - (2 + -1).\n35\nCalculate (14 - (9 - 5) - 8) + 33 - (19 + -11).\n27\nWhat is 379 - 339 - (3 - 2)?\n39\nEvaluate -69 + (-12 + 115 - -10).\n44\nCalculate -159 - -161 - (-12 + 3 + (0 - 5)).\n16\nCalculate (-29 - (-24 - 98)) + (-11 + -1 - -4).\n85\nWhat is the value of -95 - (-12 - (-15 + 38 + -39))?\n-99\nWhat is 239 - 205 - (10 + 46)?\n-22\nWhat is the value of -9 + (12 - (-2" -" (a) -0.3 (b) 2 (c) 25\na\nWhat is the nearest to 0 in 5, 1, 2/31, 8.4?\n2/31\nWhat is the closest to -1 in 0.3, -1, -3/7, -2/21?\n-1\nWhat is the closest to 0.3 in 0.3, -1, 1, -0.6?\n0.3\nWhat is the nearest to 3/5 in 3/7, 16/11, 2/7?\n3/7\nWhich is the closest to 0.4? (a) 0.041 (b) 0.4 (c) 5\nb\nWhat is the closest to -2 in 163, -0.2, 0.3, 1?\n-0.2\nWhat is the nearest to -8 in -2/7, 2/3, -11?\n-11\nWhat is the nearest to 0.1422 in 2/5, 1, -0.4?\n2/5\nWhat is the closest to -0.2 in -0.1, -0.4, -2/31, -1?\n-0.1\nWhich is the nearest to 4/3? (a) -3 (b) 0.4 (c) -5 (d) 5\nb\nWhat is the nearest to -1 in -2, 271, 0.1?\n-2\nWhat is the nearest to 40/3 in 1, 3, 3/4, 5?\n5\nWhich is the closest to -0.02? (a) 69 (b) 7 (c) 0.4\nc\nWhich is the nearest to 2? (a) -2/11 (b) 397 (c) 2 (d) -0.1\nc\nWhat is the closest to 0 in 1/6, 0, -1/49, -3?\n0\nWhat is the closest to 8/145 in 2/3, -3/7," -"ich is the biggest value? (a) q (b) z (c) 0\nc\nLet b(o) = o**3 + 7*o**2 + 3*o + 6. Let t be b(-6). Let q be ((-32)/t)/((-2)/3). Let i be q - 1 - 16/28. What is the third smallest value in 0.4, 0.1, i?\ni\nLet i = -1816 - -1818. What is the fourth biggest value in i, 5/2, 1/6, -2/25?\n-2/25\nLet n = -0.13 - 3.87. Let p be (-4)/(1 + -3) - 528/363. Let h = -13 + 12.9. Which is the third biggest value? (a) h (b) p (c) n\nc\nLet y be 6*3/18*15/5. What is the second biggest value in -1, 3/2, y, 7/5?\n3/2\nLet y = 115 + -115.4. Let u be (3 - 3) + 1/6. Let p = -7 + 11. Which is the smallest value? (a) u (b) y (c) p\nb\nLet v be 5985/2052 + (-2)/(-24). Which is the smallest value? (a) 4 (b) 1 (c) v (d) -1/8\nd\nLet g = 1475/8 - 737/4. What is the second smallest value in g, 2, -4/33, 1/2?\ng\nLet r = 544 - 544.3. Let f = 649/393 + 2/131. What is" -"- 3\nWhat is the k'th term of -328, -379, -500, -721, -1072?\n-5*k**3 - 5*k**2 - k - 317\nWhat is the v'th term of -1769, -3939, -6109?\n-2170*v + 401\nWhat is the g'th term of 515, 566, 623, 686, 755?\n3*g**2 + 42*g + 470\nWhat is the w'th term of 662, 640, 620, 602, 586?\nw**2 - 25*w + 686\nWhat is the f'th term of -80, -254, -532, -914, -1400, -1990?\n-52*f**2 - 18*f - 10\nWhat is the n'th term of 7706, 7713, 7720, 7727?\n7*n + 7699\nWhat is the c'th term of 15708, 15706, 15702, 15696?\n-c**2 + c + 15708\nWhat is the z'th term of -23198, -92803, -208812, -371225, -580042?\n-23202*z**2 + z + 3\nWhat is the p'th term of 1586446, 1586451, 1586456?\n5*p + 1586441\nWhat is the k'th term of -7867, -15752, -23637, -31522?\n-7885*k + 18\nWhat is the j'th term of -205, -464, -1183, -2596, -4937?\n-39*j**3 + 4*j**2 + 2*j - 172\nWhat is the l'th term of -570, -557, -534, -501, -458, -405?\n5*l**2 - 2*l - 573\nWhat is the y'th term of -518, -1022, -1510, -1982, -2438?\n8*y**2 - 528*y +" -" digit of 10/(-65) - (-80)/u?\n6\nWhat is the tens digit of 2*(39/(-2))/(-3)?\n1\nWhat is the units digit of (-6)/(-24) - 139/(-4)?\n5\nLet h = 26 + -15. Let k = -20 + h. What is the units digit of (-10)/(-45) - 34/k?\n4\nSuppose 0*a = a - 196. What is the hundreds digit of a?\n1\nLet y = 363 - 220. What is the hundreds digit of y?\n1\nSuppose -4*d + 22 = 3*p, 2*p - 3*d = -p + 36. Suppose 3*f + 0 = -k - 2, f = 5*k + p. Let g = 2 - f. What is the units digit of g?\n2\nSuppose -h + 4 = 3*p, -5*p + 2*h = 3*h - 6. Let a = 3 - 1. Let m = a + p. What is the units digit of m?\n3\nLet i = -9 + 5. Let h = -1 - i. Suppose 2*q = h*q - 5. What is the units digit of q?\n5\nLet y be (-8)/(-3) - (-4)/12. Suppose -13 = -4*i + y*i. What is the tens digit of i?\n1\nSuppose -x + 51 = -79. What" -"e 0 = -2*v - 0*v + 6. Suppose -4*q = -q - 3. Suppose -3*o = -5*x + 3, -3*o + v*x + 4 = q. Solve -2*p = -o*p for p.\n0\nSuppose 4*t - 15 = -t. Solve 2*o + t = 1 for o.\n-1\nLet m be (-3)/(-12) - 78/(-8). Solve -5*c + 5 + m = 0 for c.\n3\nSuppose 4*x + 2*v = x - 1, 4*v + 35 = 5*x. Suppose -6*w + 75 = -w. Suppose x = 3*s - w. Solve 0 = 3*p - s + 15 for p.\n-3\nSuppose -13*t + 16*t = 15. Solve 2*i = -1 - t for i.\n-3\nSuppose 5*o + 3*p - 7 = 0, 0 = o - 3*o + 4*p + 8. Suppose -o*u = -5*y + 13, 0 = 4*u - 0*y + 2*y - 10. Solve x + u + 3 = 0 for x.\n-4\nSuppose 5*q + 0 = 45. Suppose 0*o - 25 = -5*o. Solve o*f + q = -6 for f.\n-3\nLet m = 86 - 41. Suppose 0 = -0*d - 3*d + m. Let w = -19 -" -"be the second derivative of -59*t**3/6 - t**2 + t. Let w(j) = j**3 - 3*j**2 - 3*j + 4. Let r be w(3). Is o(r) composite?\nFalse\nLet d(a) = -7*a**3 + a**2 + 7*a + 12. Is d(-5) prime?\nTrue\nLet w = 1897 - 1100. Is w prime?\nTrue\nSuppose -8*s + 1496 + 13056 = 0. Is s a prime number?\nFalse\nLet g = 22 + -11. Suppose 2*d = 10, -4*d = -5*m + g + 34. Is m a composite number?\nFalse\nSuppose -2*k + c + 72 = 0, 14 = 2*k - k + 5*c. Let a = -9 + k. Is a a composite number?\nTrue\nLet x(v) = -6*v. Suppose -3 = c + 2. Let p be x(c). Let j = p - 16. Is j composite?\nTrue\nSuppose 0 = -2*z + 4*z + 10, g - 2*z - 875 = 0. Is g composite?\nTrue\nLet s = 874 - 70. Is ((-3)/6)/((-6)/s) a prime number?\nTrue\nSuppose 0 = 4*o - 60 - 16. Is o composite?\nFalse\nLet y be -7 - (-3 - -6) - -1. Let a be 614/8 + y/(-36). Suppose" -"he value of -49 + -5 + -56 - -74?\n-36\n-32 + (-35 + -6 + 74 - -32)\n33\nEvaluate 5348 + -5453 + 34 + 2.\n-69\nWhat is the value of 2 - 14 - (63 - 73) - (-40 - -16)?\n22\nWhat is the value of 12 + (-1 - -1) - (-36 - (-60 - -4)) - 7?\n-15\nWhat is the value of -13 - ((107 - 65) + -21)?\n-34\nEvaluate (64 + -150 - -40) + 68.\n22\nCalculate 0 - -28 - (72 - 243 - -169).\n30\n63 - (104 + -36) - 56\n-61\n41 - (8 + -1 + 3 + (-40 - -38))\n33\nCalculate 68 + (7 - -6) + -21.\n60\nWhat is the value of -3 + (-5 - -9) + 10 - (44 + -87)?\n54\nCalculate -19 + (-48 - (-7 - 31)).\n-29\nEvaluate 153 + -51 + -168 + -33.\n-99\n-26 + (46 - (-11 + 16))\n15\nWhat is the value of 18 - (-26 + 128) - -144?\n60\nCalculate -11 + -8 - (-2 - (3 - 23)).\n-37\nCalculate (98 - 51) +" -"e the highest common divisor of p and u.\n28\nLet f(v) = 32*v**2 + 39*v - 268. Let d be f(7). Calculate the greatest common factor of d and 242.\n121\nLet d be (-3)/((-2*12/8)/5). Suppose 5*n = 2*w + 124, d*w + 106 = 10*n - 6*n. What is the highest common divisor of 96 and n?\n24\nLet q(c) = c**3 - 34*c**2 + 38. Suppose -3*m - 49 = -151. Let d be q(m). Calculate the greatest common factor of d and 6.\n2\nLet c(l) = 476*l**2 + 5*l - 42. Let w be c(5). What is the highest common factor of 51 and w?\n51\nLet c(k) = 29*k**2 + 11*k + 7. Let o be c(-3). Let u = o - 204. What is the highest common divisor of u and 2?\n1\nSuppose 128*d - 2016 = 114*d. Let w = 255 + -239. What is the highest common divisor of w and d?\n16\nLet q(r) = 108*r**2 - 3*r - 3. Suppose -7 + 1 = 6*f. Let a be q(f). Calculate the greatest common factor of a and 12.\n12\nSuppose 5*r + 137 = 2*q + 524, -3*r" -"125. What is i(46)?\n-33\nLet b(p) = -7*p + 59. Determine b(14).\n-39\nLet x(l) = l**3 - 10*l**2 + 5. What is x(10)?\n5\nLet t(u) = -u + 3. Give t(-9).\n12\nLet h(n) = n**2 + 6*n + 4. Calculate h(3).\n31\nLet j(d) = -2*d - 11. What is j(-14)?\n17\nLet b(x) = 8*x + 111. Determine b(-13).\n7\nLet n(h) = h**2 + 7*h + 3. What is n(-6)?\n-3\nLet g(f) = -4*f + 12. Calculate g(5).\n-8\nLet b(m) = -7*m**2 + 38*m + 19. Determine b(6).\n-5\nLet c(b) = -25*b - 85. What is c(-6)?\n65\nLet s(z) = 35*z - 4. Give s(-3).\n-109\nLet x(l) = -l**3 - 6*l**2 - 6*l - 1. Give x(-4).\n-9\nLet w(k) = -k**3 - 10*k**2 - 9*k. Calculate w(-9).\n0\nLet g(z) = -z**3 - 5*z**2 + z - 3. What is g(-5)?\n-8\nLet t(j) = j**3 - 3*j**2 - 5*j. Give t(4).\n-4\nLet g(m) = -16*m + 45. Calculate g(3).\n-3\nLet s(l) = -l**2 - 10*l - 10. Determine s(-9).\n-1\nLet v(w) = 17*w + 4. Determine v(-2).\n-30\nLet j(u) = -u. Give j(4)." -"h - 763 = 704. Suppose 3*o + 542 = -t + h, 2*t - 8 = 0. Let n = -176 + o. Is n composite?\nFalse\nSuppose -27 + 3 = -6*c. Suppose -l - c*d = 12, d - 16 = l + 11. Is (-25236)/l*(-4)/(-6) composite?\nFalse\nIs ((-2)/(-3))/((-64)/(-672)) - -75954 a prime number?\nFalse\nSuppose -3*t - 27 = -2*u, -22 = 23*t - 19*t + 2*u. Let x(n) = -611*n - 12. Is x(t) prime?\nFalse\nLet p(i) = -3*i**2 - 164*i - 354. Is p(-35) a prime number?\nFalse\nLet v = 14060 + -24390. Let l = -5175 - v. Is 1/((-10305)/l + 2) composite?\nFalse\nLet u = 5537 + -3566. Suppose 0 = -2*r + 4*n + 450 + 528, -u = -4*r + 5*n. Is r composite?\nFalse\nLet t(m) = 5*m**2 - 3*m + 82. Let i be t(-11). Suppose -b + 3157 + i = 0. Is b a composite number?\nFalse\nLet l(s) = -s**3 - 2*s + 241. Let m be l(0). Suppose -4*w + 1329 - m = 0. Let z = w + -105. Is z prime?\nTrue\nLet w = -181 +" -"8, -496, -776?\n-1118\nWhat comes next: 2342, 2350, 2362, 2378?\n2398\nWhat is the next term in 562, 1117, 1668, 2215, 2758, 3297, 3832?\n4363\nWhat is the next term in 113, 231, 355, 485, 621, 763, 911?\n1065\nWhat is the next term in 109, 218, 327?\n436\nWhat comes next: 352, 351, 350?\n349\nWhat is next in 129, 255, 381, 507, 633, 759?\n885\nWhat comes next: -161, -342, -525, -710, -897?\n-1086\nWhat is the next term in -35, -25, -15, -5?\n5\nWhat comes next: -23, -65, -107?\n-149\nWhat is next in -36401, -36400, -36399?\n-36398\nWhat is the next term in 230, 460, 690, 920, 1150?\n1380\nWhat is the next term in 86, 342, 766, 1358, 2118, 3046?\n4142\nWhat is the next term in 24, 35, 52, 75, 104?\n139\nWhat comes next: -101, -353, -773, -1361?\n-2117\nWhat is the next term in -10, -114, -398, -952, -1866, -3230, -5134, -7668?\n-10922\nWhat is next in 8, 4, 2, 2, 4, 8?\n14\nWhat is next in 52, 7, -38, -83, -128?\n-173\nWhat is next in 1817, 1819, 1821, 1823, 1825, 1827?\n1829\nWhat comes next: 21, 20," -"from {l: 3, c: 1, y: 3}?\n1/7\nFour letters picked without replacement from {t: 3, q: 2, r: 3, p: 9}. What is prob of sequence prtp?\n27/2380\nWhat is prob of sequence yv when two letters picked without replacement from {v: 1, y: 7, a: 6}?\n1/26\nCalculate prob of sequence wwgp when four letters picked without replacement from wgggwgpppnepgw.\n5/1001\nCalculate prob of sequence qhd when three letters picked without replacement from qhqzd.\n1/30\nFour letters picked without replacement from jjjjynznjnyjnjnnjn. Give prob of sequence jjny.\n49/4590\nTwo letters picked without replacement from {o: 3, u: 3, e: 10, i: 3}. Give prob of sequence uu.\n1/57\nWhat is prob of sequence ddb when three letters picked without replacement from bbdbdbbbbbdbdbbdbbb?\n140/2907\nWhat is prob of sequence zzlz when four letters picked without replacement from {z: 3, u: 2, l: 5}?\n1/168\nCalculate prob of sequence gyy when three letters picked without replacement from {y: 9, g: 2}.\n8/55\nWhat is prob of sequence vwtr when four letters picked without replacement from rdwqrtvqdddw?\n1/2970\nCalculate prob of sequence bxxj when four letters picked without replacement from {j: 8, x: 7, b: 3}.\n7/510\nCalculate prob of sequence" -"3*b = -6*b + w. Let k = 20 + b. Does 11 divide k?\nFalse\nLet i(j) = 3*j**3 + j**2 - 3*j - 3. Is 13 a factor of i(3)?\nTrue\nLet u = 237 - 167. Suppose -u = 3*y - 346. Is 24 a factor of y?\nFalse\nIs 26 a factor of -1 - (22/4)/((-4)/152)?\nTrue\nLet t be (-1 + (-9)/(-4))*4. Suppose -i - 10 + 39 = -5*k, 2*i - t*k - 58 = 0. Suppose i + 46 = 5*n. Is 6 a factor of n?\nFalse\nLet u(k) = 2*k + 5. Is u(0) a multiple of 3?\nFalse\nSuppose o - g - 43 = -2*g, 0 = 2*o - 5*g - 86. Let f = o + -25. Is f a multiple of 9?\nTrue\nLet t = 118 - 43. Suppose -2*u = 11 + 59. Let a = t + u. Is a a multiple of 15?\nFalse\nLet i be -24*(-1)/(9/12). Is (-238)/(-16) - (-4)/i even?\nFalse\nLet h(d) = 5*d + 3. Does 14 divide h(5)?\nTrue\nDoes 12 divide 156 - 1 - -4*6/8?\nFalse\nSuppose 3*p - 4 = 4*p. Let s =" -"v - -2). Solve 8*a - 3*x - 37 = 3*a, -x - t = -5*a for a.\n5\nLet a(m) = 2*m + 3. Suppose -7*v = -5*v. Let z be a(v). Solve -4*c - 2*n = -c - z, -n + 6 = 3*c for c.\n3\nLet r be -4 - -1 - (-14)/2. Let i(x) = 2*x - 3. Let l be i(r). Solve 2*u + 0*w + 3 = -w, 6 = -l*u - 3*w for u.\n-3\nLet d(w) = w**3 + 5*w**2 + 9*w + 6. Let u be d(-2). Solve 6 = -5*o - 4*s, -o - 4*s + 2 = -u for o.\n-2\nLet i be (-4 + 5/2)*(-4)/6. Let h(f) = -3*f**2 - 2*f - 2. Let d(z) = 1. Let o(q) = -4*d(q) - h(q). Let r be o(i). Solve -r*l - 4*u - 7 = 3, -8 = -2*l + u for l.\n2\nLet n = -150 + 170. Solve -v - 4*k - n = 0, -v = 2*v + 2*k + 10 for v.\n0\nLet k(m) be the first derivative of m**3/3 - m**2 - 6*m - 53. Let i be k(4). Solve" -"ve -w*j = -44 + 22 for j.\n2\nLet n(g) = -g**3 + 3*g + 1. Let u be n(-2). Suppose 0 = -u*y - 6 + 66. Solve 0*j = -5*j + y for j.\n4\nSuppose -44*d - 65 = -57*d. Solve -2*q = d*q for q.\n0\nLet d be (17 - 18) + (2 - -5). Solve -x = -d*x for x.\n0\nLet s be (-8)/(-6)*(9/2)/1. Solve -2*a = 16 - s for a.\n-5\nSuppose 4*h = 3*v, -h - 4*v = -0*h - 19. Solve -h*i - 5*i = -24 for i.\n3\nSuppose 7*u + 12 = 11*u. Suppose -f + 2*f = u. Suppose 1 = -f*n + 13. Solve -x + n = x for x.\n2\nLet s(q) = -q. Let c be s(-4). Suppose 3 = -m, 3*t + 2*m - 438 = -3*m. Let f = 151 - t. Solve f*a = -c*a for a.\n0\nLet j(k) = k**2 + k + 3. Let h be j(0). Suppose 8 = -z - 7. Let i(o) = -2*o - 27. Let w be i(z). Solve w*m = 2*m - h for m.\n-3\nLet h =" -"0, -z + 2*x + 20742 = -61995. Is z prime?\nFalse\nLet p(m) = 27*m - 53 + 69 + 2*m**2 - 10*m. Let u = -29 + 10. Is p(u) a composite number?\nTrue\nSuppose -a = -5*q - 6385 - 3637, 2*a - 20020 = -2*q. Let t = a + -4845. Is t a prime number?\nTrue\nSuppose -262204 = 42*s - 1445050. Is s a composite number?\nFalse\nSuppose -2*w - 3*y + 0*y = -330, -494 = -3*w - 5*y. Suppose 0 = -12*k + 5*k - w. Is -1 + 2 + 1 + 791 + k a composite number?\nFalse\nSuppose 7*b + 3633 = -0*b. Let d = b + 1073. Is d prime?\nFalse\nLet o = 102966 - 67975. Is o a composite number?\nTrue\nLet i(b) = 294085*b**3 - 95*b**2 + 193*b + 1. Is i(2) a composite number?\nTrue\nLet n = -225197 - -330636. Is n prime?\nFalse\nSuppose 8*u - 37 = -13. Let c be (9/(-5))/(1/(-5)). Is u/9 + 24/c a prime number?\nTrue\nLet s = 18131 + 431336. Is s composite?\nTrue\nLet u(a) = 11245*a**2 - 32*a + 207. Is u(4)" -"= -0*r + 2*r - 12. Let v be (-441721)/42*r/(-16). Let q = 3949 - v. Find the common denominator of q and 103/18.\n144\nCalculate the common denominator of 27/35 and ((-11)/(495/6))/((-42)/(-132)).\n105\nSuppose 5*j - 11 - 4 = 0. Calculate the common denominator of 16/(-88) + 70*21/(-264) and 2 - (-158)/8 - j.\n4\nLet z be (560/1)/4 - (4 - 2). Let y = 150 - z. What is the lowest common multiple of y and 12?\n12\nSuppose 600*g = 578*g + 4620. Calculate the least common multiple of g and 10.\n210\nSuppose -2*b + 18 = 4*p, -p - 45 = -5*b - 2*p. Let h be (-6)/b*(-634)/(-4). Let i = -937/6 - h. Calculate the common denominator of i and 95/2.\n2\nLet r(w) = -61*w - 636. Calculate the least common multiple of r(-11) and 110.\n770\nLet u(b) = -2*b**2 + 29*b - 9. What is the smallest common multiple of u(13) and 15?\n30\nLet p(z) = -z**3 + 5*z**2 + z - 1. Let x be p(5). Suppose 4*o - c - c + 64 = 0, 0 = -4*o + x*c - 72. What is the common" -"7?\n366\nWhat is next in -7, 3, 23, 59, 117, 203, 323?\n483\nWhat comes next: -21, -36, -85, -186, -357, -616, -981?\n-1470\nWhat is the next term in -86, -158, -326, -638, -1142, -1886, -2918?\n-4286\nWhat is next in 24, 37, 64, 111, 184?\n289\nWhat is next in -53, -85, -115, -143, -169, -193?\n-215\nWhat is next in -518, -2070, -4656, -8276?\n-12930\nWhat is the next term in -17479, -17478, -17477?\n-17476\nWhat is next in -7, -30, -71, -136, -231, -362, -535, -756?\n-1031\nWhat is next in 479, 473, 463, 449, 431, 409?\n383\nWhat comes next: -8, -33, -76, -137, -216, -313, -428?\n-561\nWhat is next in -7784, -7788, -7794, -7802?\n-7812\nWhat is the next term in 122, 134, 158, 200, 266?\n362\nWhat is the next term in 7, 24, 53, 94, 147, 212, 289?\n378\nWhat is the next term in -39, -42, -49, -60, -75, -94?\n-117\nWhat is next in 111, 117, 135, 171, 231, 321, 447, 615?\n831\nWhat is next in 0, -60, -218, -522, -1020, -1760, -2790?\n-4158\nWhat is the next term in 66428, 66427, 66426?\n66425\nWhat is next" -"u rounded to 5 decimal places?\n0.00007\nLet y = -1.4 - -1.431. Let i = y - 0.611. Round i to one dp.\n-0.6\nSuppose -3*q - 3*r = -4908, 0 = -0*q + 3*q - 4*r - 4908. Let c = 1124 + -1690. Let v = q + c. What is v rounded to the nearest one hundred?\n1100\nLet b = 3900226 - 6820226. Round b to the nearest 1000000.\n-3000000\nLet x = 164 + -167.4. Let r = x - -3.7. What is r rounded to zero decimal places?\n0\nLet x = 10349387 - 6639881. Suppose 2440494 = -5*a - x. What is a rounded to the nearest one million?\n-1000000\nLet t(k) = 101*k**3 + 3*k**2 + 4*k + 4. Let w be t(-2). Let b be (w/60)/((-1)/1350). Round b to the nearest 10000.\n20000\nLet k(j) = 1 + 42624*j**2 + 82376*j**2 + j - 3. Let n be k(2). What is n rounded to the nearest 1000000?\n1000000\nLet r = 0.3609 - -5.6351. Let x = 58 + -64. Let g = x + r. Round g to three decimal places.\n-0.004\nSuppose -4243 = -2*z + 2955. Suppose" -"-w*d + 12 = -8*d for d.\n-4\nLet v be 405/(-13) + (-94)/(-611). Let q = v + 33. Let h(y) = -y**3 + 5*y**2 - 4*y + 3. Let f be h(4). Solve -q*p - 3 = -f*p for p.\n3\nLet f(r) = -r + 32. Let u be f(22). Solve -u*x = -11*x - 4 for x.\n-4\nLet o be 8/(-60) + 534/135*-3. Let l = 17 + o. Solve 2*f = -l + 7 for f.\n1\nLet s(b) = 3*b - 43. Let l be s(16). Suppose -5*f = o - 5, f - 4*o = l + 17. Solve -6 = -4*k + f*k for k.\n3\nLet x(g) = -g + 3. Let i be x(1). Let r = 29 + -24. Let z = r + -1. Solve -i*v + v = z for v.\n-4\nLet q(o) be the first derivative of o**5/30 - o**2/2 + 16. Let p(j) be the second derivative of q(j). Let w be p(-1). Solve 0 = m + w*m - 15 for m.\n5\nSuppose 32 - 4 = 2*q. Suppose -34168 = -2350*m - 1921*m. Solve -q = -m*d + 2 for" -"et d be (-2)/(-3) - 6670/667*(-2)/6. Suppose -52 = -3*a - a. Solve 9*h - d*c - a = 4*h, h = 5*c + 11 for h.\n1\nSuppose 238*s - 16326 - 13356 = -6358. Solve -102*k + s*k - 22 = 2*u, 3*u = 4*k + 7 for k.\n-4\nSuppose 11*j - 15*j + r + 110 = 0, 78 = 3*j - 3*r. Suppose -9*v + j = 1. Solve 8 = t + f, 0*f + 34 = 5*t + v*f for t.\n5\nLet k(l) = -2*l**2 + 9*l + 5. Let n be k(15). Let j = 319 + n. Solve j*z + 4*y + 28 = 4*z, 0 = -2*z + 5*y + 2 for z.\n-4\nLet n(w) = -w**2 + 10*w - 20. Let m be n(5). Suppose 3*p + 18 = 3*s, 0 = m*s - p + 3*p - 23. Solve 3*k + x - 3 - 11 = 0, x - 22 = -s*k for k.\n4\nLet b(j) = -15*j + 201. Let l be b(13). Solve 0*p - l = 5*v - 2*p, 0 = -v + p for v.\n-2\nLet b = -4389" -" -18)) + 44.\n33\nCalculate (321 - 363) + (47 - (-5 + 7)).\n3\nCalculate -8 + (47 - (61 + -23 - 13)) - (1 + 57).\n-44\nWhat is the value of (-50 - ((-8 - -3 - -5) + 2 + 1)) + 12?\n-41\nCalculate 25 + 5 - (52 + -31) - (20 - 114).\n103\nCalculate -15 + -37 + 25 + (-44 - -32).\n-39\nEvaluate (1 - -1) + -2 + 33 + 25.\n58\n(3 - 3) + (5 - 6) - (-21 + 0 - -68)\n-48\n(98 - 165) + -80 - -114\n-33\nWhat is 2 + -6 + 3 + (-474 - -471)?\n-4\nEvaluate -1516 + 1479 - (-68 - 1).\n32\nWhat is 13 + 6 + -2 + 190 + -194?\n13\nWhat is -4 + 19 + -24 + (1 - 46) + 55 + -49?\n-48\nCalculate -25 + -1 + -75 + 52 + 25.\n-24\n10 + (-40 - -18 - -29) + -2\n15\nEvaluate -22 + 3 + -19 + (-139 - -135).\n-42\nWhat is 26 + (-3 - (-13 + 9) - -11 - -1)?" -"ppose 5*o + 9 - d = 0. Solve o*h = 6 + v for h.\n2\nLet b be 29 + -30 - (-8 + 0). Solve -y = 2*y - b*y for y.\n0\nLet v be 18/3*3/6. Suppose 4*u = -f + 21, v*f = -0*u + 2*u - 7. Suppose u*r - 39 = 21. Solve 4*b + 0 = -r for b.\n-3\nLet p be (60/40)/(3/8). Suppose p*u = 3*j - 56, 2*j - 16 - 14 = -u. Solve j = 5*v - 9*v for v.\n-4\nLet d(i) = i**2 + 11*i + 18. Let k be d(-9). Solve -3*o + o + 6 = k for o.\n3\nSuppose -o = 4*u - 11, o + 2 = 2*u + 5*o. Suppose -2*q - 21 = -3*m, u*m - q = -2*m + 35. Let k = m + 3. Solve 0 = w + w - k for w.\n5\nLet s be (-64)/12*3/1. Let j = s - -27. Solve 3*x - j = -5 for x.\n2\nLet d = 231 - 210. Solve q = -d + 18 for q.\n-3\nLet a be 4 - ((-4" -"t n(l) = 9 + 2 - 5*l + 3. Suppose 2*s = -4*i + 36, 0*i + 40 = 4*i + 4*s. Give i*v(x) + 3*n(x).\nx + 2\nLet p(h) = 3*h**2 - 2*h - 2. Let v(z) = -14 - 13 + 29 + 5*z. Let n be v(-1). Let b(d) = -3*d**2 + 3*d + 3. Calculate n*p(w) - 2*b(w).\n-3*w**2\nLet o(j) = 4*j**3 + 14*j**2 + 14*j + 10. Let w = 34 + -48. Let i(p) = -p**3 - 3*p**2 - 3*p - 2. Determine w*i(x) - 3*o(x).\n2*x**3 - 2\nLet o(y) be the third derivative of y**4/24 - y**3/6 - y**2. Let f(b) = -4*b + 2. Let t(r) = 3*r**2 + 2*r - 2. Let m be t(-2). What is m*o(g) + 2*f(g)?\n-2*g - 2\nLet w(m) = -2*m**3 + 3*m. Let y(l) = -l**3 + 4*l + 2. Let p(b) = b + 1. Let c(j) = 2*p(j) - y(j). Determine -3*c(k) - 2*w(k).\nk**3\nLet r(q) = 4*q**3 - 5*q**2 - 2*q - 5. Let v(m) = 5*m**3 - 6*m**2 - 2*m - 6. Let f(u) = -u + 1. Let h be f(6). Determine h*v(w) +" -"e units digit of s?\n3\nSuppose -2*o + 18 - 8 = 2*g, -4*o - g = -14. What is the units digit of o?\n3\nLet h(v) = 3*v - 3. Suppose -3*u + x + 27 = 4*x, 0 = -2*u + x + 9. Let s be h(u). Suppose -s = -6*i + i. What is the units digit of i?\n3\nSuppose 4*w - 13 = -2*i + 3, 5*i = -5*w + 25. Suppose 25 = w*o - 14. What is the units digit of o?\n3\nLet r(g) = -60*g**3 - 2*g**2 - 2*g - 1. What is the tens digit of r(-1)?\n5\nLet g(k) = 229*k**3 + k - 1. What is the hundreds digit of g(1)?\n2\nSuppose -16 = -4*d + 4*k, k = 5*d + 3*k - 13. Suppose -3*w - w + 345 = 3*l, 0 = d*w - 2*l - 280. Suppose 0 = -6*i + i + w. What is the units digit of i?\n8\nSuppose 0 = y + 3*y - 4*z - 240, 5*z - 25 = 0. What is the tens digit of y?\n6\nLet x(z) = 2*z**2 - 4*z" -"-21)?\n7\nSuppose 16*w - 18*w + 18 = 0. Let y(h) = 126*h - 103. Calculate the remainder when y(1) is divided by w.\n5\nLet s = 3908 - 3366. What is the remainder when s is divided by 61?\n54\nSuppose -14*j + 32*j = 13*j, -3*t + 4*j + 195 = 0. What is the remainder when 449 is divided by t?\n59\nLet x = -11616 + 11875. Calculate the remainder when x is divided by 18.\n7\nLet k = -14 + 39. Suppose 5*n - 431 = -3*u + n, -4*n - 4 = 0. Calculate the remainder when u is divided by 0 + (k - -8) - (-3 - 1).\n34\nSuppose 47*n = -6*n - 27*n + 52080. What is the remainder when 1975 is divided by n?\n22\nCalculate the remainder when 234 is divided by (-57 + 21)/(9/(-6)).\n18\nLet s = -6529 + 9169. Calculate the remainder when s is divided by 52.\n40\nSuppose 0*h - 64 = -16*h. Suppose h*x = -4*d + 173 + 303, 2*d - 250 = -5*x. Calculate the remainder when d is divided by 17.\n13\nSuppose -l + 399" -"= 56*z**2 + 5*z + 24. Is 27 a factor of m(l)?\nTrue\nSuppose 2*y + 3*y - 50 = 0. Suppose -5*d + 4*l = 112 - 38, 2*l - y = d. Is 37 a factor of (-1400)/d - 32/(-144)?\nFalse\nSuppose -t = -k + 6 - 2, 4*k - 4 = 0. Let m be (t/6)/(3/5400). Is 5 a factor of m/(-28) + 1/(-7)?\nFalse\nLet s = 10 - 9. Does 21 divide s - -2 - 6916/(-38)?\nFalse\nSuppose -2438*s + 2451*s - 56160 = 0. Does 10 divide s?\nTrue\nLet f = 3405 + 8250. Does 14 divide f?\nFalse\nLet l = -4699 + 6632. Suppose n - 4*g = 973, 5*g = -4*n + 2*n + l. Is n a multiple of 49?\nFalse\nLet d(h) = -h**3 + 10*h**2 + 37*h + 11. Let u be d(13). Is 35 a factor of (14 + u + (-90)/8)*-80?\nTrue\nLet i(b) = -6903*b**3 - 11*b - 7. Is 43 a factor of i(-1)?\nFalse\nSuppose 73*s - 1232490 + 56552 = 1811003. Does 14 divide s?\nFalse\nSuppose 3*n + 643 = 4*b - 0*b, 0 = 2*b + 2*n" -") 10 (c) 0.5\nb\nWhat is the nearest to 0 in 4.02, 2, -28/15, 0?\n0\nWhat is the nearest to -16 in 138, 3/8, 148, -13?\n-13\nWhich is the nearest to 9? (a) -3 (b) -0.2 (c) 9/2 (d) -360 (e) -0.5\nc\nWhich is the closest to 0? (a) 1494 (b) 2/3 (c) 0.2 (d) 0 (e) 2\nd\nWhat is the closest to 1/9 in -123.7, 3, -9.4, -0.5?\n-0.5\nWhat is the closest to 1 in 25135, -1/4, -5/2, 4, -5?\n-1/4\nWhich is the closest to 2496? (a) 3 (b) -3 (c) -1550 (d) -5 (e) -2/5 (f) 4\nf\nWhich is the closest to 1? (a) 0 (b) -85843 (c) -0.15 (d) 2/11 (e) -4\nd\nWhich is the nearest to 8? (a) -4/7 (b) -0.2435 (c) 43\nb\nWhat is the closest to 0.085 in -2/19, -2, 1.4, -4, 0?\n0\nWhich is the closest to -3.421? (a) -7 (b) -0.1 (c) -2/55 (d) -1/4 (e) -3/2 (f) 2/11\ne\nWhat is the nearest to 4 in -1, -38, 997?\n-1\nWhich is the closest to 1/5? (a) -682 (b) 5 (c) 1 (d) 15 (e) -0.2 (f) 13\ne\nWhich" -"r be (19 - 4)*2/6. Suppose -r*k - 30 = 30. What is the units digit of (k/7)/(16/(-504))?\n4\nSuppose 2758 + 2178 = 4*b. What is the units digit of b?\n4\nWhat is the hundreds digit of (-10)/3*35217/(-65)?\n8\nLet n be 192/(4 + 2)*3/(-4). What is the tens digit of -3*526/n - (-3)/(-4)?\n6\nLet x(o) = o**3 + 4*o**2 + 4*o + 2. Let u(h) = h**2 - 6*h + 3. Let f be u(5). Let b be x(f). Let d(s) = 9*s**3 - s**2 + 4*s + 1. What is the tens digit of d(b)?\n7\nLet k = 14 - -36. What is the units digit of (-18)/(-36) - k/(-4)?\n3\nLet a(o) = -19*o - 62. What is the hundreds digit of a(-14)?\n2\nLet x(j) = -j**3 - 7*j - 3. Let m(l) = 3*l**3 + 13*l + 5. Let o(z) = 4*m(z) + 7*x(z). What is the units digit of o(2)?\n5\nSuppose 5*l - 6*l - 10 = -3*n, -8 = -2*n. Let v be -46*((-9)/(-3) - l). Let y = -28 - v. What is the units digit of y?\n8\nSuppose 9*n - 10 = 7*n, v -" -"58*c + 147*c + 236 for c.\n59\nSolve -15928 = -281*c - 141*c + 60*c for c.\n44\nSolve 161380*m = 161560*m - 4500 for m.\n25\nSolve -185209 + 167884 = 225*g for g.\n-77\nSolve 3754350*r - 3754329*r = 1113 for r.\n53\nSolve -264*h - 32*h - 23463 = 301*h - 3165 for h.\n-34\nSolve -1353 = 3775*l - 88178 for l.\n23\nSolve 7073*i - 469*i - 19314 + 530213 = -76857 for i.\n-89\nSolve 4462*m - 947*m = -2112*m - 416398 for m.\n-74\nSolve -145809 = -3533*u + 2577 for u.\n42\nSolve -57537164*n = -57537058*n - 318 for n.\n3\nSolve 192*w - 76*w - 65*w = 80*w + 638 for w.\n-22\nSolve 4764652*o - 4764630*o + 2684 = 0 for o.\n-122\nSolve 0 = 440*x - 314*x + 558*x - 18468 for x.\n27\nSolve 988*c + 240*c - 43112 = -40*c for c.\n34\nSolve -421*y - 1018*y = 156*y - 9570 for y.\n6\nSolve 53376 - 54804 = -42*y for y.\n34\nSolve -w = -39*w - 39 + 246 + 135 for w.\n9\nSolve 928*o - 2855 = -19559 for o.\n-18" -"(r) = r**2 + 5*r + 5. Let z be h(-5). Suppose -4*x - y = -z*x. List the prime factors of x.\n2\nLet k(h) = -4*h - 1. Let s be k(-1). Let r be (-1 + s)/(1/4). Suppose 0 = -4*j - 4*t + 40, 2*j + t - r = 3*t. List the prime factors of j.\n7\nLet k be (-4)/(-16) + (-374)/(-8). Let n = k + -33. List the prime factors of n.\n2, 7\nLet a = -108 + 201. Suppose -a = -3*x - 0*x. Let h = x + -14. What are the prime factors of h?\n17\nLet u be 7/(-28) - (-269)/4. Suppose -4*z + 0*d + 82 = -2*d, -u = -4*z - 3*d. List the prime factors of z.\n19\nLet b(l) = -3*l**3 + 6*l**2 - 8*l - 8. Let y(m) = -2*m**3 + 6*m**2 - 8*m - 8. Let n(x) = -3*b(x) + 4*y(x). List the prime factors of n(-6).\n2, 5\nLet t(a) = 6*a**2 - a. Let f be t(1). Suppose -r = 2, f*p - 3*r + 1 = 7. Suppose y + p*y - 9 = -2*m, -5*m = -y" -"374?\n2, 3, 11, 113\nWhat are the prime factors of 1557?\n3, 173\nWhat are the prime factors of 1188?\n2, 3, 11\nWhat are the prime factors of 1571?\n1571\nWhat are the prime factors of 160?\n2, 5\nWhat are the prime factors of 1914?\n2, 3, 11, 29\nWhat are the prime factors of 6019?\n13, 463\nList the prime factors of 27996.\n2, 3, 2333\nList the prime factors of 25609.\n25609\nWhat are the prime factors of 872?\n2, 109\nList the prime factors of 2519.\n11, 229\nList the prime factors of 157.\n157\nList the prime factors of 15393.\n3, 7, 733\nList the prime factors of 3009.\n3, 17, 59\nList the prime factors of 11139.\n3, 47, 79\nList the prime factors of 14035.\n5, 7, 401\nWhat are the prime factors of 83634?\n2, 3, 53, 263\nWhat are the prime factors of 654?\n2, 3, 109\nWhat are the prime factors of 424?\n2, 53\nList the prime factors of 2968.\n2, 7, 53\nList the prime factors of 624.\n2, 3, 13\nWhat are the prime factors of 31096?\n2, 13, 23\nWhat are the prime factors" -":55 AM\nWhat is 360 minutes after 7:36 PM?\n1:36 AM\nHow many minutes are there between 9:25 AM and 3:24 PM?\n359\nWhat is 430 minutes before 7:21 PM?\n12:11 PM\nWhat is 585 minutes after 9:11 AM?\n6:56 PM\nWhat is 421 minutes after 2:14 AM?\n9:15 AM\nWhat is 535 minutes before 12:47 AM?\n3:52 PM\nWhat is 123 minutes before 11:59 PM?\n9:56 PM\nHow many minutes are there between 1:44 PM and 3:13 PM?\n89\nHow many minutes are there between 10:23 PM and 4:16 AM?\n353\nHow many minutes are there between 12:51 AM and 8:37 AM?\n466\nHow many minutes are there between 4:54 PM and 3:54 AM?\n660\nWhat is 624 minutes before 9:31 PM?\n11:07 AM\nWhat is 91 minutes before 6:09 AM?\n4:38 AM\nWhat is 655 minutes after 8:26 PM?\n7:21 AM\nHow many minutes are there between 10:04 AM and 12:44 PM?\n160\nWhat is 504 minutes before 7:20 AM?\n10:56 PM\nHow many minutes are there between 1:51 PM and 4:52 PM?\n181\nWhat is 627 minutes after 5:22 AM?\n3:49 PM\nHow many minutes are there between 10:57 PM and 3:17 AM?\n260\nWhat is 171" -"3*d - 3. Let n(a) = -7*f(a) + t(a). What is the derivative of n(l) wrt l?\n854*l\nLet a(t) = -985*t**2 - 45*t + 13946. Let f(d) = -d**2 - 21*d - 2. Let j(k) = a(k) - 2*f(k). Differentiate j(q) with respect to q.\n-1966*q - 3\nWhat is the derivative of -1178*a**4 + a + 587*a**4 + a - 2210*a**2 + 5971 + 590*a**4 wrt a?\n-4*a**3 - 4420*a + 2\nLet a(y) be the first derivative of 13*y**6/2 + y**4/2 + 17*y**3/3 - 7*y**2/2 - 474*y + 8329. Find the second derivative of a(f) wrt f.\n780*f**3 + 12*f + 34\nLet v(p) = 6202*p**2 + 11693*p + 7. Let t(f) = 3102*f**2 + 5847*f + 4. Let c(j) = -7*t(j) + 4*v(j). What is the second derivative of c(k) wrt k?\n6188\nLet u be 6/(-4)*-1*40/3. Suppose -3*p - p = -u. Find the first derivative of -158*m**2 + 2 - 22*m**3 + 158*m**2 - p wrt m.\n-66*m**2\nSuppose 29*n - 216 = 25*n. Let p = n - 24. Find the second derivative of -113 + 54 + 59 + p*b**2 + 13*b wrt b.\n60\nLet n(r) = -r**3 - 2*r**2 -" -" 3*o)*(-10 - 5 - 4) + (1 + 0 - 2 + 2 - 2 - 1 + (0 - 1 + 0)*(4 - 1 - 4) + 8 - 3 - 3)*(-14*o - 12*o + 11*o) as i*o + x and give i.\n-53\nExpress -8*b + 3 - 5 - 36*b - 95*b as x*b + z and give x.\n-139\nExpress -3*p**2 + 5*p**2 - p**2 + (3*p - 3*p + 2*p)*(0*p - 6*p + 4*p)*(4 + 3 + 3) in the form r + u*p + x*p**2 and give x.\n-39\nRearrange 84*r - 39*r + 49*r + 66*r + 1 to the form k*r + a and give k.\n160\nRearrange 7*w**2 - w - 61 - 94*w**4 + 92*w**4 + 64 - 3*w**3 to the form q*w**4 + i*w + j*w**2 + g + z*w**3 and give q.\n-2\nExpress -94*i + 292*i - 110*i in the form r*i + m and give r.\n88\nExpress 3*d**2 + 0*d**2 - 7*d**2 + (-4 - d**2 + 4)*(29 - 10 + 10) in the form u + k*d + a*d**2 and give a.\n-33\nExpress -f + 3*f - 25*f - 2*f as u*f +" -"et d(q) = -q**2 - 83*q - 1646. Determine d(-50).\n4\nLet k(j) = -j**3 + 71*j**2 - 150*j + 832. Calculate k(69).\n4\nLet u(c) = 60*c + 5164. Calculate u(-86).\n4\nLet w(c) = c**3 + 30*c**2 - 62*c - 17. What is w(-32)?\n-81\nLet o(b) = 108*b + 13175. Give o(-122).\n-1\nLet k(t) = t**2 + 891*t + 5321. Give k(-6).\n11\nLet a(m) = -m**3 + m**2 - 2*m - 8. Determine a(-2).\n8\nLet i(k) = k**3 - 3*k**2 - 21*k - 10. What is i(6)?\n-28\nLet u(h) = -2*h - 71. What is u(-23)?\n-25\nLet k(c) = 2*c**3 + c**2 - 5*c + 57. Determine k(0).\n57\nLet q(c) = -29*c - 140. What is q(-4)?\n-24\nLet x(o) = -2*o**3 - 198*o**2 - 198*o - 208. Determine x(-98).\n-12\nLet a(b) = 108*b**3 + 2*b**2 - 3*b - 4. Calculate a(-1).\n-107\nLet d(b) = 405*b - 2421. Give d(6).\n9\nLet g(p) = -5*p**2 + 5*p + 44. Calculate g(-3).\n-16\nLet h(k) = -k**2 + 115*k - 341. What is h(3)?\n-5\nLet s(w) = -73*w - 482. Give s(-7).\n29\nLet q(y) = 1113*y + 13356." -"2*g + 4. Suppose 12 = 7*c - 3*c. Let u be x(c). Is -10/3 at most u?\nTrue\nSuppose v - 6 = -v. Let c be 33/15 - v/1. Do 2/7 and c have the same value?\nFalse\nLet o = 112 - 112.53. Let i = 0.7 + o. Is i > 1?\nFalse\nLet d(k) = -k**2 - 16*k + 10. Let f be d(-5). Is f != 66?\nTrue\nLet c(m) = -3*m**2 - 53*m + 14. Let z be c(-21). Is z > -393/2?\nTrue\nLet q(k) = -k**2 - 4*k + 7. Let l be q(-5). Let j = l - -11. Which is smaller: 11 or j?\n11\nLet d = 284 - 152. Suppose -6*p + 258 + d = 0. Is 67 > p?\nTrue\nLet s be 8/6*126/84. Which is smaller: 1/18 or s?\n1/18\nLet w = 16.2 + -5.1. Let b = w - 11. Are b and -1/5 non-equal?\nTrue\nLet v(j) = j**2 + 4*j - 4. Let p be v(-4). Let n be (6/(-15))/(p/40). Let r be (30/5)/(6/4). Is n greater than or equal to r?\nTrue\nSuppose 5*y + 121 = 4*r, -5*y" -"e second smallest value in -0.2, 16, 4/11445, -1/4?\n-0.2\nWhich is the fourth biggest value? (a) 223833 (b) 24 (c) -5 (d) -0.2\nc\nWhat is the fifth biggest value in 31, -2/9, 4, -0.06, -6, -0.3, 878?\n-2/9\nWhat is the biggest value in 5, 1, 202421792?\n202421792\nWhat is the fifth biggest value in -5/3, -385, -0.1, 3, 2/15?\n-385\nWhat is the fifth smallest value in -5347.63, -1/3, -0.1, -1, -2?\n-0.1\nWhat is the sixth biggest value in 0.2, 1/8, -8, -0.002, 2/9, -1, 11?\n-1\nWhat is the smallest value in 3.4, 8.25, 48, -4?\n-4\nWhat is the fifth biggest value in -6/11, 0, 3, -363, -1.55, 0.5, -0.4?\n-6/11\nWhich is the fourth smallest value? (a) 3/31 (b) -475 (c) -0.3 (d) -0.8 (e) 0.26 (f) -1 (g) -4\nd\nWhich is the third smallest value? (a) 0 (b) 6/11 (c) -0.1 (d) 4.5 (e) -29/5 (f) -3/4\nc\nWhat is the second biggest value in -374, 4, -0.3, 1947?\n4\nWhat is the smallest value in -3, -2/5, 2/7, -135, -0.51, 3/2?\n-135\nWhat is the second smallest value in 0.5, -429.8, 2/11, -10, 0, 13/3?\n-10\nWhich is the third" -"\nFalse\nLet x = 8011 + -944. Is x prime?\nFalse\nSuppose x + w + 0 = 7, 4*x + 3*w = 31. Let d(o) = 6 - x*o**2 - 20*o - o**3 - 22 + 30*o**2. Is d(13) a prime number?\nTrue\nLet g(t) = 2*t + 6. Let d be g(0). Suppose d*x - 4376 = -404. Suppose -353 - x = -5*p. Is p a composite number?\nTrue\nIs 63278 + -3 + -13 + 0 + 2 + 3 prime?\nFalse\nLet v = 105434 - -20663. Is v prime?\nTrue\nLet x(q) = 150124*q + 3137. Is x(5) a composite number?\nTrue\nLet q(r) = -474*r**2 + 19. Let x be q(-6). Let f = -4584 - x. Is f a prime number?\nFalse\nLet l = 3264 + -2241. Suppose 16*y + l = 57455. Is y a prime number?\nTrue\nSuppose -633*u + 629*u + x + 24982 = 0, 0 = -2*x + 12. Is u a composite number?\nFalse\nSuppose 7*r - 11*r - 68 = -4*c, 5*r = -4*c + 23. Suppose 6*t + 117870 = c*t. Is t a composite number?\nTrue\nSuppose -4*i - 4*i = -88." -" 2 = -i*m + 146*m. Suppose -m*z - 3*k - 11 = -8*k, -k = 4*z - 11. Solve 0 = -3*c, z*w = -2*w - 2*c - 12 for w.\n-3\nSuppose 2*r + 812 = g, 21*r - 26*r - 25 = 0. Suppose -g*h = -808*h + 24. Solve h*j = -n - 7, n + 5*j = 4*j + 2 for n.\n5\nSuppose 0 = -110*z + 21 + 268 + 41. Solve 23*x - 12 = 19*x, z*s - 12 = -3*x for s.\n1\nLet t(c) = -50*c + 53. Let n be t(-4). Let p = n - 244. Solve -3*i = 2*l - p, l - i - 3 = -6 for l.\n0\nLet p(i) = i**2 - 560*i - 3378. Let b be p(-6). Let x(v) = -v + 3. Let c be x(-3). Solve -c*t + b = -4*w - t, -3*t + 10 = -2*w for w.\n-2\nLet l = 45 + -42. Suppose 0 = -l*f - 13 + 82. Let z = f - 18. Solve 6 = -4*k - 2*i + 16, 0 = k + z*i - 16 for k.\n1\nLet" -" - q = u*q + 4, 4*z = 3*q + 16 for z.\n4\nLet m = 21 + -14. Let i = m + -3. Let q = 20106 - 20104. Solve 2*v + 0 = w - i, -q*w + 8 = 5*v for w.\n4\nSuppose -140 = -45*n - 50. Solve -n*l = -3*h + 11, -h - 15 = 4*l - 0*h for l.\n-4\nLet s(x) = 23*x + 142. Let l be s(10). Let t = l + -367. Solve 3*f - 4*n + 6 = -0*n, -t*f + 1 = -3*n for f.\n2\nSuppose -9*j = -16*j + 21. Suppose -j*t = t - 44. Let q(o) = -o**3 + 11*o**2 + o - 6. Let u be q(t). Solve x - 4*z + 1 = u, -2*x - 16 = 4*z for x.\n-4\nLet x be -2*-2*(-327)/(-12). Suppose -z + x = 4*y + 32, 65 = 4*y + 5*z. Let d be 345/12 - (-5)/y. Solve -2*j = -6*j + 16, -j = 5*s - d for s.\n5\nSuppose 54*d - 21*d - 6897 = 0. Let h = d + -192. Solve -3 = -2*i -" -"between 2:11 AM and 3:41 AM?\n90\nWhat is 538 minutes after 6:17 AM?\n3:15 PM\nHow many minutes are there between 4:48 PM and 10:15 PM?\n327\nHow many minutes are there between 11:10 AM and 7:50 PM?\n520\nHow many minutes are there between 5:02 AM and 4:12 PM?\n670\nWhat is 371 minutes after 1:47 PM?\n7:58 PM\nHow many minutes are there between 10:13 AM and 12:03 PM?\n110\nWhat is 568 minutes before 11:35 PM?\n2:07 PM\nHow many minutes are there between 3:29 PM and 7:29 PM?\n240\nHow many minutes are there between 8:17 PM and 12:43 AM?\n266\nHow many minutes are there between 3:15 AM and 8:01 AM?\n286\nHow many minutes are there between 10:17 AM and 1:31 PM?\n194\nWhat is 236 minutes after 8:10 PM?\n12:06 AM\nWhat is 385 minutes after 1:41 AM?\n8:06 AM\nHow many minutes are there between 6:56 PM and 2:39 AM?\n463\nHow many minutes are there between 1:46 PM and 11:14 PM?\n568\nWhat is 492 minutes after 5:16 PM?\n1:28 AM\nHow many minutes are there between 2:41 PM and 3:14 PM?\n33\nWhat is 691 minutes before 6:33 AM?" -"t**2 + 184*t - 1356. Give o(-68).\n4\nLet i(g) = 9*g**2 + 71*g - 7. Calculate i(-6).\n-109\nLet r(p) = -58*p**3 - 6*p**2 + 2*p + 2. Determine r(1).\n-60\nLet i(y) = 1203*y - 2416. Determine i(2).\n-10\nLet a(s) = s**3 + 27*s**2 + 124*s + 8. Determine a(-6).\n20\nLet a(c) = -c**3 + 26*c**2 + 115*c - 9. Give a(30).\n-159\nLet k(s) = -2*s**2 + 80*s - 325. Give k(36).\n-37\nLet u(w) = 314*w + 35. Determine u(0).\n35\nLet z(u) = 2*u**3 - 2*u**2 - 26*u + 58. Give z(4).\n50\nLet d(o) = -19*o - 220. What is d(-11)?\n-11\nLet x(k) = 8*k**3 - 19*k**2 - 29*k - 8. Calculate x(-1).\n-6\nLet s(g) = g**3 - 13*g**2 - 12*g + 36. Give s(15).\n306\nLet u(n) = 35*n + 1372. Calculate u(-39).\n7\nLet q(a) = -2*a**3 - 11*a**2 + 93*a + 23. What is q(-10)?\n-7\nLet i(b) = b**2 + 51*b + 317. Determine i(-41).\n-93\nLet r(d) = 124*d + 699. Determine r(-6).\n-45\nLet g(m) = 772*m - 7694. What is g(10)?\n26\nLet p(d) = d**3 + 14*d**2 - 40*d + 25. Give" -" = -12*h - 5. Let f be x(0). Let m = -3 + 5. Let t be 4/(-3) + m/6. Put 0, t, f in ascending order.\nf, t, 0\nLet k = -0.2 - -0.1. Put 0.2, -1, k, -1/4 in descending order.\n0.2, k, -1/4, -1\nLet c = 7 + -9.06. Let g = -1 + 0.94. Let d = g - c. Sort 2/7, d, -1/4 in decreasing order.\nd, 2/7, -1/4\nLet w be ((-20)/(-3))/((-4)/(-9)). Put w, 1, 2 in decreasing order.\nw, 2, 1\nLet m(r) = -2*r. Let d be m(-7). Let u = 34 - d. Suppose -2*y - a + 15 = 0, -y - a = 2*y - u. Sort -5, 1, y.\n-5, 1, y\nSuppose 0 = 8*d - 4*d - 80. Let j be 2/(-4) + 25/d. Put 4, j, -2/3 in ascending order.\n-2/3, j, 4\nLet o be (10/3)/(2/3). Let b = 7 - o. Suppose 0*d = 5*d - 25. Sort b, d, -4.\n-4, b, d\nLet z = -4 - -6. Suppose -5*f + 3*x = -3, -2*f - z*f - 4*x + 28 = 0. Suppose -2*m + 0*m + 4" -" j. What are the prime factors of n?\n2, 7\nWhat are the prime factors of 103*(-1)/1*-1?\n103\nSuppose -v + m = 2*v - 96, 3*m = 0. Let o = -22 + v. What are the prime factors of o?\n2, 5\nSuppose -3*k + 24 = -2*k. List the prime factors of k.\n2, 3\nLet m(p) = p**2 + 3*p - 10. What are the prime factors of m(5)?\n2, 3, 5\nLet l = -4 - -19. Let q = l - -5. What are the prime factors of q?\n2, 5\nSuppose 2*x = 4*r + 4*x - 2, 3*r - 9 = -4*x. What are the prime factors of (2 + 1)*r + 15?\n2, 3\nSuppose 29*q = 31*q - 10. List the prime factors of ((-162)/15)/(q/(-25)).\n2, 3\nSuppose 0*v = 2*v + b - 74, -b + 150 = 4*v. What are the prime factors of v?\n2, 19\nLet y(l) = -2*l**2 + 2. Suppose 2*c + 16 = 2*q + 2*q, -q - 3 = 3*c. Let a be y(c). Let w(g) = 2*g**2 + 9*g + 5. What are the prime factors of w(a)?\n23\nLet s" -"?\nFalse\nLet x(v) = 3*v**2 + 0*v + 11*v - 2*v - 6*v. Does 4 divide x(4)?\nTrue\nIs (0 - (-7608)/(-72))*-69 a multiple of 23?\nTrue\nSuppose -17*o = -10*o + 14. Does 87 divide (290/(-20))/(o/84)?\nTrue\nLet x = 2694 + -2570. Is 2 a factor of x?\nTrue\nSuppose -2*t = -0*n + n - 5, 0 = -2*t + 2*n + 8. Suppose t*g = 0, 5*g - 3*g = x - 819. Is 13 a factor of x?\nTrue\nDoes 8 divide (-20266 - -6)*(-21)/84?\nFalse\nLet k = -2168 - -3039. Is k a multiple of 6?\nFalse\nLet d = -915 + 9490. Is 35 a factor of d?\nTrue\nLet g(k) = -4 - 11*k + 151*k**2 - k**3 + 8*k**3 - 162*k**2 + 0*k**3. Does 30 divide g(5)?\nFalse\nSuppose 2*s - 218 = -212. Suppose 12 = s*i, -3*o + 3*i = -8*o + 557. Does 4 divide o?\nFalse\nSuppose -15 = -5*m, 3*y + 9*m = 4*m + 213. Let l be 27/18 - y/4. Is (0 + -1)/(15/l)*21 a multiple of 8?\nFalse\nSuppose -1066*p + 1067*p = 186. Is p a multiple of 38?\nFalse" -"for o.\n2\nSolve -3*d + 34*b = 35*b - 10, 4*d - 3*b + 4 = 0 for d.\n2\nSolve -5 = 5*n + g - 9, -3*n - 4*g - 1 = 0 for n.\n1\nSolve u = 4*s - 9, 0 = u + 2*u + 5*s + 10 for u.\n-5\nSolve 5 = -p - 3*i - 2*i, 2*p = 5*i + 20 for p.\n5\nSolve 12 - 2 = -2*n + 4*w, -4*w = -5*n - 1 for n.\n3\nSolve -5*r - 15 = 4*k, -2*r - 1 = -5*k + 5 for k.\n0\nSolve 2*b + 0 = 4*c - 6, 5*b + 24 = c for b.\n-5\nSolve -23 = y - 5*a, 6*y = 2*y + a - 16 for y.\n-3\nSolve -g + 2*p - 4 + 1 = 0, 5*g + 2*p + 15 = 0 for g.\n-3\nSolve 0 = 2*n - 3*o - 14, o - 3 = -3*n - 4 for n.\n1\nSolve -4*h = 5*t - 16 - 12, -5*t = h - 22 for t.\n4\nSolve 4*w + 5 = 3*v, 0 = 2*v" -"for q.\n4\nSolve 43*c - 41*c + 55 = -13*d, 0 = 3*c + 5*d + 10 for c.\n5\nSolve -d = 5*z + 91, -17*z - 1671 + 1360 = 5*d for d.\n-1\nSolve -72*f + 73*f - 17 = 3*m, -3*f - 4*m + 116 = 0 for f.\n32\nSolve 32 = 5*o + 43*t - 39*t + 74, -2*o - 32 + 4 = 3*t for o.\n-2\nSolve -12*x + 63 = -v + 302, -5*v - 4*x - 8*x = 81 + 164 for v.\n-1\nSolve 0 = -4*j + 5*t, 20*j + 5*t + 150 = 30 for j.\n-5\nSolve -2*m + 5*d + 16 = m - 7 - 12, 7*m - 15 = -5*d for m.\n5\nSolve -36*r + 72 = 32*r - 63*r - 4*t, -5*t = -2*r + 22 for r.\n16\nSolve n + 0*n - 96 = -5*n - 3*j, 8*j = -7*n + 7*j + 22 for n.\n-2\nSolve -5*c = -4*d - 33*d + 49, 4*c - 30 = -0*c - 5*d for c.\n5\nSolve -931*v + 68 = -2*u - 966*v, -2 = -6*u - 0*u" -" + 6. Determine s(4).\n2\nLet g(t) = -3*t**2 - 1. Give g(-2).\n-13\nLet g(v) = v**3 - 29*v**2 + 54*v + 18. Give g(27).\n18\nLet i(q) = -16*q + 90. What is i(6)?\n-6\nLet p(i) = -6*i + 4. What is p(6)?\n-32\nLet u(g) = -4*g + 5. What is u(5)?\n-15\nLet d(s) = -3*s**2 - 2*s - 1. Give d(-1).\n-2\nLet s(w) = -w**3 + 15*w**2 - 3*w + 22. Give s(15).\n-23\nLet d(s) = s**3 + 11*s**2 + 21*s + 13. Calculate d(-9).\n-14\nLet d(u) = -14*u + 1. Give d(3).\n-41\nLet d(i) = -i**3 + 14*i**2 - 4. Give d(14).\n-4\nLet m(t) = 4*t + 12. What is m(-12)?\n-36\nLet n(x) = x. Calculate n(13).\n13\nLet t(d) = -d**3 - 13*d**2 - 27*d + 29. What is t(-10)?\n-1\nLet p(a) = 4*a**2 + 47*a - 15. What is p(-12)?\n-3\nLet a(n) = -8*n**3 - 3*n**2 - 2*n. Determine a(-1).\n7\nLet p(r) = r + 22. What is p(-14)?\n8\nLet a(f) = 5*f + 34. Give a(-16).\n-46\nLet q(m) = -2*m**2 - 9*m - 4. What is q(-2)?\n6\nLet" -"of 2434427893 to the nearest integer?\n49340\nWhat is 785142552 to the power of 1/3, to the nearest integer?\n923\nWhat is the cube root of 61783056 to the nearest integer?\n395\nWhat is 205641219 to the power of 1/5, to the nearest integer?\n46\nWhat is 56695182 to the power of 1/7, to the nearest integer?\n13\nWhat is the cube root of 39488061 to the nearest integer?\n341\nWhat is the sixth root of 5206125 to the nearest integer?\n13\nWhat is 213954519 to the power of 1/2, to the nearest integer?\n14627\nWhat is the cube root of 101577703 to the nearest integer?\n467\nWhat is the square root of 3901283 to the nearest integer?\n1975\nWhat is the cube root of 668761464 to the nearest integer?\n874\nWhat is 145175627 to the power of 1/4, to the nearest integer?\n110\nWhat is the square root of 5944661029 to the nearest integer?\n77102\nWhat is 57026234 to the power of 1/2, to the nearest integer?\n7552\nWhat is 593338163 to the power of 1/2, to the nearest integer?\n24359\nWhat is 849192476 to the power of 1/4, to the nearest integer?\n171\nWhat is the sixth root" -"e the third derivative of -r**5/12 - r**4/6 - r**3/3 + 5*r**2 + 2*r. Suppose -l - 2*g + 6 = 3*l, 0 = -5*l - 4*g. Suppose l*s + 5 + 3 = 0. Give d(s).\n-14\nLet s(t) = -t**3 + 4*t**2 - 4*t + 2. Suppose -94*z + 108*z = 42. Give s(z).\n-1\nLet l(v) = -v + 5. Let k be 2 + 0/(5/(-1)). Let h be (-8)/4*k/(-1) - -6. Let b(p) = p**3 - 11*p**2 + 10*p + 3. Let m be b(h). Determine l(m).\n2\nLet k be 0/((-5)/15*-3) + 4. Let j be (-30)/(-5) - 5 - k. Let w(s) = s**3 + 4*s**2 - s + 1. Calculate w(j).\n13\nLet w(o) = 17 - 10*o - 12 - 8 - 11 + o. Calculate w(4).\n-50\nSuppose -5*c - y = -86, -3*y = -c - 5*y + 19. Suppose c*u = 13*u + 8. Let a(j) = -2*j**u - 2*j**2 - 185 - 10*j + 180 + 3*j**2. Determine a(-7).\n16\nLet k(j) be the second derivative of -7*j**3/6 - j**2/2 + 7*j. Suppose 0 = -2*u - c, -16*c + 19*c - 1 = -5*u. Calculate k(u).\n6" -"-4*r + 4*h for r.\n-2\nSuppose 13*y - 11*y = 10. Solve -2*z = -z - 5*r - 20, 0 = -z - y*r - 20 for z.\n0\nSuppose 2*t - 31 = 3*v, t - 4*v = 5*t - 12. Suppose 2*r = t, 3*o + 4*r - 6 = 19. Solve y + n - 7 = -3*y, -o*y - 5*n = 16 for y.\n3\nSuppose 48 = 19*l - 15*l. Suppose 0 - 5 = -5*p. Let o be ((-4)/10)/(p/(-15)). Solve -2*t = 2*s + 4, -2*s + o*s = -l for t.\n1\nSuppose 8 = o + o. Let s be 18/2*(-2 + o). Let q(j) = j**3 + 4*j**2 + 2*j - 1. Let g be q(-3). Solve -4*b = -2*v + s, 0*v + g*b = 3*v - 7 for v.\n-1\nSuppose c = 5*d - 3 + 26, 5*c - 3*d - 27 = 0. Solve -4*i = -c*v - 26, 2*v = v - 5*i + 23 for v.\n-2\nLet b(u) = -112*u + 63. Let i(l) = 7*l - 4. Let t(y) = -4*b(y) - 63*i(y). Let z be t(1). Solve -4*m + 3*f -" -"scending order.\n5, c, 0\nSuppose -26*a + 24*a = 28. Let b(t) = -48*t + 1. Let f be b(-1). Let w be (-1)/2 + f/a. Sort 3, -3, w in decreasing order.\n3, -3, w\nSuppose 2*h - 4 = 0, 4*h - 13 = 2*z - 1. Let d be z + (174/34 - 3). Sort d, -5, 0.5 in descending order.\n0.5, d, -5\nLet o be -3 + -4 - (-4 + 1). Sort -1, 1, o in descending order.\n1, -1, o\nLet k(y) = y**3 - y**2 + 1. Let t be k(2). Suppose -5*p + 5 = 10. Let b be 3*2*p/2. Sort 0.5, t, b.\nb, 0.5, t\nSuppose -2*v + 3*v + 2 = 0. Let i be v + (2/1)/1. Put -3, i, 3 in descending order.\n3, i, -3\nLet z be ((-8)/(-10))/(8/(-20)). Put -0.4, z, -0.06 in increasing order.\nz, -0.4, -0.06\nLet o(h) = -2*h + 1. Let c be o(-1). Suppose -4*n + c*n - 4 = 0. Suppose -5*g - s + 4*s + 20 = 0, 0 = g - 3*s - 16. Put g, 0, n in increasing order.\nn, 0, g" -"+ 482*w - 3\nWhat is the p'th term of 19737, 19721, 19705, 19689, 19673?\n-16*p + 19753\nWhat is the a'th term of -4005, -7658, -11313, -14970, -18629, -22290?\n-a**2 - 3650*a - 354\nWhat is the p'th term of -40710, -40708, -40706, -40704, -40702?\n2*p - 40712\nWhat is the u'th term of 3, 28, 83, 168, 283?\n15*u**2 - 20*u + 8\nWhat is the u'th term of 474, 1572, 2670, 3768?\n1098*u - 624\nWhat is the b'th term of -200237, -400470, -600703?\n-200233*b - 4\nWhat is the b'th term of -1711, -1710, -1707, -1702, -1695?\nb**2 - 2*b - 1710\nWhat is the j'th term of 1, 147, 429, 853, 1425, 2151, 3037?\nj**3 + 62*j**2 - 47*j - 15\nWhat is the t'th term of -1688, -3391, -5120, -6887, -8704, -10583, -12536, -14575?\n-2*t**3 - t**2 - 1686*t + 1\nWhat is the i'th term of -96961, -193887, -290813, -387739, -484665?\n-96926*i - 35\nWhat is the a'th term of -25658, -25733, -25798, -25847, -25874, -25873?\na**3 - a**2 - 79*a - 25579\nWhat is the i'th term of -13472, -26916, -40362, -53810, -67260, -80712, -94166?\n-i**2 - 13441*i - 30\nWhat is" -"\nCalculate prob of picking 2 r and 2 g when four letters picked without replacement from {z: 9, j: 2, l: 2, r: 3, m: 1, g: 3}.\n3/1615\nWhat is prob of picking 2 h and 2 t when four letters picked without replacement from {z: 8, i: 2, t: 4, h: 3}?\n9/1190\nCalculate prob of picking 1 e, 1 s, 1 d, and 1 a when four letters picked without replacement from {w: 1, o: 1, e: 2, s: 1, a: 1, d: 2}.\n2/35\nWhat is prob of picking 1 n and 2 e when three letters picked without replacement from eennxejxxejxnnjnxja?\n10/323\nCalculate prob of picking 2 x when two letters picked without replacement from {b: 5, g: 1, z: 1, x: 4, e: 4, a: 3}.\n2/51\nThree letters picked without replacement from gvvvgvssvguugggsg. Give prob of picking 2 s and 1 g.\n21/680\nCalculate prob of picking 1 z and 3 p when four letters picked without replacement from {z: 2, p: 18}.\n32/95\nFour letters picked without replacement from mmmmdmmmmmmvvdv. Give prob of picking 1 d and 3 m.\n16/91\nThree letters picked without replacement from {l: 2, a: 1, y: 9," -"g) = 2*g**3 + 13*g**2 - 266*g - 1828. Give c(-7).\n-15\nLet x(u) = u**2 + 50*u + 557. Give x(-33).\n-4\nLet i(v) = 2*v**3 - 83*v**2 + 39*v + 87. Determine i(41).\n5\nLet n(a) = -5*a**2 - 24*a + 86. What is n(-8)?\n-42\nLet p(y) = -10*y**2 - 9*y - 18. What is p(-3)?\n-81\nLet i(s) = -s**3 - 49*s**2 - 50*s - 206. Give i(-48).\n-110\nLet d(t) = 7*t**2 - 232*t - 4145. Determine d(46).\n-5\nLet v(b) = 4*b**3 - 4*b**2 - b + 8. Determine v(2).\n22\nLet y(t) = -489*t - 15093. Calculate y(-31).\n66\nLet l(i) = -470*i**3 - 6*i**2 + 5*i + 9. Give l(-1).\n468\nLet b(y) = -y**2 + 99*y - 811. Calculate b(9).\n-1\nLet t(c) = -c**2 + 43*c + 2261. Give t(74).\n-33\nLet h(c) = 3*c**3 + 4*c**2 - 8*c - 33. What is h(-2)?\n-25\nLet r(p) = -20*p**2 - 34*p + 103. What is r(3)?\n-179\nLet z(v) = 188*v + 952. Give z(-5).\n12\nLet i(t) = -1046*t + 3994. Determine i(4).\n-190\nLet z(d) = -2*d**3 - 164*d**2 - 161*d + 25. What is z(-81)?\n-56\nLet" -"Let d(i) = -29*i**2 - 12*i. Let g be d(v). What is g rounded to the nearest 100?\n-1800\nLet r = 2130 + -2130.0005455. Round r to 4 decimal places.\n-0.0005\nLet d = 131659.9885 - 131604. Let m = d - 56. Round m to three decimal places.\n-0.012\nLet c(h) be the second derivative of 0 + h - 280*h**2 - 1/12*h**4 + 1/6*h**3. Let s be c(0). What is s rounded to the nearest 100?\n-600\nSuppose -2*p - 6*p = -32. Let z be 23/(-92) + 13440001/p. What is z rounded to the nearest 100000?\n3400000\nSuppose 4*d = 11*d - 1720257. Suppose -2*y - d = -635751. Round y to the nearest ten thousand.\n200000\nSuppose 4*g = -0*g + 12. Let h = g - 10. Let w(b) = 111*b + 7. Let k be w(h). Round k to the nearest one hundred.\n-800\nLet s be (-4)/(-16) - (-94)/8. Let u = -10 + s. Suppose u*t - 4*n = 99984, -6875 - 243113 = -5*t + 3*n. Round t to the nearest 10000.\n50000\nLet f be (-1152)/(-52) + 2/(-13). Let b = f - 24. Let r(o) = 82*o +" -"\n53222\nWhat comes next: 1600, 3173, 4744, 6313, 7880, 9445?\n11008\nWhat is next in 163, 267, 407, 583, 795?\n1043\nWhat comes next: -3068, -3187, -3308, -3431, -3556?\n-3683\nWhat is next in 218, 115, 10, -97?\n-206\nWhat is next in -20375, -20395, -20437, -20507, -20611, -20755, -20945, -21187?\n-21487\nWhat comes next: 94, 293, 626, 1093, 1694, 2429?\n3298\nWhat is next in -39737, -39735, -39731, -39725, -39717?\n-39707\nWhat comes next: -187243, -187237, -187227, -187213?\n-187195\nWhat is the next term in -42491, -42494, -42497, -42500, -42503?\n-42506\nWhat is next in 108, 337, 518, 657, 760, 833, 882?\n913\nWhat is next in -404, -810, -1220, -1634, -2052, -2474, -2900?\n-3330\nWhat is the next term in 201, 323, 445, 567, 689, 811?\n933\nWhat is next in -14880, -29744, -44594, -59424, -74228, -89000, -103734?\n-118424\nWhat comes next: -9638, -18986, -28332, -37676?\n-47018\nWhat is next in -61, -178, -381, -712, -1213, -1926?\n-2893\nWhat is the next term in -1692, -1631, -1530, -1389, -1208?\n-987\nWhat is the next term in -148, -73, 4, 83, 164?\n247\nWhat is next in -84, -568, -1364, -2472, -3892, -5624?\n-7668\nWhat is the next term" -"10*r + 12 = -4*m, 5*m - r - 14 = 0. Suppose m*d + 0*d - 254 = 0. Is d a prime number?\nTrue\nLet s = 701 + -702. Let k = 1393 - 699. Is -10 + k + (-1)/s a composite number?\nTrue\nLet p = 637 - -2586. Is p prime?\nFalse\nLet g(j) = 5*j**3 - 2*j**2 + 1. Let m be g(1). Let k be (0 + -3 + m)*0. Suppose -5*p = -w - 5485, -2*w + 3*w = k. Is p composite?\nFalse\nLet p(n) be the first derivative of -513*n**2/2 - 14*n - 7. Is p(-1) a prime number?\nTrue\nLet j be (-10)/(-8) + 17178/56. Suppose 2*d - j = -10. Is d composite?\nFalse\nLet p(b) = 18*b**2 - 3*b - 7. Suppose 5*s = x - 16, -2*s - 1 = 7. Is p(x) a composite number?\nFalse\nSuppose -g + 15226 = 2*g + b, b = -g + 5072. Is g a composite number?\nFalse\nLet h = 4 - 7. Let l be h/(-2)*5404/3. Is (-2)/(-5) - l/(-70) a prime number?\nFalse\nSuppose 355 = -4*o + 1243. Suppose 0 = -0*j +" -"o -2/9 in 0.96, 4, 22/31?\n22/31\nWhat is the nearest to 2 in -15, 0.4, 58/3, 0.09, -0.2?\n0.4\nWhat is the nearest to -16.922 in -5, 0.1, 3?\n-5\nWhich is the closest to 0? (a) -23 (b) 0.5 (c) -11.2 (d) -3\nb\nWhich is the closest to -0.1? (a) -3 (b) 2/11 (c) 253/14\nb\nWhat is the closest to -195 in 23, 1, -0.17?\n-0.17\nWhich is the closest to -0.01? (a) 0.6 (b) 7 (c) -3 (d) 4\na\nWhich is the nearest to -1/28? (a) -182 (b) 2 (c) -2 (d) -4 (e) -8\nc\nWhat is the closest to -0.1 in -1/6, -146.5, -2/15, -0.3, 1?\n-2/15\nWhat is the nearest to -1 in -0.4, -8, 0.09, 58, -19?\n-0.4\nWhat is the closest to -2/107555 in -5, -4/3, 2/11?\n2/11\nWhich is the closest to 2/17? (a) 0.6 (b) 2/19 (c) -4 (d) -37 (e) -0.4\nb\nWhat is the closest to 1/3 in -4, 1, 0.8, 6?\n0.8\nWhat is the closest to 0 in -3, -1, -2320/9?\n-1\nWhich is the closest to 2/3? (a) 29 (b) -4 (c) 52\nb\nWhich is the nearest to -2? (a) 3/8" -"Let n be x(5). Suppose t = -n*t + 75. Is t a multiple of 5?\nTrue\nLet r(d) = -d**2 - 34*d - 11. Does 12 divide r(-24)?\nFalse\nLet p = -376 + 541. Is p a multiple of 3?\nTrue\nLet x be (-196)/(-10) + 2/5. Suppose -2*y - 4*t + 8 = t, 0 = -5*y + t + x. Is y a multiple of 4?\nTrue\nSuppose q - k - 6 = 2*q, -5*q + 2*k = 58. Let s be 1/(25/q + 3). Does 16 divide ((-1)/s)/((-2)/128)?\nTrue\nLet t = -23 + 22. Is t/5 + 722/10 a multiple of 20?\nFalse\nLet h(w) = w + 18. Suppose -3*u = 3*m - 33, 0*m - 59 = -4*u + m. Let l = 14 - u. Does 9 divide h(l)?\nTrue\nLet a be (-1524)/14 - (-1)/(-7). Let g be (a - -20)/(-1 + 0). Suppose -4*w + g = -115. Is 17 a factor of w?\nTrue\nDoes 19 divide (-1 - 1)/1 - (-75 - 155)?\nTrue\nLet w(j) = j**2 + j - 1. Let b(l) = -2*l**2 - 12*l + 6. Let i(c) = -b(c) - 3*w(c)." -"\n2\nLet k(o) = 3*o**2 - 2*o - 2. Let n(w) = w**3 - w**2 - 2*w + 14. Let b be 1*(-4)/20*0. Let a be n(b). Let y be a/4*8/14. Determine k(y).\n6\nLet o(w) = 1 - 7*w**2 + 6*w - 3*w**3 + 0*w**3 + 4*w**3. Suppose -1 - 4 = -y. Determine o(y).\n-19\nLet p be 454/(-14) + 33/77. Let y be p/80 + 13/(-5). Let x(v) = v + 3. Calculate x(y).\n0\nLet c(x) = -x**3 + 8*x**2 - 7*x - 1. Let y = -591 - -598. What is c(y)?\n-1\nLet r(y) = 9*y**3 - y**2 + y. Let u(x) = 2*x**3 - 16*x**2 + x - 1. Let z be u(8). Let q(v) = 2*v**3 - 13*v**2 - 6*v - 6. Let n be q(z). Calculate r(n).\n9\nLet b(d) = -d**2 - 19*d - 26. Let x(z) = z**2. Let f(k) = -b(k) - 3*x(k). Let c be f(11). Let l(j) = j - 3. Calculate l(c).\n-10\nLet a(f) be the first derivative of -1/360*f**6 + 5 + 1/24*f**5 + 2/3*f**3 + 1/12*f**4 + 0*f + 0*f**2. Let h(c) be the third derivative of a(c). Calculate h(4).\n6\nLet" -"when y is divided by i.\n23\nSuppose -6*h - 55 - 47 = 0. Let r = 74 - h. Calculate the remainder when r is divided by 29.\n4\nSuppose -208*r + 263511 = -485074 - 101719. Calculate the remainder when r is divided by 21.\n14\nSuppose -192*r = -8*r - 109*r - 19275. What is the remainder when r is divided by 31?\n9\nSuppose 3086 = 75*k - 364. Calculate the remainder when 5703 is divided by k.\n45\nSuppose 6*f - 2*f + 12 = 0, -4*r + 2*f = -294. Let l = r + 36. Calculate the remainder when l is divided by 10.\n8\nSuppose -436 = -4*s - 44. Suppose 5*c = d + s, -c - 18 = -2*c + d. Let x = c - 0. What is the remainder when 117 is divided by x?\n17\nSuppose 0 = -12*g - 1536 - 2484. Let t = g + 412. Calculate the remainder when t is divided by 40.\n37\nLet r(m) = m**3 - 8*m**2 - 5*m + 27. Let k be r(8). Let w(d) = 4 - 4 - 2 - 2*d. What is the" -"t s = 15.04 + -0.64. Let j = -15 + s. What is the second biggest value in -0.3, 2, j, 3?\n2\nSuppose 3*i = -i - 12. Suppose 0 = 4*s + 4*j + 24, -3*s + 3*j = j + 13. Which is the biggest value? (a) 0.2 (b) i (c) s\na\nLet g = 1 - -3. Let l = -140 - -982/7. Which is the second biggest value? (a) g (b) l (c) 0.5\nc\nLet x = -1.2 + 1.526. Let h = x - -0.074. Let p = -3/329 - 601/6251. What is the third biggest value in -4, p, h?\n-4\nLet s = 406 + -404. Let i = -30 - -26.92. Let u = i + 3. Which is the second biggest value? (a) u (b) 1/9 (c) s\nb\nLet r = 12684869863/5084 + -2495057. Let p = 14615525/66092 + r. Let n = 221 - p. What is the biggest value in n, 5, -0.3?\n5\nSuppose 3*q - 10*q + 49 = 0. Let w be (-4)/7*q/2. Which is the third biggest value? (a) -4 (b) w (c) 3\na\nLet q = 644.5 -" -"2010\nIn base 6, what is -12515110 - 3?\n-12515113\nIn base 11, what is -70107 + 0?\n-70107\nIn base 9, what is 262 + 2357?\n2630\nIn base 3, what is -20220012 + 12?\n-20220000\nIn base 16, what is 3 - 85a7?\n-85a4\nIn base 16, what is -aa34 - -5?\n-aa2f\nIn base 9, what is -2 + 320703?\n320701\nIn base 4, what is -1313 + -1112?\n-3031\nIn base 15, what is 0 - 4876?\n-4876\nIn base 3, what is 112022211 + 1010?\n112100221\nIn base 7, what is -302 - 103605?\n-104210\nIn base 2, what is -11110010111100001 - -1101?\n-11110010111010100\nIn base 16, what is -59 - f7?\n-150\nIn base 16, what is -d64 + 364?\n-a00\nIn base 11, what is 263 - 82?\n191\nIn base 7, what is -25 + -215?\n-243\nIn base 6, what is 45 + -4044?\n-3555\nIn base 12, what is 105 + -b46?\n-a41\nIn base 14, what is 601 + -143a?\n-c39\nIn base 12, what is -117 - -32a?\n213\nIn base 13, what is 120 + 32?\n152\nIn base 10, what is -685 - -497?\n-188\nIn" -"\nWhat is 846.8588 hours in microseconds?\n3048691680000\nHow many micrometers are there in 26/5 of a centimeter?\n52000\nHow many months are there in 55050.03 years?\n660600.36\nWhat is thirteen fifths of a century in years?\n260\nConvert 3531.764 litres to millilitres.\n3531764\nWhat is 7434.317m in micrometers?\n7434317000\nWhat is 732697.2 minutes in days?\n508.8175\nWhat is one tenth of a kilometer in centimeters?\n10000\nHow many centimeters are there in 0.4360322m?\n43.60322\nHow many years are there in fourty-five halves of a decade?\n225\nHow many nanoseconds are there in 45/4 of a microsecond?\n11250\nConvert 2054.926 kilometers to meters.\n2054926\nHow many months are there in 13/8 of a decade?\n195\nWhat is 11/4 of a meter in millimeters?\n2750\nWhat is 2240.877ml in litres?\n2.240877\nConvert 0.0741464 grams to nanograms.\n74146400\nConvert 27.05735 centimeters to nanometers.\n270573500\nWhat is 64.71118 minutes in milliseconds?\n3882670.8\nHow many tonnes are there in 5500.613 kilograms?\n5.500613\nWhat is 668433.4um in centimeters?\n66.84334\nHow many grams are there in 47.8216 micrograms?\n0.0000478216\nConvert 2813.81ug to milligrams.\n2.81381\nWhat is 57/2 of a decade in months?\n3420\nWhat is 6/5 of a litre in millilitres?\n1200\nConvert 643156.4 centuries to months." -"+ 0*f**5 + 1/120*f**6 + 0. What is the derivative of p(m) wrt m?\n3*m**2\nLet y = 415 - 342. What is the derivative of 10 - y + 2 - 26 - 22*v**3 - v**4 wrt v?\n-4*v**3 - 66*v**2\nLet j = 229 + -182. Differentiate 360 - 210 + j*v - 179 with respect to v.\n47\nSuppose -124*g = 3*g. Let v(l) be the second derivative of 0*l**4 - 2/15*l**6 + g + 25/2*l**2 + 0*l**3 + 18*l + 0*l**5. Find the first derivative of v(q) wrt q.\n-16*q**3\nLet o(b) be the third derivative of -1271*b**7/105 - 8647*b**3/6 - 190*b**2 - 18*b. What is the first derivative of o(h) wrt h?\n-10168*h**3\nSuppose 103 = 5*q + 3*c, -3*q + 58 = -5*c - 31. What is the first derivative of -6*o - q - 30 - 2*o - 10*o + 3*o**2 - 8 wrt o?\n6*o - 18\nLet c(n) be the third derivative of -2809*n**6/120 - 1277*n**4/8 + 2889*n**2. Find the second derivative of c(v) wrt v.\n-16854*v\nLet v(i) be the second derivative of 5411*i**4/12 - 3053*i**2/2 - 6*i - 84. Differentiate v(n) with respect to n.\n10822*n\nSuppose -12*p +" -"77360\nWhat is the lowest common multiple of 323440 and 7800?\n4851600\nWhat is the common denominator of -143/90 and -65/1891839?\n56755170\nCalculate the smallest common multiple of 23896 and 88952860.\n177905720\nWhat is the smallest common multiple of 29087 and 4543?\n2239699\nWhat is the lowest common multiple of 13920 and 1652640?\n47926560\nWhat is the lowest common multiple of 3978 and 376978?\n749809242\nWhat is the least common multiple of 2395265 and 1030?\n4790530\nWhat is the common denominator of -101/678970 and 121/678970?\n678970\nCalculate the common denominator of -149/1218888 and -125/1152.\n19502208\nCalculate the least common multiple of 2 and 1503725.\n3007450\nWhat is the smallest common multiple of 132 and 8201171?\n98414052\nCalculate the least common multiple of 12054588 and 309092.\n12054588\nWhat is the smallest common multiple of 5144280 and 220?\n56587080\nCalculate the least common multiple of 1531411 and 140.\n30628220\nWhat is the smallest common multiple of 168 and 3049452?\n6098904\nCalculate the lowest common multiple of 29616750 and 1200.\n236934000\nWhat is the smallest common multiple of 198044872 and 28?\n1386314104\nWhat is the least common multiple of 630 and 4448?\n1401120\nWhat is the common denominator of -121/3390 and 119/111498?\n62996370" -"**3 + h + 1. Let m be n(2). Let g = m - -7. Which is bigger: 1 or g?\ng\nLet l = 8 + -4. Let w(o) = -10 + 0*o**3 + 15*o**2 + 2*o**3 + 13*o - o**3. Let u be w(-14). Is l less than u?\nFalse\nSuppose 0 = -r + 4*r - 4*f + 3, -4*f = -4*r. Suppose 7*a = 10*a - r. Is a less than or equal to 1/16?\nFalse\nLet p be (-4)/(-40)*4*1. Let c = 3.4 - -1.6. Which is smaller: p or c?\np\nLet r = 0.2 - 0.4. Let p = 49 + -50. Is p not equal to r?\nTrue\nLet f = 0.8 - -0.2. Let w = 23 - 23.9. Let y = w + f. Are y and 2/7 unequal?\nTrue\nLet q be (2 - 1*1079591) + 0. Let m = 717926961/665 + q. Let l = -2/133 + m. Which is smaller: l or -1?\n-1\nLet p be (-1)/2 + 2/(-4). Let h = -51/8 + 27/4. Which is smaller: p or h?\np\nLet f(t) = t**2 - 5*t + 4. Let h = 12 + -8." -"= 2 + -2.2. Which is the nearest to s? (a) h (b) r (c) 1/2\nb\nLet q = -2891.81 - -2892. Let o = -67 + 131/2. What is the closest to -0.1 in o, 1, q?\nq\nLet o = -17755.95 + 17756. What is the closest to o in 3, -2/391, 1, 2/9?\n-2/391\nLet u = -0.9745 - -1.3745. Which is the closest to -0.1? (a) u (b) -12.9 (c) 1/21 (d) -0.1\nd\nLet w = 3568 - 3567.7. Which is the closest to w? (a) 5 (b) -0.1 (c) 28\nb\nSuppose -2*o = -6 + 10, -4*x - o = -74. Suppose 52 = -6*t + x*t. Which is the nearest to 1? (a) -0.3 (b) t (c) 2/185\nc\nLet l = -78 - -78.1. Let h = 82 + -174. Let y be 2/4*-15*h/115. What is the nearest to -2 in l, 4/7, y?\nl\nSuppose 232 + 328 = 140*j. Let l = -120163/4 - -3965789/132. Let g = l + -36/11. What is the nearest to -0.1 in j, 0, g?\ng\nLet w(z) = 4*z**2 + 88*z + 81. Let p be w(-21). What is the nearest" -" 25 = -5*p, 3*t + 4*p - 18 = 0. Let r be 0 + -4 - t/(-1). What is the tens digit of (3 + -1)/(r/(-14))?\n1\nLet w(f) = -12*f - 26. What is the hundreds digit of w(-18)?\n1\nLet r be (1/(-2))/((-6)/60). Suppose -3*l - 9 = 0, 5*z - 2*l - 20 = 3*l. Suppose u - z = 2*k, -2*u - 2*u + r*k + 7 = 0. What is the units digit of u?\n3\nLet v(g) = -g**2 - 9*g + 1. Let t be v(-8). Suppose -24 = -5*p - t. Suppose 0 = p*d - 6*d + 9. What is the units digit of d?\n3\nSuppose n = -2*n + 3*s + 24, -n - 5*s - 4 = 0. What is the units digit of n?\n6\nSuppose 0*h + 56 = 4*h. Suppose 3*w = -2*z + 37, -4*z - h = 2*w - 76. What is the tens digit of z?\n1\nLet a(l) = -2 + 0 - 3 - 1 + 3*l. What is the tens digit of a(6)?\n1\nLet j(u) = 3*u**2 - 4*u + 3. Suppose 3*w = -0*w + 6." -"q*p**2 and give q.\n-5\nExpress y**4 - 2*y**2 + 2*y**2 + (-4 + 3 - 1)*(-16*y - y**2 + 16*y)*(-2*y**2 - 2*y**2 + 2*y**2) in the form d*y**3 + m*y**4 + r*y**2 + q*y + k and give m.\n-3\nRearrange -3*y**2 + 4*y**2 - y**2 - 2*y**2 - 2*y to u*y**2 + t*y + i and give t.\n-2\nRearrange 0*v**3 - 4*v**3 + 3*v**3 + 17*v**2 - 17*v**2 - 25*v**3 + (-2*v + 2*v**2 + 2*v)*(3*v - 2*v + v) to the form w*v + t + p*v**2 + q*v**3 and give q.\n-22\nRearrange 0*b + b**4 - 1 - 7*b**2 - b + 10*b**2 to the form o*b**3 + w*b + z + m*b**4 + d*b**2 and give z.\n-1\nRearrange 0*l**2 + 3*l**2 - 5 - 3 to t*l**2 + w*l + h and give t.\n3\nExpress 11*a + 13*a - a in the form d + y*a and give y.\n23\nExpress -18*r**3 + 1 - 14*r**3 + 31*r**3 + 11*r**2 in the form p + l*r**2 + h*r + d*r**3 and give p.\n1\nExpress -2*d + 5*d - 2*d + (14 + 24*d - 6 - 7)*(-2 + 3 -" -"f -d**4/8 + d**3/6 + 3*d**2. Determine z(g).\n13\nSuppose -87 = -x - 4*o, -3*x + 3*o = -318 + 57. Let g = 86 - x. Let y(b) = 6*b**2 - b - 1. Determine y(g).\n6\nLet u(l) be the third derivative of l**8/5040 - l**7/1008 + l**6/180 - 61*l**5/30 + 53*l**2. Let x(g) be the third derivative of u(g). What is x(2)?\n10\nLet y(m) = -2*m**3 + 2*m**2 + 3*m. Let c = 72 + -66. Suppose -1 = w - c. Suppose 13 = n + w*l, l - 6*l = -n - 17. Give y(n).\n18\nLet x(f) = 4*f**2 - 10*f - 6. Let z(u) = 2*u - 15. Let v be z(7). Let p(g) = g**2 - g. Let b(c) = v*x(c) + 5*p(c). Calculate b(-4).\n2\nSuppose -10*k + 105 = -3*k. Let g(q) = 5 - 5 + 1 + k*q - q**2 - 18*q. Let h(o) = o**3 - 4*o**2 - 5*o - 2. Let z be h(5). Give g(z).\n3\nLet t(o) = -26*o**3 - 4*o**2 - 21*o + 14. Let s(a) = 11*a**3 + 2*a**2 + 9*a - 7. Let f(z) = 7*s(z) + 3*t(z). Give" -"he tens digit of k?\n4\nSuppose 2*l - 4*d - 15931 = 8611, l = 4*d + 12259. What is the thousands digit of l?\n2\nLet k be (383/(-15))/((-4)/10)*6. Let t = -376 + k. What is the units digit of t?\n7\nLet l = 291 - 289. What is the units digit of 685 + l - 1*(-4 - -2)?\n9\nLet k(j) = -2553*j + 3131. What is the units digit of k(-10)?\n1\nSuppose 17*k - 68 = 15*k. Let g be 2/(-13) - (-2 - (-2430)/(-78)). Suppose -k*m + 6 = -g*m. What is the units digit of m?\n6\nSuppose -6481 = -6*f + 1121. Suppose -f = 10*v - 3677. What is the tens digit of v?\n4\nSuppose 0 = -o - 3*p + 1236 + 20526, -108844 = -5*o + 2*p. What is the thousands digit of o?\n1\nLet g = -546 + 311. What is the tens digit of (-3)/((-3)/(-4)) - g/5?\n4\nLet b(j) be the second derivative of -8/3*j**3 + 0 + 19*j + 3/2*j**2. What is the tens digit of b(-1)?\n1\nLet c be (112/3)/7*3. What is the hundreds digit of (-4)/c +" -"7*f + 3*w, 672 = -34*f + 4*w for f.\n-20\nSolve 0 = -d + 4*v + 12 + 14, -13*d + 0*v - 30 = -13*d - 15*v for d.\n34\nSolve 0 = 2*z + 4*v + 88, 325*v = z - 43801 + 35997 for z.\n4\nSolve 9*d + 4*a = 178, 4*d - 2081500 + 2081444 = 4*a for d.\n18\nSolve -2*y = 2*q - 0*q + 82, 15203*q + 16*y + 656 = 15205*q for q.\n0\nSolve p - 2 = 0, 107 = -7*x + p + 270 - 137 for x.\n4\nSolve 0 = -g - 4*h + 17735 - 17856, 102 = 3*g - 3*h for g.\n3\nSolve 1691*h - 73 = -5*j + 1690*h, -29*h = j - 101 for j.\n14\nSolve -5*o - 39 + 16 = -19*h, -h + 2*h + 0*o = -2*h + 2*o for h.\n2\nSolve m = 5*m + 3*f + 9, 66*m - 5*f + 16 + 405 = 0 for m.\n-6\nSolve 0 = 3*d + 3*z + 15, 19*z - 31 = -d + 27*z for d.\n-1\nSolve -2*y - 3*p =" -"/12. What is the closest to 14 in g, -0.4, -0.5?\n-0.4\nLet w = -60.2048 - -0.2048. Let k = 0.36 + -0.36. What is the closest to -2/3 in k, w, 3?\nk\nLet m be (2/3)/((-20712)/(-36) - 11). Let p = m - 1699/5079. What is the closest to 1 in p, -3, 8/5, 1?\n1\nLet j = 4107 - 3991. What is the nearest to -1 in j, -2/17, 3/8?\n-2/17\nSuppose 267 = -2*l + 253. Which is the nearest to 2/3? (a) 3 (b) 2 (c) l (d) 4\nb\nLet a = 1132 - 1132.1. Let z = 0.1 - -0.1. Let u = 1.6 + -1. What is the nearest to a in u, 0.1, z?\n0.1\nLet y = 3988 + -3986. What is the nearest to y in -3, 5, 82, -2/11?\n-2/11\nLet g = -0.1289 - -0.7289. What is the nearest to 0.3 in 0.2, -0.5, g?\n0.2\nLet u = -179 + 181. Suppose -8 = -v + 5*f, -f = -5*v + v + 13. Which is the closest to -7? (a) u (b) 0 (c) v (d) 2/23\nb\nSuppose 179*z + 40 =" -"lue in 1/6, -1, 5, 0.03?\n5\nWhat is the second smallest value in -2/7, 5, -0.4, -1/2, -0.3?\n-0.4\nWhich is the smallest value? (a) -6/5 (b) -4/3 (c) -24\nc\nWhat is the second smallest value in -1/2, 0.5, -0.2?\n-0.2\nWhich is the fifth biggest value? (a) 6/17 (b) -3 (c) -0.1 (d) 0.1 (e) -2\nb\nWhich is the third smallest value? (a) -0.4 (b) -18/35 (c) -5\na\nWhich is the biggest value? (a) 0 (b) 78 (c) 1/3 (d) -6\nb\nWhat is the third smallest value in -0.01, 2.79, 5?\n5\nWhich is the third biggest value? (a) -139 (b) 0.7 (c) 3\na\nWhat is the fifth biggest value in -0.5, -5/13, 2/5, -0.4, -9?\n-9\nWhat is the smallest value in 3/67, -0.5, -1?\n-1\nWhich is the biggest value? (a) 58/7 (b) 0 (c) 2\na\nWhich is the smallest value? (a) -3/76 (b) -0.4 (c) -1 (d) 0.1\nc\nWhat is the third biggest value in 5, 14, 1/4?\n1/4\nWhat is the smallest value in -19/2, 0.06, 5?\n-19/2\nWhich is the second biggest value? (a) 1 (b) 0.2 (c) -0.5 (d) -141\nb\nWhat is the second" -"nded to four dps?\n0.0002\nLet l(r) = -51388*r**2 + 12*r + 16. Suppose 0 = -5*o - 0*o - 60. Let a be l(o). Round a to the nearest one million.\n-7000000\nLet b(i) = 639*i - 2. Suppose o = -o + 4*q + 4, 0 = 2*o + 3*q + 10. Let x be b(o). Round x to the nearest 100.\n-1300\nLet m = 0.00021278 - 23.00015778. Let r = m - -23. What is r rounded to five dps?\n0.00006\nLet w = 173 - 119. Let k = w - 81. Let d = -27.0017 - k. What is d rounded to 3 decimal places?\n-0.002\nLet n = 0.00044817 + -3780967.00044817. Let x = n - -3780971.9999925. Let j = x + -5. Round j to 6 dps.\n-0.000008\nLet q = -57599.999944 + 57603. Let o = -3 + q. What is o rounded to five dps?\n0.00006\nLet m = -955623 - -37297. Let r = -918326.1500063 - m. Let s = -0.15 - r. What is s rounded to 6 dps?\n0.000006\nLet q(k) = -k**3 + 4*k**2 + 5*k - 1. Let d be q(5). Let h be -14*3/6" -"r of 625921 and 121024?\n1891\nWhat is the greatest common divisor of 9832 and 123782422?\n2458\nCalculate the highest common divisor of 29500 and 41538950.\n2950\nCalculate the greatest common divisor of 551 and 209694792.\n19\nCalculate the greatest common divisor of 3920 and 2711905.\n245\nCalculate the highest common divisor of 133 and 619191.\n19\nWhat is the greatest common factor of 9014256 and 36?\n36\nWhat is the greatest common factor of 107187099 and 3396?\n849\nCalculate the greatest common factor of 23385508 and 1974.\n94\nCalculate the greatest common factor of 35 and 38198657.\n7\nCalculate the greatest common divisor of 168850 and 327338.\n22\nCalculate the highest common factor of 1334 and 2121089.\n29\nCalculate the greatest common divisor of 370 and 4287500.\n10\nWhat is the greatest common factor of 7322 and 2786?\n14\nCalculate the highest common divisor of 2501535 and 21330.\n1185\nWhat is the greatest common factor of 101526615 and 120?\n15\nWhat is the highest common divisor of 315173 and 37127?\n271\nCalculate the greatest common factor of 4489 and 455216023.\n4489\nCalculate the highest common divisor of 3967254 and 36.\n18\nWhat is the greatest common factor of 1456280" -", -0.5?\n0.5\nLet l = -84 - -329/4. Let r(g) = g**2 + 4*g + 10. Let o be r(7). Let u = 83 - o. Which is the nearest to 2/5? (a) -0.1 (b) l (c) u\na\nLet h = 469 + -382. Let j = -87 + h. Which is the closest to -3/2? (a) -5 (b) j (c) 1\nb\nLet p be (-1)/(68/(-16) - -4). Let t be 5/(300/(-54)) + (-1 - -2). Which is the nearest to -14/3? (a) p (b) 3 (c) t\nc\nLet z = -1949 - -1948.78. Which is the closest to -1? (a) 13 (b) -0.5 (c) z (d) -0.3\nb\nLet d = 111 - 109. Let l be (-90)/(-25) + (1 - d) + -3. What is the nearest to l in -1/4, 0.5, -1.5?\n-1/4\nLet h = 0.07 - -3.93. Let l = -3149 - -3151. What is the closest to l in -3, h, 1?\n1\nLet p = 94137 + -94142. Let x be ((-2)/8)/(6/8). Which is the nearest to -0.2? (a) x (b) 0.5 (c) 5 (d) p\na\nLet v be (6/400)/(2/56). Let r = 2/25 + v. Let i(u)" -"False\nIs 444 a factor of 53713661?\nFalse\nDoes 44 divide 245256308?\nTrue\nIs 285 a factor of 669954265?\nFalse\nIs 3152 a factor of 295014592?\nTrue\nIs 56 a factor of 18902093?\nFalse\nIs 10 a factor of 2268531670?\nTrue\nIs 4585162 a multiple of 10?\nFalse\nIs 1188 a factor of 71739756?\nTrue\nIs 433271489 a multiple of 93?\nFalse\nIs 2524188 a multiple of 38?\nTrue\nIs 260749 a multiple of 304?\nFalse\nDoes 108 divide 68509456?\nFalse\nDoes 2703 divide 783432343?\nFalse\nIs 149550987 a multiple of 1338?\nFalse\nIs 9603 a factor of 274540167?\nTrue\nIs 164745322 a multiple of 950?\nFalse\nDoes 26 divide 97706425?\nFalse\nIs 150130636 a multiple of 226?\nFalse\nDoes 91 divide 204498145?\nFalse\nIs 7142 a factor of 766428300?\nFalse\nDoes 14 divide 26487775?\nFalse\nIs 2090237916 a multiple of 1236?\nTrue\nIs 6203453 a multiple of 396?\nFalse\nIs 2347801192 a multiple of 50?\nFalse\nIs 1195 a factor of 1023725430?\nTrue\nDoes 419 divide 39338653?\nTrue\nIs 1429542672 a multiple of 76?\nTrue\nDoes 219 divide 56216660?\nFalse\nIs 133 a factor of 67573751?\nFalse\nIs 21269016 a multiple of 402?\nTrue\nDoes 37 divide 4104336?\nTrue" -"- l + 23. Calculate d(16).\n7\nLet z(t) = 2*t**2 + 3206*t + 19164. Calculate z(-6).\n0\nLet b(i) = i**3 + 27*i**2 - 28*i - 7. Determine b(-28).\n-7\nLet m(s) = -s**2 + 17*s + 18. What is m(20)?\n-42\nLet b(h) = h**3 - 3*h**2 + 108*h - 214. Determine b(2).\n-2\nLet o(x) = -x**2 + 100*x + 18221. What is o(-94)?\n-15\nLet b(r) = -416*r + 6286. Give b(15).\n46\nLet s(u) = 46*u**2 + 5756*u + 750. Give s(-125).\n0\nLet j(q) = q**3 + 20*q**2 + 38*q - 10. Calculate j(-5).\n175\nLet p(g) = -21*g**2 - 150*g + 6. Determine p(-7).\n27\nLet m(h) = 108*h + 781. What is m(-7)?\n25\nLet x(n) = 152*n - 745. Calculate x(6).\n167\nLet d(a) = a**3 + 36*a**2 - 78*a - 165. What is d(-38)?\n-89\nLet d(m) = m**2 + 109*m + 1798. Give d(-89).\n18\nLet s(p) = -32*p + 653. What is s(57)?\n-1171\nLet x(z) = -46*z**2 + 22*z + 30. Give x(-2).\n-198\nLet b(w) = -9*w**3 - 109*w**2 - 217*w + 4. What is b(-2)?\n74\nLet g(i) = 44*i**2 - 19*i - 2. Determine" -"60?\n-760\nWhich is bigger: 2330022472 or 2330022471?\n2330022472\nDoes -51695327 = -51695326?\nFalse\nWhich is smaller: 2 or -152648909?\n-152648909\nIs -179995399 <= -179995400?\nFalse\nIs -6034765/12 greater than -502897?\nFalse\nIs 1181886332 not equal to 1181886333?\nTrue\nAre -1 and 66/9327355 unequal?\nTrue\nWhich is greater: -788 or -8.81812?\n-8.81812\nIs 1 at most as big as 5/6509737?\nFalse\nWhich is bigger: -28752 or 3/995?\n3/995\nWhich is bigger: 340208 or -39?\n340208\nWhich is smaller: 59/5 or -2317352?\n-2317352\nWhich is bigger: 2 or 223450224/5?\n223450224/5\nWhich is greater: 622863953 or 622863955?\n622863955\nIs -4/3 at least as big as 7.0101336?\nFalse\nAre 82774705 and 82774705 equal?\nTrue\nIs -472 at most as big as -135553/287?\nFalse\nAre -2/7 and 10121/2274 equal?\nFalse\nAre -0.22417 and 216 equal?\nFalse\nIs 0 != -9/28105669?\nTrue\nWhich is smaller: -1 or 2810/96391?\n-1\nIs 0 > -5/163947128?\nTrue\nIs -3/4 smaller than -110698915?\nFalse\nIs 4518706 < 14?\nFalse\nIs -298 at most as big as -21265?\nFalse\nIs 12081 greater than or equal to 7927?\nTrue\nWhich is smaller: 227239699 or 227239697?\n227239697\nWhich is smaller: 0 or -539/26265?\n-539/26265\nIs -1190 equal to -3227/6?\nFalse\nIs -14991735" -" 3/4, -2/11, -657/326?\n3/4\nWhich is the nearest to -0.02393? (a) -1 (b) 1 (c) -2/7\nc\nWhich is the closest to 95? (a) -2 (b) -69 (c) -1 (d) 2/9 (e) 1/3\ne\nWhich is the closest to -0.03? (a) 42.8 (b) -2/23 (c) -2/25\nc\nWhich is the nearest to -1/4? (a) -19.7 (b) 30/13 (c) 0.3 (d) -3\nc\nWhich is the nearest to -0.2? (a) 0.7 (b) 3/2 (c) 236\na\nWhat is the nearest to 1 in -1/12, -59/4, 5, -38.4?\n-1/12\nWhat is the nearest to -43 in -0.5, 4, -1.5, 0.1?\n-1.5\nWhat is the nearest to -2 in 271, -0.3, -3?\n-3\nWhat is the closest to 8/35 in -0.3, 4, 0.06?\n0.06\nWhich is the closest to -1? (a) -1/6 (b) 5.6 (c) -15\na\nWhat is the nearest to 2282 in 3/11, 4/5, 3?\n3\nWhat is the nearest to 0 in 1.9, -158/9, -0.1?\n-0.1\nWhich is the nearest to -14? (a) 43 (b) -3 (c) 8 (d) 15\nb\nWhat is the closest to -1/12 in -0.3, 5, -0.311?\n-0.3\nWhat is the closest to -10 in 62/11, -3, 3, 6?\n-3\nWhich is the closest to -7?" -"r p.\n-4\nSolve -14*m = -16*m + 4 for m.\n2\nSolve 4*r + 16 = 16 for r.\n0\nSolve -4263*j + 4267*j = 24 for j.\n6\nSolve 40*a - 31 + 151 = 0 for a.\n-3\nSolve 0 = 7*t + 21*t + 28 for t.\n-1\nSolve 8*q = 42 - 10 for q.\n4\nSolve 106*k = 110*k - 8 for k.\n2\nSolve -8*h + 13*h = -20 for h.\n-4\nSolve 14 = -7*d + 42 for d.\n4\nSolve -67*g = -76*g - 27 for g.\n-3\nSolve -78 = 140*p - 101*p for p.\n-2\nSolve 5*n = 1 + 9 for n.\n2\nSolve -32*w + 15*w - 119 = 0 for w.\n-7\nSolve 5*i = 1864 - 1869 for i.\n-1\nSolve 21 = -7*b - 7 for b.\n-4\nSolve -d - 212 = -216 for d.\n4\nSolve -368*x + 376*x - 16 = 0 for x.\n2\nSolve 0 = -20*r + 8*r + 36 for r.\n3\nSolve 0 = -33*c + 63*c + 90 for c.\n-3\nSolve 54*g = -24*g + 390 for g.\n5\nSolve 9*b + 0*b +" -"t is the units digit of n?\n9\nLet f be (-1 - 2/(-4))*-26. What is the tens digit of f*(-3 - -1 - -3)?\n1\nSuppose -5*z = -42 + 17. Let a = -4 + z. Suppose a = -3*j + s, -j + 2*s - 11 = -s. What is the units digit of j?\n1\nWhat is the tens digit of (-140)/(-15)*18/7?\n2\nLet k(p) = -7*p + 19. Let x be k(-14). Suppose -5*n + 63 = -x. What is the tens digit of n?\n3\nSuppose 5*u - 4 = -9. What is the units digit of -1*(-6)/(-3)*u?\n2\nSuppose 0*h - 114 = -3*h + 5*o, 5*o = -5*h + 190. Suppose -5*u = -2*k - h, 3*u + k + 15 = 5*u. What is the units digit of 10/8 + (-2)/u?\n1\nLet q be 11/(-4) - 1/4. Let u(b) be the third derivative of -b**4/12 - 4*b**2. What is the units digit of u(q)?\n6\nSuppose 4*a + 5*z = -15, -4*z - 12 = -4*a + a. Let w be (-3 - -2)*(a - 1). Suppose 7 = 2*h - w. What is the units digit of h?\n4" -"git of h(-9)?\n2\nSuppose 0 = 18*c - 2*c - 89757 - 40419. What is the units digit of c?\n6\nLet z(k) = -2*k**2 + k. Let x(l) = 3*l**2 + 12*l - 32. Let r(w) = -2*x(w) - 4*z(w). What is the hundreds digit of r(19)?\n2\nLet v be (-8)/((-160)/19228) - 6/(-10). Suppose -5*r = y - v, 16*r - 5*y = 14*r + 374. What is the hundreds digit of r?\n1\nSuppose 46*f = 37*f - 9. Let b(w) = -1457*w**3 + 9*w**2 + 12*w + 3. What is the units digit of b(f)?\n7\nWhat is the thousands digit of 2362 + (1278/497 - (-6)/14)?\n2\nSuppose 0 = 5*v - 68 + 83, -2*p = v - 13101. What is the hundreds digit of p?\n5\nLet m(w) = 5*w**2 - 91*w + 67. What is the thousands digit of m(-27)?\n6\nSuppose -4*x = -3*n + 22, -2*x - 15 = -3*n + 11. Let z(y) = y**3 - 11*y**2 + 10*y - 3. Let o be z(n). What is the hundreds digit of 10/o*(-14 - 22)?\n1\nLet j(b) = 14*b**2 + 21*b + 208. What is the tens digit" -" 12.2 + s. Let t = u - -0.8. Which is the second smallest value? (a) 0.1 (b) t (c) 1/5\na\nLet k = -4 - -1. Let c be ((-1)/3)/(1/(-54)). Let r = 16 - c. What is the smallest value in 0.06, k, r?\nk\nLet p = -2303 - -2302.8. What is the second smallest value in 180, p, 2/7?\n2/7\nLet r = 2.6 + -3.6. Which is the biggest value? (a) 10 (b) -0.02 (c) r\na\nLet m = -405 - -406. Which is the biggest value? (a) 2/9 (b) -2/189 (c) 2 (d) m\nc\nLet s = 14 + -14. Suppose s = -i + 2*x + 12, 4*i - 3*x - x = 44. Let o be i*((-17)/5 + 3). What is the second biggest value in o, -0.7, 0.3?\n-0.7\nLet y = -0.33 - -0.31. Let u = -116 + 115.9. Which is the third smallest value? (a) 2 (b) 2/3 (c) u (d) y\nb\nLet l = -12.8 + -2.2. Let w = l - -11. Let n = -0.4 - -0.3. Which is the biggest value? (a) n (b) 2/7 (c) w\nb\nLet i" -" AM?\n5:27 PM\nWhat is 148 minutes before 11:40 PM?\n9:12 PM\nHow many minutes are there between 3:50 PM and 9:08 PM?\n318\nWhat is 203 minutes before 6:02 PM?\n2:39 PM\nWhat is 485 minutes after 1:39 PM?\n9:44 PM\nWhat is 235 minutes after 3:06 PM?\n7:01 PM\nHow many minutes are there between 10:46 PM and 12:18 AM?\n92\nHow many minutes are there between 4:20 PM and 6:58 PM?\n158\nWhat is 160 minutes before 8:26 AM?\n5:46 AM\nHow many minutes are there between 12:39 PM and 9:00 PM?\n501\nWhat is 453 minutes after 6:31 AM?\n2:04 PM\nWhat is 152 minutes after 9:33 AM?\n12:05 PM\nHow many minutes are there between 1:32 AM and 11:10 AM?\n578\nHow many minutes are there between 7:29 PM and 1:11 AM?\n342\nWhat is 507 minutes before 4:54 AM?\n8:27 PM\nHow many minutes are there between 4:08 AM and 11:36 AM?\n448\nHow many minutes are there between 9:24 AM and 9:01 PM?\n697\nHow many minutes are there between 6:01 AM and 6:28 AM?\n27\nHow many minutes are there between 3:55 PM and 5:12 PM?\n77\nWhat is 25 minutes after" -". Suppose -d*b + 583 = -1793. What is the tens digit of b?\n1\nLet n = -47 + 50. Suppose 0 = -5*t - 5*r + 455, 0 = -t - r + n*r + 76. Suppose -7*g + 2*g + 2*b = -191, 4*b + t = 2*g. What is the units digit of g?\n7\nLet k(r) = -3*r**2 - 7*r - 2. Let j be k(-2). Suppose -15 + j = 5*h, -4*h - 900 = -3*l. What is the hundreds digit of l?\n2\nSuppose -2*c + 3*c - 320 = a, 2*c = -2*a + 656. Suppose 42*q + c = 46*q. What is the tens digit of q?\n8\nLet v(b) = -17*b**3 + 15*b**2 + 32*b - 83. What is the ten thousands digit of v(-11)?\n2\nSuppose 0 = -42*z - 606 - 2838. Let u = 199 + -367. Let n = z - u. What is the tens digit of n?\n8\nLet l(r) = -7*r**3 - 17*r**2 + 60*r - 31. What is the tens digit of l(-10)?\n6\nLet n(a) = a**3 + 5*a**2 + 3*a + 6. Let h(q) = -2*q**3 - 13*q**2 - 10*q" -"dps.\n-0.03621\nWhat is 27015440 rounded to the nearest 10000?\n27020000\nWhat is -216342100 rounded to the nearest one million?\n-216000000\nRound 196996700 to the nearest one hundred thousand.\n197000000\nRound -245786500 to the nearest 100000.\n-245800000\nWhat is -0.00004616974 rounded to 6 decimal places?\n-0.000046\nRound -2012390 to the nearest 100000.\n-2000000\nWhat is 0.00788054 rounded to 4 decimal places?\n0.0079\nRound 1965690000 to the nearest 1000000.\n1966000000\nRound -32082499 to the nearest one hundred thousand.\n-32100000\nRound -0.8635136 to three dps.\n-0.864\nWhat is 2.523815 rounded to 3 dps?\n2.524\nWhat is 0.001068221 rounded to 6 dps?\n0.001068\nRound 53534.82 to the nearest 10.\n53530\nWhat is -21309800 rounded to the nearest one hundred thousand?\n-21300000\nRound 0.000008771252 to six dps.\n0.000009\nRound -202.353 to 0 decimal places.\n-202\nRound -2006996.9 to the nearest one million.\n-2000000\nRound 222.324 to the nearest 100.\n200\nWhat is -0.5515382 rounded to three decimal places?\n-0.552\nRound -0.00018113503 to 7 dps.\n-0.0001811\nWhat is -40.824241 rounded to the nearest ten?\n-40\nRound -15788470 to the nearest 10000.\n-15790000\nRound 809.974 to the nearest integer.\n810\nRound 935.1238 to the nearest 100.\n900\nWhat is -0.00000967681 rounded to six decimal places?\n-0.00001" -"4)) + -18?\n-21\nWhat is -8 + 29 + 5 + -11 + -6 + 15?\n24\nCalculate (-9 - 22) + 11 + (9 - 8).\n-19\nWhat is -5 + 1 + 10 + (0 - 1)?\n5\nCalculate -420 + 396 - (-32 + -2).\n10\nEvaluate (14 - -1) + (-14 - 0).\n1\nCalculate 11 + -3 - (6 + (-11 - -14)).\n-1\nWhat is 3 + -3 + 4 + 1 + -4 + -3?\n-2\nEvaluate (14 - -1 - -13) + -23.\n5\nWhat is -5 - (-1 - (-17 + (9 - 1) - -7))?\n-6\nCalculate 1 + -2 + 1 - (-15 + 28 + -14).\n1\n(11 - -1) + -13 + 16 + -9 - -7\n13\n-2 - (40 + -37 + 3 + 1 + -15)\n6\nCalculate -11 + 11 - 8 - 4.\n-12\nWhat is the value of -8 + (-1 - 0 - -2) - -21?\n14\nCalculate 3 + 0 - (11 + (10 + 2 - -1)).\n-21\nCalculate -10 - (-38 - -45 - (3 - 0) - -4).\n-18\nEvaluate -36 + 9 - (-17" -"or of 2/3711 and 7/18.\n22266\nFind the common denominator of 29/1320 and -46/165.\n1320\nCalculate the lowest common multiple of 32 and 24.\n96\nFind the common denominator of -22/477 and -68/99.\n5247\nWhat is the common denominator of -83/315 and 13/159?\n16695\nWhat is the common denominator of 77/8 and 35/113?\n904\nFind the common denominator of -91/1500 and -23/40.\n3000\nWhat is the least common multiple of 45 and 520?\n4680\nCalculate the common denominator of 99/1664 and 145/1248.\n4992\nFind the common denominator of -73/1395 and -1/2635.\n23715\nCalculate the common denominator of -75/184 and -19/552.\n552\nWhat is the common denominator of 143/72 and -125/1788?\n10728\nCalculate the lowest common multiple of 8 and 3402.\n13608\nWhat is the lowest common multiple of 15 and 5460?\n5460\nCalculate the least common multiple of 12 and 60.\n60\nCalculate the common denominator of 48/1783 and 59/5.\n8915\nWhat is the smallest common multiple of 11 and 113?\n1243\nWhat is the lowest common multiple of 40 and 80?\n80\nFind the common denominator of 89/2 and 50/7.\n14\nCalculate the smallest common multiple of 54 and 72.\n216\nFind the common denominator of -25/66 and -31/12." -"w many minutes are there between 9:28 PM and 12:06 AM?\n158\nHow many minutes are there between 5:33 PM and 3:06 AM?\n573\nHow many minutes are there between 6:19 AM and 5:23 PM?\n664\nWhat is 265 minutes after 10:51 PM?\n3:16 AM\nHow many minutes are there between 3:15 AM and 7:40 AM?\n265\nWhat is 202 minutes before 11:45 AM?\n8:23 AM\nWhat is 423 minutes after 6:01 PM?\n1:04 AM\nWhat is 231 minutes before 12:49 PM?\n8:58 AM\nHow many minutes are there between 11:41 AM and 8:50 PM?\n549\nWhat is 453 minutes before 9:40 PM?\n2:07 PM\nWhat is 310 minutes before 8:54 PM?\n3:44 PM\nWhat is 90 minutes after 10:49 AM?\n12:19 PM\nHow many minutes are there between 9:58 PM and 8:28 AM?\n630\nWhat is 303 minutes before 3:51 AM?\n10:48 PM\nHow many minutes are there between 11:24 AM and 10:16 PM?\n652\nWhat is 502 minutes before 7:21 PM?\n10:59 AM\nWhat is 359 minutes after 5:40 AM?\n11:39 AM\nWhat is 692 minutes before 2:49 AM?\n3:17 PM\nHow many minutes are there between 2:14 PM and 8:41 PM?\n387\nWhat is 76 minutes after" -".\n3/182\nTwo letters picked without replacement from fffxffffffxfffxfff. Give prob of picking 1 x and 1 f.\n5/17\nThree letters picked without replacement from dvdavvdddn. Give prob of picking 3 v.\n1/120\nTwo letters picked without replacement from hihylhhhuhhhiyu. What is prob of picking 2 y?\n1/105\nTwo letters picked without replacement from {x: 2, k: 2}. What is prob of picking 2 k?\n1/6\nTwo letters picked without replacement from {w: 7, x: 7, e: 4}. Give prob of picking 2 x.\n7/51\nWhat is prob of picking 3 k when three letters picked without replacement from {c: 6, w: 1, e: 1, x: 1, k: 4}?\n2/143\nTwo letters picked without replacement from {g: 2, f: 1}. Give prob of picking 2 g.\n1/3\nCalculate prob of picking 2 e and 1 z when three letters picked without replacement from ezzezzezzzzz.\n27/220\nThree letters picked without replacement from ymemyomemv. What is prob of picking 2 e and 1 o?\n1/120\nThree letters picked without replacement from xttntvvvtvxtt. Give prob of picking 1 n and 2 t.\n15/286\nWhat is prob of picking 1 g and 2 m when three letters picked without replacement from {m: 6, w:" -"Solve -n = -4*z + r, 6 = -2*n + 4*z - 10 for n.\n0\nSuppose -2*c = -p - 4, -5*c + 4*p + 10 = 2*p. Let o be (-47)/(-4) + ((-132)/(-16))/(-11). Suppose -3*t = c - o. Solve -7 + 2 = t*h + f, -5*h - 7 = 3*f for h.\n-2\nLet n be 24/14*(-7)/(-2) + -3. Let j(l) = -l + 2. Let k(v) = -v + 10. Let f be k(9). Let a be j(f). Solve 0 = -b + n*y - 6, 3*y - 2 = a for b.\n-3\nLet y = 3 + 0. Suppose -20 = -y*m - 2*m. Solve s = -2*q + 13, 5*q + m*s = q + 32 for q.\n5\nLet n be (-4)/(-16) - (-14)/8. Let w be 26/8 + (-3)/12. Solve i = -2, -n*s - s + w*i = 3 for s.\n-3\nLet n(g) = 2*g**2 + 4*g + 12. Let q be n(-3). Solve 4*x + 14 = 4*o + 5*x, -4*o + x + q = 0 for o.\n4\nLet n be 14/4 - 7/(-14). Solve -n*j - 8 = -k + 3*k, 0 = 4*j" -"09674696\nHow many decades are there in 91.69522 years?\n9.169522\nHow many microseconds are there in 185148.1 days?\n15996795840000000\nHow many millimeters are there in six fifths of a meter?\n1200\nConvert 0.059376 grams to kilograms.\n0.000059376\nHow many days are there in 4385.1276 minutes?\n3.0452275\nHow many millilitres are there in one quarter of a litre?\n250\nWhat is eleven quarters of a microgram in nanograms?\n2750\nHow many millilitres are there in 13/5 of a litre?\n2600\nHow many millilitres are there in 4517.46 litres?\n4517460\nConvert 734583.8 millennia to months.\n8815005600\nConvert 11302.95 centimeters to micrometers.\n113029500\nWhat is sixty-four fifths of a gram in milligrams?\n12800\nHow many litres are there in 68.02839 millilitres?\n0.06802839\nWhat is 181478.5m in centimeters?\n18147850\nWhat is 3991.1 litres in millilitres?\n3991100\nWhat is fifty-nine thirds of a year in months?\n236\nHow many millilitres are there in three fifths of a litre?\n600\nConvert 45.36037um to nanometers.\n45360.37\nWhat is 406.9712 litres in millilitres?\n406971.2\nWhat is one twentieth of a millennium in years?\n50\nWhat is two ninths of a week in minutes?\n2240\nConvert 769054.9 decades to years.\n7690549\nWhat is 3805.553 milligrams in grams?\n3.805553\nWhat" -"nearest one hundred.\n-13400\nRound 0.003409116 to 5 decimal places.\n0.00341\nWhat is -0.0040611 rounded to 5 dps?\n-0.00406\nWhat is -12.931863 rounded to 3 dps?\n-12.932\nWhat is -6.47163 rounded to zero dps?\n-6\nWhat is -7566.97 rounded to the nearest one hundred?\n-7600\nRound 0.605465 to two decimal places.\n0.61\nWhat is 0.00008769495 rounded to 5 decimal places?\n0.00009\nWhat is 4669.9 rounded to the nearest 1000?\n5000\nRound 771.5037 to the nearest 100.\n800\nWhat is 240313.51 rounded to the nearest one thousand?\n240000\nWhat is -0.3955495 rounded to 4 dps?\n-0.3955\nWhat is -284.13 rounded to the nearest 1000?\n0\nWhat is -6299.313 rounded to 0 dps?\n-6299\nWhat is 58888.7 rounded to the nearest 10000?\n60000\nWhat is 60911.06 rounded to the nearest 100?\n60900\nRound -0.0005107 to four decimal places.\n-0.0005\nRound 0.0000205592 to six decimal places.\n0.000021\nWhat is -0.020817992 rounded to two decimal places?\n-0.02\nRound -0.000052223817 to 6 decimal places.\n-0.000052\nRound -0.0000596941 to five dps.\n-0.00006\nWhat is -282314400 rounded to the nearest 100000?\n-282300000\nWhat is -0.00001335727 rounded to 7 decimal places?\n-0.0000134\nWhat is -193921 rounded to the nearest 1000?\n-194000\nWhat is 0.000010298292 rounded to 7 decimal" -"*a)*(-1 + 1 + 2*a) + 116*a**2 + 14*a**2 - 617*a**2 in the form q*a**2 + s*a + c and give s.\n-5\nRearrange -18 + 7 + 1726*n - 1 + 2*n**2 - 1 + 16 to z + f*n**2 + v*n and give z.\n3\nRearrange -2751853*x**2 + 2751848*x**2 - 2*x - 4*x**3 - 4*x**4 - 1 + 2 to the form d*x**3 + z + a*x**2 + y*x**4 + v*x and give z.\n1\nExpress -r + 2*r**4 + 0*r**4 - 9038 + 9040 - 4*r**4 - 1197*r**3 as q*r**4 + n*r**3 + v*r + u + w*r**2 and give n.\n-1197\nRearrange -3*o**4 + 11610*o**3 + 0 - o**2 + 2 - 2*o - 11611*o**3 + 0 + 2 to c*o + x*o**4 + u*o**2 + s + l*o**3 and give u.\n-1\nExpress (575 - 245 + 702 - 458 + 657)*(40*v - 31*v**4 - 40*v) as w*v**4 + o*v**2 + z + s*v**3 + p*v and give w.\n-38161\nExpress 13*t + 36*t**3 - 4*t - 33*t**3 + (0*t + 0*t + 2*t**2)*(-10*t + 0*t - 6*t) + t**3 + t**3 + 0*t**3 in the form j*t + q*t**3 + m + a*t**2 and" -"ors of (z - 7)/((-2)/7).\n7\nLet h(b) be the first derivative of 6*b**2 - b**2 + 1 - 2*b**2. What are the prime factors of h(1)?\n2, 3\nLet j(r) = -r**2 - 4*r + 3. Let n = 4 + -1. Suppose 1 + n = -t. What are the prime factors of j(t)?\n3\nLet d(p) = -7*p**3 + 27*p**2 - 6*p + 24. Let s(g) = -4*g**3 + 14*g**2 - 3*g + 12. Let f(w) = -3*d(w) + 5*s(w). What are the prime factors of f(11)?\n3, 7\nSuppose -5*a = 4*x - 459, 4*x - 463 = 4*a - 5*a. What are the prime factors of x?\n2, 29\nLet c = -97 + 99. Let m(i) = -i**2 + 6*i + 3. Let v be m(6). Suppose c*t - 11 = -4*b + 3*t, -3 = 3*b - v*t. What are the prime factors of b?\n2\nLet f(u) = -u**3 + 4*u**2 + 8*u - 7. Let j be f(5). Suppose o - j = 1. Suppose -o = -0*y - 3*y. What are the prime factors of y?\n3\nList the prime factors of -2*1/(8/(-196)).\n7\nSuppose p - 231 - 56" -"*q - 38*q**3 + 2 - q**4 in the form v*q**3 + u*q**4 + g + c*q**2 + j*q and give c.\n4\nRearrange 0*u**2 + 3*u + u**2 - 3*u**2 + 11*u to z*u**2 + t*u + h and give t.\n14\nRearrange -7*r**2 - 36*r + 36*r - 2 to the form p*r + t + i*r**2 and give t.\n-2\nRearrange -1391 - 122*h**3 + 1391 + 2*h**3 + 2*h**2 - 2*h**2 + (0*h**2 + 2*h**2 + 0*h**2)*(0*h + 0*h - 2*h) to c*h + p*h**2 + r*h**3 + q and give r.\n-124\nRearrange -1 - 14*u**2 + 3*u**2 - u + 2*u**2 - 1 to the form b*u + r + t*u**2 and give b.\n-1\nExpress (-2*d - d**2 + 2*d)*(0 + 269*d + 19 - 273*d) as u*d**3 + p*d**2 + l*d + i and give p.\n-19\nExpress 27*j - 15*j + 3*j in the form t + d*j and give d.\n15\nRearrange 5*y**2 + 33*y**2 + 5*y**2 + 18*y**2 to the form t + q*y + l*y**2 and give q.\n0\nRearrange (0 - 2 + 1)*(x + 4*x - 4*x)*(2*x**2 - 2*x**2 - 6*x**2) to t*x**3 + n*x**2 +" -"-n = -0*f - 3*f - 358, -234 = r*f + 4*n. Let p = f + 188. Is p a multiple of 15?\nFalse\nLet a be (7/28)/(1/4). Let g(b) = 7*b**3 - 2*b**2 + 2*b - 1. Let v be g(a). Suppose i + 210 = v*i. Is 14 a factor of i?\nTrue\nLet v(p) = -p**2 + 6*p - 3. Let j be v(4). Suppose -j*o = -3*w + 45, 3*w + 2 = -13. Is 16 a factor of (20/3)/(o/(-72))?\nFalse\nIs 6/(-30) - (-612)/10 even?\nFalse\nLet n be 2 - (-889)/4 - 3/12. Suppose 0 = 11*s - 4*s - n. Is 4 a factor of s?\nTrue\nLet z = 2 - -9. Suppose -5 = -6*w + z*w. Is 102/((-3)/w) - 2 a multiple of 13?\nFalse\nLet c(a) be the second derivative of a**4/12 - 2*a**2 + 5*a. Let b be c(2). Suppose 3*o - w - 166 = -b*w, 3*w - 162 = -3*o. Is o a multiple of 6?\nFalse\nSuppose 4*z - 2*j - 3440 = 0, -3*j + 6*j - 4278 = -5*z. Is 4 a factor of z?\nFalse\nLet t(r) be the third derivative" -"- 34/(-9). Are l and 7 nonequal?\nTrue\nLet p(h) = h**3 - 5*h**2 + 5*h - 2. Let x be p(4). Let a be -1 + (x + 2 - 1). Suppose 0 = 120*u - 124*u + 12. Do u and a have the same value?\nFalse\nLet f be (-3)/20*24/(-63). Which is bigger: 1 or f?\n1\nSuppose -17 = -0*z + 3*z + 2*n, 4*n = 3*z + 29. Suppose -3*h + 28 = -7*h. Is z not equal to h?\nFalse\nLet f be (6 - 3)*(-1)/(-9). Let w be 10*(6/4 + -1). Suppose -5*m = w - 0. Is m at least f?\nFalse\nSuppose -10*v = -v. Is v < -9?\nFalse\nLet f be (-2)/12 + (-12)/(-18). Let k(z) = -z - 1. Let l be k(0). Let d = l + 2. Which is smaller: d or f?\nf\nSuppose -j + 7 - 5 = 0. Suppose -2*f - 4 = t, -4*f + 3*t - 14 = j*t. Is 2/3 < f?\nFalse\nLet x = -242/3 - -80. Which is smaller: x or -14?\n-14\nSuppose -4*l + 8*l = 32. Let g be (-3)/(-2)*(l + -6). Let" -"\n-9\nWhat is the closest to -2 in 0.0157, -2/13, -1/16, 98?\n-2/13\nWhich is the closest to 0.27? (a) -1/117 (b) -3/2 (c) -1 (d) -1/5\na\nWhat is the closest to 0.2 in 0.4, 2, 8492, -3?\n0.4\nWhich is the nearest to 322? (a) 1.8 (b) 11213 (c) 4\nc\nWhat is the closest to -89.28 in -1.7, 5, 59/5?\n-1.7\nWhat is the nearest to -4/9 in 0.4, 0.3, 43, 5/6, -16?\n0.3\nWhat is the nearest to 231 in -2/7, -1, -1/12, 18/7?\n18/7\nWhat is the closest to -0.26 in 4, -0.068, -75?\n-0.068\nWhat is the nearest to 23 in -1233, 1.97, -1/6?\n1.97\nWhich is the closest to -161? (a) -0.02 (b) 9 (c) -5 (d) 4/3 (e) -11\ne\nWhich is the closest to 3/11? (a) 2 (b) -93 (c) -2 (d) -0.5 (e) 6\nd\nWhich is the closest to 347? (a) -349 (b) 0.4 (c) -0.03 (d) 2/9 (e) -2\nb\nWhich is the nearest to 124654? (a) -7/5 (b) 1/10 (c) 5/2\nc\nWhat is the nearest to 0.1 in -1/5, 4, 110, 41497?\n-1/5\nWhich is the nearest to -980? (a) -9 (b) 1/3 (c) 2/3 (d)" -"Which is the biggest value? (a) s (b) -5 (c) f (d) n\nc\nLet w be 40/195*1/(8/6). Suppose 5*v = -h - 23, 0 = 2*v - 0*h - 3*h + 16. Which is the second biggest value? (a) -1/4 (b) v (c) w\na\nLet v = -948.426 + 944. Let s = v - -0.026. Let p = s + -0.6. Which is the third biggest value? (a) p (b) -3/2 (c) 2/9\na\nLet t = -0.2 + 1.8. Let h = 4.6 - t. Let j = 7.6 - 4.3. Which is the second smallest value? (a) 0 (b) h (c) j\nb\nLet o be (-5)/(-20)*128/96. Which is the biggest value? (a) 15 (b) 0.1 (c) -1/6 (d) o (e) 0.5\na\nLet f = 304 + -300. What is the fourth biggest value in 6, 0.3, f, 3?\n0.3\nSuppose 36 + 92 = 4*w. Suppose 33*l - 29*l = w. Let o be 4 - 1*84/l. Which is the third biggest value? (a) -0.5 (b) o (c) 3\nb\nLet i = 18.185 + -17.885. What is the biggest value in 21, i, -37?\n21\nLet j = -35240.9 - -35241. What" -" 5*d - h. Suppose x = 53*f - 55*f + 1706. Is f a prime number?\nTrue\nSuppose 395*p + 105436 = 399*p. Suppose p = -7*w + 100916. Is w prime?\nTrue\nIs 5/(110/(-4))*13757995944/(-1008) a composite number?\nFalse\nSuppose -4*w + 28 = 3*h + 2*h, -2*h + 4 = -2*w. Is (-310248)/(-168) + w/7 composite?\nFalse\nSuppose 60 - 28 = -2*g. Let b(z) = -15*z**2 - 26*z - 2. Let j(l) = -7*l**2 - 13*l - 1. Let k(o) = -4*b(o) + 7*j(o). Is k(g) composite?\nFalse\nSuppose -2*n = -2, -5*y - 3*n = -3*y - 1. Let r be 3/((-36)/8)*-3 - y. Suppose -4*k + 5*w + 2605 = k, 1547 = r*k + w. Is k a prime number?\nFalse\nLet x(w) = -2*w + 80. Let p be x(30). Suppose p*q = -7680 + 21460. Is q composite?\nTrue\nSuppose f = -4*x + 63, 3*x + 2 - 50 = -f. Suppose 0 = -x*a + 27*a - 106332. Is a prime?\nTrue\nLet r = 121 + 802. Suppose -4*u - 729 - r = 0. Let s = -264 - u. Is s a composite number?\nFalse\nSuppose 149 =" -"-1701/310. Let t be (1 + -3)*(-10818)/(-132). Let v = 164 + t. What is the common denominator of u and v?\n22\nLet a = 6611/5 + -1330. Find the common denominator of 14/13 and a.\n65\nSuppose 0 = -3*b + 5*s + 3514 + 1623, -5*b - 2*s = -8572. Calculate the least common multiple of b and 12.\n10284\nLet b = 20 + -29. Let l(f) = -f + 11. Let j = 2 - -24. What is the least common multiple of l(b) and j?\n260\nLet r = -478 - -523. What is the least common multiple of 85 and r?\n765\nLet g(c) = -2*c - 50. Let i be g(0). Calculate the smallest common multiple of (-20)/i*30/1 and 6.\n12\nLet x = 135977/105 + -3887/3. Let z = 1/21 + x. Let g = 2620 + -20921/8. What is the common denominator of z and g?\n40\nWhat is the least common multiple of 16*((1 - -11) + -5) and 56?\n112\nLet g = 15 - 11. Let h(y) = y**2 - 4*y - 3. Let t be h(6). Suppose -18 = 6*w - t*w. What is the smallest" -"s\nLet b(c) = 4*c - 1. Let l be b(-1). Let p(k) = -5*k + 99. Let v(m) = -4*m**3 - 4*m**2 - 3*m - 1. Let u be v(-2). Let z be p(u). Which is greater: l or z?\nl\nLet o(p) = p**3 - 5*p**2 + 2*p + 11. Let h be o(4). Suppose -5*s - h*s = -136. Let i(b) = -3*b + 56. Let d be i(s). Is d at most as big as 32/5?\nTrue\nLet o = -31750 + 31751.9. Is o less than or equal to -44?\nFalse\nLet k be (12/(-102))/(4 + 132/(-16)). Is 1 >= k?\nTrue\nSuppose 0 = -16*h + 18*h + 28. Let u(a) = -a**2 - 16*a - 24. Let t be u(h). Suppose -5*m + n + 4 - 25 = 0, -2*m + 6 = -t*n. Which is bigger: m or -8?\nm\nSuppose 12 = 2*m + 5*t + 38, 3*m + 14 = 5*t. Let g(n) = -3*n**3 + n**2 - n + 1. Let v be 1/3 + 6/9. Let f be g(v). Which is smaller: m or f?\nm\nLet n = -5433 - -537874/99. Let d(k) = -k**2 -" -"11. Let s be d(12). Solve -n = -2 + s for n.\n1\nSuppose -5 = -3*i + 1. Let j = -1 - i. Let v = j + 15. Solve 2*s + v = -s for s.\n-4\nLet z(c) = -c**3 - c**2 + 2*c - 7. Let y be z(-3). Solve -4*w = -5*w + y for w.\n5\nLet r = -9 - -9. Solve w + 2 = -r*w for w.\n-2\nLet w be 2 + 2/1 - -2. Let a be w/45*3*5. Solve -a*n = 10 - 2 for n.\n-4\nLet k(p) = -p**2 + 2*p - 6. Let q be k(5). Let f = -15 - q. Solve -f = -m - m for m.\n3\nLet j(k) = k**2 + 6*k - 4. Suppose -2*v + 21 = -5*v. Let o be j(v). Solve -o*x + 2*x = -3 for x.\n3\nLet x(q) = -3*q - 7*q**2 - 11*q + 5 - 2*q**2 + 4*q + q**3. Let p be x(10). Solve -p*c = -c + 4 for c.\n-1\nSuppose 4 + 2 = 2*n. Suppose 0*p = -n*p + 12. Suppose -4*g + p =" -"r?\n10\nWhat is the square root of 21203806 to the nearest integer?\n4605\nWhat is the cube root of 578230907 to the nearest integer?\n833\nWhat is 4307058 to the power of 1/9, to the nearest integer?\n5\nWhat is the square root of 434335950 to the nearest integer?\n20841\nWhat is the third root of 8811918412 to the nearest integer?\n2065\nWhat is the seventh root of 1093430916 to the nearest integer?\n20\nWhat is the sixth root of 5455476 to the nearest integer?\n13\nWhat is 124007231 to the power of 1/2, to the nearest integer?\n11136\nWhat is the third root of 1310390705 to the nearest integer?\n1094\nWhat is the third root of 63882268 to the nearest integer?\n400\nWhat is 308278047 to the power of 1/3, to the nearest integer?\n676\nWhat is the square root of 30736680 to the nearest integer?\n5544\nWhat is the square root of 323059225 to the nearest integer?\n17974\nWhat is the third root of 101559151 to the nearest integer?\n467\nWhat is the seventh root of 95873461 to the nearest integer?\n14\nWhat is the square root of 326823433 to the nearest integer?\n18078\nWhat is 5013423327" -"4 + -24.0077. Round o to 3 decimal places.\n-0.008\nLet s = -144 - -143.933. Let u = s - -0.066917. Round u to 5 decimal places.\n-0.00008\nLet c = 96903.46031 - 96903. Let q = 0.46 - c. What is q rounded to four decimal places?\n-0.0003\nLet w be (-52)/(-16) - (-2)/(-8). Let x(q) = -5*q - 7. Let g be x(w). What is g rounded to the nearest ten?\n-20\nLet o = 159.00000071 + -159. Round o to 7 dps.\n0.0000007\nLet p = -2.5 + 2.53. Let f = p - -0.026. What is f rounded to two dps?\n0.06\nLet k = 0.155 - 1.375. What is k rounded to one decimal place?\n-1.2\nLet k = -0.07 + -0.73. Let x = k - -0.7945. Round x to 3 dps.\n-0.006\nLet l = 17 - 12. Suppose -l*y - 364 = -5014. Round y to the nearest 100.\n900\nSuppose -4*z = -3*z - 4, -5*k - 4*z = 5504. Let t be (-450)/(-4)*k/18. Round t to the nearest 1000.\n-7000\nLet j = -14443.719 - -14436. Let r = 0.081 - j. Round r to zero dps.\n8\nLet" -" 47*i + 81. Let q be o(46). Suppose 5*j + 33 = 4*d, -d + 0*d + 6 = j. What is the greatest common divisor of d and q?\n7\nLet z = 1787 + -1463. What is the highest common factor of z and 36?\n36\nLet c(f) = -f**2 - 1. Let x(k) = 81*k**2 - 4*k + 8. Let o(g) = 5*c(g) + x(g). Let w be o(1). Calculate the greatest common factor of 50 and w.\n25\nSuppose 3*h = 4*v - 16, -1 = -v - 2*h + 3. Let d be 16/40 - ((-356)/(-5))/(-2). What is the highest common divisor of v and d?\n4\nSuppose 2*k = 2*j - 42, -5*j + 48 = -3*k - 53. Suppose 0 = -2*o + 32 + 6. What is the highest common factor of o and j?\n19\nLet r = -742 - -1054. Calculate the highest common divisor of 273 and r.\n39\nSuppose 0*a + 2*a + 346 = -5*y, -2*a - 360 = -2*y. Let l be 32*-1 - (1 + -2). Let u = l - a. Calculate the greatest common divisor of u and 21.\n21\nLet t =" -"-0.5, 4, 2?\n2\nWhich is the fourth biggest value? (a) 2/13 (b) -2/25 (c) 0 (d) 5 (e) 13\nc\nWhich is the smallest value? (a) -37 (b) -0.3 (c) 3852 (d) -9/2\na\nWhat is the second smallest value in -0.5, 6477, -7?\n-0.5\nWhat is the fourth smallest value in 9, -214, -2/5, 1?\n9\nWhich is the fourth smallest value? (a) 2 (b) 19.2 (c) 0.8 (d) -1 (e) -1/2 (f) -1/6\nc\nWhat is the fourth biggest value in 4, 56, 10, 2/5?\n2/5\nWhich is the second smallest value? (a) 1 (b) -0.4 (c) 85.8 (d) -2/3 (e) -14\nd\nWhich is the fourth biggest value? (a) 1/2 (b) 2.9 (c) 0.01 (d) 1.3 (e) 0.1\ne\nWhich is the third smallest value? (a) -1/19 (b) 1/2 (c) -0.3 (d) -0.495\na\nWhich is the fourth smallest value? (a) 1/6 (b) -3 (c) -0.5 (d) -161029\na\nWhat is the fourth biggest value in 0.06, -2/7, -2, 13.03?\n-2\nWhich is the second smallest value? (a) -0.35 (b) -0.2 (c) -1/7 (d) -31/6\na\nWhat is the fourth smallest value in 10, -6, 0.03, -4, -1, 2/9?\n0.03\nWhich is the fourth biggest value?" -"*2 + 11*o**2 + 0*o**2. List the prime factors of d(-11).\n7, 11\nLet c = -495 - -1089. Let u = c + -266. List the prime factors of u.\n2, 41\nLet o be 1/4 - (-3)/(-12). Suppose 0 = 5*a - 4*a + 2*g, o = 4*a + 3*g. Suppose a = 14*r - 1325 + 303. What are the prime factors of r?\n73\nList the prime factors of (-858)/(-39)*1393/14.\n11, 199\nSuppose -125 = 18*b - 23*b. List the prime factors of (14/105*b)/(2/141).\n5, 47\nSuppose 0 = g - 5*n + 3*n - 8, 1 = n. Let d(l) = -27*l**3 - 1 - 2*l**2 + 31*l**3 - 10*l + g. List the prime factors of d(4).\n193\nWhat are the prime factors of (27 - 27 - 38/12)*-2*9555?\n5, 7, 13, 19\nLet l(f) = -9*f**3 - 4*f**2 + 5*f + 4. Let a be 1 + (-5)/2*(-4)/(-2). Let m be l(a). Suppose -5*b = -b - m. What are the prime factors of b?\n2, 31\nSuppose -3*f = 3, -19*f + 15*f = r + 1467. What are the prime factors of (-1 - -1) + r/(-7)?\n11, 19\nLet b" -"\n-2\nRearrange (-4*b + 4*b - 4*b)*(6*b**2 - 5*b**2 - 2*b - 120 - 25) to a*b**3 + z*b**2 + l*b + m and give l.\n580\nRearrange 283*d + 28*d - 97*d to u + f*d and give f.\n214\nExpress -1 + 6*t**2 - 2*t**3 - t - 4*t**2 + t**4 - 3*t**2 in the form g*t**4 + j*t + p*t**3 + d*t**2 + r and give p.\n-2\nRearrange -m**3 + m**4 + 3*m**2 + m - 4*m**2 + 5*m**2 + 1 - m**3 to k + y*m**2 + a*m**4 + i*m + r*m**3 and give k.\n1\nExpress -3 + 18 - 1271*z + 1270*z as m + l*z and give m.\n15\nRearrange (158 + 93 - 1223 + 53)*(0*j - 2*j**3 + 0*j) to the form c*j**2 + b*j**3 + a + y*j and give b.\n1838\nExpress (-344*w + 504*w + 597*w)*(-3 + 4 - 3) + w - 5*w + 2*w as p*w + c and give p.\n-1516\nRearrange 10 + 49*x + x**4 - 61 + 49 - x**3 to the form i*x**2 + k*x + r + h*x**4 + j*x**3 and give k.\n49\nRearrange (127 - 39 -" -"n - 2. Let b be y(-5). Let r(i) = -5*i - b*i**2 - 58 + 55 - i**3 + 10*i**2. What is r(m)?\n3\nLet j(w) = -w + 8. Suppose -3*h + 18 = -5*q + 53, 3*q = h + 21. Give j(q).\n1\nLet z = -54 - -32. Let v be (-165)/z + (1/2)/(-1). Let a(w) = -w**3 + 6*w**2 + 7*w. Give a(v).\n0\nLet a(s) = 3*s + s + 1 - 11*s - 2*s + 4*s. Let h be (-2)/7 - (-81)/63. Determine a(h).\n-4\nLet u(o) = o - 5. Let h(g) = 5*g - 4. Let p be h(3). Let d = p - 7. Calculate u(d).\n-1\nLet h(n) = -4*n - 2. Let k(v) = 5*v - 21. Let c be k(4). Let o be ((-32)/12)/((-4)/(-6)) - c. Give h(o).\n10\nLet h = 74 - 69. Let p(u) = -2*u + 3 + 5*u - 2*u. Calculate p(h).\n8\nLet c be 0 + (2 - 2) + 2. Let j(q) = 15*q**2 + q**c - q + 2*q. What is j(-1)?\n15\nLet k(y) = -3*y - 7. Let p be 8/26 + (-22878)/1599. Determine k(p)." -" Determine t(n).\n2\nLet o(y) = -61*y**2 + 20*y + 47. Let b(l) = -256*l**2 + 79*l + 187. Let u(i) = -5*b(i) + 21*o(i). What is u(23)?\n98\nLet a(z) = -13*z**3 - 5*z + 6. Let s(i) = 1221*i + 3664. Let j be s(-3). Calculate a(j).\n-12\nLet o(h) = -h**3 + 11*h**2 - 10. Let w be ((-3)/(-2))/((-23)/(-46)) + 4. Suppose s - w = 4. Calculate o(s).\n-10\nLet d = -35 - -40. Suppose 5*c + 13 + d = 2*z, 7 = -2*c + z. Let n(s) = -2*s + 2 - 4 - 3. Give n(c).\n3\nLet j = 94 + -107. Let h(m) = -m**2 - 9*m + 48. Let r be h(j). Let o(l) = -4 + 2 + 3*l**3 - 4*l**3 - 4*l**2. Calculate o(r).\n-2\nLet f = 2173 + -2180. Let b(u) = -u**2 - 11*u - 6. What is b(f)?\n22\nLet b(i) = -i**2 - 3*i - 4. Let a be (-6885)/(-119) - 2/(-14). Let y(u) = 16*u - 2. Let l be y(4). Let m = a - l. What is b(m)?\n-8\nLet b(v) = -2 + 7 + 6*v - 2*v." -"0\nLet o be (-1)/(-1 + 2/4). Let u = -136454 + 229651. Suppose -g + 2*g + u = -4*f, o*f - 2*g = -46606. What is f rounded to the nearest one thousand?\n-23000\nLet d = -690102 + -1825898. What is d rounded to the nearest one million?\n-3000000\nLet g = -10.784 - -11. Let m = -0.21206 + g. What is m rounded to four dps?\n0.0039\nLet m = 0.882 + -0.8. Let h = 0.122 + -0.052. Let u = h - m. Round u to 2 dps.\n-0.01\nLet u = -121 - -84. Let b = u + 172. Let r = 135.099 - b. Round r to two dps.\n0.1\nLet u = 31.2 + -31.168. Round u to 2 dps.\n0.03\nLet r(c) = -c + 8. Let m(b) = 3*b - 15. Let x(p) = -3*m(p) - 5*r(p). Let k be x(4). Let n = 87 + k. What is n rounded to the nearest 10?\n80\nLet q = -2309.999997011 - -2310. What is q rounded to seven dps?\n0.000003\nLet a = -0.945 - -0.92. Round a to two decimal places.\n-0.03\nLet a = 4.9" -" (b) 4 (c) -0.0074 (d) -0.09\nb\nWhich is the closest to -2? (a) -6 (b) 15/7 (c) -0.2 (d) 5 (e) -0.07\nc\nWhat is the closest to 2/3 in -6/7, -86, 7?\n-6/7\nWhat is the nearest to 1/4 in 53, -2/15, -0.4, -0.08?\n-0.08\nWhat is the nearest to -0.2 in 9/7, 1, -0.04, 43?\n-0.04\nWhich is the closest to 2? (a) 0.05 (b) -0.07 (c) -3/5 (d) -3/4 (e) 0.2\ne\nWhat is the nearest to -36/37 in 11, 0.03, -0.2?\n-0.2\nWhat is the closest to 1/7 in -9, 13, 5, -2, -0.3?\n-0.3\nWhich is the nearest to 2? (a) -2 (b) 1/938 (c) 38 (d) -4\nb\nWhich is the closest to 9? (a) 2 (b) -2 (c) 5 (d) 0.032\nc\nWhich is the closest to 2.5? (a) -2/9 (b) -13/3 (c) 2/7 (d) -1/6 (e) -3.6\nc\nWhich is the closest to 1? (a) 3 (b) -104 (c) 0.7 (d) -3\nc\nWhich is the closest to -1/4? (a) -632 (b) -0.2 (c) 1\nb\nWhich is the nearest to -2/5? (a) 9 (b) 2/73 (c) -1/11\nc\nWhich is the closest to 137? (a) -1.2 (b) 174 (c) -0.4" -" p'th term of -3, -225, -831, -2013, -3963, -6873?\n-32*p**3 + 2*p + 27\nWhat is the k'th term of -61, -59, -45, -13, 43?\nk**3 - 5*k - 57\nWhat is the b'th term of -227, -449, -671, -893, -1115, -1337?\n-222*b - 5\nWhat is the y'th term of -295, -590, -883, -1174?\ny**2 - 298*y + 2\nWhat is the d'th term of -81, -78, -75, -72, -69, -66?\n3*d - 84\nWhat is the z'th term of -232, -464, -696, -928, -1160, -1392?\n-232*z\nWhat is the y'th term of -27, -119, -273, -489, -767, -1107, -1509?\n-31*y**2 + y + 3\nWhat is the j'th term of 25, 49, 101, 193, 337, 545, 829, 1201?\n2*j**3 + 2*j**2 + 4*j + 17\nWhat is the y'th term of 386, 384, 382, 380, 378, 376?\n-2*y + 388\nWhat is the q'th term of 1, 14, 35, 64?\n4*q**2 + q - 4\nWhat is the q'th term of -41, -40, -39, -38, -37, -36?\nq - 42\nWhat is the r'th term of 866, 6889, 23242, 55091, 107602?\n861*r**3 - r**2 - r + 7\nWhat is the u'th term of -91, -391, -897, -1615," -"99281. Let c = g + 163.6. Round c to 6 decimal places.\n-0.000007\nLet h = 28 - 27.7. Let a = h + -0.29999875. Round a to 7 dps.\n0.0000013\nSuppose -3*z - 165026 + 22641 = 2*m, -25 = -5*z. What is m rounded to the nearest ten thousand?\n-70000\nLet w = -1.381 - -1.44. Let x = -0.139 - w. Round x to one decimal place.\n-0.2\nLet o = 109697382 + -109691745.810008. Let s = o - 5621.19. Let z = s + -15. What is z rounded to 6 decimal places?\n-0.000008\nLet o = 2495.93908 + -2496. Round o to 2 dps.\n-0.06\nSuppose 5*u + 6 = -3*l + 2, 3*l = -u + 4. Suppose 0 = s + a - 3*a + 698, -2*s - 1392 = -l*a. What is s rounded to the nearest one hundred?\n-700\nLet g = -26.8 - 0.2. Let a = g + 26.985. Round a to two decimal places.\n-0.02\nLet o = 557.99997104 - 558. Round o to 6 decimal places.\n-0.000029\nLet s = -4 + 3.93. Let k = 0.07 + s. Let x = -0.15 - k. Round" -"- 20 = -4*a. Let z(k) = 2*k**3 - 3*k**2 + k - 3 + 1 + q + 1. Calculate the remainder when 33 is divided by z(2).\n3\nLet f(p) = -p**3 - 20*p**2 - 22*p - 8. What is the remainder when 635 is divided by f(-19)?\n47\nLet o = 1233 - 903. What is the remainder when o is divided by 8?\n2\nSuppose -23*x + 0*x = -1104. Calculate the remainder when 94 is divided by x.\n46\nSuppose 0*j = -5*z - 3*j + 125, -5*z + 2*j = -125. Calculate the remainder when 221 is divided by z.\n21\nSuppose 3*a + 0 = 24. Let x = 157 + -63. Suppose 3*y = -4 + x. What is the remainder when y is divided by a?\n6\nLet z = -35 - -30. Let m(p) = -p**3 - 3*p**2 + 3*p + 1. Suppose 4*s + 40 = 604. Calculate the remainder when s is divided by m(z).\n33\nSuppose 2*k + 2*c = 3*k - 66, 2*c = 2*k - 124. Suppose 12*n = 13*n - 30. What is the remainder when k is divided by n?\n28\nSuppose -4*h" -"0)?\n3\nLet b(v) = v + 6. Let f be b(-2). Let h(t) = -t**2. Let j(w) = 4*w**2 - 5*w + 6. Let g(o) = 3*h(o) + j(o). List the prime factors of g(f).\n2\nSuppose -12*p = -11*p - 36. What are the prime factors of p?\n2, 3\nLet w(k) = -k**2 + 18*k - 14. What are the prime factors of w(14)?\n2, 3, 7\nLet h(p) = -p**2 - p + 290. Let f be h(0). Suppose -f = -6*g + g. Suppose -g = -5*b + 22. What are the prime factors of b?\n2\nLet n be 2 + (2 - 2)*-1. Suppose 10 = -n*t - 3*t. Let s(c) = c**3 + 3*c**2 - 4*c - 3. List the prime factors of s(t).\n3\nSuppose 0 = 3*h - 69 - 237. What are the prime factors of h?\n2, 3, 17\nLet i = 143 - 96. Suppose -2*h + 3*v + 38 = 0, -3*h + i = -5*v + 3*v. List the prime factors of h.\n13\nLet x(j) = -j**3 - 4*j**2 - 2*j - 5. Let w = -1 - 0. Let t be (4/(-5))/(w/(-5)). List" -"to -11/5? (a) 0.3 (b) -4 (c) -2\nc\nWhich is the closest to 35? (a) -0.5 (b) 0.1 (c) -44\nb\nWhat is the closest to 1 in -5, -0.06, 2/7, -1?\n2/7\nWhich is the closest to 0.038? (a) 2 (b) -0.05 (c) 4\nb\nWhich is the nearest to -6? (a) -5 (b) 1/9 (c) -8/5 (d) -2\na\nWhich is the closest to -2? (a) 0.18 (b) -4 (c) -0.5 (d) 4\nc\nWhich is the nearest to 1? (a) -1/3 (b) -6 (c) 0.01 (d) -0.4\nc\nWhich is the nearest to -1/2? (a) -0.8 (b) -2 (c) -5\na\nWhich is the nearest to 1/3? (a) 0 (b) -3 (c) -13/2 (d) -5\na\nWhich is the closest to -1? (a) 0.003 (b) 1/4 (c) 7/2\na\nWhich is the nearest to 1/2? (a) -3 (b) -1874 (c) 1/3\nc\nWhich is the nearest to -1? (a) -2 (b) 80 (c) 0.3 (d) -0.4\nd\nWhat is the closest to -1/4 in -0.3, -2/9, 0.121?\n-2/9\nWhat is the closest to 0.4 in -5, 0.1, -1?\n0.1\nWhich is the nearest to 2/15? (a) 4/3 (b) -0.4 (c) -0.1\nc\nWhat is the closest" -"cimal places?\n0.00724\nWhat is 1.0275 rounded to two dps?\n1.03\nWhat is 0.000827 rounded to four decimal places?\n0.0008\nRound -46774000 to the nearest one hundred thousand.\n-46800000\nRound -9.391 to one dp.\n-9.4\nRound -18.9234 to 1 dp.\n-18.9\nWhat is -681.5 rounded to the nearest 10?\n-680\nWhat is 1.347 rounded to zero decimal places?\n1\nWhat is -0.00845 rounded to one decimal place?\n0\nRound -46350 to the nearest 1000.\n-46000\nRound -23380000 to the nearest 1000000.\n-23000000\nWhat is -0.2895 rounded to two decimal places?\n-0.29\nRound 0.00250012 to 5 decimal places.\n0.0025\nRound 0.018195 to 3 decimal places.\n0.018\nWhat is -6821700 rounded to the nearest one million?\n-7000000\nRound -0.04107 to three dps.\n-0.041\nRound -425.18 to the nearest ten.\n-430\nRound 2.57738 to 2 dps.\n2.58\nRound -0.000021767 to seven decimal places.\n-0.0000218\nWhat is -1.157 rounded to one decimal place?\n-1.2\nRound -0.0005 to three decimal places.\n-0.001\nWhat is -0.059595 rounded to 3 decimal places?\n-0.06\nRound -0.006943 to four decimal places.\n-0.0069\nWhat is -0.0000236 rounded to 5 decimal places?\n-0.00002\nWhat is -0.0113544 rounded to three decimal places?\n-0.011\nWhat is -0.001169 rounded to five decimal places?\n-0.00117" -"= -2*q + 1354, 3*q + 306 = -5*z + 1996. Is z a prime number?\nFalse\nLet p(u) = 10*u**2 + 8*u + 41. Let n be p(10). Suppose -g + 18 = -n. Is g a composite number?\nTrue\nLet c = 181518 - 97897. Is c a composite number?\nFalse\nSuppose -2*p = 10, 5*o + 4*p = 8*p + 141475. Is o a prime number?\nFalse\nLet w(n) = -83*n + 8. Let y be w(-3). Let a = y + -174. Is a composite?\nFalse\nLet t = 26 - 28. Let i(q) = -11*q**3 - q**2 + q - 1. Let s be i(1). Is (-159)/t*s/(-9) prime?\nFalse\nLet i be -2 - (3 + (-4 - -2858)). Is (-12)/(-16) + i/(-12) composite?\nFalse\nLet k(p) = -19*p**3 + 4*p**2 + 2*p - 1. Let i be -5*-5*10/(-125). Is k(i) a composite number?\nFalse\nLet i(p) = -p**2 - 4*p + 3. Let y be i(2). Let z be y*(22/(-6) - -4). Is (-59 + 1)*z/3 composite?\nTrue\nLet g(p) = -p**3 - p**2 - 3*p - 1. Let i be g(-1). Let o be -1*(i - (-1 + 5)). Suppose v = -v" -" be k(9). Let j be t + (6 - 1) + -2. Suppose -2*c - 4 = -u, 0 = 5*u - 2*c - j*c - 8. Solve u*s = -5*s - 20 for s.\n-4\nSuppose -43*t + 54*t + 897 = 50*t. Solve -11 = 6*q - t for q.\n2\nSuppose 5*n - 40 = 5*w, 5*w - 9 = -4*n + 14. Suppose 2*j - n*r = -2*r + 11, j = r + 7. Suppose 0 = g + 2, -6 = -i + g. Solve -2*o + i*o - j = 0 for o.\n4\nLet a(c) = c**3 + 15*c**2 - 31*c - 234. Let w be a(-11). Solve 0 = 582*g - w*g + 18 for g.\n2\nSuppose -7*p + 5*p = -4. Suppose 7 + 5 = -2*g + 4*o, 2 = -2*g + p*o. Suppose 0 = g*l + 25 - 37. Solve l*m + m = 0 for m.\n0\nSuppose w = 2*w - 4. Let x be (-130)/(-4) - 21/(-14). Let j = 38 + -24. Solve -j = w*q - x for q.\n5\nSuppose 3*y - 8 = y. Suppose y*r - 19 +" -" Let g = 3 - -3. What is g*l(b) + k*f(b)?\n2*b + 2\nLet s(v) = -2*v**2 + 3*v. Suppose 4*n - 2*c - 2 = 0, 2*n + c = -c + 10. Let d(x) = x**3 - 7*x**2 + 10*x + 1. Determine n*d(m) - 7*s(m).\n2*m**3 - m + 2\nLet q(o) be the second derivative of 0 - 1/6*o**3 + o + 1/2*o**2. Let r(w) = -2*w + 2. Suppose 5*j - 136 + 71 = 0. Determine j*q(s) - 6*r(s).\n-s + 1\nLet l(j) = -2*j + 1. Let v(b) = -3*b + 2. Let h(d) = 2*d - 43. Let i be h(19). What is i*l(r) + 3*v(r)?\nr + 1\nLet d(n) = -2*n - 2. Let m(h) = -3*h - 4. Let r(c) = 2*c + 3. Let z(i) = -3*m(i) - 4*r(i). Calculate d(t) + 5*z(t).\n3*t - 2\nLet a(h) = h. Let u(k) = -6*k. Suppose -5*p - 38 = -13. Give p*a(y) - u(y).\ny\nLet k(f) = -11*f - 2. Let z(u) = 16*u + 3. Calculate 8*k(y) + 5*z(y).\n-8*y - 1\nLet j(o) = -63*o**3 - 33*o**2 - 33*o + 33. Let u(g)" -" 4.\n2/23, 1/4, y, 4\nLet h(d) = 5*d**2. Let z be h(-1). Sort z, -5, -37, -3 in descending order.\nz, -3, -5, -37\nLet s = 1.27 - 1.27. Sort -2, 0.4, s, -3.\n-3, -2, s, 0.4\nSuppose 4*x = 3*x. Suppose 4*q - 3*h + 1 = 0, -q - 3 = 2*h - x. Put -5, q, 7 in decreasing order.\n7, q, -5\nSuppose -20 = -5*u - 5*j, 3*j = -8*u + 4*u + 11. Sort 2, -13, u in descending order.\n2, u, -13\nLet k be ((-3)/21)/((-2)/7)*0. Put -4, k, 2 in increasing order.\n-4, k, 2\nLet i be (252/(-112))/((-33)/8). Sort i, 2/11, -1 in descending order.\ni, 2/11, -1\nLet r = 253/166 - 2/83. Let t = 15/13 - 161/117. Sort r, t, -3/5.\n-3/5, t, r\nLet b = 1.46 - 1.66. Put -3, 10, b, 0.4 in descending order.\n10, 0.4, b, -3\nLet h(o) = o**2 - 7*o + 7. Let t be h(5). Suppose 68*k = 63*k + 40. Suppose 2*s - k*s = -30. Sort s, -4, t in increasing order.\n-4, t, s\nLet f be -1*1*(-4 + 1). Let w be" -"What is the smallest value in -4, 33/944, 6, 2/11?\n-4\nWhat is the fourth smallest value in -3/7, 11, 2/11, -3/8, 1?\n1\nWhat is the third biggest value in 1, -1/683, 0, 1/7?\n0\nWhat is the fourth biggest value in -2/3, 0.2, 0, -33/38, 5?\n-2/3\nWhich is the third biggest value? (a) -3/2 (b) -248 (c) 720 (d) -3/7\na\nWhat is the third biggest value in -4/121, -1, 231, -0.2?\n-0.2\nWhich is the third biggest value? (a) 0.0147 (b) 1/4 (c) 0.8\na\nWhat is the third biggest value in -1, 118, 0, 2/25, 11?\n2/25\nWhich is the fourth smallest value? (a) -0.5 (b) -2 (c) 248 (d) 3 (e) -0.2 (f) 2/13\nf\nWhich is the second smallest value? (a) -0.37 (b) -4 (c) 3/5 (d) 0.2\na\nWhat is the third smallest value in 52/5, -1013, 2/21, -5?\n2/21\nWhich is the third smallest value? (a) -0.5 (b) -4007 (c) 29\nc\nWhich is the fifth smallest value? (a) 31 (b) -3/4 (c) 1 (d) 2 (e) 175\ne\nWhat is the biggest value in -3, 0.3, 2310?\n2310\nWhich is the third smallest value? (a) -33 (b) -0.0537 (c) 1/6" -"*c - 2. What is 7*o(r) - 4*s(r)?\n2*r + 1\nLet m(y) = -y + 1. Let v(t) = 15*t - 4. Give -5*m(o) - v(o).\n-10*o - 1\nLet g(k) = -482*k + 5. Let q(t) = 162675*t - 1687. Give 1687*g(w) + 5*q(w).\n241*w\nLet t(k) = 3*k + 2. Suppose 5*a - 9*a + s - 38 = 0, 5*a + 4*s = -37. Let c(h) = 5*h + 5. Calculate a*t(d) + 4*c(d).\n-7*d + 2\nLet t(n) = n. Let w(h) = 7*h - 6. Let d(y) = 1. Let m(f) = -4*d(f) - w(f). Let k = 7 + -47. Let p = k + 39. Determine p*m(s) - 6*t(s).\ns - 2\nLet r(s) = -18*s**3 - 4*s**2 + 7*s. Let t(l) = -9*l**3 - 2*l**2 + 3*l. Let n(x) = 11*x**2 - 37*x + 9. Let c be n(3). Give c*r(w) + 7*t(w).\n-9*w**3 - 2*w**2\nSuppose s + 7 = -0*s. Let x(n) = -n**3 + n**2 + 2*n. Let m(o) = 4*o - 6*o**2 - 16*o**3 + 14*o**3 + 8*o**2. Give s*x(i) + 3*m(i).\ni**3 - i**2 - 2*i\nLet q(s) = -3*s**2 - s + 3. Let p(t)" -"(b) q (c) s\na\nLet h = 195 + -2927/15. Let m = -15 + 0. Let p = m + 20. Which is the third smallest value? (a) 1 (b) p (c) h\nb\nLet d = 5 - 0. Let z be (d/4 - 2)/2. Let j be (3 - 7) + (1 - -2). What is the smallest value in j, z, 0.5?\nj\nLet m = 0.092 + -5.792. Let w = m + 6. What is the third biggest value in 4, w, 2/3?\nw\nLet g(d) = 5*d**2 + 1. Let v be g(2). Let n be 6/21 - 13/v. Let l = -0.06 - 2.94. Which is the smallest value? (a) l (b) n (c) 5/4\na\nLet v be (-1)/(-6) + (-3)/2 + 2. What is the third smallest value in 4, 0.2, v?\n4\nLet o(u) = -u**3 + 5*u**2 + u - 9. Let y be o(5). Let i be (-2)/(-3) - 5/6. Which is the third biggest value? (a) i (b) y (c) -2/9\nb\nLet z(j) = j**2 - 11*j + 4. Let t be z(11). Suppose -s + 2*s - 3*u = -t, s = -4*u" -"e y = -0*y - 5*i + w, -4*i = -3*y - 23. Is (187 + y)*8/16 a prime number?\nFalse\nLet i(m) = 5 - 4*m - 16*m**2 + 1 - 9*m - 1. Let o be i(-13). Let c = o + 4185. Is c a prime number?\nFalse\nLet f = 25363 + -5922. Is f composite?\nFalse\nLet y(g) = g**3 - 10*g**2 + 7*g - 4. Let h be y(11). Let u = -19 + h. Suppose 757 = 6*s + u. Is s composite?\nFalse\nSuppose 17*v = 6*v + 1320. Let x be v/1*(-84)/(-8). Suppose -2*y = -w + 145 + x, -4*y - 7019 = -5*w. Is w composite?\nTrue\nIs (-2 - (-42)/18)*1*(565674 - -15) a prime number?\nTrue\nSuppose 5*h - q + 3912 = -3*q, -4*q - 3132 = 4*h. Let p = h + 1308. Is p a prime number?\nFalse\nLet j = 529 + 477. Let y = 11079 - j. Is y prime?\nFalse\nSuppose -118*l + 105*l = -535847. Is l composite?\nTrue\nIs 26573*(-4)/(-48)*12 a prime number?\nTrue\nSuppose -2*p - 4*x - 6 = -3*p, 2*p - 3*x - 7 = 0." -" - 3*v - 35\nLet u(z) = -37*z**2 - 37*z - 12. Let t(j) = -37*j**2 - 36*j - 18. Calculate 2*t(q) - 3*u(q).\n37*q**2 + 39*q\nLet u(s) = 191844*s**3 + 511*s. Let t(v) = -2257*v**3 - 6*v. What is 511*t(n) + 6*u(n)?\n-2263*n**3\nSuppose -2*y - 217 = -4*q - 205, 2*q = 2*y + 12. Let c(a) = -3*a + 7. Let z(b) = b - 4. Calculate y*c(l) - 11*z(l).\n7*l + 2\nLet r(j) = j**3 - 4*j**2 - 8*j - 4. Let u(h) = -3*h**2 - 8*h - 3. Let w(b) = b**2 + 82*b + 85. Let f be w(-81). Calculate f*u(a) - 3*r(a).\n-3*a**3 - 8*a\nLet j(w) = -15*w**2 - 4*w + 3. Let p(h) = -h**2 + h - 1. Let o be (3*40/300)/(4/50). Determine o*p(d) + j(d).\n-20*d**2 + d - 2\nLet f(o) = 3*o - 15. Let d(w) = -6*w + 19. Let h(k) = 2*d(k) + 3*f(k). Let z(l) = 9 + 5*l + 6 - 4. Give -8*h(x) - 5*z(x).\n-x + 1\nLet h(a) = 3*a + 3. Let i(x) = 18. Determine 2*h(c) + i(c).\n6*c + 24\nLet t(c) = -168*c**2 +" -"d 22?\n22\nLet h be 247/9 + (-36)/81. Calculate the greatest common divisor of h and 6.\n3\nLet s = 28 + -17. Let x = 6 + s. Suppose 3*v + 8 = 3*a + 35, 5*v + 2*a - x = 0. Calculate the highest common factor of v and 10.\n5\nLet a(r) = 5*r - 17. Let k be a(5). Calculate the highest common factor of 1192 and k.\n8\nLet c be ((-6)/(-4) + 0)/((-1)/(-84)). Suppose 0 = 4*b - 2*h - c, 4*h = -b - 20 + 65. Calculate the greatest common factor of b and 11.\n11\nLet b be (-1)/((3/6)/(134/4)). Let s = b - -68. Calculate the highest common factor of 7 and s.\n1\nLet d = 46 + -35. Suppose 0 = 13*u - d*u - 52. What is the greatest common factor of u and 26?\n26\nSuppose 0 = 4*g - 649 - 751. Calculate the highest common factor of g and 14.\n14\nSuppose 4*h - 9830 = 2378. Suppose 4*k = -2*o + h - 682, 4*o = -5*k + 2958. What is the greatest common factor of k and 66?\n66" -"late the common denominator of 61/82 and d.\n82\nLet g(f) = 11*f + 3. Let x be g(4). Let v = x - 41. Suppose 2*y - 56 = -7*i + 2*i, 2*y + 34 = 4*i. What is the smallest common multiple of v and i?\n30\nSuppose -71*s = -47*s - 216. What is the least common multiple of 564 and s?\n1692\nSuppose 0 = 10*l - 1736 - 1964. Calculate the least common multiple of 148 and l.\n740\nSuppose -280 = -11*f - 3*f. What is the smallest common multiple of f and 2494?\n24940\nCalculate the least common multiple of 32 and 5 - (-3)/((-9)/(-39)).\n288\nSuppose -98*g + 534 - 44 = 0. Let t = 3 - 0. Calculate the least common multiple of t and g.\n15\nSuppose 29 = 5*w - 6. Calculate the smallest common multiple of 80 and w.\n560\nLet c = 4249639/8 - 531925. Let h = 714 + c. Find the common denominator of (-6)/27*(-50)/(-4) and h.\n72\nLet u(z) = 11*z - 2. Let t be u(6). What is the common denominator of -59/3 and 4 + (t/(-7) - 1)?\n21\nSuppose 4*i" -" after 5:21 PM?\n11:52 PM\nWhat is 439 minutes before 11:37 AM?\n4:18 AM\nWhat is 663 minutes before 1:37 AM?\n2:34 PM\nHow many minutes are there between 2:30 PM and 4:49 PM?\n139\nHow many minutes are there between 10:52 AM and 9:39 PM?\n647\nWhat is 588 minutes before 7:03 PM?\n9:15 AM\nWhat is 624 minutes before 7:15 PM?\n8:51 AM\nWhat is 400 minutes before 7:31 PM?\n12:51 PM\nWhat is 404 minutes after 1:49 PM?\n8:33 PM\nWhat is 38 minutes after 8:03 AM?\n8:41 AM\nWhat is 355 minutes after 9:01 AM?\n2:56 PM\nHow many minutes are there between 2:10 AM and 1:58 PM?\n708\nHow many minutes are there between 1:06 PM and 12:27 AM?\n681\nWhat is 117 minutes after 8:58 PM?\n10:55 PM\nWhat is 661 minutes before 9:27 AM?\n10:26 PM\nWhat is 102 minutes before 6:14 AM?\n4:32 AM\nHow many minutes are there between 6:03 PM and 7:40 PM?\n97\nHow many minutes are there between 8:45 AM and 3:24 PM?\n399\nWhat is 689 minutes before 5:00 AM?\n5:31 PM\nWhat is 430 minutes before 7:01 AM?\n11:51 PM\nHow many minutes are there between" -"+ 2 - -1)/((-5)/(-10)). Solve -5*w + 0*c = -2*c - g, -9 = -2*w + c for w.\n2\nSuppose -2*j + 62 = 4*d - 4*j, -5*d + 64 = 2*j. Let i be (-3 - -1) + (-4 - -8) + -2. Solve -2*v + 2*p - p = i, -5*v - d = p for v.\n-2\nLet r(i) = 3*i**2 + 1. Let u be r(-1). Let f be (12/9)/(u/6). Solve 24 = -f*q + 5*c, q - 3*c = -5*c + 6 for q.\n-2\nLet y = -6 + 10. Suppose 2*q + y = 8. Solve -j - 2 + 1 = -4*m, q*j + 2 = 3*m for m.\n0\nLet g be 2*9/6 + -1. Suppose 0 = -m - g*m. Suppose m = a - 8 - 1. Solve -4*q - 19 = d, a = -0*d - d - 2*q for d.\n1\nSuppose 2*a = -2*a + 124. Let r = 55 + -39. Suppose -3*g + r = j, -2*j + 17 = 3*g - 0*g. Solve -g*x - 26 = -x - 2*k, 3*k = 4*x + a for x.\n-4\nLet y(o) = -o**3" -"AM?\n1:18 AM\nWhat is 317 minutes after 10:27 AM?\n3:44 PM\nWhat is 264 minutes after 1:24 PM?\n5:48 PM\nWhat is 176 minutes after 12:51 AM?\n3:47 AM\nWhat is 185 minutes after 4:16 AM?\n7:21 AM\nWhat is 418 minutes before 8:26 AM?\n1:28 AM\nHow many minutes are there between 9:39 PM and 6:13 AM?\n514\nWhat is 719 minutes after 1:44 PM?\n1:43 AM\nWhat is 444 minutes after 8:10 AM?\n3:34 PM\nWhat is 41 minutes after 5:11 AM?\n5:52 AM\nHow many minutes are there between 4:11 AM and 6:18 AM?\n127\nWhat is 678 minutes before 10:31 PM?\n11:13 AM\nHow many minutes are there between 9:19 PM and 2:51 AM?\n332\nHow many minutes are there between 3:20 AM and 5:49 AM?\n149\nHow many minutes are there between 9:10 AM and 4:48 PM?\n458\nHow many minutes are there between 3:58 AM and 11:46 AM?\n468\nWhat is 643 minutes before 6:47 AM?\n8:04 PM\nHow many minutes are there between 11:41 PM and 11:18 AM?\n697\nHow many minutes are there between 8:50 AM and 1:02 PM?\n252\nHow many minutes are there between 8:14 AM and 9:52 AM?" -"Do -110/31 and 6/5 have the same value?\nFalse\nIs -13/1083 > -1?\nTrue\nIs -163 at least -120?\nFalse\nIs -51 less than or equal to -12634?\nFalse\nWhich is greater: -508899/2 or -254450?\n-508899/2\nIs -55039 equal to -55027?\nFalse\nWhich is greater: -142 or -0.03027?\n-0.03027\nWhich is greater: 172401/8 or 21551?\n21551\nWhich is greater: 0.26 or -957?\n0.26\nDo 2/35 and -144/29 have the same value?\nFalse\nWhich is smaller: -17/739 or 0?\n-17/739\nAre -19880/51 and -390 unequal?\nTrue\nIs -504/1577 at most as big as -1?\nFalse\nIs 3/44 >= -991?\nTrue\nIs -284026 smaller than -2556224/9?\nTrue\nWhich is smaller: -25/5784 or -1?\n-1\nWhich is smaller: -0.33 or -0.289?\n-0.33\nWhich is greater: 2/7 or 314331?\n314331\nWhich is smaller: 1637 or 880?\n880\nWhich is smaller: 0.034765 or 2?\n0.034765\nIs 113 greater than or equal to 3331?\nFalse\nIs 2/7 equal to -0.346257?\nFalse\nIs -338 at most as big as 50?\nTrue\nIs 2 <= 169537?\nTrue\nWhich is smaller: -13/26331 or 0?\n-13/26331\nWhich is smaller: -3484 or -73181/21?\n-73181/21\nIs 68 <= 4?\nFalse\nWhich is smaller: 0.1 or -111598?\n-111598\nWhich is greater: 464 or" -"+ 4.377. What is the fourth smallest value in l, 4, -0.1, -4?\n4\nLet d be 1239 + 13 + 5 + -11. Which is the second smallest value? (a) 0 (b) d (c) -3/8\na\nLet z = 65 + -28. Let p = z + -103. Let k = 66 + p. Which is the fourth smallest value? (a) -5/2 (b) -0.4 (c) k (d) 5\nd\nLet u = -4373.6 + 4374. Which is the third biggest value? (a) u (b) 0 (c) 4 (d) 0.3 (e) 34/9\na\nLet m = 38 - 90. Let l be 3/(-105) - 28/49. Which is the third smallest value? (a) m (b) l (c) 2/9\nc\nLet f = -9268/44421 - -4/1139. Let d = f - -20/13. Let l = 11 + -21/2. What is the second smallest value in l, 1, d?\n1\nSuppose 61*i - 145*i = -420. What is the fourth smallest value in 1/2, i, -8, -0.03?\ni\nLet n = 20718 - 20717. What is the biggest value in 0.9, 0.07, 0, n?\nn\nSuppose -23*r + 0*r = 4*r. Suppose 5*m - 17 = -l, -5*m + 20 = -r*m. Which" -"at is the common denominator of (0 - 130/(-28))*(-49)/(-42) and -53/15?\n60\nLet s(n) = n + 23. Suppose 7*k - 15*k = 96. Calculate the lowest common multiple of 23 and s(k).\n253\nLet a = 190 - 592/3. Suppose 2*k = -3*k - 24535. Let o = k - -63833/13. Calculate the common denominator of o and a.\n39\nLet q be 4 - 3/(3/(-22)). What is the common denominator of 29 and (-18)/(-117) - (-1179)/q?\n2\nLet b be 64*((-6)/3)/8*2. Let d = 36 + b. Calculate the least common multiple of 3 and d.\n12\nLet g = -2/9969 - 368837/79752. What is the common denominator of 31/48 and g?\n48\nLet n = -30/293117 + 42766063777/3517404. Let u = -12150 + n. Calculate the common denominator of 75/26 and u.\n156\nLet z = 59189/2802 + 20/467. Calculate the common denominator of -98/255 and z.\n510\nLet i be 591/5 - (-6)/(-30). Let n = 69 - i. Calculate the common denominator of -7 + 4 + n/10 and 73/16.\n80\nSuppose 3*m + 5353 = 4*y, 2*m - 56 = 3*y - 3624. Let b = m - -1253. Find the common denominator of" -", 3*k + 8 = 4*d. Suppose -d*r + 4*r = -4. Which is greater: -3 or r?\nr\nSuppose 3*v = -12, -5*v - 9 = -3*t + 5. Let c be (-2)/8 + (-6)/8. Let d = c - t. Which is smaller: d or 1/6?\n1/6\nLet x = -49 + 30. Let s = x - -10. Is s >= -7?\nFalse\nLet v(x) = 4*x**2 - 3*x - 8. Let c be v(-2). Which is bigger: c or 15?\n15\nLet c(n) = 0*n - n**2 + 6*n + 2*n**2 - 2. Let t be c(-6). Let s = 19 + -61/3. Is t smaller than s?\nTrue\nSuppose 0 = -4*y + 3*o + 58, -3*y + 15 = 3*o - 18. Which is greater: -2 or y?\ny\nSuppose -6*i + 48 = -2*i. Are 11 and i equal?\nFalse\nLet p be -3 - ((-2 - 1) + 3). Let u be 1*2/(5 + p). Suppose t + u = -3*n - 4*t, -2*n + 12 = -3*t. Which is smaller: n or 2?\n2\nLet o be 6 + (-44)/8 + 34/(-4). Is -7 <= o?\nFalse\nLet n(l) = -3*l" -"?\n-18*w + 9300\nWhat is the s'th term of 133, 518, 1195, 2164, 3425, 4978?\n146*s**2 - 53*s + 40\nWhat is the c'th term of 652, 671, 706, 757, 824, 907?\n8*c**2 - 5*c + 649\nWhat is the c'th term of -78091, -156214, -234337, -312460, -390583, -468706?\n-78123*c + 32\nWhat is the k'th term of 31, 86, 167, 280, 431, 626, 871?\nk**3 + 7*k**2 + 27*k - 4\nWhat is the k'th term of 681, 699, 729, 771, 825, 891?\n6*k**2 + 675\nWhat is the a'th term of 637, 4955, 16633, 39349, 76781, 132607, 210505, 314153?\n613*a**3 + 2*a**2 + 21*a + 1\nWhat is the y'th term of 10, -155, -428, -809, -1298?\n-54*y**2 - 3*y + 67\nWhat is the y'th term of 378310, 378315, 378320?\n5*y + 378305\nWhat is the v'th term of 435, 766, 1031, 1224, 1339?\n-v**3 - 27*v**2 + 419*v + 44\nWhat is the x'th term of -1108, -1117, -1128, -1147, -1180, -1233, -1312, -1423?\n-x**3 + 5*x**2 - 17*x - 1095\nWhat is the u'th term of -3765, -3756, -3747?\n9*u - 3774\nWhat is the f'th term of 11599, 11517, 11289, 10843, 10107, 9009?" -" 390.\n-1/130\nDivide -5 by 400.\n-1/80\nCalculate 234 divided by 117.\n2\nDivide 1668 by 4.\n417\nCalculate 1 divided by -8198.\n-1/8198\nWhat is -1079 divided by 3?\n-1079/3\nDivide -893 by 19.\n-47\n89 divided by -6\n-89/6\nCalculate 32718 divided by -3.\n-10906\nDivide -142 by -6.\n71/3\n-4636 divided by -4\n1159\nDivide 690 by 345.\n2\nCalculate -1148 divided by 11.\n-1148/11\n-49120 divided by 4\n-12280\n-13 divided by -48\n13/48\nDivide 0 by 4205.\n0\nCalculate -318 divided by 2.\n-159\nCalculate -24 divided by -53.\n24/53\nWhat is 20 divided by 587?\n20/587\nCalculate -82 divided by 50.\n-41/25\nCalculate -5412 divided by 132.\n-41\nWhat is -5 divided by -359?\n5/359\nWhat is 0 divided by -9230?\n0\nCalculate 14 divided by -2.\n-7\n115 divided by -1\n-115\n-13 divided by 6\n-13/6\nCalculate 181 divided by -1.\n-181\n-56 divided by 5\n-56/5\nWhat is 45265 divided by 11?\n4115\nWhat is 237 divided by 50?\n237/50\nDivide 359 by 2.\n359/2\nDivide -25 by 10.\n-5/2\nWhat is -58 divided by 9?\n-58/9\n-66 divided by 6\n-11\nCalculate -11006 divided by 1.\n-11006\nCalculate -1132 divided" -" three dps.\n0.003\nLet t = 47 - 46.565. Let j = 58 - 58.025. Let v = j - t. What is v rounded to 1 decimal place?\n-0.5\nLet u = 46.3 - 46.299999659. What is u rounded to 7 decimal places?\n0.0000003\nLet v = 3.01 - 6.9. Let i = 4 + v. Let s = i + -0.038. What is s rounded to 2 dps?\n0.07\nLet d = -3.1999496 + 3.2. Round d to 5 decimal places.\n0.00005\nLet a = 21 - 16. Let b be (-12399)/(-2) + a/10. Round b to the nearest one thousand.\n6000\nLet b be 3/(-4) + 231350/200. What is b rounded to the nearest 10?\n1160\nLet q = -992127 + 6578127. Round q to the nearest one million.\n6000000\nLet v(w) = -w**3 + 23*w**2 - 25*w + 3. Let n be v(18). Suppose 5*q - n = -o, 1161 = 5*q - 5*o + 2*o. What is q rounded to the nearest ten?\n230\nLet x = -112.9975 - -93.023. Let c = -0.9 + -19.1. Let o = c - x. What is o rounded to three dps?\n-0.026\nLet f = -0.0080905 -" -" y, 1 in descending order.\n5, n, 1, y\nLet s = -28 + 57. Let p = -31 + s. Put -17, 0.1, p, 2 in decreasing order.\n2, 0.1, p, -17\nLet x be 6/36 + 17/(-306). Let h = 4.08 - 0.08. Sort -0.2, -3/5, h, x.\n-3/5, -0.2, x, h\nSuppose 36 - 48 = 4*j. Put 1, -4, j in decreasing order.\n1, j, -4\nSuppose -1118 + 3086 = 48*p. Sort 5, 3, -3, p.\n-3, 3, 5, p\nLet u = -493 - -488. Let l = 6/7 - 5/7. Sort l, 0.1, u, 0.5 in descending order.\n0.5, l, 0.1, u\nSuppose -4*o + 17 - 1 = 0. Suppose -8 = 2*x, -3*b = -8*b + o*x + 1. Sort 3/5, -3/2, b in decreasing order.\n3/5, -3/2, b\nSuppose -3*a = 3*b - 60, -2*a + 2 = -4*a. Put 0.5, b, -0.2, 0.4 in ascending order.\n-0.2, 0.4, 0.5, b\nLet c be 3 - ((-1027)/143 - 4/(-22)). Suppose 40 = -0*f - 4*f. Let d be 24/f - 6/(-15). Put c, d, 4 in decreasing order.\nc, 4, d\nLet u be 12/2*(-3)/6. Let k = 70 +" -"- 3*q. Let a be u(-7). Suppose 5*h - i - 213 = -4*i, -a*i = 5*h - 209. What is the remainder when h is divided by 16?\n13\nLet f(r) = r**3 + 3*r - 3. Let z be f(6). What is the remainder when z/15 - (-2)/(-5) is divided by 9?\n6\nSuppose 0 = 10*k + 6*k - 1760. Suppose 0 = 3*r + 4*w - k, 7 = 3*r - 4*w - 87. Calculate the remainder when r is divided by 6.\n4\nSuppose -42 = 9*j - 105. What is the remainder when j is divided by 6?\n1\nCalculate the remainder when 295 is divided by ((-444)/(-518))/(3/35).\n5\nLet w(o) = o + 73. Let p = 60 - 60. Calculate the remainder when w(p) is divided by 13.\n8\nLet l(p) = -6*p - 29. Calculate the remainder when 249 is divided by l(-9).\n24\nWhat is the remainder when (5 - 2) + 14 + 6/(-3) is divided by 8?\n7\nLet c(f) be the third derivative of 23*f**4/24 - f**3/2 - 2*f**2. Suppose 37*j = 35*j + 34. Calculate the remainder when c(3) is divided by j.\n15\nSuppose 6*t" -"pose 5*x = 4*y - 20, -5*y + 0*x + 25 = 4*x. Is y not equal to p?\nTrue\nLet t(b) = 571*b - 3426. Let n be t(6). Which is smaller: -2/47657 or n?\n-2/47657\nLet y = 17 + 20. Suppose -8*n = 29*n + y. Which is smaller: -7/25 or n?\nn\nLet m(b) be the second derivative of 4*b**3/3 + 43*b**2 + 59*b. Let i be m(-10). Which is greater: -5 or i?\ni\nSuppose r + 2*r + 4*l - 144 = 0, -l - 41 = -r. Let i be (-6)/(((-11)/r)/(3/8)). Suppose i*g = 7*g - 96. Is -49 > g?\nFalse\nSuppose 4*i - 22 = -3*m, -i + 24 = 3*i + 2*m. Let h(q) be the second derivative of q**3/6 + 21*q**2/2 - 5*q. Let y be h(i). Is 28 less than or equal to y?\nTrue\nLet k be (50/(-775))/((-1)/3*-2). Let n = -145787/8 + 4521219/248. Let v = k + n. Which is smaller: 8 or v?\nv\nLet u = -36 + 20. Let o = -149 + -26. Let s = 175.1 + o. Is s greater than u?\nTrue\nLet k = 3502 - 3581." -"3*t - 488 + 46 = 11*y for t.\n-9\nSolve -108*g + 120*g = -2*v - 234, -46 = 2*g + 6*v - 5*v - 3*v for g.\n-20\nSolve 1862*p - 90 = 1864*p - 2*x, 7*x + 261 = 4*p - 9*p for p.\n-48\nSolve 0 = -17*d + 3*d - 3*h + 160, 0*h = -7*d + 2*h - 6*h + 225 for d.\n-1\nSolve 2*b + 168 = 2*i - 4*b, 75*i - 14*b - 392 = 70*i for i.\n0\nSolve -8128*o - 6 = 5*q - 8130*o - 20, -5*q - 5*o + 35 = 0 for q.\n4\nSolve 10045*z - 10044*z + 14 = d, -2*d - 3*z + 43 = 0 for d.\n17\nSolve -60 = -4*x - 24*g + 27*g, 140*x + 0*g = g + 1684 for x.\n12\nSolve -3*p - r - 87 = -4*r, -31*p = 27*p - r + 1568 for p.\n-27\nSolve -5*u - 10464 = -10*q - 10959, 2*q + 95 = -3*u for u.\n1\nSolve -3*h + 4*j - 63 = 0, -309*h - 7*j = -307*h - 103 for h.\n-1\nSolve -k = -6*j" -" hogggghkghhgggg. What is prob of picking 1 k and 1 g?\n3/35\nCalculate prob of picking 3 d when three letters picked without replacement from {x: 1, d: 3}.\n1/4\nTwo letters picked without replacement from bcmsbmkkmymsckk. What is prob of picking 1 b and 1 c?\n4/105\nWhat is prob of picking 1 j and 1 i when two letters picked without replacement from {i: 7, j: 3, s: 4}?\n3/13\nWhat is prob of picking 2 y, 1 r, and 1 w when four letters picked without replacement from wrryrrrgyrwryrgwrrrr?\n36/1615\nFour letters picked without replacement from qqqjokjooqqooaaooo. Give prob of picking 1 k, 2 q, and 1 a.\n1/153\nCalculate prob of picking 2 o when two letters picked without replacement from {a: 1, i: 2, p: 1, h: 9, o: 6, z: 1}.\n3/38\nFour letters picked without replacement from {d: 1, u: 8, f: 2, s: 7}. Give prob of picking 3 s and 1 f.\n7/306\nTwo letters picked without replacement from {x: 1, h: 1, y: 2}. Give prob of picking 1 y and 1 x.\n1/3\nThree letters picked without replacement from {d: 10, w: 6, a: 4}. What is prob of" -"many nanoseconds are there in 1/10 of a millisecond?\n100000\nWhat is 0.9586552 micrometers in millimeters?\n0.0009586552\nWhat is one quarter of a kilogram in grams?\n250\nWhat is 9/16 of a day in seconds?\n48600\nWhat is 0.480764 centuries in months?\n576.9168\nHow many milliseconds are there in 630999.4 minutes?\n37859964000\nWhat is 7/25 of a millennium in years?\n280\nConvert 1842.74 micrograms to grams.\n0.00184274\nWhat is five quarters of a tonne in kilograms?\n1250\nHow many millilitres are there in eleven eighths of a litre?\n1375\nWhat is 15.9655671 nanoseconds in days?\n0.00000000000018478665625\nWhat is 3/5 of a millennium in years?\n600\nConvert 75499.6m to kilometers.\n75.4996\nHow many grams are there in 4.632332kg?\n4632.332\nHow many minutes are there in 2/9 of a day?\n320\nWhat is 191.4772 millilitres in litres?\n0.1914772\nWhat is 3.305299 weeks in microseconds?\n1999044835200\nWhat is 976.1195 millennia in centuries?\n9761.195\nConvert 0.9526384 minutes to seconds.\n57.158304\nWhat is 10/3 of a year in months?\n40\nWhat is 0.0280551mg in micrograms?\n28.0551\nConvert 81555.37l to millilitres.\n81555370\nWhat is fourty-seven quarters of a tonne in kilograms?\n11750\nHow many nanoseconds are there in twenty-nine fifths of a microsecond?\n5800\nHow many" -"**2)*(3 + 2 - 4) + (-2*d**2 + d**2 + 8*d**2)*(-3 + 0 + 11) as p*d + h + c*d**2 and give c.\n37\nRearrange (-4 + u - 2 + 3)*(0 - 4 + 2)*(10 - 10 + 4902863*u - 4930859*u) to the form y*u + v*u**2 + a and give v.\n55992\nRearrange -698 - 20*b**2 - 7*b**2 + 26*b**2 + 120 - 6*b**3 to the form g*b + u*b**2 + s*b**3 + n and give g.\n0\nExpress -946*w - 37 + 62 - 25 - 701*w + (0*w + 7*w - 4*w)*(0 + 1 - 2) as d*w + b and give b.\n0\nRearrange (9*w**4 + 11*w**4 + 9*w**4)*(17 + 21 - 15) + 56*w**3 + w**4 - 56*w**3 + 1 to the form t + a*w**2 + j*w**3 + x*w + i*w**4 and give i.\n668\nRearrange 7 - 402*v**4 + 2475*v**4 + 2*v**3 - 722*v**4 - 3*v**3 - 845*v**4 to j*v**4 + p + x*v**3 + u*v**2 + m*v and give p.\n7\nExpress 92 - 21*j - 21*j - 18*j - 7*j**3 + 3*j**2 - 17*j + 78*j in the form b + z*j + l*j**3 + h*j**2 and give z." -"rue\nIs 1026966823 prime?\nTrue\nIs 6615821 composite?\nTrue\nIs 44534639 a prime number?\nTrue\nIs 2316736211 a composite number?\nFalse\nIs 267168169 a composite number?\nTrue\nIs 877860233 a prime number?\nFalse\nIs 16509452353 a prime number?\nFalse\nIs 690411763 a composite number?\nFalse\nIs 40628991629 a composite number?\nFalse\nIs 140510923 a composite number?\nTrue\nIs 6890793373 composite?\nFalse\nIs 3566798819 a composite number?\nTrue\nIs 4977065627 a prime number?\nTrue\nIs 2859679811 a prime number?\nTrue\nIs 2317986257 composite?\nTrue\nIs 603144029365 a composite number?\nTrue\nIs 156925871 a composite number?\nFalse\nIs 13795789727 prime?\nFalse\nIs 137299321 composite?\nTrue\nIs 730336927 prime?\nTrue\nIs 3591847859 composite?\nFalse\nIs 14667732479 a composite number?\nFalse\nIs 4599525169 a prime number?\nFalse\nIs 1905879961 prime?\nFalse\nIs 5407711241 a composite number?\nFalse\nIs 638130665 a composite number?\nTrue\nIs 759231653 a composite number?\nFalse\nIs 3414658561 a prime number?\nTrue\nIs 787994123 prime?\nFalse\nIs 1594080457 composite?\nFalse\nIs 1422473009 prime?\nFalse\nIs 2702570257 composite?\nTrue\nIs 296866561001 a composite number?\nFalse\nIs 82699751 a prime number?\nTrue\nIs 52395966697 prime?\nTrue\nIs 1291500097 composite?\nFalse\nIs 23019417821 composite?\nFalse\nIs 6292109087 composite?\nTrue\nIs 1523827307 a composite number?" -"ulate s.\n-1, 0\nLet a(l) be the second derivative of 0*l**3 - 1/63*l**7 - 2/5*l**5 + 4/9*l**4 - 7*l + 0*l**2 + 2/15*l**6 + 3. Factor a(k).\n-2*k**2*(k - 2)**3/3\nLet w(i) = -11*i**2 - 12*i + 6. Let l = -370 + 357. Let r(t) = -23*t**2 - 26*t + 13. Let c(p) = l*w(p) + 6*r(p). What is f in c(f) = 0?\n0\nLet h(c) be the second derivative of -c**4/60 + 4*c**3/15 - 6*c**2/5 + 401*c - 2. Factor h(w).\n-(w - 6)*(w - 2)/5\nLet k(i) = i**2 + 36*i + 97. Let x be k(-33). Let h be x/2 - -2*48/32. Solve -1/2*n**h - 9/2 + 3*n = 0.\n3\nLet t(b) be the third derivative of 1/60*b**6 - b + 0 + 54*b**2 + 7/60*b**5 - 1/2*b**3 + 1/12*b**4. Factor t(j).\n(j + 1)*(j + 3)*(2*j - 1)\nLet y be -5 - (4/(-8)*14 + -2) - 4. Let k(m) be the second derivative of -1/108*m**4 + 0*m**2 + 1/27*m**3 - 17*m + y. Determine l, given that k(l) = 0.\n0, 2\nSuppose -754 = 2*l - 760. Let 5 + 55 - 33*q - q**2 + q**2 + 30*q -" -" from {t: 1, n: 2, o: 1, w: 1, a: 2}. What is prob of sequence atw?\n1/105\nCalculate prob of sequence ncf when three letters picked without replacement from cccltftvnft.\n1/165\nCalculate prob of sequence acac when four letters picked without replacement from {a: 3, c: 8}.\n7/165\nCalculate prob of sequence ubmb when four letters picked without replacement from {m: 5, z: 5, b: 5, u: 2}.\n5/1428\nThree letters picked without replacement from {r: 2, l: 1, b: 2, w: 4}. Give prob of sequence rwb.\n2/63\nFour letters picked without replacement from rrrkrrrrkrr. Give prob of sequence rrkr.\n7/55\nCalculate prob of sequence nnnn when four letters picked without replacement from {a: 2, n: 4}.\n1/15\nTwo letters picked without replacement from uuuuhuuhuuhssuhu. Give prob of sequence uh.\n1/6\nFour letters picked without replacement from {d: 6, p: 2, r: 9}. Give prob of sequence rddd.\n9/476\nWhat is prob of sequence ttt when three letters picked without replacement from tfttttfttttttttttt?\n35/51\nFour letters picked without replacement from {a: 1, k: 2, q: 1, o: 2, w: 1, v: 1}. What is prob of sequence avwq?\n1/1680\nWhat is prob of sequence cnnc when four letters" -" - 23 = -3*q. Is q a multiple of 5?\nFalse\nSuppose 0 = 3*c - c - 116. Is 9 a factor of c?\nFalse\nLet l(b) = 44*b - 44. Is 54 a factor of l(6)?\nFalse\nLet n(k) be the first derivative of -k**3/3 + 2*k**2 + 3*k + 1. Let x(l) = -l + 7. Let p be x(3). Is n(p) even?\nFalse\nLet t(b) be the first derivative of -3*b**2/2 - 2*b + 4. Does 4 divide t(-2)?\nTrue\nLet q(c) = 53*c**2 - 7*c - 5. Does 13 divide q(-2)?\nTrue\nIs 146 + -3 + 6 + -6 a multiple of 11?\nTrue\nSuppose -5*v = 4*y + 401, -31 + 334 = -3*y - 3*v. Let h = -49 - y. Let f = h + -37. Does 15 divide f?\nFalse\nLet s = -4 + 28. Let d(x) = x**2 + 7*x - 2. Let f be d(-6). Let o = s - f. Is 10 a factor of o?\nFalse\nLet f(r) = 2*r**3 + 15*r**2 + 22*r + 1. Is 4 a factor of f(-5)?\nTrue\nSuppose 0 = 3*p - 32 - 112. Is 12 a factor" -"at is the fifth smallest value in 19, -54.66, 36, -3, 2, 0.1, -2/17?\n2\nWhat is the third smallest value in -17, -2/5, 3, -2/469187?\n-2/469187\nWhich is the fourth smallest value? (a) -166 (b) 1/33 (c) -25 (d) -15\nb\nWhat is the third biggest value in 58/7, -9/17, 0.3, 136, -0.3?\n0.3\nWhich is the fourth biggest value? (a) -24 (b) -3 (c) -1/2 (d) -1.1 (e) -2 (f) -94 (g) -1\ne\nWhich is the second biggest value? (a) 0.2 (b) 0 (c) -0.5 (d) -30 (e) 9 (f) -35/6 (g) -4\na\nWhat is the sixth smallest value in 391, 2, 0.3, -305, -5, 0.1, -3/7?\n2\nWhich is the third smallest value? (a) -26/9 (b) -0.0808896 (c) 0.5\nc\nWhich is the fifth biggest value? (a) 2 (b) -5616/1219 (c) 4 (d) -2/9 (e) 3\nb\nWhat is the third biggest value in -0.250631, 266/3, 4?\n-0.250631\nWhich is the fifth smallest value? (a) -5296 (b) 25 (c) 0.4 (d) -4 (e) 1/3\nb\nWhat is the third smallest value in -0.01, -2, 31.6, -16, -5?\n-2\nWhat is the smallest value in 3/4, -1, -4/10550805?\n-1\nWhich is the fifth smallest value? (a)" -": 1}. What is prob of picking 1 v, 1 y, 1 n, and 1 p?\n1/35\nTwo letters picked without replacement from {s: 4, a: 3}. What is prob of picking 2 s?\n2/7\nThree letters picked without replacement from ovvooohhvooovvvovoh. What is prob of picking 1 o, 1 v, and 1 h?\n63/323\nWhat is prob of picking 1 k and 2 r when three letters picked without replacement from {g: 1, h: 2, r: 3, k: 1}?\n3/35\nTwo letters picked without replacement from {q: 2, z: 4}. What is prob of picking 2 z?\n2/5\nThree letters picked without replacement from {i: 1, y: 17}. Give prob of picking 2 y and 1 i.\n1/6\nWhat is prob of picking 2 b when two letters picked without replacement from brzb?\n1/6\nTwo letters picked without replacement from {e: 12, n: 4, k: 4}. What is prob of picking 1 k and 1 e?\n24/95\nWhat is prob of picking 1 p and 1 e when two letters picked without replacement from mememepepep?\n3/11\nTwo letters picked without replacement from {e: 6, r: 4, g: 3}. Give prob of picking 2 r.\n1/13\nWhat is prob of" -".\n-3\nSuppose 7*s = 4*s + 9. Solve s*i = -2*i - 25 for i.\n-5\nLet i be (-1*18)/(-3) - -2. Let q = -5 + i. Solve -q*h + h = 0 for h.\n0\nLet c be 15*1 + -2 + 0. Suppose -c = -j - 4*y, -4*y + 9*y - 17 = -2*j. Let t(m) = m**3 - 4*m**2 + 5*m - 3. Let s be t(3). Solve -j = 4*o + s for o.\n-1\nLet w(j) = -j**2 + 5. Let u be w(0). Suppose -2*m - 18 = -u*m - 2*q, 3*m + 3*q = 18. Solve -m*l = -l for l.\n0\nLet t(z) = 4*z + 1. Let s be t(1). Let u be 2*((-4)/(-10))/(16/20). Solve u = c + s for c.\n-4\nLet a = 142 + -136. Solve -a*n + n = -10 for n.\n2\nSuppose 90 = 36*p - 30*p. Solve 0*t - 3*t = p for t.\n-5\nSuppose -5*m = -p - 28 + 10, 4*p = 2*m. Solve 4 + p = 2*w for w.\n3\nLet j(h) = h + 4. Let f be j(-2). Let a be (0 -" -" 2. Let r(u) = -2*u**3 - 4*u**2 - 2*u - 2. Determine 3*r(n) - 4*z(n).\n-2*n**3 - 2*n + 2\nLet s(y) = 8*y**3 + 8*y**2 + 9*y - 21. Let m(n) = 2*n**3 + 2*n**2 + 2*n - 5. Calculate -9*m(o) + 2*s(o).\n-2*o**3 - 2*o**2 + 3\nLet y(u) = 21*u. Let r(x) = -4*x. Suppose -3*v - 21 = 12. Let a be -4*(-2)/(-20)*5. Give a*y(o) + v*r(o).\n2*o\nSuppose -23 = 5*o - 3. Let s = -2 - o. Let z(p) = p**2 + 3*p. Let x(a) = -a - 6. Let b be x(-5). Let w(i) = i. Give b*z(m) + s*w(m).\n-m**2 - m\nLet r(i) be the second derivative of i**4/3 - 5*i**3/6 + 17*i**2/2 + 33*i. Let g(z) = z**2 - z + 4. Give -9*g(t) + 2*r(t).\n-t**2 - t - 2\nLet h(x) = x - 1. Let j(m) = 11*m - 2. Let f(c) = 32*c - 7. Let t(a) = 4*f(a) - 11*j(a). Determine -4*h(y) + t(y).\n3*y - 2\nLet d(b) = -b + 1. Let o(p) = -5*p**3 - 6*p + 4. What is 6*d(u) - o(u)?\n5*u**3 + 2\nLet r(q) = q**3 +" -"s the r'th term of 731, 1425, 2123, 2825, 3531?\n2*r**2 + 688*r + 41\nWhat is the i'th term of -2092, -4199, -6306, -8413, -10520?\n-2107*i + 15\nWhat is the w'th term of 9549, 19122, 28707, 38310, 47937, 57594?\nw**3 + 9566*w - 18\nWhat is the y'th term of -54, -116, -192, -282?\n-7*y**2 - 41*y - 6\nWhat is the u'th term of 363, 1409, 3147, 5577, 8699, 12513?\n346*u**2 + 8*u + 9\nWhat is the o'th term of 149845, 299688, 449531, 599374?\n149843*o + 2\nWhat is the i'th term of 19512, 39027, 58542, 78057?\n19515*i - 3\nWhat is the g'th term of -4998722, -4998723, -4998724, -4998725, -4998726?\n-g - 4998721\nWhat is the x'th term of -150505, -150504, -150503, -150502?\nx - 150506\nWhat is the g'th term of -1836, -3441, -5046, -6651, -8256?\n-1605*g - 231\nWhat is the b'th term of 21138, 21180, 21222, 21264, 21306?\n42*b + 21096\nWhat is the x'th term of -1625, -3366, -5163, -7022, -8949, -10950, -13031?\n-x**3 - 22*x**2 - 1668*x + 66\nWhat is the c'th term of 456558, 1826239, 4109042, 7304967?\n456561*c**2 - 2*c - 1\nWhat is the n'th term of" -"M?\n371\nWhat is 453 minutes after 6:45 AM?\n2:18 PM\nWhat is 11 minutes before 8:57 PM?\n8:46 PM\nHow many minutes are there between 4:51 PM and 7:12 PM?\n141\nHow many minutes are there between 1:21 AM and 11:06 AM?\n585\nHow many minutes are there between 8:49 AM and 3:03 PM?\n374\nHow many minutes are there between 2:45 PM and 6:09 PM?\n204\nHow many minutes are there between 11:18 AM and 9:46 PM?\n628\nWhat is 568 minutes after 9:45 AM?\n7:13 PM\nWhat is 505 minutes before 5:37 PM?\n9:12 AM\nWhat is 708 minutes after 12:21 PM?\n12:09 AM\nWhat is 4 minutes after 2:48 AM?\n2:52 AM\nHow many minutes are there between 1:16 PM and 10:19 PM?\n543\nHow many minutes are there between 7:25 PM and 9:20 PM?\n115\nWhat is 117 minutes before 5:20 AM?\n3:23 AM\nHow many minutes are there between 5:42 PM and 8:10 PM?\n148\nWhat is 394 minutes after 5:11 PM?\n11:45 PM\nWhat is 428 minutes after 6:40 PM?\n1:48 AM\nWhat is 539 minutes after 11:35 PM?\n8:34 AM\nHow many minutes are there between 7:26 AM and 5:21 PM?\n595" -"nd g.\n4\nSuppose 10*t = 7*t + 72. Calculate the highest common factor of 264 and t.\n24\nLet v(f) = -2*f**3 - f**2 + 3*f + 3. Let b be v(-2). Let h = b + 7. Calculate the highest common divisor of 40 and h.\n8\nLet i(z) = z**3 + 11*z**2 - 12*z + 9. Let s be i(-12). Calculate the highest common divisor of 99 and s.\n9\nLet j(b) = b + 7. Let r be j(-6). Let z(l) = l**2 - 3*l - 1. Let y be z(5). Suppose -4*q = -y + 5. Calculate the highest common factor of r and q.\n1\nSuppose 2*n - 4*n + 3*i + 24 = 0, 0 = 5*n + 4*i - 14. Suppose z - 2*z - 52 = 0. Let g be z/(-6) + 1/3. What is the greatest common divisor of g and n?\n3\nLet w(g) = 11*g - 3. Let b be w(2). Let q = 29 - b. What is the highest common divisor of q and 4?\n2\nLet z = -12 - -12. Suppose z*b = b - 14. Suppose 0 = -d + 3*d - 140." -"ommon multiple of (-1 - -2)/(m/12) and 9?\n36\nLet z = -13 - -25. What is the least common multiple of 2 and z?\n12\nLet r = 5597/4 + -1390. Calculate the common denominator of -23/40 and r.\n40\nLet m = -113/66 + 52/33. Let h = 56/11 - 1671/110. What is the common denominator of m and h?\n110\nLet n = -116369/38168 + -402/367. Let h = n + 36/13. What is the common denominator of h and 9/(-6)*122/(-6)?\n8\nLet l = 27 - 26. What is the least common multiple of l and (4 - 3)*(-12)/(-2)?\n6\nLet y = -21 + 37. Calculate the smallest common multiple of 20 and y.\n80\nSuppose 2 - 8 = 3*g. Let w be (-2 - g) + 0 + 1. Suppose 0 = j + w - 13. What is the smallest common multiple of 14 and j?\n84\nCalculate the common denominator of -49/8 and (1/(-4))/(6/340).\n24\nLet c(i) = i**2 + 9*i + 11. Let p be c(-8). Suppose p*j - 8 = 2*h, 0 = 3*h - 23 + 8. Calculate the smallest common multiple of 2 and j.\n6\nLet" -"b - 49. Let a be b*((-10)/4)/1. Suppose -a = -4*w + 9. What is the smallest common multiple of 6 and w?\n6\nLet t be 737/(-684) + 6/8. Let f = t + 2867/342. What is the common denominator of (23/30)/(4/(-6)) and f?\n180\nLet x = -2383/174 - -129/116. Let i be (8/(-6))/((-2)/9). Calculate the common denominator of (-518)/60 - 4/i and x.\n60\nLet t(i) = 3*i - 3. Let y be t(3). Let s = y + -2. What is the least common multiple of 5 - 3 - (-8 - 0) and s?\n20\nLet q be 3*(2 - (0 - 0)). Calculate the common denominator of 43/3 and 176/q*1/(-6).\n9\nCalculate the common denominator of ((-6)/14)/((-9)/50) and -85/24.\n168\nLet r = -15214/45 + -253003/360. Let p = r - -1043. Let k = -9570 - -95621/10. Find the common denominator of p and k.\n40\nSuppose -11*a - 16 = -115. What is the least common multiple of 33 and a?\n99\nSuppose -4*i + i = 27. What is the common denominator of i and (-7)/42 + (-61)/66?\n11\nLet s(y) = -y**2 - 6*y - 5. Let u be s(-4)." -"Solve 4*d = -5*a + 17, -11 = -2*a + v*d + 7 for a.\n5\nLet p = -403 - -418. Solve 5*c + p = 5*v, 2*v + 3*c - 20 = -2*c for v.\n5\nSuppose 5*o - 6*z - 19 = -2*z, 2*z = -5*o + 43. Let j(d) = d - 2. Let v be j(o). Solve -h + 5*i + 9 + 3 = 0, 0 = -2*h - v*i - 21 for h.\n-3\nLet j = -1308 - -1313. Solve -3 = o - 2*o - k, 6 = -j*o + 2*k for o.\n0\nLet c(k) = k**2 - 9*k - 5. Let j be c(10). Suppose 1 = 2*s - j. Solve -5*v + 0*l = -s*l + 7, v + 6 = -4*l for v.\n-2\nLet f be (-4)/((-8)/1)*10. Suppose -20 = -10*u + f*u. Suppose 6*v + 0*v = 24. Solve -3*s + 5*r = -27, u*s + v*r - 2 = 2 for s.\n4\nLet o = 112 - 110. Let f be (-31)/(-3) + 2/(-6). Suppose -o*x - f = -36. Solve -2*c = 3*g + x, 3*c + 7 = -g - 9" -"9 + 41) - 72258/(-24)?\n3\nSuppose -5*p + 8*p - 7756 = -4*b, 0 = p - 4*b - 2580. What is the units digit of p?\n4\nSuppose 0 = 5*w + 5*h - 20, -5*w = 3*h - 1 - 21. Suppose -w*i = u - 145, -289 = -2*u - i + 10. What is the units digit of u?\n0\nSuppose 3*k = -2*r + 26, 3*r - 6 - 15 = -3*k. Let m = 12 + k. Suppose -h + m = 4*p, -1 = -2*p - h + 9. What is the units digit of p?\n7\nSuppose 10 = 2*j + 2*a, 4*j + 2*a + 5 - 19 = 0. What is the tens digit of (225/10)/(j/12)?\n3\nLet t(r) = 8*r + 6. Suppose 2*d = -7 + 5. Let g(b) = -b. Let p(x) = d*t(x) - 3*g(x). What is the tens digit of p(-4)?\n1\nSuppose 25*l - 23*l = 1564. What is the units digit of l?\n2\nSuppose 292*b = 282*b + 13080. What is the thousands digit of b?\n1\nLet s(q) = q**3 + 6*q**2 + 3*q + 5. Let p be s(-4)." -"ters picked without replacement from {q: 3, x: 1, d: 3}?\n1/7\nTwo letters picked without replacement from gxwnggzxgxzwexz. What is prob of picking 2 g?\n2/35\nCalculate prob of picking 1 x and 1 e when two letters picked without replacement from xlxxell.\n1/7\nCalculate prob of picking 2 e and 1 s when three letters picked without replacement from eeseeesee.\n1/2\nCalculate prob of picking 3 x and 1 h when four letters picked without replacement from {h: 1, a: 2, x: 4, f: 2}.\n2/63\nCalculate prob of picking 1 q and 1 k when two letters picked without replacement from pqceeko.\n1/21\nFour letters picked without replacement from {f: 4, k: 4, z: 12}. What is prob of picking 2 f and 2 z?\n132/1615\nFour letters picked without replacement from zccownmmzwzzocomoocm. What is prob of picking 1 c, 1 m, 1 z, and 1 n?\n64/4845\nCalculate prob of picking 1 i, 1 p, and 2 m when four letters picked without replacement from khkhpikpkpkkimmih.\n9/2380\nTwo letters picked without replacement from dddhdih. Give prob of picking 2 d.\n2/7\nThree letters picked without replacement from nokwkoonknwkkokkk. What is prob of picking 1 o and" -"ing order.\n5, 2, 0.4, -0.04429\nSort -11.7, 6, -0.74, -0.5 in descending order.\n6, -0.5, -0.74, -11.7\nSort 106, 5, 13, 7, -7, -5 in descending order.\n106, 13, 7, 5, -5, -7\nPut 503, 3, 3205, -4 in increasing order.\n-4, 3, 503, 3205\nSort 4, -10, -4, 11, 681, 3 in decreasing order.\n681, 11, 4, 3, -4, -10\nSort 64.7, -2, 882 in increasing order.\n-2, 64.7, 882\nSort 139, 5, -3, -7, 20 in ascending order.\n-7, -3, 5, 20, 139\nSort -2, -484, -2/6321 in descending order.\n-2/6321, -2, -484\nPut 0.722, 0.1, -58, 0.2, 11 in decreasing order.\n11, 0.722, 0.2, 0.1, -58\nPut 1465, -5, -4, -602 in descending order.\n1465, -4, -5, -602\nSort -442.4085, 17, 2.\n-442.4085, 2, 17\nSort 353, -1, 6, -100, -3 in descending order.\n353, 6, -1, -3, -100\nSort 7, 12, 2, -314, 1, -6.\n-314, -6, 1, 2, 7, 12\nPut 2/3, -100, -3/2, -7.62 in increasing order.\n-100, -7.62, -3/2, 2/3\nSort 0.1, -5, -0.4280435 in descending order.\n0.1, -0.4280435, -5\nPut 8281, -4, -9, 127 in decreasing order.\n8281, 127, -4, -9\nSort 3, 145591, 5, -1 in decreasing order.\n145591, 5," -" the fourth smallest value? (a) -5 (b) -4 (c) -0.9 (d) p\nd\nLet y = -0.14 + -2.86. What is the biggest value in 0, 5, y?\n5\nLet u = 41/65 + -3/13. Let o = 22 - 87/4. Which is the second smallest value? (a) -0.4 (b) o (c) u\nb\nLet z = 2.1 - 2.1. Let h = z + -5. What is the smallest value in 0.11, h, -0.3?\nh\nSuppose 0 = -3*q + 5*j - 38, -2*j + 3 + 5 = 0. Let v = 11 + q. Which is the smallest value? (a) 0.5 (b) 2/13 (c) v\nb\nLet k be (-3)/1 + 9 + -1. Suppose 4 = -o + 4*i - 11, -5*o + k*i - 15 = 0. Which is the smallest value? (a) 0.5 (b) o (c) -0.2\nc\nLet r = 0.97 - 1. Let o = r - -3.03. Let z = o - 0. Which is the second smallest value? (a) z (b) -2 (c) 0.5\nc\nSuppose 5*m - 38 + 13 = 0. Let i = -0.135 + -0.265. Which is the third smallest value? (a) m (b) -1 (c)" -"*k + 2*x - 54. Let g(a) = 5 + 9 + 3*a**2 - a + 9 - k. Determine g(-2).\n12\nLet j(g) = -g**3 - 5*g**2 + 7*g + 1. Suppose -n = -0*n - 4, 5*k - n = 16. Suppose -k*b - 12 = -2*b. Let q = 0 + b. Calculate j(q).\n-5\nLet k be 2/7 + (-9)/7. Let q(v) be the second derivative of 0 - 1/6*v**3 + 7/12*v**4 - 1/2*v**2 - v. Give q(k).\n7\nLet g = -21 + 28. Suppose 3*n = g*n - a - 17, -n + 2 = -a. Let o(h) = -h + 1. Determine o(n).\n-4\nLet n(j) = -13*j - 14. Let l(s) = -11*s - 14. Let r(g) = 6*l(g) - 5*n(g). What is r(-8)?\n-6\nLet j(c) = -c**2 + 8*c + 10. Let k(i) = i**2 - 7*i - 9. Let w(t) = 3*j(t) + 4*k(t). Let m be w(-2). Let y(h) = -h**2 + 5*h + 1. Calculate y(m).\n-5\nLet q(b) = -10*b + 22. Let d(c) = -18*c + 44. Let a(m) = 6*d(m) - 11*q(m). Determine a(-18).\n-14\nLet h(w) = w**3 - 2*w**2 - 3*w +" -"is the fourth biggest value in 0.1, -134, -180, -1/6, -1?\n-134\nWhich is the third smallest value? (a) -2/7 (b) -4 (c) 4 (d) 0 (e) 18/6655\nd\nWhich is the second biggest value? (a) 104 (b) -52 (c) 4 (d) -5\nc\nWhat is the second smallest value in 832/9, -1/4, 26/9?\n26/9\nWhat is the third smallest value in -4.08, 0.4, 2/353?\n0.4\nWhich is the fifth biggest value? (a) 3/2 (b) -5 (c) -2 (d) 28 (e) 0.3\nb\nWhat is the second smallest value in -75/8, -2/7, 0, 7, -0.3, 0.2?\n-0.3\nWhat is the fifth smallest value in -1, -0.96, 10, 2, -4?\n10\nWhich is the smallest value? (a) -2/3 (b) -3/194 (c) -2/235\na\nWhat is the fourth biggest value in -0.08, -0.3, 8/51, 1, -2/11, -5?\n-2/11\nWhich is the third smallest value? (a) 3 (b) -0.4 (c) -3 (d) 2/11 (e) 86\nd\nWhat is the fourth smallest value in 0.7, 3/2, 2/9, 0, -7.842?\n0.7\nWhat is the third smallest value in 118.7, -5, 3/298?\n118.7\nWhich is the biggest value? (a) -3 (b) 1/5 (c) -0.5 (d) 3/7 (e) -12\nd\nWhat is the second smallest value in" -"f and give r.\n-161\nExpress -62434*x + 7966*x + 10697*x as k + i*x and give i.\n-43771\nRearrange -2*a**4 - 58*a**3 - 379*a**2 + 7 + 55*a**3 + a - 7 to the form y*a**4 + u*a + p*a**2 + o*a**3 + m and give o.\n-3\nExpress 24*q + 10*q + 865 + 14*q - 57*q + 10*q as k + p*q and give p.\n1\nRearrange -3214*n + 3219*n + 159*n**2 - 751*n**2 to the form l*n + f*n**2 + u and give l.\n5\nRearrange 39*q**3 + 2 + 6*q**3 - 28*q**2 + 26*q**2 + 3*q**3 to k + g*q**2 + s*q**3 + m*q and give k.\n2\nExpress -2*f**3 - f**3 + 4*f**3 + (-20 + 483*f - 483*f + 2*f**2)*(3 - 4 - 2)*(2*f - 2*f - 3*f) in the form u*f**3 + c*f**2 + d*f + n and give u.\n19\nExpress -2*l**3 + 2*l**3 + 2*l**3 + (-2*l - 2 + 2)*(-12*l**2 - 15*l**2 + 5*l**2) - 4*l + 4*l + l**3 as p*l**3 + f + w*l**2 + s*l and give w.\n0\nExpress (3 + 1 - 3)*(2*k - 145*k - 168*k)*(-6*k**3 - k**3 - k**3) - 2*k**4 +" -" 4.\n-112\n242 (base 7) to base 13\n9b\nConvert 1 (base 2) to base 9.\n1\nConvert 10 (base 5) to base 14.\n5\nConvert 16 (base 11) to base 6.\n25\nWhat is 7 (base 14) in base 15?\n7\nConvert 1030 (base 6) to base 14.\n12a\nConvert -2 (base 8) to base 2.\n-10\nWhat is -3 (base 8) in base 5?\n-3\nWhat is -a (base 12) in base 3?\n-101\nConvert 12 (base 7) to base 3.\n100\nWhat is 16 (base 7) in base 11?\n12\nWhat is 170 (base 14) in base 2?\n100100110\nConvert -3 (base 9) to base 4.\n-3\nConvert -5 (base 14) to base 13.\n-5\n-10001111 (base 2) to base 3\n-12022\nConvert -8a (base 16) to base 3.\n-12010\nWhat is 1 (base 2) in base 3?\n1\nConvert 3 (base 7) to base 9.\n3\nConvert 10101101 (base 2) to base 7.\n335\nConvert 3 (base 5) to base 16.\n3\n27 (base 15) to base 8\n45\nConvert 11 (base 8) to base 10.\n9\n-2 (base 15) to base 12\n-2\nConvert -1103 (base 7) to base 11.\n-32a\nWhat is 26 (base" -"hen (-6)/15 - (-456)/a is divided by 16?\n14\nSuppose -31 = -4*n - 11. Suppose o + 0 = n. Calculate the remainder when (-225)/(-27) - (-2)/(-6) is divided by o.\n3\nSuppose 5*t = -0*t + 185. Calculate the remainder when 71 is divided by t.\n34\nSuppose 4*v = -v + 25. Suppose h = 5*w - 15, 3 = 5*w + 3*h + 8. What is the remainder when v is divided by w?\n1\nLet i(j) = -j - 3. Let u be i(0). Let w(x) be the third derivative of x**5/30 - x**4/12 + 2*x**3/3 + 4*x**2. What is the remainder when w(u) is divided by 10?\n8\nSuppose -2*u - 1 = -3. Suppose 2*t + 0*t - 80 = 0. What is the remainder when t is divided by 83/4 - u/(-4)?\n19\nLet i(z) = -z**2 - 7*z + 1. What is the remainder when 35 is divided by i(-3)?\n9\nLet q(r) = r**2 + 6*r + 6. Suppose 7*g - 75 = 2*g - h, 0 = -2*h. Suppose 0 = -3*u - g - 3. What is the remainder when q(u) is divided by 4?\n2\nLet a(z)" -"at are the prime factors of 43465?\n5, 8693\nWhat are the prime factors of 405?\n3, 5\nWhat are the prime factors of 40927?\n40927\nWhat are the prime factors of 35886?\n2, 3, 5981\nList the prime factors of 872.\n2, 109\nList the prime factors of 6460.\n2, 5, 17, 19\nWhat are the prime factors of 4693?\n13, 19\nWhat are the prime factors of 36995?\n5, 7, 151\nList the prime factors of 3440.\n2, 5, 43\nWhat are the prime factors of 94?\n2, 47\nWhat are the prime factors of 2614?\n2, 1307\nList the prime factors of 71591.\n13, 5507\nList the prime factors of 34442.\n2, 17, 1013\nWhat are the prime factors of 106?\n2, 53\nWhat are the prime factors of 10254?\n2, 3, 1709\nWhat are the prime factors of 146?\n2, 73\nList the prime factors of 2769.\n3, 13, 71\nWhat are the prime factors of 173?\n173\nList the prime factors of 648.\n2, 3\nList the prime factors of 734.\n2, 367\nWhat are the prime factors of 2432?\n2, 19\nWhat are the prime factors of 11603?\n41, 283\nList the prime factors" -"ue? (a) 0.2 (b) i (c) 264\nb\nLet u = 71/78 + -14/13. Let w = -14 + 16. What is the fourth smallest value in w, 4, u, 2/11?\n4\nLet k = 2/41 - -37/82. What is the biggest value in 0.1, 1/9, 0.3, k?\nk\nLet r be (-69)/(-23) - (-34)/(-12). Which is the second biggest value? (a) r (b) 11 (c) -0.4\na\nLet b = -0.9 + 5.9. Let x = -85 - -85.1. What is the third smallest value in 1/7, b, x?\nb\nLet v = 3133/5 - 626. Which is the biggest value? (a) v (b) -2/15 (c) -4\na\nLet r = 994 + -993. Which is the smallest value? (a) 89 (b) -0.4 (c) r (d) -0.2\nb\nLet l = -990 - -988. What is the smallest value in 3, l, -5?\n-5\nLet f = -8.6 - -16.7. Let p = f + -8. Let n = -17 - -19. What is the third smallest value in p, -0.2, n?\nn\nSuppose -2*o - 8 = 4*x, 0 = o - x + 3 - 2. Let l be 4*(-3)/6 - (1 - o). What is the" -"1 (b) d (c) 1/10\nc\nLet s = -3010437/572 + 5263. Let j = s - 2281/4004. Let h = 2.9 + -3. What is the closest to h in 0.1, -4, j?\n0.1\nLet k = 3933 - 3933. What is the closest to k in -3/4, -15, -1, 0.1?\n0.1\nLet i(l) = -5*l**2 + 11*l + 75. Let n be i(5). What is the nearest to 13 in -1.7, n, -2, -1/6?\nn\nLet y = -2385 + 2388. Which is the closest to -0.73? (a) -1/3 (b) 0.3 (c) y\na\nLet m = 25151 + -578475/23. Which is the nearest to 4? (a) -2/13 (b) m (c) 1/4 (d) 3/28\nc\nSuppose -7*j - 3 = 39. Let w be (j/16)/((-60)/(-40)). Which is the closest to 3? (a) 1/23 (b) -4 (c) w\na\nLet t be 251/((-483)/(-24) - (-6)/(-48)). Let l = t - 107/4. Let d = l + 223/15. Which is the nearest to d? (a) 0.5 (b) -3 (c) 0\na\nLet v = 8.919 + -8.849. What is the nearest to 40 in 2/3, 4, v?\n4\nLet f = -163.1 - -163. Let y = -8.6 + 7." -" prime factors of 35340?\n2, 3, 5, 19, 31\nList the prime factors of 2608.\n2, 163\nWhat are the prime factors of 18836?\n2, 17, 277\nWhat are the prime factors of 931?\n7, 19\nWhat are the prime factors of 2842?\n2, 7, 29\nWhat are the prime factors of 4982?\n2, 47, 53\nWhat are the prime factors of 3535?\n5, 7, 101\nList the prime factors of 6488.\n2, 811\nList the prime factors of 6193.\n11, 563\nList the prime factors of 3866.\n2, 1933\nList the prime factors of 2038.\n2, 1019\nList the prime factors of 369.\n3, 41\nWhat are the prime factors of 8016?\n2, 3, 167\nWhat are the prime factors of 4694?\n2, 2347\nWhat are the prime factors of 23431?\n23431\nList the prime factors of 4735.\n5, 947\nWhat are the prime factors of 7402?\n2, 3701\nWhat are the prime factors of 928?\n2, 29\nList the prime factors of 4311.\n3, 479\nList the prime factors of 2719.\n2719\nWhat are the prime factors of 6359?\n6359\nWhat are the prime factors of 64312?\n2, 8039\nList the prime factors of 73765.\n5, 14753\nList" -" = -114*b, 5*i - 781 = -5*b - 521 for b.\n55\nSolve 0 = -12*g + 7*g + 3*g - 4*u + 12, -3*g + 15 = 5*u for g.\n0\nSolve -4*c - 8*w - 36 = -9*w, -53*w = -5*c - 49*w - 25 - 20 for c.\n-9\nSolve 5*m = d + 214, 26*m - 54*d - 1121 = -57*d for m.\n43\nSolve -j + 4*u - 105 = 78, j + 2*u = 93 for j.\n1\nSolve -8*p + 63 = 5*w, -14738*w + 16 = -14739*w + p for w.\n-5\nSolve -40*w + 4*x + 34 + 16 = -39*w - 0, 4*x = 4*w - 200 for w.\n50\nSolve 0 = 3*z - 5*y - 87, 5*y = -67*z + 68*z - 29 for z.\n29\nSolve 4*x = 184, 2*p + 5*p - 4*p = p + 9*x - x - 374 for p.\n-3\nSolve 0*o + 4 = o - 1 - 2, -5*r = -33*o + 231 for r.\n0\nSolve 3*w - h + 5915 = 5908, -2*w = -3*h + 7 for w.\n-2\nSolve 5*f - 49*p + 666 = 0," -"alue in -1/2, 0.1, i?\ni\nSuppose -3 = -2*j - 9. Let v be 10/(-4) + 6/12. What is the second biggest value in -1, v, j?\nv\nSuppose 2*h - 2*n - 2*n - 24 = 0, -4*h = -3*n - 23. Suppose 2*l = -h + 12. Which is the third biggest value? (a) -1 (b) 0.3 (c) l\na\nLet z = -4.55 + 4. Let i = -0.05 - z. Let c = 1 - -2. What is the third biggest value in -3, i, c?\n-3\nLet m = -0.4 + 0.44. Let q = m - -2.96. Which is the third smallest value? (a) q (b) -1/2 (c) 2\na\nLet n = -1.9 + -0.1. Let d(j) = j**2 - 12*j + 16. Let x be 8 + -2 + 28/7. Let g be d(x). Which is the biggest value? (a) g (b) -1/10 (c) n\nb\nLet g be (0 - 2/(-4))*-4. Let z = 1.16 + -1.15. What is the third biggest value in z, g, -5?\n-5\nLet p = 7.5 - 2. Let t = p - 5. What is the biggest value in t, -4, -1?\nt" -"\nWhat is prob of picking 1 v and 1 z when two letters picked without replacement from ovvvizfvvivzzi?\n18/91\nCalculate prob of picking 1 h and 3 n when four letters picked without replacement from nnnnhqnnnnnnn.\n3/13\nWhat is prob of picking 1 i and 1 a when two letters picked without replacement from lwfillwlfiiwwlwwa?\n3/136\nWhat is prob of picking 2 m when two letters picked without replacement from pmmepemm?\n3/14\nWhat is prob of picking 3 n when three letters picked without replacement from {n: 9}?\n1\nCalculate prob of picking 2 t and 2 q when four letters picked without replacement from {h: 1, z: 1, t: 5, q: 2, n: 3}.\n2/99\nTwo letters picked without replacement from bbdiyihz. Give prob of picking 1 d and 1 b.\n1/14\nTwo letters picked without replacement from {r: 3, m: 7, h: 4, y: 1, x: 1}. What is prob of picking 2 h?\n1/20\nThree letters picked without replacement from {z: 3, x: 13, q: 2}. What is prob of picking 1 q, 1 z, and 1 x?\n13/136\nCalculate prob of picking 1 v, 1 g, 1 c, and 1 w when four letters picked without" -"5 - (5 - 4) - -4))?\n-20\nWhat is 80 - ((-6 - -11) + -45 + (-5 - -23))?\n102\nCalculate 12 - ((13 - (-7 - 14)) + 6).\n-28\nWhat is -73 + 39 + 22 + -35?\n-47\nWhat is the value of -41 + 50 + -9 + (-10 - 5)?\n-15\nWhat is 0 + 3 + -62 + (-55 - 78 - -116)?\n-76\n-12 - ((-56 - -17) + -4)\n31\n5 + -4 + (-1 + 5 - 12) + 9\n2\n-517 - -538 - (-3 + 4)\n20\nWhat is (0 + 68 - (740 + -719)) + 2?\n49\n-15 - ((2 - 2 - -23) + (2490 - 2472))\n-56\nWhat is (13 - (25 + -2 - (40 - (-7 - -33)))) + 41?\n45\nCalculate -21 + 57 + -30 + -22 + 91.\n75\nWhat is the value of 11 - (36 - 35 - (-8 - (-1 + -2))) - 0?\n5\nCalculate 121 + -78 + -3 + 2.\n42\n14 + -115 + (-9 - (0 - 8) - -10)\n-92\nWhat is the value of (-1 - -1) +" -")/((-8)/(-100)).\n60\nLet g be (-6679)/(-8) + 7/28. Let o = g - 833. Find the common denominator of -27/10 and o.\n40\nLet x = 383359/18 - 21291. Let u = x - 131/9. Find the common denominator of u and 149/12.\n12\nWhat is the common denominator of -27/10 and 16/88 + 1517/66?\n30\nFind the common denominator of 4/11 and (2/(-24))/(20/2840).\n66\nLet t = -4017/5 - -797. Find the common denominator of 7/6 and t.\n30\nLet m = -36/1253 - -110163/40096. What is the common denominator of 57/16 and m?\n32\nSuppose 3*m - 3 = 2*m. What is the common denominator of (-339)/72 + 1/m and -11/6?\n24\nLet q be (2/(-5))/((-2)/(-10)). Calculate the common denominator of 35/4 and (0 + q)*(-292)/(-16).\n4\nLet n = -77 - -168. Suppose -4*g + n = 27. Suppose 15 = o + 3*o - j, 2*j = -o + 6. What is the smallest common multiple of o and g?\n16\nLet j(a) = 2*a - 12. Let z be j(13). Find the common denominator of 2 - (-1)/z*1 and -17/18.\n126\nWhat is the common denominator of 0 + 3 - (-172)/(-20) and 52/(-42) +" -"3940?\n2, 5, 17, 17041\nWhat are the prime factors of 18849?\n3, 61, 103\nList the prime factors of 154597.\n31, 4987\nList the prime factors of 6693286.\n2, 61, 83, 661\nWhat are the prime factors of 2248973?\n19, 41, 2887\nList the prime factors of 188254.\n2, 11, 43, 199\nList the prime factors of 2085636.\n2, 3, 7, 3547\nWhat are the prime factors of 248413?\n11, 2053\nWhat are the prime factors of 298676?\n2, 7, 10667\nWhat are the prime factors of 831165?\n3, 5, 55411\nWhat are the prime factors of 19305801?\n3, 2145089\nWhat are the prime factors of 2927274?\n2, 3, 7, 69697\nWhat are the prime factors of 1395293?\n1395293\nWhat are the prime factors of 333214?\n2, 7, 23801\nWhat are the prime factors of 3376883?\n23, 41, 3581\nList the prime factors of 495277.\n495277\nList the prime factors of 156972.\n2, 3, 103, 127\nWhat are the prime factors of 223108?\n2, 17, 193\nList the prime factors of 2120194.\n2, 1060097\nList the prime factors of 3214970.\n2, 5, 11, 2657\nWhat are the prime factors of 425341?\n7, 60763\nList the prime factors of 5877254." -"2 and give m.\n-35\nExpress 3*d**2 - d**2 + d**4 - 199*d**3 + 3 + 2*d + 199*d**3 in the form t + f*d**4 + l*d**2 + w*d**3 + s*d and give f.\n1\nRearrange -15*k**2 - 58*k**2 - 37*k**2 to the form g + z*k + j*k**2 and give j.\n-110\nRearrange -2*c**4 - 13*c**2 + 5*c**3 - 3*c**3 + 2*c**2 + c to h*c + x*c**2 + a*c**3 + q*c**4 + t and give x.\n-11\nExpress (-g + 4*g - g)*(-3 + 0 + 4) + 3 - 3 - g + 121 - 16*g - 121 as y*g + z and give y.\n-15\nExpress (-i - i**2 + i)*(-17*i + 33*i - 22*i) + 2*i**3 - 2 + 2 as h*i**3 + y + v*i + l*i**2 and give h.\n8\nRearrange m - m + 5*m**3 - 4*m**3 - 2 + 2*m**2 to h*m + o*m**3 + s*m**2 + k and give k.\n-2\nExpress 28*b + 65*b - 19*b in the form t*b + w and give t.\n74\nRearrange (1 - 3 + 3)*(3*k - 1 + 1) + (3 + 3 - 4)*(k + 0*k + k) to n*k +" -" -334*l for l.\n-90\nSolve -108818 = 245*l + 2023*l - 21939*l - 521909 for l.\n-21\nSolve 212*y + 347*y = -117 - 442 for y.\n-1\nSolve -7361583*a = -7361587*a for a.\n0\nSolve 1082 - 1903 = 45*s - 3881 for s.\n68\nSolve -13*o = 15*o + 47*o - 56636 + 51686 for o.\n66\nSolve -159*j - 116*j = -28*j - 1121 + 15694 for j.\n-59\nSolve 3237 = -170*u - 5093 for u.\n-49\nSolve -914*x - 964*x + 468049 = -26078*x - 2242351 for x.\n-112\nSolve -36396 = -4856*a - 12116 for a.\n5\nSolve -10899*i - 24 = -10875*i for i.\n-1\nSolve 7206*j - 555780 - 151238 = 236035 - 121569 for j.\n114\nSolve 0 = 292*k - 289 + 11161 + 16295 - 1179 for k.\n-89\nSolve -3800 = 23234*o - 23434*o for o.\n19\nSolve -492*u + 10333 = -16235 for u.\n54\nSolve 361*o + 346*o + 5*o + 33*o - 25330 = 0 for o.\n34\nSolve 19*j - 58 = -620 + 201 for j.\n-19\nSolve -140*p - 3340 = -104*p + 131*p for p.\n-20\nSolve -1121 = 180*z -" -" is greater: r or 3?\nr\nLet q = 27 - 30. Which is bigger: -5 or q?\nq\nLet t = -7 + 8. Which is smaller: -10 or t?\n-10\nSuppose 2*s + 3*s + 42 = -3*m, -5*m + s = 42. Suppose -135 = -5*u - 0*u. Let r be 6/u - 7/m. Which is greater: -3/11 or r?\nr\nLet j = -1 - -3. Suppose -2*t - t - 84 = 0. Let q be 20/t + (-4)/14. Which is smaller: q or j?\nq\nLet a = 2 - 1. Let c be a/(2 + (-5)/2). Suppose h = 3*j - 8*j - 19, 0 = -5*h - 20. Which is greater: c or j?\nc\nLet i(c) = -c - 15. Let w be i(-13). Is w < -5/9?\nTrue\nSuppose -3 = 3*l - 4*b, -6*l + 3*l + 24 = 5*b. Suppose -q = 4 - l. Which is smaller: q or 0?\nq\nLet f = -2.2 - 2.6. Let x = 5 + f. Let l = x - 0.1. Which is bigger: l or 1?\n1\nLet x(a) = -a**2 - 12*a - 14. Let j be" -"+ 3*b for t.\n-4\nLet o(x) = -x + 1. Let s be o(1). Solve 2*b + 5*p - 3 + 1 = s, 0 = 5*b - 2*p - 5 for b.\n1\nLet u be ((-6)/(-4))/((-27)/(-360)). Solve 2*a - j = 8, 5*a + 7*j - 4*j = u for a.\n4\nLet w(p) = p + 3. Let n be w(1). Solve -a = -n*a + 5*v + 31, -5*a - 4*v = 10 for a.\n2\nSuppose -7*c + 15 = -2*c. Suppose s + c*s = 20. Suppose -6*q = -4*b - q + 23, -14 = -b + 4*q. Solve b*h = 3*x - 0*h + 7, s = -5*h for x.\n-3\nLet h(r) = r + 2. Let b be h(0). Solve 5*d = -5*o - 40, -5*o - b*d = -d + 28 for o.\n-5\nSuppose 4*t - 2*q = -0*t + 4, 2*q = -3*t + 10. Let d = 10 + -2. Suppose -5*x = -34 - 76. Solve -s = 4*v + v - x, -t*s = v - d for v.\n4\nSuppose -4*b = 3*x - 11, -3*b + 1 = 4*x - 2." -"arrange 764*t**4 + 768*t**4 - 1550*t**4 + 2 - t**3 to the form v*t**2 + l*t**4 + z*t**3 + y*t + w and give l.\n-18\nExpress (2 - 5 + 2)*(9*u + 7*u - 29*u) + (u + 0*u + u)*(-5 + 4 + 3) + 2*u + 4 - 4 as n + v*u and give v.\n19\nExpress -3*u**4 - 4*u + 2*u**4 - 646*u**3 + u**2 + 647*u**3 + 0*u**4 as h*u**4 + c*u**3 + d + n*u**2 + w*u and give n.\n1\nExpress (0*c - c + 0*c)*(-2*c**2 + 0*c**2 + 4*c**2)*(41 + 38 - 10) as h*c + f*c**3 + m*c**2 + z and give f.\n-138\nExpress 3*x**4 + 32*x - 112*x - 2 + 2*x**2 + 31*x + 39*x in the form g*x**3 + q + o*x**4 + u*x + w*x**2 and give u.\n-10\nRearrange 66*t + 342*t**4 - 685*t**4 + 342*t**4 + 1 to n*t**2 + r*t**4 + x*t + a + g*t**3 and give g.\n0\nRearrange (-4*u - 4*u + 0*u)*(-2*u + 0*u + 0*u) + u**2 + u**2 + 0*u**2 + (3*u - 2*u + u)*(8*u - u + 0*u) to d + k*u + s*u**2" -"e nearest integer?\n209\nWhat is the third root of 1563855 to the nearest integer?\n116\nWhat is the fourth root of 553970 to the nearest integer?\n27\nWhat is the square root of 2784965 to the nearest integer?\n1669\nWhat is the cube root of 714290 to the nearest integer?\n89\nWhat is the fourth root of 22269323 to the nearest integer?\n69\nWhat is 92058 to the power of 1/5, to the nearest integer?\n10\nWhat is 375432 to the power of 1/3, to the nearest integer?\n72\nWhat is the cube root of 967163 to the nearest integer?\n99\nWhat is 132711 to the power of 1/2, to the nearest integer?\n364\nWhat is the cube root of 359980 to the nearest integer?\n71\nWhat is the cube root of 14918994 to the nearest integer?\n246\nWhat is 5401866 to the power of 1/4, to the nearest integer?\n48\nWhat is the third root of 186646 to the nearest integer?\n57\nWhat is the cube root of 1731920 to the nearest integer?\n120\nWhat is 1147924 to the power of 1/2, to the nearest integer?\n1071\nWhat is the third root of 617759 to the nearest integer?" -"-28.975 + 29.075. Which is the nearest to 2/3? (a) 2/111 (b) -1/2 (c) o\nc\nSuppose -2*p = 3 + 33. Let g be p/15*2/(-3). Let h = -1885 + 1890. Which is the nearest to -1/2? (a) h (b) g (c) -5\nb\nLet w = -233.83 + 234. What is the nearest to -2 in 5, w, 4/3?\nw\nLet q = 0.967 - 0.867. What is the closest to -1/169 in -4, 2/13, 3, q?\nq\nLet f = -52.27 + -0.73. Let p = 0.05 + -58.05. Let y = p - f. What is the nearest to y in 5/2, -0.1, 4/7?\n-0.1\nLet q(k) = 48*k - 1607. Let v be q(34). Which is the closest to v? (a) 11 (b) 4 (c) 0.5 (d) 2/23\na\nLet u = 1742 + -5225/3. What is the closest to u in -15, 1/3, 1.3?\n1/3\nLet h = 22591/44 - 2053/4. What is the closest to 1/5 in 3/5, 32, 1, h?\nh\nSuppose -q = -3*j + 218, 3*j + 2*q = -0*q + 212. Suppose 12*b = 6*b + j. What is the nearest to 1 in 5, 2/7, b?\n2/7\nLet" -"ded by 59\n-2953\n6114 divided by -10\n-3057/5\nCalculate 1 divided by 624714.\n1/624714\n1265730 divided by -6\n-210955\nCalculate -44068 divided by 14.\n-22034/7\nCalculate -1217 divided by 15.\n-1217/15\nCalculate -406 divided by -645.\n406/645\nWhat is 211 divided by -3356?\n-211/3356\nWhat is 4396736 divided by -1099184?\n-4\nDivide -283272 by -12876.\n22\n-33156 divided by 12\n-2763\n-5 divided by 162215\n-1/32443\nDivide 459272 by 5.\n459272/5\nDivide 4 by 5200.\n1/1300\nWhat is 14964 divided by -6?\n-2494\nDivide 122460 by -3140.\n-39\nCalculate -20 divided by -3393.\n20/3393\nWhat is 86 divided by -1188?\n-43/594\nWhat is -85 divided by 1748?\n-85/1748\n916980 divided by -348\n-2635\nCalculate -147990 divided by -6.\n24665\nWhat is 1777542 divided by -26?\n-68367\n151086 divided by -1937\n-78\n63000 divided by -70\n-900\nDivide -665804 by 5.\n-665804/5\nWhat is 103 divided by 6010?\n103/6010\nWhat is -88 divided by 13210?\n-44/6605\nCalculate 0 divided by 28662.\n0\nDivide 255 by -46.\n-255/46\nWhat is -895392 divided by -74616?\n12\nDivide -64944 by 64944.\n-1\nCalculate 1 divided by 18410.\n1/18410\nWhat is 852 divided by 852?\n1\nDivide -2060 by 6.\n-1030/3\nCalculate -162434 divided" -"-3408269.\n3408268.9\nSubtract -0.0485 from -1.25.\n-1.2015\nAdd together -98 and -18.81.\n-116.81\nWork out 640 + -3.\n637\nWhat is the distance between -0.1 and 18883?\n18883.1\nWhat is 10.161 + 0.02?\n10.181\n-0.06217 - 336\n-336.06217\nWork out 20.8 + 27462.\n27482.8\nWhat is -22348 take away -4?\n-22344\n-243+0.36\n-242.64\nWork out -9 - -42480.7.\n42471.7\nWhat is -2 take away -1450?\n1448\nWork out -44 - -0.32.\n-43.68\nWork out -10 + -307168.\n-307178\nTotal of -3.07352 and 5.\n1.92648\nWhat is -0.01946 + -50?\n-50.01946\n-66+-106.3\n-172.3\nTotal of -718 and -24.55.\n-742.55\nWork out 0.4 - -2423.\n2423.4\n-3.672 - -0.1\n-3.572\nWhat is -0.019 plus 0.2056?\n0.1866\nWhat is the difference between -171 and 0.96?\n171.96\nAdd together -326304 and 0.3.\n-326303.7\nSum -0.5 and 26914.\n26913.5\nCalculate -0.2 - 134864.\n-134864.2\nWhat is 0 minus -9.51?\n9.51\nWork out -119 - 0.7.\n-119.7\nSum -63 and 14.\n-49\nWhat is the difference between -1.436 and 8.3?\n9.736\nWhat is -8 - 295?\n-303\nTotal of -0.03 and -31.14587.\n-31.17587\nWork out -30447 - 0.5.\n-30447.5\nWork out 0.02 - 82.\n-81.98\nWork out -0.28 + -86.57.\n-86.85\nWhat is 82205 minus 0.7?" -" be t(16). Let i be a(j). Is (i/(-11))/(3/(-3)) composite?\nFalse\nLet y be 4/(-8) - (-27)/6. Let v(p) = -3*p + 4. Let z be v(0). Suppose -2224 = -y*h - 2*s, 4*s = -z*h + 514 + 1718. Is h a prime number?\nFalse\nSuppose 274984 = 3*m + 5*p, -m + 91694 = -18*p + 15*p. Is m a composite number?\nFalse\nIs (-8)/7*(-1)/(-2) - 42485571/(-469) a prime number?\nFalse\nLet l = 1057 - -328. Let b = l - 128. Suppose 2*j - 3*z - 494 = 0, 4*j - b = -j + 2*z. Is j composite?\nTrue\nIs ((-9706)/(-8) + 2)/((-122)/(-488)) a composite number?\nFalse\nLet w = 28691 + -19004. Suppose 0 = -10*k + w + 2073. Suppose -5*q + 3*p = -2*q - k, 0 = -4*q - 3*p + 1575. Is q prime?\nFalse\nLet f(r) = -3*r**2 - 20*r + 28. Let p be f(-4). Let a(c) = c**3 - 2*c**2 + c - 1. Let y be a(2). Is (y - p)/(9/(-2) + 4) prime?\nFalse\nLet n = 4333 - 4329. Let d(q) be the first derivative of 3*q**4 + q**3/3 + q**2 - 23*q - 2." -"4 take away 0.06?\n-9.5\nSum -2487 and 4.26.\n-2482.74\nWhat is 518 - -0.4?\n518.4\nWhat is 0.5 less than -10784?\n-10784.5\nAdd together -0.4 and -127.431.\n-127.831\nAdd 0 and -0.0085.\n-0.0085\nAdd together 5 and -103.\n-98\nWhat is -674 plus 0.149?\n-673.851\nWhat is 5 plus 68.4998?\n73.4998\nWhat is 95.57 + 9?\n104.57\nWhat is -12 less than 23?\n35\nWhat is -8 less than -0.0368?\n7.9632\nCalculate -0.34 + 0.0364.\n-0.3036\nWhat is -0.037 less than 1.9?\n1.937\nWhat is 1258 + 30?\n1288\nCalculate -0.01 - 143.7.\n-143.71\nWhat is the difference between -2041 and 0.052?\n2041.052\nCalculate -0.01 - 0.61.\n-0.62\nWhat is 620 less than 0.56?\n-619.44\nTotal of 37.9772 and 3.\n40.9772\nWhat is -1578.187 less than 0.03?\n1578.217\nSum 8277.9 and 0.4.\n8278.3\nCalculate 0.045754 + -0.93.\n-0.884246\nWhat is -935 minus -2?\n-933\nCalculate 253001 - -0.1.\n253001.1\nAdd together 66 and 0.089.\n66.089\nWhat is the distance between -6.2 and 6?\n12.2\nCalculate 4.6 + 7428.\n7432.6\nWhat is the difference between 15 and 0.089147?\n14.910853\n-0.5 - 1117723\n-1117723.5\nWhat is the difference between -344340 and 8?\n344348\nWork out 19 + -173.\n-154\nCalculate -166" -"n + 3.\n275*n\nCollect the terms in 10*l**2 + 2*l - 47*l**2 - 29*l**2.\n-66*l**2 + 2*l\nCollect the terms in -q**3 - 6*q + 6*q + 4.\n-q**3 + 4\nCollect the terms in 2 + 1 - 136*v + 135*v.\n-v + 3\nCollect the terms in 8*h**3 - 13*h**3 + 7*h**3.\n2*h**3\nCollect the terms in 43*a**3 + 45*a**3 - 87*a**3.\na**3\nCollect the terms in v**2 + 3 + 19 - 22.\nv**2\nCollect the terms in -220 + o**3 - 231 + 451.\no**3\nCollect the terms in 0*v - 15*v - 2 + 6 + v.\n-14*v + 4\nCollect the terms in 101*m + 101*m - 205*m.\n-3*m\nCollect the terms in 183*n + 178*n - 361*n + 4*n**2.\n4*n**2\nCollect the terms in -1551 + 1551 + 3*k**2.\n3*k**2\nCollect the terms in 1200*i - 2404*i + 1208*i.\n4*i\nCollect the terms in -6*z**2 + 42*z**2 - 7*z**2.\n29*z**2\nCollect the terms in -103*i**2 - 71*i**2 + 14*i**2 - 10*i**2.\n-170*i**2\nCollect the terms in v + 0*v + v - 5.\n2*v - 5\nCollect the terms in -26*m - 36*m + 66*m.\n4*m\nCollect the terms in 30*h -" -"(i - 6)*(i + 1)\nSuppose -1 = -i + 1. Suppose -5*s + i*x + 2 = 0, -2*s - 2*x + 13 = 1. Find y such that 0*y**2 + 6*y**4 + 0*y**s + 7*y**5 - 9*y**5 = 0.\n0, 3\nLet t(f) be the third derivative of -1/150*f**5 - 2*f - 8*f**2 + 0 + 1/15*f**3 + 0*f**4. Factor t(h).\n-2*(h - 1)*(h + 1)/5\nSuppose 5*h - 38 = -3*r, 3*r - 6 = -h + 4*h. Determine b so that 8*b - r + b + 3*b - 3*b - 3*b**3 = 0.\n-2, 1\nLet h(b) be the first derivative of -4*b**5/5 + 40*b**4 - 1048*b**3/3 - 5520*b**2 - 19044*b + 352. Suppose h(g) = 0. What is g?\n-3, 23\nLet m(c) be the third derivative of 38*c**2 + 0*c**3 + 1/60*c**6 + 0*c**5 + 0 - 1/12*c**4 + 0*c. Factor m(b).\n2*b*(b - 1)*(b + 1)\nLet f(s) be the first derivative of s**7/560 + 3*s**6/320 + s**5/80 + 41*s**2/2 - 30. Let v(p) be the second derivative of f(p). Factor v(g).\n3*g**2*(g + 1)*(g + 2)/8\nLet p(l) be the second derivative of -l**4/54 + 20*l**3/27 - 100*l**2/9 - 69*l. Factor" -" and give o.\n2982\nExpress -33*a**3 - 37*a**3 + 7*a**4 + 136*a**3 - 37*a**3 - 31*a**3 - 3*a - 40*a**2 as l*a**4 + g + r*a**3 + s*a**2 + j*a and give s.\n-40\nExpress (-3*l + 3*l + l)*(30 + 492*l + 333*l - 898*l) as v*l + p*l**2 + c and give p.\n-73\nRearrange -2644 + 1325 + 1319 - 12*i**2 + i**2 - 17*i to o*i**2 + h*i + q and give h.\n-17\nExpress -2*t**2 + 223*t - 191*t + 1248 - 1216 as u*t + v*t**2 + h and give u.\n32\nRearrange 4644*t - 2023*t - 9*t**3 + 4372*t + 4073*t + 7*t**3 to j*t + b*t**2 + i + c*t**3 and give j.\n11066\nExpress 221*i - 706*i - 23*i - 6631*i in the form u*i + g and give u.\n-7139\nExpress -6 + 6 + 14*w + (-2 + 2 + 2*w)*(4 - 1 - 2) + (0*w + 0*w + w + (2 - 2*w - 2)*(2 + 2 + 2))*(0 - 1 + 23) as p + f*w and give f.\n-226\nExpress (11*y + 1 - 17*y + 12*y)*(-4024*y - 3854*y + 8074*y) as h*y + d*y**2" -"**2 + 28959*d - 4\nWhat is the i'th term of 24, -26, -150, -354, -644?\n-i**3 - 31*i**2 + 50*i + 6\nWhat is the a'th term of 2061, 4126, 6189, 8250, 10309, 12366, 14421?\n-a**2 + 2068*a - 6\nWhat is the p'th term of 36, 38, 40, 42?\n2*p + 34\nWhat is the g'th term of -97, -214, -343, -490, -661, -862, -1099, -1378?\n-g**3 - 110*g + 14\nWhat is the u'th term of 28, 45, 50, 37, 0, -67?\n-u**3 + 24*u + 5\nWhat is the k'th term of 49, 98, 147, 196, 245, 294?\n49*k\nWhat is the a'th term of 13, 378, 1369, 3298, 6477, 11218?\n52*a**3 + a**2 - 2*a - 38\nWhat is the u'th term of -7, 23, 93, 203?\n20*u**2 - 30*u + 3\nWhat is the c'th term of 38, 74, 114, 158, 206?\n2*c**2 + 30*c + 6\nWhat is the s'th term of 3, 9, 21, 39?\n3*s**2 - 3*s + 3\nWhat is the b'th term of -53, -258, -813, -1892, -3669?\n-29*b**3 - b**2 + b - 24\nWhat is the s'th term of -10878, -21754, -32630, -43506, -54382, -65258?\n-10876*s -" -"*d + 6. Let t be (1 - -2) + -6 + -5. Let n be u(t). Solve 2*h + h = -n for h.\n-2\nSuppose -3*n = 30 - 39. Solve -v = n - 4 for v.\n1\nLet u = 3 + 0. Let y = u - 2. Solve 2*r = y + 3 for r.\n2\nLet v(q) = q**2 + 3*q - 8. Let d be v(-6). Solve -i - i = d for i.\n-5\nSuppose -3*i - 3*t = 2 - 14, -4*t = 4. Suppose -p = -0*p - 3*m + 11, i*p + 2*m + 4 = 0. Let u be (1 + p)/((-1)/7). Solve u*f - 3*f - 20 = 0 for f.\n5\nSuppose -15*z = -12*z - 45. Solve -2*o = 3*o - z for o.\n3\nSuppose -k + 2*i - 6 = -0*i, 2*i = 8. Solve -k*o = o for o.\n0\nLet n be 2 + 0 - 0 - 5. Let u = 10 + -13. Let o = u - n. Solve o = c + 2*c - 3 for c.\n1\nLet z = 15 + -13. Solve 0*k" -"hich is the second smallest value? (a) 3 (b) -4 (c) l\nb\nLet h = -20.4 - -19.4. Let w be (8/(-3) - -3)/(-1). Which is the third biggest value? (a) h (b) -1.4 (c) 5 (d) w\na\nLet w = -5.79 - -1.79. Which is the third smallest value? (a) -12 (b) w (c) 0.2 (d) 0\nd\nLet k = 21.2 + -9.2. Which is the second biggest value? (a) -5 (b) -2 (c) k\nb\nSuppose 61*y + 16*y = 2310. Which is the biggest value? (a) y (b) 6 (c) 5\na\nLet n = 4/9 - 29/45. Let z = 552 - 553. Which is the smallest value? (a) n (b) 0.5 (c) z (d) 5\nc\nLet d = -3.8 + 0.1. Let u = d - -2.7. What is the third biggest value in -4, u, 0?\n-4\nLet p = -176438/3645 - -4/729. Let o = p + 49. What is the third smallest value in -0.1, o, -2/7?\no\nLet x = 1.7 - 1.68. Let z(o) = o + 1. Let l(g) = -3*g - 13. Let f(a) = l(a) + 2*z(a). Let h be f(-12). What is" -"nd 25965.0097 to the nearest ten thousand.\n30000\nWhat is 0.00146753147 rounded to 4 dps?\n0.0015\nRound -0.0004924307 to 4 decimal places.\n-0.0005\nRound -319126557 to the nearest 100000.\n-319100000\nRound -0.00588905176 to 4 decimal places.\n-0.0059\nRound 11.1103454 to 0 decimal places.\n11\nRound -879.845094 to the nearest integer.\n-880\nRound -7.711177 to two decimal places.\n-7.71\nWhat is -34548031.51 rounded to the nearest one hundred thousand?\n-34500000\nRound -599.8532714 to the nearest 100.\n-600\nWhat is -90777243.96 rounded to the nearest one hundred thousand?\n-90800000\nWhat is -0.00048045077 rounded to 6 decimal places?\n-0.00048\nWhat is 88.7862052 rounded to the nearest integer?\n89\nRound -4195.24483 to the nearest one hundred.\n-4200\nRound -2953.067997 to the nearest one thousand.\n-3000\nWhat is 0.0583269242 rounded to 3 dps?\n0.058\nRound -0.01787864619 to 4 decimal places.\n-0.0179\nWhat is -0.0053550573 rounded to six decimal places?\n-0.005355\nRound 45830.3348 to the nearest one hundred.\n45800\nRound 0.0001040011319 to five decimal places.\n0.0001\nWhat is -617.4143212 rounded to 2 decimal places?\n-617.41\nRound 107.74777 to 1 dp.\n107.7\nWhat is -2977255.941 rounded to the nearest one hundred?\n-2977300\nRound -0.11231345132 to 6 dps.\n-0.112313\nRound 0.3184564862 to three dps.\n0.318\nWhat is -380602.67" -" Let i = u + -13. Is i at most -5/7?\nTrue\nLet h = 2.8 - -0.2. Let f = h + 1. Let c = -4 + f. Is c > 1/3?\nFalse\nLet d = 0.5 - 2.5. Let g = -5 - -3. Let h = g + d. Is 0.2 at least h?\nTrue\nLet t be (-2 - -1)*(-1)/(-3). Let b = 14 + -24. Let o = b - -9. Are t and o nonequal?\nTrue\nLet p be -34 + (5/3 - 2). Let t = 35 + p. Is -0.07 at least as big as t?\nFalse\nLet x be 64/(-48) - 2/(-6). Is -1 equal to x?\nTrue\nLet a = 1 + -4. Let b = 1 + -2. Let i be 0/(1 + b + a). Which is smaller: i or -1/5?\n-1/5\nLet i be 4/26 - 16/104. Is 0 at most i?\nTrue\nSuppose -5*l - 7 = -3*l - 5*m, 0 = 3*l + 5*m + 48. Let k(c) = c**2 + 10*c - 8. Let v be k(l). Is v < 3?\nFalse\nSuppose g + 4*t = 1, -4*g = -3*t - 0" -"))*(-2)/6. Solve 0 = o*m + 6 - a for m.\n-3\nSuppose -5*q + 25 = 0, 3*k = 2*k + 4*q - 7. Let g(l) = -2*l + 27. Let a be g(k). Solve a = -v - 0*v for v.\n-1\nLet f(s) = -6*s + 108. Let m be f(18). Solve m = -33*b + 28*b - 15 for b.\n-3\nSuppose 27*d - 182 = 13*d. Solve -d = -3*y - 28 for y.\n-5\nSuppose 0 = 13*u - 3 - 62. Suppose u*f - 39 = -4. Solve -3*z = -f*z - 20 for z.\n-5\nLet b be (-3)/(0 + (-4)/8). Let a = 8 - b. Suppose 0 = 4*h + g - a, 2*h - 4*g = 5 + 5. Solve -2 = -j - h for j.\n1\nSuppose 0 = 2*t + 2*b - 4, 4*b = -t - 2 + 1. Suppose -5*u = 4*v, 5*u = t*v + u. Solve v - 2 = -r for r.\n2\nLet s be (166/3)/(2/(-3)). Let p = -46 - s. Suppose 5*f - p = 38. Solve -8*j + f = -3*j for j.\n3\nSuppose -2*l =" -"519\nWhat is the remainder when 5247772 is divided by 280?\n12\nWhat is the remainder when 19648539 is divided by 15?\n9\nCalculate the remainder when 383797 is divided by 757.\n755\nWhat is the remainder when 56142 is divided by 18521?\n579\nCalculate the remainder when 624129196 is divided by 1939.\n1937\nCalculate the remainder when 90622 is divided by 2625.\n1372\nCalculate the remainder when 41824013 is divided by 464711.\n23\nWhat is the remainder when 44397145 is divided by 23?\n15\nCalculate the remainder when 2298235 is divided by 790.\n125\nWhat is the remainder when 21225 is divided by 91?\n22\nWhat is the remainder when 36555 is divided by 302?\n13\nWhat is the remainder when 35082072 is divided by 1425?\n1422\nCalculate the remainder when 3005215 is divided by 150259.\n35\nCalculate the remainder when 981009 is divided by 205.\n84\nCalculate the remainder when 416295 is divided by 1735.\n1630\nCalculate the remainder when 92401 is divided by 21364.\n6945\nCalculate the remainder when 189222 is divided by 13514.\n26\nWhat is the remainder when 10086175 is divided by 5003?\n127\nWhat is the remainder when 894647 is divided by 99?\n83" -"/78\nWhat is prob of sequence wt when two letters picked without replacement from {t: 2, w: 4}?\n4/15\nTwo letters picked without replacement from cxrarrzxrrrcrcamr. What is prob of sequence cx?\n3/136\nTwo letters picked without replacement from {o: 4}. Give prob of sequence oo.\n1\nThree letters picked without replacement from {h: 1, y: 2, b: 1}. What is prob of sequence hyy?\n1/12\nWhat is prob of sequence wccc when four letters picked without replacement from {c: 3, w: 5}?\n1/56\nFour letters picked without replacement from bbbbpppb. What is prob of sequence bbpp?\n1/14\nWhat is prob of sequence kj when two letters picked without replacement from {y: 2, k: 1, j: 2, w: 2, c: 2, v: 3}?\n1/66\nCalculate prob of sequence llp when three letters picked without replacement from pplyuyalpupplypyyy.\n1/136\nTwo letters picked without replacement from {x: 5, q: 5}. Give prob of sequence qx.\n5/18\nWhat is prob of sequence pgp when three letters picked without replacement from {p: 3, g: 7, f: 3, i: 1, a: 4}?\n7/816\nThree letters picked without replacement from {x: 2, l: 1, s: 1}. Give prob of sequence sxx.\n1/12\nThree letters picked without" -"econd derivative of -d**4/12 - 7*d**3/6 + 3*d**2/2 + 21*d. Let p = -350 + 342. Give k(p).\n-5\nLet g = 27 - -25. Let p = -48 + g. Suppose -p*f + 32 = -4*c, 0*c + 22 = -5*c - f. Let x(l) = -l**3 - 5*l**2 + l. Determine x(c).\n-5\nLet n(r) = r**3 + 2*r + 2. Let i(d) = 4*d**3 - 9*d**2 + 12*d - 14. Let w(o) = i(o) - 3*n(o). What is w(8)?\n-36\nLet j(m) = m**3 + 7*m**2 - 30*m - 184. Let x be j(-8). Let l(h) = -h - 20. Give l(x).\n-12\nSuppose 0 = -3*l + 6, 5*l = -5*x - 4 - 16. Let y = 11 + x. Let c(m) = -3*m + 7. Determine c(y).\n-8\nLet j(n) = -n + 6. Let b(x) = -5*x**2 + 11*x - 18. Let l be b(2). Let g(q) = -q**3 - 15*q**2 + 19*q + 36. Let m be g(l). Calculate j(m).\n18\nLet t(n) = n**3 + 6*n**2 - 16*n + 9. Let v be t(-8). Let z = v + -7. Let q(y) = -2*y**2 + 3*y - 1. Calculate q(z).\n-3" -"der when m is divided by 33?\n31\nCalculate the remainder when 153 is divided by (-83)/(-83)*(51 - (2 - 4)).\n47\nSuppose 3*j - 2*j = 6. Suppose -10 = u - j*u. Calculate the remainder when 1/u*6 - -43 is divided by 16.\n14\nLet w(d) = d**3 + 9*d**2 + 4*d + 2. Let b be w(-5). Suppose -b = -3*x - 22. Calculate the remainder when 79 + -3*8/12 is divided by x.\n17\nSuppose -12*a = -11*a + 2. What is the remainder when a/(12/(-2))*18 is divided by 2?\n0\nCalculate the remainder when 349 is divided by (-2)/24*4*(1 + -97).\n29\nSuppose -5*t = 0, 5*p + 440 - 130 = 4*t. Calculate the remainder when (1 + (-7 + 1 - -4))*p is divided by 11.\n7\nLet p(x) = -7*x + 15. Let q be 99/21 + 2/7. What is the remainder when 0 + q/((-10)/(-4)) is divided by p(2)?\n0\nLet w = 15 - 11. Suppose 5*t - 170 = -3*p - 42, -2*t + w*p + 72 = 0. What is the remainder when 223 is divided by t?\n27\nLet a = 1 + 4. Suppose 4*s -" -"et o(x) = x**3 + 6*x**2 - 9*x + 2. Let w be o(-7). Let v = 34 - w. Calculate the remainder when 35 is divided by v.\n17\nWhat is the remainder when 56 is divided by (-32)/40*(-210)/28?\n2\nSuppose -60*d = -19011 + 6951. Calculate the remainder when d is divided by 34.\n31\nLet o(j) = 2*j**3 - 27*j**2 + 17*j - 30. Calculate the remainder when 131 is divided by o(13).\n21\nSuppose 0 = f - 4*l - 611, -2*f + 2*l + 1171 + 51 = 0. Calculate the remainder when f is divided by 102.\n101\nSuppose 4*t - 4*s + 34 = 110, 0 = -5*t + 4*s + 92. Calculate the remainder when 92 is divided by t.\n12\nLet l(r) = 14*r**2 - 3*r + 2. Let h be l(2). Let y = h - 46. What is the remainder when 23 is divided by y?\n5\nSuppose 0 = 5*q + 18 + 2, q - 820 = -4*y. What is the remainder when y is divided by 21?\n17\nLet f(n) = -2*n**3 - n**2 + 8*n + 19. What is the remainder when f(-4) is divided" -"s picked without replacement from totgntttg?\n5/504\nFour letters picked without replacement from {t: 5, b: 8}. What is prob of sequence btbt?\n28/429\nTwo letters picked without replacement from vvvbbvbnbvbbvvv. Give prob of sequence nb.\n1/35\nThree letters picked without replacement from {e: 5, u: 2, z: 6}. Give prob of sequence ezu.\n5/143\nWhat is prob of sequence qq when two letters picked without replacement from {t: 1, q: 7, n: 2}?\n7/15\nFour letters picked without replacement from {k: 3, i: 5, d: 8}. What is prob of sequence kidk?\n1/182\nTwo letters picked without replacement from jjwnnnewpwwenwwtw. Give prob of sequence nj.\n1/34\nCalculate prob of sequence ppi when three letters picked without replacement from {i: 3, p: 3, c: 2}.\n3/56\nWhat is prob of sequence vfu when three letters picked without replacement from {v: 2, o: 2, u: 8, f: 1}?\n4/429\nFour letters picked without replacement from {p: 2, e: 7, h: 1, j: 2, f: 7}. Give prob of sequence hpfj.\n7/23256\nWhat is prob of sequence nnzt when four letters picked without replacement from tmntztmnnnznnntntttm?\n98/14535\nCalculate prob of sequence wmh when three letters picked without replacement from mmqhmmqwmqhhmm.\n1/104\nWhat" -"674*l + 18412. Give w(-11).\n-2\nLet j(n) = 22*n**2 + 531*n - 531. Determine j(1).\n22\nLet h(q) = 7*q**3 + 20*q**2 + 4*q + 8. What is h(-3)?\n-13\nLet v(m) = -2*m**2 + 23*m - 9. Give v(14).\n-79\nLet t(k) = -2*k**3 - 4*k**2 - 3*k - 18. Give t(-6).\n288\nLet m(x) = 2*x**3 + 30*x**2 + 22*x - 27. What is m(-14)?\n57\nLet k(v) = -v**2 - 49*v + 123. Give k(-49).\n123\nLet g(t) = -106*t + 627. Give g(6).\n-9\nLet w(c) = 54*c**3 + 3*c**2 + 2*c - 3. What is w(1)?\n56\nLet q(z) = -1053*z + 3118. Determine q(3).\n-41\nLet u(b) = b**3 + 14*b**2 + 27*b - 24. Calculate u(-12).\n-60\nLet s(n) = n**3 - 9*n**2 + 5*n - 40. Give s(9).\n5\nLet t(r) = r**2 - 68*r - 370. Determine t(-5).\n-5\nLet p(y) = 2*y**2 + y - 117. Calculate p(0).\n-117\nLet l(n) = 182*n - 8742. What is l(48)?\n-6\nLet c(s) = -975*s - 1712. Calculate c(-2).\n238\nLet h(n) = n**3 - 4*n**2 - 7*n + 24. Determine h(5).\n14\nLet s(f) = -184*f + 4784. Calculate s(26)." -"ose -q + 3*o - 9 = 0, -3*q + 45 = -8*q + o. Let w(c) be the second derivative of c**4/12 + 4*c**3/3 + c**2 - 2*c. What is the tens digit of w(q)?\n1\nLet l be (-3)/(-7) + 3/(-7). Let x(b) = -b**3 - b**2 + b - 28. Let c be x(l). What is the tens digit of (-514)/(-14) - 8/c?\n3\nSuppose -52 + 607 = 5*f. Let j = f - -46. What is the units digit of j?\n7\nLet y be -3 - -374*(4 + -3). Suppose 3*l = -5*n + y, 0*l + 245 = 2*l + n. What is the hundreds digit of l?\n1\nLet a be (-1 - -1)/((-1 + 9)/(-4)). Suppose a*s = 4*s + 5*u - 217, 2*s + 3*u - 111 = 0. What is the tens digit of s?\n4\nLet u(b) = 7*b**2 + 16*b - 9. Let m(z) = -6*z**2 - 16*z + 10. Let q(i) = 6*m(i) + 5*u(i). Let c be q(-13). Suppose r = 4*r - c. What is the units digit of r?\n8\nLet o = 909 + -470. Let m = o - 174. What" -"-49 - t. Suppose 3*a = -s*a + 50. Solve 3*p = -3, -a = n - 5*n - 2*p for n.\n3\nLet x(c) = -5*c**3 - 214*c**2 + 42*c - 38. Let r be x(-43). Let j(y) = -5*y - 33. Let s be j(-7). Solve r*l + 2*g - 17 = 0, -l - 9 = -s*l + g for l.\n5\nSuppose -98*u - 90*u + 196*u - 152 = 0. Solve -x - 5*t = u - 17, 5*t = 3*x + 6 for x.\n-2\nLet w = -6070 + 6081. Solve 30 = -2*y - 4*t, w = 5*t + 36 for y.\n-5\nSuppose 191 = 2*m - k, 2*k - 108 = m - 2*m. Suppose -2*z = 3*z - 10, -2*g - z + m = 0. Let d = g - 44. Solve -3*t = d*j - 8, -3*t - j + 4 = 2 for t.\n0\nLet u be (1/(0 + 1))/(12 - 253/22). Solve -2*z + 10 = -3*x, u*x - 5*z + z + 4 = 0 for x.\n-4\nSuppose 1853 = -13*p + 30*p. Let g = 113 - p. Solve -g*y =" -"ber?\nTrue\nLet y = -5 + 7. Let l(d) = -y + 0 + d**2 - 5 + 8*d - 1. Is l(7) a composite number?\nFalse\nLet a be -1 - -4 - (8 - 137). Suppose 5*s - 209 = 2*s + 2*j, -2*s + a = -5*j. Is s a prime number?\nTrue\nLet h = 5506 + -2785. Is h prime?\nFalse\nSuppose 5*d - 2*k - 3 = -0*k, -d + 5 = 4*k. Let p be 1692/10 - d/5. Let i = -92 + p. Is i composite?\nTrue\nLet z be (-1)/((-2)/(-4)) + 3. Is (-43)/(-1) + (4 - z) composite?\nTrue\nLet t = 32 - -159. Is t composite?\nFalse\nLet d(l) = -l**3 + 5*l**2 - 2*l - 4. Let v be d(4). Suppose -v*j + 1492 - 24 = 0. Is j composite?\nFalse\nLet a = -2 - -64. Suppose -5*o - 5*d = -0*d - 165, -a = -2*o - 3*d. Is o prime?\nTrue\nSuppose x = -2*w + 531, -2*w + w + 2*x = -268. Suppose 4*p = 5*g - 351, -w = -5*g - 2*p + 61. Is g a composite number?" -"d + 0*d).\n-17*d\nExpand (0 + 0 - o + 9)*(-1 - 3 + 2).\n2*o - 18\nExpand (-2 + 4*k - 8*k - 4*k)*(0*k - k + 0*k) - k**2 + 5*k**2 - 2*k**2.\n10*k**2 + 2*k\nExpand -4*b**2 + b**2 + 0*b**2 + (-2 + 1 + 3)*(b**2 + b**2 + 0*b**2).\nb**2\nExpand (-2*r - 3*r + 2*r)*(-r - 3*r + 0*r + (2 + 2*r - 2)*(0 + 2 + 0) + r + 3*r - 2*r + 3*r - 2*r + r).\n-12*r**2\nExpand (0*c - 2*c + 0*c)*(-2 + 1 + 2)*(-2*c + 1 - 1) + 16*c**2 - 27 + 27.\n20*c**2\nExpand (2 + 0 - 1)*(4 + 11*p - 2 - 8*p) + (p - 3*p + p)*(5 + 3 - 6).\np + 2\nExpand 3*g**2 + 2*g**2 - 7*g**2 - g**2 + 0*g**2 + 3*g**2 + 2*g**2 + 0 + 0 + (-g + 2*g - 2*g)*(-g + 3*g - 4*g) + g**2 + 0*g**2 + 2*g**2 + g**2 + 3*g**2 - g**2.\n10*g**2\nExpand (-6 + 109*g + 115*g - 218*g)*(0*g + 3*g - g).\n12*g**2 - 12*g\nExpand (2*x - 5*x + 2*x)*(159*x - 159*x" -"5?\n5\nWhat is the hundred thousands digit of 104216?\n1\nWhat is the units digit of 27375?\n5\nWhat is the tens digit of 35176528?\n2\nWhat is the ten thousands digit of 252403?\n5\nWhat is the hundreds digit of 4393107?\n1\nWhat is the units digit of 244601?\n1\nWhat is the ten thousands digit of 58547?\n5\nWhat is the hundred thousands digit of 3445181?\n4\nWhat is the units digit of 3273749?\n9\nWhat is the thousands digit of 224786?\n4\nWhat is the thousands digit of 23587122?\n7\nWhat is the thousands digit of 237554?\n7\nWhat is the hundred thousands digit of 8407774?\n4\nWhat is the thousands digit of 21463?\n1\nWhat is the hundreds digit of 5440?\n4\nWhat is the units digit of 13119753?\n3\nWhat is the hundred thousands digit of 14609602?\n6\nWhat is the hundreds digit of 927560?\n5\nWhat is the millions digit of 8371420?\n8\nWhat is the units digit of 3067167?\n7\nWhat is the tens digit of 6057121?\n2\nWhat is the thousands digit of 2370548?\n0\nWhat is the hundreds digit of 111682?\n6\nWhat is the tens digit of 11890?\n9" -"15 or u?\nu\nLet l be (-4)/8*-1 - (2/(-4) + 0). Which is smaller: 11/147 or l?\n11/147\nSuppose 0 = -2*m + 5*u + 451, -m - 3*u + 219 = u. Suppose 4*h = m + 349. Is h < 142?\nFalse\nLet f = -1848 - -1609.4. Let d = f - -240. Which is smaller: d or -7?\n-7\nLet d be 42/40*(-38)/133 + (-1)/(-10). Let h = 8 - 5. Let y = h + -2. Do d and y have different values?\nTrue\nSuppose 3*n + 4*h = 215, 0 = 7*n - 2*n - 3*h - 310. Let b = -15/2732 + -1958679/30052. Let j = n + b. Is 0.03 less than j?\nFalse\nSuppose 0 = -25*o + 27*o - 6. Suppose 10*h = -o*h - 2496. Are -192 and h unequal?\nFalse\nSuppose 5*k + 17*d = 21*d - 12, 3*k - 2*d = -6. Let l = 278305/32 + -8696. Is l >= k?\nTrue\nLet q = -11975 + 3137465/262. Which is greater: 0 or q?\nq\nLet b(k) = 1. Let m(w) = w**2 - 2*w + 3. Let z(t) = -2*b(t) + m(t). Let i" -"*a**2/2 + 1247*a. Differentiate t(d) wrt d.\n2014\nLet s(d) = 5*d**3 - 204*d**2 + 9*d + 913. Let h(p) = 14*p**3 - 610*p**2 + 24*p + 2737. Let l(b) = 3*h(b) - 8*s(b). Differentiate l(i) with respect to i.\n6*i**2 - 396*i\nSuppose 3*u + 11 = m - 5, 5*u - 4*m + 22 = 0. Let c be (-8)/u*9/6. Find the third derivative of -19*p**2 + 42*p**c - 26*p**2 + 4*p**4 wrt p.\n96*p\nWhat is the third derivative of v**2 - 7*v**2 - 3025*v**5 - 11*v + 357*v wrt v?\n-181500*v**2\nLet c(b) be the first derivative of 103*b**4/4 + 394*b**2 - 302. Find the second derivative of c(w) wrt w.\n618*w\nLet m(y) be the first derivative of 489*y**4 - 5*y**3 + 2*y**2 - 2*y + 5935. Find the third derivative of m(c) wrt c.\n11736\nLet a(g) = -734*g**3 + 101*g + 1008. Let k(y) = -1467*y**3 + 185*y + 2016. Let h(f) = -11*a(f) + 6*k(f). Differentiate h(i) wrt i.\n-2184*i**2 - 1\nLet l(u) = -2735*u**2 - 5646*u + 27. Let d(k) = 2739*k**2 + 5646*k - 36. Let r(h) = -3*d(h) - 4*l(h). What is the second derivative of r(v) wrt" -"\nSolve -24*f = -22*f + 4*q + 24, 3*f = -q - 16 for f.\n-4\nSolve q - l = -0*l + 5, l = 4*q - 11 for q.\n2\nSolve s + 0*s = 3*i + 20, 3*i = -5*s + 10 for s.\n5\nSolve -3*j = -5*j - 4*n + 18, 0 = j - 4*n + 21 for j.\n-1\nSolve 0*g - 2*i = -3*g - 6, -2*i - 8 = 4*g for g.\n-2\nSolve 0 = -4*c + 12, -5*g + 2*c - 14 = -c for g.\n-1\nSolve 3*a - 6*a + 4 = -4*x, -a = 2*x + 12 for x.\n-4\nSolve -4*c + 31 = -5*i - 9, -5*c - 4*i = -9 for c.\n5\nSolve -5*j + t = -10, -2*j + 0*j - t = -4 for j.\n2\nSolve -4*j - 5*h = -3, -7*h - 10 = -3*j - 3*h for j.\n2\nSolve 4*w + 28 = -4*h, 6*h - 7*h + 3*w + 17 = 0 for h.\n-1\nSolve 0 = a + 4*v + 22, 0*v + 2*v = -10 for a.\n-2\nSolve 0 = -k" -"*p**2 + 26*p + 3. Let z(c) = 7*d(c) + 2*w(c). Determine z(5).\n-3\nLet n(i) = -37*i + 70. Let k(w) = -5*w + 1. Let j(f) = -18*k(f) + 2*n(f). Determine j(-8).\n-6\nSuppose -3*h + 5*k = -15 - 12, -k + 36 = 4*h. Let x(f) = -2*f + 20. Give x(h).\n2\nLet v(l) = -l**2 + 9*l + 55. Let g be v(-4). Let z(a) be the first derivative of 5/3*a**3 + 3 - g*a + 0*a**2 + 1/4*a**4. Give z(-5).\n-3\nSuppose b - 1 - 2 = 2*i, 2*b - 6 = -2*i. Let q(s) = i*s - 2 + 0*s + 11*s**3 - s + 3. Let h = -3 - -4. Give q(h).\n11\nLet p(y) = -y**2 - 4*y + 5. Suppose -g = -4*q + 3, 4*g - 23 = 8*g - 5*q. What is p(g)?\n-16\nLet a = -10 - -13. Let v be (42/49)/(a/(-21)). Let s(f) = -f**3 - 5*f**2 + 6*f. Give s(v).\n0\nLet j(n) = -n + 1. Let z(q) = -q**2 + 5*q + 6. Let s(c) = -j(c) - z(c). Let v(t) be the first derivative of s(t). Suppose 3*r" -" - 1354 = -274 for x.\n-15\nSolve 2376 = 22*t + 2310 for t.\n3\nSolve 12677*r - 12696*r = 133 for r.\n-7\nSolve 37*h = 17*h + 19*h + 23 for h.\n23\nSolve 142*v - 19062 = -482*v - 82*v for v.\n27\nSolve -23*o - 83 - 463 - 167 = 0 for o.\n-31\nSolve -841*m + 57 = -860*m for m.\n-3\nSolve 313*g - 514*g = 2211 for g.\n-11\nSolve -6*l + l = 8*l + 156 for l.\n-12\nSolve 2 + 23 = 16*y - 103 for y.\n8\nSolve -102*b = 67*b + 211*b - 70*b for b.\n0\nSolve 323158 = -13*q + 323392 for q.\n18\nSolve 49*q - 2891 + 2548 = 0 for q.\n7\nSolve -13*k + 24 - 114 = 118 for k.\n-16\nSolve 45 = 43*r - 48*r - 5 for r.\n-10\nSolve -436*w + 6499 = -477 for w.\n16\nSolve 20*r - 144 + 68 = -496 for r.\n-21\nSolve 1307 = 41*x + 651 for x.\n16\nSolve -90 = 198*m - 168*m for m.\n-3\nSolve -166*y + 180 = -80*y - 77*y for" -"-0.23. Let i = -0.07 - p. Let x = -0.02 - i. Round x to 2 decimal places.\n-0.04\nLet h = 66.5 + -54. Let s = -12.50000057 + h. Round s to 7 dps.\n-0.0000006\nLet w be (-5)/4*2*-2. Suppose 3*i + 4*l + 427 = 0, w*l + 280 = -4*i + 2*i. What is i rounded to the nearest ten?\n-150\nLet w = 34941 - 34962.989. Let n = w - -0.189. Round n to the nearest integer.\n-22\nLet y = 5 + -4.8. Let t = -1171613 - -1171612.79999904. Let o = y + t. What is o rounded to 7 decimal places?\n-0.000001\nLet p = 0.6 + -1.4. Let a = -0.137 - -1.407. Let i = a + p. What is i rounded to one decimal place?\n0.5\nLet z = 23.9 + -25. Let v = z - -5.1. Let u = -4.0004 + v. What is u rounded to 4 decimal places?\n-0.0004\nLet b = 0.043 + 0.087. What is b rounded to one decimal place?\n0.1\nLet o = 9.41 + -17.3. What is o rounded to the nearest integer?\n-8\nLet z = -16.98" -"ative of -o**2 - 6*o + h*o - 2*o**3 wrt o.\n-12\nLet n be 4/(-18) - (-2)/9. Find the third derivative of i**5 + n*i**5 + 6*i**2 - 4*i**2 wrt i.\n60*i**2\nWhat is the second derivative of -4*u + 3*u - 22*u**4 + 2*u + 19*u**4 wrt u?\n-36*u**2\nLet c(q) be the first derivative of 26*q**5/5 - 2*q**3 - 5. What is the third derivative of c(x) wrt x?\n624*x\nLet k = 15 + -11. Let v be -3*(0 + k/(-6)). What is the first derivative of -3 - v*l**3 + 1 + 3 wrt l?\n-6*l**2\nFind the first derivative of 11*j + 4*j**4 + 2 - 11*j wrt j.\n16*j**3\nLet m(z) be the second derivative of -7*z**5/20 + z**3/6 - z. Find the second derivative of m(w) wrt w.\n-42*w\nLet l = 11 + -7. Suppose -l*i + 6 = 2. What is the first derivative of -1 + p**4 - i + 3 wrt p?\n4*p**3\nLet k(n) be the second derivative of 0*n**3 + 0*n**2 + 0*n**7 + 9/56*n**8 - 8*n + 0*n**6 + 0*n**5 + 0 - 1/2*n**4. What is the third derivative of k(y) wrt y?\n1080*y**3\nSuppose" -"2, y, 4?\ny\nLet d = 217.01 - 218. Let p = 0.01 - d. Suppose 1 - 4 = 3*m, 3*j + 2*m = 1. What is the closest to j in -2, p, 1/5?\np\nLet w = -75 + 53. Let n = 22.5 + w. Which is the closest to -2/3? (a) n (b) -0.5 (c) -0.2\nb\nLet b = 1.7 + 6.3. Let l = 8 + -19. Let n = b + l. What is the closest to 0 in n, -2/13, -0.2?\n-2/13\nSuppose -y + 1 = -2*y. Which is the nearest to y? (a) -0.4 (b) 0.2 (c) 0.1\na\nLet p = -6 + 4.1. Let k = p + 2. Suppose -6*w + w = -20. Which is the closest to k? (a) -0.3 (b) -0.2 (c) w\nb\nLet v be (-4)/(-1)*(-6)/84. Which is the nearest to 3? (a) -1/2 (b) v (c) -3/2\nb\nLet q = -12 + 17. Let o = q - 5.1. Let t be ((-3)/14)/((-6)/8). Which is the closest to o? (a) t (b) 3/5 (c) 3/2\na\nLet z be (-4)/(8/6) - 1. Suppose d + 2 = 1." -"9160\nCalculate the lowest common multiple of 215 and 189685.\n8156455\nWhat is the common denominator of 93/1232 and -63/3872?\n27104\nCalculate the least common multiple of 6153 and 182539.\n547617\nCalculate the least common multiple of 3 and 140581.\n421743\nFind the common denominator of 30/101783 and 129/92530.\n1017830\nCalculate the lowest common multiple of 297398 and 16.\n2379184\nFind the common denominator of 83/2914 and -71/2697.\n253518\nFind the common denominator of -35/36 and 57/9860.\n88740\nWhat is the common denominator of -38/111 and 65/145269?\n5374953\nCalculate the common denominator of 50/63 and 7/346788.\n2427516\nCalculate the least common multiple of 41856 and 480.\n209280\nWhat is the common denominator of -193/1560 and -18/625?\n195000\nWhat is the common denominator of 49/473 and -43/363?\n15609\nFind the common denominator of 35/11292 and -95/60224.\n180672\nWhat is the common denominator of 71/270788 and -39/4?\n270788\nCalculate the lowest common multiple of 1398696 and 2.\n1398696\nWhat is the smallest common multiple of 4368 and 117?\n13104\nCalculate the common denominator of 1/3184 and 67/52536.\n105072\nCalculate the smallest common multiple of 4104 and 2088.\n119016\nFind the common denominator of -71/1522 and 13/45.\n68490\nWhat is the least common" -"k - 8*k = 12. Suppose -2*o + k = -10. List the prime factors of o.\n2\nSuppose -12*v - 26 - 82 = 0. Let j be (-1)/(-2)*0*(-3)/v. Suppose j = b + 8*b - 1197. What are the prime factors of b?\n7, 19\nLet n(b) = 527*b**2 + 27*b + 44. List the prime factors of n(5).\n2, 11, 607\nLet d(t) = 20*t**2 + 432*t - 15. What are the prime factors of d(16)?\n61, 197\nList the prime factors of -3 - (-10 - -10) - (-2 + -60370).\n3, 20123\nSuppose -90 = 10*h - 10. What are the prime factors of 150/h*(-56)/14?\n3, 5\nLet r(v) = 60*v**2 + 171*v - 6994. List the prime factors of r(35).\n71, 1021\nLet s(q) be the first derivative of 29*q**2 - 30*q - 24. Let b be s(6). Suppose -b = -6*d + 192. List the prime factors of d.\n5, 17\nLet w = 25 + -17. Let y = w + -33. Let h = y - -51. What are the prime factors of h?\n2, 13\nSuppose -6*c - 21 = -27. What are the prime factors of 29 - (c" -" base 5, what is 142 + -1003?\n-311\nIn base 3, what is -12001021122 + 0?\n-12001021122\nIn base 6, what is 150434 + 2?\n150440\nIn base 14, what is -ccc38 + -5?\n-ccc3d\nIn base 7, what is 1 + -3401554?\n-3401553\nIn base 14, what is 3 + -c98a?\n-c987\nIn base 4, what is -20131031 - -21?\n-20131010\nIn base 4, what is -11112020332 + -3?\n-11112021001\nIn base 12, what is 3 - 16096?\n-16093\nIn base 10, what is 23 - -26218?\n26241\nIn base 13, what is -17c84 - -2?\n-17c82\nIn base 9, what is 222 - 3386?\n-3164\nIn base 4, what is 10313 + -12131?\n-1212\nIn base 3, what is 20212012212 - 2?\n20212012210\nIn base 3, what is -10220 - 1202012?\n-1220002\nIn base 9, what is -1747 - 8?\n-1756\nIn base 15, what is 631 + 86b?\ne9c\nIn base 10, what is -17952 + 4?\n-17948\nIn base 13, what is 1a - 75a?\n-740\nIn base 12, what is -2 + 32ba95?\n32ba93\nIn base 9, what is -16180 - 1?\n-16181\nIn base 8, what is -3 - -1300150?\n1300145\nIn base 5," -".7\na\nWhat is the fourth biggest value in -1/10, 2/15, -1.24, 1?\n-1.24\nWhat is the second smallest value in 115, -3/4, 0?\n0\nWhich is the fifth smallest value? (a) 0.4 (b) 4 (c) -2/5 (d) -308 (e) 2\nb\nWhat is the second biggest value in 5, -2/9, 2205, -1/6?\n5\nWhich is the second biggest value? (a) -3 (b) 32 (c) 1\nc\nWhat is the biggest value in 1/5, 1, 18?\n18\nWhich is the second biggest value? (a) 5 (b) 2/5 (c) -0.17\nb\nWhich is the fourth smallest value? (a) -3 (b) 3 (c) -2 (d) -5\nb\nWhat is the smallest value in -8, 2/3, 20/3, -2, -1?\n-8\nWhich is the smallest value? (a) 0.4 (b) -7 (c) 1.8\nb\nWhich is the third biggest value? (a) -1 (b) -2 (c) -0.1 (d) -4/3 (e) -0.13\na\nWhich is the second biggest value? (a) 52/5 (b) -9 (c) 2/7\nc\nWhat is the third biggest value in -3, 17, -1/3, 0.2, 5?\n0.2\nWhat is the biggest value in -3, 5, -24?\n5\nWhich is the third biggest value? (a) 0.07 (b) -1 (c) -27 (d) 2\nb\nWhat is the" -"- 3*x for x.\n-2\nSuppose 0 = -10*l + 6*l + 132. Suppose 3*m - d - 2*d = l, 0 = 5*m + d - 79. Solve o = -2*o - m for o.\n-5\nSuppose -2*b + 11 - 7 = 0. Solve -b = -2*l + 6 for l.\n4\nLet y(i) = -i**2 - 8*i - 12. Let b be y(-5). Solve b*f = 1 - 13 for f.\n-4\nSuppose 0*j = -2*j. Let y(s) = s**3 - s**2 + s + 5. Let a be y(0). Let p(w) = -59*w - 408. Let q be p(-7). Solve q*t + a + 5 = j for t.\n-2\nSuppose 4*r + 5*x = 21, 3*r - 2*r - 1 = 3*x. Solve -q - r + 3 = 0 for q.\n-1\nSuppose x + 5*t + 12 = 50, 2*t - 98 = -4*x. Let w = x + -13. Let p be 62/10 + (-2)/10. Solve m = p*m + w for m.\n-2\nLet s be ((-3)/(-6))/((-2)/12). Let f = s + 6. Solve -2 = -f*p - 11 for p.\n-3\nSuppose 3*m + 2 = 17. Suppose 2*a -" -". Let s(r) = 3*r - 2. Let p(f) = y*o(f) + 7*s(f). Calculate p(-2).\n-4\nLet j(d) be the first derivative of 17*d**4/2 - d**3/3 - d**2 - d + 245. What is j(-1)?\n-34\nLet y(j) be the first derivative of 14 + j + 16/3*j**3 - j**2. Suppose 0 = -d - 2*d + 3. Give y(d).\n15\nLet k(w) be the third derivative of 246*w**2 - 1/10*w**5 - 1/4*w**4 + 0*w - 1/120*w**6 + 0 + 1/6*w**3. Give k(-5).\n6\nLet a(r) = r**3 - r**2 + r - 1. Let l = 4 + 0. Suppose -5*z = -16 - l. Let w be 2/z + (-1)/2 + 0. Determine a(w).\n-1\nLet u(z) = z**3 - z**2 - 1. Let x(a) = -5*a**3 - 7*a**2 + a - 3. Let q(k) = 6*u(k) + x(k). Let n = -81 + 94. Calculate q(n).\n4\nLet u(z) be the second derivative of z**5/20 + z**4/3 + 11*z**3/6 + 21*z**2/2 - 1891*z. Determine u(-4).\n-23\nLet k(q) = -q + 12. Suppose 103*s - 72 = 97*s. Suppose -d = 2, h - 2*d - 4 = s. Determine k(h).\n0\nLet u(p) = -5*p -" -" = -2*b. What is the least common multiple of k and b?\n56\nSuppose 18 = -0*w - 3*w. What is the common denominator of 45/w - (-4)/(-10) and 101/20?\n20\nLet h = -803/18 + 11593/252. What is the common denominator of 524/(-24) + -6 + (-140)/(-21) and h?\n84\nLet x be 8/(-40130)*168526/(-8). Let v = 2/4013 + x. What is the common denominator of v and -43?\n5\nLet m be (24/15 + -2)*15. What is the common denominator of 59/9 and (-291)/m - (-1 + 1)?\n18\nWhat is the common denominator of -22/5 and 30/(-105) + (-151)/35?\n5\nSuppose 5*f + 15 = 1065. Suppose 4*t - t - f = 0. Find the common denominator of 37/4 and (-46)/t - 3/15.\n28\nLet f = -16 - -19. Let l = f + 17. What is the smallest common multiple of 4 and l?\n20\nSuppose 2*l - 9*l - 70 = 0. What is the common denominator of l and 19/11?\n11\nLet w = -14198045/12 - -1183977. Let h = w + -812. Calculate the common denominator of -75/22 and h.\n132\nSuppose 0*j - 2*j + 11 = -5*t, 3*j +" -" picking 1 j and 1 g?\n1/3\nWhat is prob of picking 2 h and 2 v when four letters picked without replacement from {h: 4, v: 2}?\n2/5\nTwo letters picked without replacement from {w: 2, r: 4, c: 2, s: 4, z: 2}. Give prob of picking 1 c and 1 s.\n8/91\nFour letters picked without replacement from {l: 2, v: 4, e: 2, j: 1}. What is prob of picking 2 e, 1 l, and 1 v?\n4/63\nWhat is prob of picking 2 h when two letters picked without replacement from vhzvh?\n1/10\nFour letters picked without replacement from ddtdtitidtdd. What is prob of picking 2 d and 2 i?\n1/33\nFour letters picked without replacement from jvvvvjjjjvvjvvvvvvv. What is prob of picking 4 v?\n715/3876\nCalculate prob of picking 2 m when two letters picked without replacement from mammmmmm.\n3/4\nThree letters picked without replacement from aanaagnyagnay. Give prob of picking 1 y, 1 n, and 1 a.\n18/143\nFour letters picked without replacement from lllwwllwwllllllllw. What is prob of picking 1 w and 3 l?\n143/306\nThree letters picked without replacement from {c: 10, h: 4}. Give prob of picking 2 h and" -"rm of -3, 17, 25, 15, -19?\n-r**3 + 27*r - 29\nWhat is the l'th term of 24, 37, 46, 51, 52?\n-2*l**2 + 19*l + 7\nWhat is the h'th term of -16, -25, -22, -1, 44, 119, 230, 383?\nh**3 - 16*h - 1\nWhat is the m'th term of -6745, -6740, -6733, -6724, -6713, -6700, -6685?\nm**2 + 2*m - 6748\nWhat is the b'th term of -3, 1, 9, 21, 37, 57, 81?\n2*b**2 - 2*b - 3\nWhat is the d'th term of -18, -16, -14?\n2*d - 20\nWhat is the b'th term of -170, -169, -168?\nb - 171\nWhat is the g'th term of 40, 149, 336, 607, 968?\ng**3 + 33*g**2 + 3*g + 3\nWhat is the n'th term of -45, -34, -23, -12, -1, 10?\n11*n - 56\nWhat is the d'th term of -37, -73, -169, -355, -661, -1117, -1753, -2599?\n-5*d**3 - d - 31\nWhat is the h'th term of -115, -138, -189, -280, -423, -630, -913, -1284?\n-2*h**3 - 2*h**2 - 3*h - 108\nWhat is the j'th term of -76, -72, -66, -58?\nj**2 + j - 78\nWhat is the z'th term" -"place?\n4.6\nWhat is -7353346.7 rounded to the nearest one thousand?\n-7353000\nRound -0.00001571377 to five decimal places.\n-0.00002\nRound -9170670 to the nearest one thousand.\n-9171000\nRound 0.15047582 to 4 dps.\n0.1505\nRound 8229.1878 to the nearest integer.\n8229\nRound -1141184 to the nearest one thousand.\n-1141000\nRound -0.000001125732 to 7 dps.\n-0.0000011\nRound 0.009085554 to four dps.\n0.0091\nRound -6511.088 to the nearest 1000.\n-7000\nWhat is -41.41096 rounded to two dps?\n-41.41\nWhat is -0.0332956 rounded to 2 decimal places?\n-0.03\nWhat is -0.0454067 rounded to three decimal places?\n-0.045\nWhat is -2362960 rounded to the nearest 10000?\n-2360000\nRound 0.00017006371 to five decimal places.\n0.00017\nWhat is 0.00008064697 rounded to 6 dps?\n0.000081\nWhat is -0.0000443513 rounded to 7 dps?\n-0.0000444\nWhat is -0.0000267809 rounded to 6 dps?\n-0.000027\nWhat is -0.030469 rounded to three decimal places?\n-0.03\nRound -7731969000 to the nearest one million.\n-7732000000\nRound 0.000600313 to 6 decimal places.\n0.0006\nWhat is -358.923 rounded to the nearest ten?\n-360\nWhat is -3.233599 rounded to one decimal place?\n-3.2\nRound -3931437 to the nearest one hundred thousand.\n-3900000\nWhat is 10895.3 rounded to the nearest 1000?\n11000\nWhat is -0.00035522 rounded to 5 dps?" -"7, 29\nList the prime factors of 264445.\n5, 52889\nList the prime factors of 17447901.\n3, 227, 25621\nList the prime factors of 316314.\n2, 3, 17573\nWhat are the prime factors of 204373?\n13, 79, 199\nWhat are the prime factors of 169744?\n2, 103\nWhat are the prime factors of 75770?\n2, 5, 7577\nWhat are the prime factors of 2491276?\n2, 157, 3967\nList the prime factors of 28492597.\n7, 4070371\nList the prime factors of 160364.\n2, 47, 853\nWhat are the prime factors of 298950?\n2, 3, 5, 1993\nWhat are the prime factors of 542077?\n547, 991\nWhat are the prime factors of 122387?\n122387\nList the prime factors of 5995886.\n2, 13, 230611\nList the prime factors of 2530085.\n5, 71, 7127\nList the prime factors of 959050.\n2, 5, 19181\nList the prime factors of 9720375.\n3, 5, 7, 23\nList the prime factors of 919795.\n5, 183959\nWhat are the prime factors of 91855?\n5, 18371\nList the prime factors of 6926922.\n2, 3, 17, 22637\nWhat are the prime factors of 252057?\n3, 13, 23, 281\nWhat are the prime factors of 306035?\n5, 97, 631\nList the prime" -"at is the units digit of i?\n7\nLet u be (-11)/3*-3 + -1. Suppose -2*h = -16 - 148. Suppose 0 = 5*p + u, 3*i + i = p + h. What is the tens digit of i?\n2\nSuppose -l = 5*q - 8, 5*q = -3*l - 0*q + 14. Suppose -5*k - 15 = -70. Let j = k - l. What is the units digit of j?\n8\nSuppose -3*y + 2*s = -467 - 84, 3*s = -5*y + 893. What is the units digit of y?\n1\nLet u(s) = s**2 - 2*s - 1. What is the tens digit of u(-5)?\n3\nLet p(m) = 76*m + 33. What is the tens digit of p(3)?\n6\nSuppose 4*o + 3 = 3*o. What is the units digit of 9/(-3)*(2 + o)?\n3\nLet d be (-5 - -6)*(0 - 0). Let i be (-2)/(d - 3/6). What is the tens digit of (-4)/16 + 49/i?\n1\nLet d(t) = t**2 - 12*t - 24. What is the units digit of d(14)?\n4\nLet h = 4 - 9. Let l = -3 - h. What is the units digit of l?" -" is smaller: 8462/3575 or 1?\n1\nIs -80/595837 greater than -1?\nTrue\nAre -10854.024 and 1/22 nonequal?\nTrue\nWhich is bigger: 1 or -3483/28538?\n1\nWhich is smaller: -6362 or 10/357?\n-6362\nWhich is smaller: -12626601 or -12626597?\n-12626601\nWhich is smaller: 124371249/26 or 4783511?\n124371249/26\nWhich is bigger: 34.425602 or 1?\n34.425602\nWhich is smaller: 29211679 or 29211678?\n29211678\nAre -18 and -6234/349 nonequal?\nTrue\nWhich is bigger: 2.6448251 or 3?\n3\nWhich is smaller: -4569 or -22.2156?\n-4569\nWhich is bigger: -19/2 or -21662169?\n-19/2\nDo 549 and 977282 have different values?\nTrue\nIs -1 bigger than 1296/362573?\nFalse\nWhich is greater: 1 or 389/19488?\n1\nWhich is smaller: 13610303 or 13610302?\n13610302\nIs 29824764 >= 29824758?\nTrue\nWhich is greater: 1 or 1/1349554853?\n1\nWhich is bigger: 0 or -1/363251946?\n0\nIs 76826 at least as big as 77247?\nFalse\nWhich is smaller: 80 or 654287/7?\n80\nDoes 4080763 = 4080763?\nTrue\nAre 0.1 and -2129/567 equal?\nFalse\nAre 313/68023 and -0.2 nonequal?\nTrue\nIs 1784939 <= 19634344/11?\nTrue\nWhich is smaller: -1249 or -79252?\n-79252\nWhich is smaller: 60769 or 60866?\n60769\nIs 6027163 >= 6027156?\nTrue\nIs -24974259.5 bigger than -1?\nFalse\nWhich is smaller:" -"itres?\n8881.126\nConvert 715.649mm to meters.\n0.715649\nHow many meters are there in thirteen fifths of a kilometer?\n2600\nConvert 1.92396ns to minutes.\n0.000000000032066\nHow many nanoseconds are there in twenty-seven quarters of a microsecond?\n6750\nHow many decades are there in 0.574169 millennia?\n57.4169\nConvert 4667.888 millilitres to litres.\n4.667888\nWhat is 31382.59 millilitres in litres?\n31.38259\nConvert 1523.995 nanograms to tonnes.\n0.000000000001523995\nHow many minutes are there in 623092.5 days?\n897253200\nConvert 805.321ng to tonnes.\n0.000000000000805321\nWhat is 5/4 of a day in minutes?\n1800\nConvert 97465.12 decades to years.\n974651.2\nWhat is eleven eighths of a century in months?\n1650\nHow many millimeters are there in seven quarters of a meter?\n1750\nWhat is 5/6 of a day in hours?\n20\nConvert 0.404663 millilitres to litres.\n0.000404663\nWhat is 6/25 of a litre in millilitres?\n240\nWhat is 0.9450831um in kilometers?\n0.0000000009450831\nHow many decades are there in 745.8849 millennia?\n74588.49\nHow many nanograms are there in 0.1493094 micrograms?\n149.3094\nWhat is three fifths of a centimeter in millimeters?\n6\nConvert 0.3099842 centuries to years.\n30.99842\nWhat is 43/4 of a millimeter in micrometers?\n10750\nWhat is 27/4 of a milligram in micrograms?\n6750\nConvert 0.5530381g to" -", -3*a + 15 = -3*o. What is the units digit of 1*-2 - (-37 + o)?\n6\nLet s be (30/4)/((-2)/332*-1). Suppose -5*r - s = -10*r. What is the hundreds digit of r?\n2\nSuppose -8*i + 1200 = -2080. What is the hundreds digit of i?\n4\nLet n(s) be the third derivative of s**6/60 - s**5/15 - 2*s**4/3 + 5*s**3/2 + 9*s**2. What is the tens digit of n(6)?\n0\nSuppose -2*l - f + 6 = 0, 6*l - 3*l + 4*f - 4 = 0. Suppose l*w = 5*h + 51, 0 = 2*h - 1 + 7. What is the units digit of w?\n9\nLet q be 4/(-6) - 455/15. Let f = q - -17. Let r(t) = t**3 + 14*t**2 - 2*t + 16. What is the tens digit of r(f)?\n4\nLet h be (-1)/(-2*(-3)/270). Suppose 2*s + 423 = -5*i, 2*i - 5*i - 245 = -s. Let o = h - i. What is the units digit of o?\n8\nLet d = 478 + 87. What is the units digit of d?\n5\nLet u(z) = -2*z**3 - 9*z**2 - 10*z + 2. What is the" -"vative of 54*w - 45*w**2 + 0 - 55/6*w**3 + 10/3*w**4 + 1/4*w**5. Factor y(s).\n5*(s - 2)*(s + 1)*(s + 9)\nLet t(u) be the second derivative of u**4 + 27*u**3/2 - 2395*u. Solve t(a) = 0.\n-27/4, 0\nLet q(k) = 27*k + 83. Let h be q(-3). Let s be 138/54 - (8/4)/(-2). What is a in -2/9*a**h + 16/9*a - s = 0?\n4\nSuppose 0*v = 4*v. Suppose 3*b - 156 = 2*r, v = -2*r - r + 9. Suppose 7*i**2 + b*i**3 - 2*i - 66*i**3 - 2*i**5 + i**2 + 8*i**4 = 0. What is i?\n0, 1\nLet c = 14628/2869 - 150/151. Suppose 800/19 - c*m**2 + 2/19*m**3 + 720/19*m = 0. What is m?\n-1, 20\nLet p = 304553/105 - 60814/21. Factor p*c**2 + 1/5*c**3 + 8 + 62/5*c.\n(c + 1)*(c + 2)*(c + 20)/5\nLet y = 162989/6 - 27164. Let l(v) be the second derivative of -41*v + 5/18*v**4 - y*v**3 + 0 + 5/6*v**2. Factor l(j).\n5*(j - 1)*(2*j - 1)/3\nLet k be 4/(-96)*28*52/(-637). Factor k*x**2 + 2/7*x + 4/21.\n2*(x + 1)*(x + 2)/21\nLet d be 2 + -2 + 6" -" + f*g = -4, 2*g - 4 = 3*b for b.\n-4\nSuppose -s + 60 = s. Suppose 0 = c - 2. Solve -4*r = 4*f, 3*f + f = c*r - s for f.\n-5\nLet v(u) = -u**2 + 13*u - 2. Let n be v(12). Let c = -6 + n. Solve -2*l - c*j + 2 = 0, 3*j = 3*l - 1 - 2 for l.\n1\nSuppose 5 = c + 3. Solve c*w + 3*f = -3*w - 22, 18 = w - 5*f for w.\n-2\nLet o be ((-3)/9)/(3/(-45)). Solve -6*s + s + 3*p + 34 = 0, o*s - 10 = -5*p for s.\n5\nSuppose p + 157 = 161. Solve 5*v - 5 = p*o, 2*o + 2*v - 15 = o for o.\n5\nLet t be (-20)/(-15) - 240/(-9). Solve -t = -2*a - 0*m + 4*m, -10 = 2*m for a.\n4\nLet c = 34 + -48. Let l be 12/c*(-7)/2. Solve -3*x = q - 5 + 4, l*q = 12 for x.\n-1\nLet s be ((-2)/3)/(2/(-12)). Suppose -u + 15 = 2*y + 3*y, -28 = -2*y +" -"s 667 minutes before 3:34 AM?\n4:27 PM\nWhat is 9 minutes after 11:26 PM?\n11:35 PM\nHow many minutes are there between 10:23 PM and 10:50 PM?\n27\nHow many minutes are there between 1:34 AM and 12:41 PM?\n667\nWhat is 507 minutes after 6:59 PM?\n3:26 AM\nWhat is 639 minutes before 8:41 PM?\n10:02 AM\nHow many minutes are there between 4:26 PM and 3:43 AM?\n677\nWhat is 209 minutes before 6:53 PM?\n3:24 PM\nHow many minutes are there between 12:41 AM and 2:28 AM?\n107\nWhat is 625 minutes after 12:01 PM?\n10:26 PM\nHow many minutes are there between 8:55 AM and 10:06 AM?\n71\nHow many minutes are there between 5:47 AM and 6:22 AM?\n35\nHow many minutes are there between 1:46 AM and 10:34 AM?\n528\nHow many minutes are there between 9:41 AM and 7:29 PM?\n588\nHow many minutes are there between 2:31 PM and 5:26 PM?\n175\nWhat is 700 minutes after 8:29 PM?\n8:09 AM\nWhat is 501 minutes after 12:10 AM?\n8:31 AM\nHow many minutes are there between 4:10 AM and 1:17 PM?\n547\nWhat is 310 minutes before 10:57 PM?\n5:47 PM" -"m. Let k = -5.7 + 1.7. Which is the biggest value? (a) -0.1 (b) 0.5 (c) k (d) z\nb\nLet x = -5978 - -5978.07. Let u = -13 - -12.7. What is the fourth smallest value in u, 1/2, x, 3/5?\n3/5\nLet t be 1/(-2) + (-2695)/98. Let f be (164/t + 6)/(-1). Which is the third biggest value? (a) -31 (b) -0.1 (c) f (d) -3/2\nd\nSuppose 0 = b + 2*g - 5, -52*b + 48*b + 2*g + 10 = 0. Let k = -218899/11 - -19925. Let d = -3566/143 + k. What is the third biggest value in b, d, 0.1, -2?\n0.1\nLet u(w) = 10*w - 57. Let j be u(1). Which is the third biggest value? (a) j (b) -2 (c) -0.1 (d) -1/6 (e) 2/3\nd\nLet f(k) = -k**2 + 3*k + 21. Let m be f(-3). Let z = 20 + -22. What is the biggest value in z, 2, m?\nm\nLet n = -12.1 + 12.148. Let g(l) = l**2 + 1. Let h be g(0). Which is the second smallest value? (a) -0.1 (b) n (c) -2/11 (d) h\na\nLet" -"hat is 755271 to the power of 1/8, to the nearest integer?\n5\nWhat is the cube root of 18321729 to the nearest integer?\n264\nWhat is the square root of 15177235 to the nearest integer?\n3896\nWhat is the eighth root of 1685254 to the nearest integer?\n6\nWhat is 85207 to the power of 1/6, to the nearest integer?\n7\nWhat is the third root of 595608 to the nearest integer?\n84\nWhat is the fifth root of 1417424 to the nearest integer?\n17\nWhat is the cube root of 105424 to the nearest integer?\n47\nWhat is 9922191 to the power of 1/2, to the nearest integer?\n3150\nWhat is 3684948 to the power of 1/2, to the nearest integer?\n1920\nWhat is the square root of 408141 to the nearest integer?\n639\nWhat is 12286 to the power of 1/3, to the nearest integer?\n23\nWhat is the third root of 12162153 to the nearest integer?\n230\nWhat is 1111022 to the power of 1/3, to the nearest integer?\n104\nWhat is 209974 to the power of 1/2, to the nearest integer?\n458\nWhat is 250692 to the power of 1/3, to the nearest integer?\n63" -"letters picked without replacement from pppppvvvpp?\n7/15\nCalculate prob of picking 2 v when two letters picked without replacement from vvmvm.\n3/10\nWhat is prob of picking 1 q, 1 o, 1 i, and 1 l when four letters picked without replacement from {q: 5, i: 2, e: 2, o: 1, t: 6, l: 1}?\n1/238\nThree letters picked without replacement from iiffd. Give prob of picking 1 i and 2 d.\n0\nFour letters picked without replacement from {s: 2, r: 11, p: 2}. What is prob of picking 1 p, 1 s, and 2 r?\n44/273\nCalculate prob of picking 2 y when two letters picked without replacement from yyyyyssyys.\n7/15\nTwo letters picked without replacement from leeeeeeeeseeexese. Give prob of picking 1 e and 1 s.\n13/68\nFour letters picked without replacement from {w: 8, r: 3}. What is prob of picking 2 w and 2 r?\n14/55\nThree letters picked without replacement from {y: 5, f: 3}. Give prob of picking 1 y and 2 f.\n15/56\nThree letters picked without replacement from {d: 4, b: 2, x: 3}. What is prob of picking 1 d, 1 b, and 1 x?\n2/7\nFour letters picked without" -"6. Let x be i(-12). Let l be 3/5 + (x/105)/8. Do 0 and l have the same value?\nFalse\nSuppose 1 = -5*x - 9. Let a(j) = j**2 - 2*j - 1. Let n be a(-1). Are n and x unequal?\nTrue\nLet o = -1192 + 1119. Which is smaller: -77 or o?\n-77\nSuppose -f + 2*u + 262 = 0, u + 300 - 43 = f. Suppose -2*n + j - f = 0, 3*n - 6*n - j - 368 = 0. Let o = n - -870/7. Which is bigger: 1 or o?\n1\nSuppose -20*s - 3968 = 9712. Is -685 at least s?\nFalse\nLet n = 8 + -5. Suppose 5*l = 2*m + n*m, 0 = -5*l. Let d = 2/9319 - 9337/83871. Which is greater: m or d?\nm\nLet x(j) = j**2 - j + 1. Let k(a) = a**3 - 11*a**2 - 10. Let r(t) = -k(t) - 6*x(t). Let h be r(6). Suppose -g = 3*b - 5, 0 = -4*b + g + 4 + 5. Is b less than h?\nTrue\nLet b = 380 + -379.2. Is -16 > b?\nFalse" -"t the prime factors of t.\n2\nLet r(d) = -d**3 + d + 3. Let b be r(0). Let q be 1 - (-39)/b - 1. Let a = -10 + q. What are the prime factors of a?\n3\nSuppose -2*r - 3*k - 5 = -2*k, -5 = 5*r + 5*k. Let f = r + 6. What are the prime factors of f?\n2\nSuppose 7*v - 4*v = 2*a + 64, 0 = -5*v - a + 85. Suppose 8 = -5*z + v. What are the prime factors of z/(-4) - (-38)/4?\n3\nSuppose 0 = -4*l + 6*s - s + 177, 101 = 2*l - 5*s. Let g = l - 19. List the prime factors of g.\n19\nLet w be 2/(-6) - (-31)/3. Let p(r) be the first derivative of -r**4/4 + 10*r**3/3 + r**2 - 6*r + 12. List the prime factors of p(w).\n2, 7\nLet x = 146 + -90. What are the prime factors of x?\n2, 7\nSuppose 2*j - 40 = -5*q, 3*j = -2*q + 7 + 20. Suppose -2*y = -0*y - q. List the prime factors of y.\n3\nSuppose g" -"t replacement from xcvdcbx. Give prob of picking 1 c and 1 b.\n2/21\nThree letters picked without replacement from dooojhoddhhoojjjoujo. What is prob of picking 1 j, 1 h, and 1 u?\n1/76\nWhat is prob of picking 2 s and 2 f when four letters picked without replacement from asfffffseesffaaffsaf?\n18/323\nWhat is prob of picking 1 k and 1 f when two letters picked without replacement from {f: 1, g: 1, k: 1, j: 1, a: 1}?\n1/10\nCalculate prob of picking 2 i when two letters picked without replacement from wiwwiwiwwwwwiwwwwiw.\n10/171\nCalculate prob of picking 1 l and 1 u when two letters picked without replacement from {l: 14, u: 1}.\n2/15\nTwo letters picked without replacement from iwiiiwwiwwjiwwwwww. What is prob of picking 1 i and 1 w?\n22/51\nWhat is prob of picking 2 c and 1 l when three letters picked without replacement from cdkldckcdccodcck?\n3/80\nTwo letters picked without replacement from iiidfxrfrr. Give prob of picking 1 r and 1 d.\n1/15\nTwo letters picked without replacement from {j: 1, d: 4, u: 3}. Give prob of picking 2 d.\n3/14\nCalculate prob of picking 1 y, 1 j, and 2" -"90740*y + 4434442*y + 3 - 4 + 1375403*y.\n12600585*y - 1\nCollect the terms in -3 - 728484*y**2 + 3 + 169097*y**2.\n-559387*y**2\nCollect the terms in -12*p - 2*p + 0*p + 11 + 8*p - 2*p - p.\n-9*p + 11\nCollect the terms in -543*y**2 + y**3 + 1136*y**2 - 593*y**2 - 138.\ny**3 - 138\nCollect the terms in 10783*z - 20465*z - 3 + 3 + 9799*z.\n117*z\nCollect the terms in 49223664198652*b**2 - 49223664198652*b**2 - 2*b**3.\n-2*b**3\nCollect the terms in 0*c + 334*c**3 + 3*c - 3*c - 5343 + 5343.\n334*c**3\nCollect the terms in -85*b + 31*b + 30*b + 24*b + 6457*b**2.\n6457*b**2\nCollect the terms in 291629 - 27*f - 97213 + 7*f - 97213 - 97202.\n-20*f + 1\nCollect the terms in -147*y**2 + 3*y - 161*y**2 - 26*y**2 - 3*y - 2*y - 909*y**2.\n-1243*y**2 - 2*y\nCollect the terms in 60*c - 11*c - 123*c + 17*c - 123*c.\n-180*c\nCollect the terms in -581*a + 1197*a - 616*a + 17279*a**2 - 17302*a**2.\n-23*a**2\nCollect the terms in -462 + 462 + 91889034620*r - 91889034623*r.\n-3*r\nCollect the terms in -16748*x**2 + 0 -" -"hich is the nearest to -1/2? (a) 0.15849 (b) 8 (c) -1 (d) -4/23\nd\nWhich is the closest to -2/13? (a) -0.57165 (b) 0 (c) -7/5\nb\nWhich is the nearest to 716.8? (a) -1 (b) -2 (c) 0.2 (d) -13\nc\nWhat is the nearest to 0 in -0.2, 2, -2476, 0, 20?\n0\nWhat is the nearest to 0.2 in 4, 10, 43, -0.0187, 0.3?\n0.3\nWhich is the closest to 1.7? (a) 2/17 (b) -11141 (c) -3/5\na\nWhat is the closest to 1.55 in -4/7, 39, -113?\n-4/7\nWhat is the closest to 4 in -13, -1, -2/2197, 10/7?\n10/7\nWhat is the closest to 4 in -1, -2, 9/209?\n9/209\nWhich is the nearest to 1/3? (a) -5 (b) -5/3 (c) 2775.4\nb\nWhat is the closest to -27 in 1, -1/2, 122152, -2?\n-2\nWhat is the nearest to 1 in 1/2, -1/4, -0.11643, 0.1, 0?\n1/2\nWhat is the nearest to -248/15 in -2/9, 2/19, 0.1, -0.3, -1?\n-1\nWhat is the nearest to 328 in -2, 1, 0.0147, 4?\n4\nWhich is the nearest to -3/8? (a) -1 (b) -2/825 (c) -2 (d) -5\nb\nWhat is the closest to 1/4" -"-246/1338551?\n1\nIs -162458/11447 smaller than -15?\nFalse\nWhich is smaller: 1 or -17/43852522?\n-17/43852522\nIs -1 less than or equal to -22/4655643?\nTrue\nDo 56 and -1612716 have the same value?\nFalse\nWhich is smaller: -281901 or -281896?\n-281901\nIs 248135 >= 29/4?\nTrue\nAre -13489/1857 and -8 nonequal?\nTrue\nWhich is greater: -13/2 or 15596/15?\n15596/15\nWhich is smaller: 4528402 or 4528364?\n4528364\nWhich is smaller: 1482082 or 1482098?\n1482082\nIs 0 greater than -1/3660331?\nTrue\nIs 46632 != 46547?\nTrue\nWhich is smaller: -16898166 or 1?\n-16898166\nIs -87154521.6 <= -1?\nTrue\nIs 0.0514 at least as big as -265?\nTrue\nIs 238149179 > 238149181?\nFalse\nIs -948.0227 smaller than 2/121?\nTrue\nIs 5659357 greater than 5659374?\nFalse\nWhich is greater: -1 or -3/958346342?\n-3/958346342\nAre 41109/17530 and 3 nonequal?\nTrue\nIs 58739530 <= 58739531?\nTrue\nWhich is bigger: -2 or -699137263?\n-2\nIs 37/31763 <= 0?\nFalse\nDo -2 and -16059/12823 have the same value?\nFalse\nIs 73845.54 > 1/4?\nTrue\nIs 103.11948 <= -0.2?\nFalse\nIs 1 not equal to 123/1168964?\nTrue\nWhich is bigger: 0.04 or 5669884?\n5669884\nWhich is smaller: -2 or -5946763/48?\n-5946763/48\nIs 257124 less than 1542749/6?\nTrue\nIs 884539049 smaller" -"ppose 0 = 5*z - 3*z - f. List the prime factors of z.\n2, 7\nSuppose -j = j - 10. Let o be (1/3)/(j/45). Suppose 2 = 2*k + 4, -2*k + 16 = o*p. What are the prime factors of p?\n2, 3\nList the prime factors of 1569/15 - (18/15)/(-3).\n3, 5, 7\nLet o(m) = -m**2 + 6*m + 4. Let d be o(6). Let x = -8 - 0. What are the prime factors of ((-5)/d)/(1/x)?\n2, 5\nLet n = 2 + 2. Suppose -n*x - 5*q + 75 = 22, -5*x + 25 = -2*q. Suppose u + x = 20. List the prime factors of u.\n13\nLet k(s) = s**3 - 5*s**2 + 2. Let c be k(5). What are the prime factors of (-291)/(-6) - 1/c?\n2, 3\nSuppose 2*a = -w - 54 - 24, 3*a - 5*w = -130. Let b = -5 - a. What are the prime factors of b?\n5, 7\nLet a be 50/(-20)*-1*2. Suppose h + 70 - a = 4*w, -30 = -3*w - 3*h. List the prime factors of w.\n3, 5\nSuppose -3*z + 40 = 10. Let o" -" is 11 - -113?\n130\nIn base 2, what is 1110010100 + -1000?\n1110001100\nIn base 16, what is 0 + 1e?\n1e\nIn base 4, what is 10 - 1012?\n-1002\nIn base 15, what is 15 + 5?\n1a\nIn base 13, what is 1 + -5a5?\n-5a4\nIn base 5, what is -1 + 24?\n23\nIn base 12, what is -82 - 3?\n-85\nIn base 8, what is -20351 + 1?\n-20350\nIn base 15, what is -4 - 412?\n-416\nIn base 15, what is -32be + -1?\n-32c0\nIn base 7, what is 4 + 364?\n401\nIn base 2, what is -10000 + 10?\n-1110\nIn base 15, what is -2 + 520?\n51d\nIn base 3, what is 2211 + 1?\n2212\nIn base 3, what is -11220212 + -12?\n-11221001\nIn base 15, what is 17 - 14?\n3\nIn base 16, what is 33f - -3?\n342\nIn base 5, what is -403 + -241?\n-1144\nIn base 15, what is -1b57 - -1?\n-1b56\nIn base 7, what is -5 + 1120?\n1112\nIn base 15, what is 0 + 1121?\n1121\nIn base 11, what is 455" -"5\nWhat is the third root of 621218 to the nearest integer?\n85\nWhat is 1066835 to the power of 1/3, to the nearest integer?\n102\nWhat is the eighth root of 158520 to the nearest integer?\n4\nWhat is 303654 to the power of 1/5, to the nearest integer?\n12\nWhat is 3091675 to the power of 1/2, to the nearest integer?\n1758\nWhat is the cube root of 225481 to the nearest integer?\n61\nWhat is 12656237 to the power of 1/2, to the nearest integer?\n3558\nWhat is 416664 to the power of 1/2, to the nearest integer?\n645\nWhat is 50380 to the power of 1/2, to the nearest integer?\n224\nWhat is 6438617 to the power of 1/10, to the nearest integer?\n5\nWhat is 5305759 to the power of 1/3, to the nearest integer?\n174\nWhat is the cube root of 880358 to the nearest integer?\n96\nWhat is 5346105 to the power of 1/2, to the nearest integer?\n2312\nWhat is 172029 to the power of 1/2, to the nearest integer?\n415\nWhat is 11697705 to the power of 1/2, to the nearest integer?\n3420\nWhat is the square root of 528137 to" -"-48 - (-1 - -1) - (-7 + 13).\n1\nCalculate ((-2 + 5 - -5) + -9 - 0) + 19.\n18\nCalculate 8 - (-1 - 2 - (44 - 41)).\n14\nWhat is the value of 13 - (1 + (8 - (-10 - -26)))?\n20\nCalculate 18 - (28 - (22 + 1)).\n13\nWhat is -3 - ((1 - 5) + (0 - 13) - -6)?\n8\nWhat is -44 + 40 + 24 + 3?\n23\nCalculate (0 - -15 - 40) + 16.\n-9\nEvaluate 3 + (-1 - -6) + (-2 + -9 - 0).\n-3\nWhat is (-7 - (5 + 0 - 9)) + 13?\n10\nWhat is the value of -5 - (-15 + (8 - 2) + 8)?\n-4\nWhat is the value of (-5 - -5) + -7 - (-4 + -2 + 2)?\n-3\nEvaluate 9 - (-2 - -8 - -18).\n-15\nWhat is the value of (9 + 0 - 14) + (6 - 2)?\n-1\nEvaluate -10 + -7 + (2 - (-4 - 2)).\n-9\nEvaluate 11 + -23 + 16 - -17.\n21\nEvaluate (-17 - -15) + -6 - -13." -"2. Find the third derivative of g(s) wrt s.\n82320*s**2 - 30\nFind the second derivative of 516*w**3 + 290*w**3 - 94 - 3*w - 1 - 76 wrt w.\n4836*w\nWhat is the second derivative of -1861*d - d**2 - 109*d**5 + 504*d**5 - 337*d wrt d?\n7900*d**3 - 2\nLet k(t) be the first derivative of 671*t**3/3 + 107*t**2/2 + 7*t + 1134. Find the second derivative of k(q) wrt q.\n1342\nSuppose 14 = -4*s + 38. Let c(l) = -3*l + 44. Let f be c(14). What is the third derivative of 4*h**2 - h**2 + 34*h**s - 18*h**f + h**6 wrt h?\n4200*h**3\nLet o = -32 - -106. What is the third derivative of -29*n**2 - 9*n**3 - o*n**2 + 5*n**3 wrt n?\n-24\nSuppose 2*p + 13 = 17. What is the third derivative of 135*h**2 + 220*h**3 - 54*h**p + 131*h**2 + 42*h**3 + 29*h**3 wrt h?\n1746\nLet t(n) = -n**2 + 37*n - 132. Let j be t(33). What is the third derivative of j*m + 116*m**4 - 7*m + 122*m**4 + 2*m**2 wrt m?\n5712*m\nLet j(w) = -2*w**2 - 26*w + 32. Let m be j(-14). What is" -" 1 g when three letters picked without replacement from {g: 4, f: 16}?\n8/19\nWhat is prob of picking 2 j and 1 v when three letters picked without replacement from {v: 6, j: 4}?\n3/10\nThree letters picked without replacement from {m: 2, f: 2, a: 5}. Give prob of picking 1 f and 2 a.\n5/21\nThree letters picked without replacement from bjybssbpeppp. Give prob of picking 1 s, 1 j, and 1 p.\n2/55\nCalculate prob of picking 1 s and 1 k when two letters picked without replacement from {s: 7, j: 1, k: 5}.\n35/78\nTwo letters picked without replacement from {l: 1, o: 3, g: 1, s: 6, i: 1, v: 3}. What is prob of picking 1 l and 1 v?\n1/35\nTwo letters picked without replacement from zxcczah. What is prob of picking 1 z and 1 x?\n2/21\nCalculate prob of picking 2 f when two letters picked without replacement from {f: 3, p: 9}.\n1/22\nTwo letters picked without replacement from mqvszxm. What is prob of picking 1 m and 1 s?\n2/21\nThree letters picked without replacement from {y: 1, q: 3, r: 4}. What is prob of picking" -"8\nDivide -348 by -58.\n6\nDivide -4 by 54.\n-2/27\nDivide -3 by -368.\n3/368\n-90 divided by 18\n-5\nCalculate 0 divided by 31.\n0\n-752 divided by -1\n752\n-1675 divided by -4\n1675/4\nWhat is 229 divided by 6?\n229/6\nWhat is 870 divided by -30?\n-29\nWhat is 912 divided by -152?\n-6\nWhat is -760 divided by -2?\n380\nCalculate -1 divided by -3184.\n1/3184\nDivide 6 by -361.\n-6/361\nDivide 4 by 694.\n2/347\n-129 divided by 1\n-129\nWhat is 0 divided by -217?\n0\n-40 divided by 8\n-5\nWhat is -8606 divided by 2?\n-4303\nCalculate -200 divided by -1.\n200\nDivide 3 by 14.\n3/14\nCalculate 102 divided by -1.\n-102\nDivide 4900 by -350.\n-14\n76 divided by 1\n76\nWhat is -3370 divided by -337?\n10\nCalculate 3 divided by -1425.\n-1/475\nDivide 1 by -130.\n-1/130\nCalculate 0 divided by 179.\n0\nDivide -6215 by 1243.\n-5\n-7 divided by -13\n7/13\nWhat is 5 divided by -1560?\n-1/312\nWhat is 1 divided by 475?\n1/475\n-14 divided by 5\n-14/5\nDivide -624 by -52.\n12\n50 divided by -50\n-1\n840 divided by -14\n-60" -") 14 (b) -3 (c) 1.5\nb\nWhat is the smallest value in -1/6, 3, 8?\n-1/6\nWhich is the biggest value? (a) -1 (b) -2/71 (c) 0.1 (d) -3\nc\nWhich is the third smallest value? (a) -9 (b) 2 (c) -0.5\nb\nWhat is the smallest value in 0.1, -10, 2?\n-10\nWhich is the third smallest value? (a) 1/5 (b) 5/17 (c) 1 (d) 0.3\nd\nWhich is the smallest value? (a) 132/7 (b) -3 (c) -5 (d) -0.4\nc\nWhat is the third smallest value in -82, -0.09, 4/5?\n4/5\nWhat is the smallest value in 1, -2, 0.6, 8, -2/7?\n-2\nWhich is the second smallest value? (a) -1 (b) 7/2 (c) -5 (d) -0.3\na\nWhich is the biggest value? (a) 0 (b) 10 (c) 3 (d) 0.5\nb\nWhat is the second biggest value in -20, -2/13, -0.3, -1?\n-0.3\nWhat is the third biggest value in -3, -0.4, -288?\n-288\nWhich is the third biggest value? (a) -0.03 (b) 3/4 (c) -1065\nc\nWhat is the fourth smallest value in 2/5, -4/3, -4, -19/24?\n2/5\nWhat is the smallest value in 3, 2/7, -0.03, 0.3?\n-0.03\nWhat is the biggest value in" -" least common multiple of 62 and 372?\n372\nWhat is the smallest common multiple of 140 and 2?\n140\nWhat is the least common multiple of 1200 and 1800?\n3600\nCalculate the smallest common multiple of 612 and 4.\n612\nCalculate the least common multiple of 920 and 10.\n920\nWhat is the common denominator of 59/6 and -49/10?\n30\nFind the common denominator of -161/360 and 11/72.\n360\nCalculate the lowest common multiple of 1 and 791.\n791\nWhat is the smallest common multiple of 18 and 42?\n126\nCalculate the common denominator of 107/968 and -155/792.\n8712\nFind the common denominator of 63/55 and 29/220.\n220\nWhat is the lowest common multiple of 24 and 93?\n744\nCalculate the common denominator of -16/525 and 56/15.\n525\nCalculate the common denominator of 27/112 and -89/224.\n224\nWhat is the common denominator of -71/6702 and -77/2?\n6702\nWhat is the common denominator of 125/6 and -46/33?\n66\nCalculate the smallest common multiple of 30 and 231.\n2310\nCalculate the smallest common multiple of 300 and 80.\n1200\nFind the common denominator of 119/18 and 35/3651.\n21906\nWhat is the smallest common multiple of 22 and 14?\n154\nWhat is the" -"34527.\n1127\nCalculate the highest common factor of 94403 and 67.\n67\nCalculate the highest common factor of 68 and 166651.\n17\nCalculate the highest common factor of 919024 and 2272.\n1136\nCalculate the greatest common divisor of 5925 and 1500.\n75\nCalculate the greatest common divisor of 4 and 36783.\n1\nCalculate the greatest common divisor of 1572 and 277720.\n524\nCalculate the highest common divisor of 40500 and 24462.\n162\nCalculate the greatest common divisor of 258 and 15394.\n86\nWhat is the greatest common factor of 582 and 1258478?\n194\nWhat is the greatest common factor of 3510 and 7670?\n130\nWhat is the greatest common divisor of 618012 and 27?\n9\nWhat is the greatest common divisor of 20737 and 267?\n89\nCalculate the greatest common divisor of 50749 and 76.\n19\nWhat is the greatest common factor of 167 and 99198?\n167\nWhat is the highest common divisor of 140 and 86160?\n20\nCalculate the highest common divisor of 132 and 3084.\n12\nWhat is the greatest common factor of 2740 and 108915?\n685\nCalculate the greatest common factor of 16640 and 19840.\n640\nWhat is the greatest common divisor of 193 and 271?\n1" -" 1/3*g**3. Let y(u) be the first derivative of a(u). Factor y(c).\n-(c - 2)*(c + 1)\nLet g be ((-11)/(330/(-12)))/(8/30). Let b(p) be the second derivative of -1/4*p**4 + p**3 - 2*p + 0 - g*p**2. Solve b(t) = 0.\n1\nSuppose 4*t - q - 10 = q, -5*t = -2*q - 14. Factor -t + 1188*w**3 + 6*w**2 - 1186*w**3 - 2*w**4 - 2*w + 0*w**2.\n-2*(w - 2)*(w - 1)*(w + 1)**2\nLet w(g) = g**2 + g + 1. Let o(k) = k**2 + 31*k - 38. Let s(b) = o(b) - 4*w(b). Factor s(i).\n-3*(i - 7)*(i - 2)\nLet h = -23243/15 - -1551. Factor -10/3*n**3 - 14/3*n**2 - 2/15 - h*n.\n-2*(n + 1)*(5*n + 1)**2/15\nSuppose 3*z = -4*t + 16, 0 = 3*t - 5*t + z - 2. Let s be 75/84 + t/4. Let -4/7 + s*h - 4/7*h**2 = 0. What is h?\n1\nFactor 14*p - 2*p**3 - 12 + 0 - p**3 - 34*p - 4*p**2 + 7*p**3.\n4*(p - 3)*(p + 1)**2\nLet j = -26 - 15. Let l = j + 41. Find z such that -2/3*z**4 + 0 - 1/3*z**5 + l*z" -" What is the tens digit of m?\n0\nLet d be 6/(-18)*(3/1 + -48). Let h be -154*(-1 + 2*d/(-12)). Suppose a - 105 = -v, 4*v - 4*a - h = -143. What is the hundreds digit of v?\n1\nLet w = 17998 - 619. What is the units digit of w?\n9\nLet k(z) = -z**3 + 32*z**2 - 4*z - 30. Let m be k(27). Suppose -4*b + b = -m. What is the units digit of b?\n9\nSuppose 7*i = 2*i + 5. Let n be i/3*9 - (-2)/2. Suppose 4 = -n*u + 20. What is the units digit of u?\n4\nLet p = 44 - 42. Let w be ((-18)/3 + p)*(-3)/4. Suppose 0 = -5*s - 2*z + 14 - 1, -w*z = s. What is the units digit of s?\n3\nWhat is the thousands digit of (68 - (-1 - 10))*467 - 5?\n6\nLet o(m) = -m**3 + 19*m**2 - 45*m + 189. Let p be o(17). Let w = 2 + -2. Suppose -2*z - 138 = -p*c, -z + w = 3. What is the units digit of c?\n6\nSuppose -12*f + 56 =" -"t?\n0\nFour letters picked without replacement from pzppppzmpzlpppllzm. What is prob of sequence llml?\n1/6120\nCalculate prob of sequence ost when three letters picked without replacement from tqsqsosusuqsqqso.\n1/280\nTwo letters picked without replacement from {z: 1, n: 1, u: 1}. Give prob of sequence un.\n1/6\nThree letters picked without replacement from axaaaxxxxxaqaaxaxaq. Give prob of sequence qxq.\n8/2907\nThree letters picked without replacement from gbqgbgqnqbbqggggggn. Give prob of sequence bbq.\n8/969\nCalculate prob of sequence ivv when three letters picked without replacement from {i: 1, w: 1, r: 3, f: 3, v: 11}.\n55/2907\nWhat is prob of sequence vz when two letters picked without replacement from {z: 4, v: 6, r: 4}?\n12/91\nFour letters picked without replacement from gqgiqwgggqggsiigig. Give prob of sequence gsqg.\n1/340\nWhat is prob of sequence km when two letters picked without replacement from xkyyykkykmy?\n2/55\nFour letters picked without replacement from yyigiiyiyiy. What is prob of sequence iigy?\n5/396\nWhat is prob of sequence ofof when four letters picked without replacement from {o: 7, f: 9}?\n9/130\nCalculate prob of sequence xyt when three letters picked without replacement from xxhxhxxxhtxxxxy.\n1/273\nFour letters picked without replacement from {p: 4}. Give" -"ch is smaller: q or a?\nq\nSuppose -140 + 24 = -s. Suppose -d - 61 = -s. Is d at least as big as 56?\nFalse\nLet a be 14/49 + 24/14. Let h be (-21)/(-28) - a/(-8). Let f be (-4)/h - (-52)/12. Is -3 greater than f?\nFalse\nSuppose -8 = -5*i + 2. Let x be ((-2)/(-6))/((-2)/(-3)). Is i at most x?\nFalse\nSuppose -126*l + 34 = -124*l - 2*y, 4*l + 5*y = 41. Which is greater: l or -7?\nl\nLet p be 4/(-6)*99/(-2). Which is smaller: p or 95/3?\n95/3\nLet u = -129 - -136. Suppose -2*y - 1 + 9 = 0. Is y bigger than u?\nFalse\nLet y = 19/34 + -757/442. Let v be (-1 - -2)*0/(-2). Is y less than or equal to v?\nTrue\nLet y = 1275 + -1096. Which is smaller: 180 or y?\ny\nLet q be (-7 + 4)/(1*-1). Suppose 5*a + q*d - 6 = 0, -3*a + 13 = 5*d + 3. Let j = 269/4 - 1373/20. Is j >= a?\nFalse\nLet d = -137 - -60. Is -74 less than d?\nFalse\nLet p =" -"\nLet l = -45 + 173. Let f = l + -61. Is f prime?\nTrue\nSuppose r + 834 = 3*r - z, 3*r = -z + 1261. Is r composite?\nFalse\nSuppose -9*p + 268 = -5*p. Is p composite?\nFalse\nLet y be -2 + (2 - 3 - -2). Let j = y - -4. Is 17 + (-3 - 2) + j a composite number?\nTrue\nSuppose 1285 = 3*l + 2*c, -3*l + l + 864 = 5*c. Is l a prime number?\nFalse\nLet l(c) = -c**3 + 15*c + 19. Is l(-10) a composite number?\nTrue\nLet i = -23 + 126. Suppose i = v + 9. Let q = 33 + v. Is q a prime number?\nTrue\nIs 7 + -4 - -3 - -17461 a composite number?\nFalse\nLet s = -243 + 112. Let k = s - -276. Is k prime?\nFalse\nSuppose 7*p + 5*u + 1988 = 8*p, 4*p + 3*u - 7883 = 0. Is p prime?\nTrue\nLet m(z) = 62*z**2 + 8*z + 5. Is m(3) a composite number?\nFalse\nLet w(a) = 2*a**3 - a**2 - 1. Is w(2) a" -"e closest to 0? (a) 0 (b) -13 (c) 0.3 (d) -1\na\nWhat is the closest to 0.1 in 5, -1.26, -0.3, -1.9?\n-0.3\nWhich is the nearest to -141? (a) 3 (b) 0.2 (c) -26\nc\nWhat is the closest to -59 in -2/7, 1/5, -2/3?\n-2/3\nWhich is the nearest to 1? (a) 6 (b) 4 (c) 1/4 (d) -1/2\nc\nWhat is the closest to 66 in 0.4, -2/9, -5, 0.3?\n0.4\nWhat is the nearest to 2/3 in 1/4, 0, -2, -51?\n1/4\nWhich is the closest to -0.1? (a) -1/4 (b) 6 (c) 0 (d) 9/10\nc\nWhich is the closest to 0? (a) -0.01 (b) -3 (c) 0.3\na\nWhich is the nearest to 3? (a) -81 (b) -0.3 (c) 1\nc\nWhat is the nearest to 0.3 in 4, 0, 2/5?\n2/5\nWhat is the closest to -1/3 in -3, -1, -2/5, -2/33?\n-2/5\nWhich is the nearest to 1? (a) 0.3 (b) 0.31 (c) -2/11 (d) 1/3\nd\nWhat is the nearest to -1 in 4, -4, -2462?\n-4\nWhich is the closest to 0.13? (a) -2/7 (b) 0.2 (c) -0.05 (d) -4\nb\nWhich is the nearest to -13/3? (a)" -" - d = -i + 272, -2*d + 126 = -2*i. Is d composite?\nFalse\nSuppose -4*p + 4*t + 16 = 0, -4*p - 4*t - 7 + 23 = 0. Suppose -5*j = -4*j + p*f - 159, 3*f = 5*j - 910. Is j composite?\nFalse\nLet g(a) = a**3 + 2*a**2 - 4*a. Let o be g(-3). Is (750 - (-4 + o))*1 a prime number?\nTrue\nSuppose 7*s - 10052 = 5894. Suppose 6263 - s = 5*n. Is n prime?\nTrue\nLet o(s) = 160*s + 11. Let d be o(6). Let v = 1053 + d. Is v/11 + (-6)/(-2) a composite number?\nTrue\nLet r(n) = -5*n + 4 - 7 + 4*n**2 - 3*n**2 - 2*n**2. Let l be r(-3). Suppose 2*y = -l*q + 3*y + 479, 2*q + 2*y - 314 = 0. Is q a composite number?\nTrue\nLet p = -4683 - -11272. Is p prime?\nFalse\nLet g be 13011/7 + 20/70. Let v = -1306 + g. Is v prime?\nFalse\nLet j = -16 - -5. Let i(w) = -6*w - 15. Let d be i(j). Let s = -32 + d. Is s" -"greatest common divisor of 36 and 1116?\n36\nWhat is the highest common factor of 191 and 1?\n1\nWhat is the highest common divisor of 8 and 268?\n4\nWhat is the greatest common factor of 45 and 60?\n15\nCalculate the greatest common factor of 32 and 448.\n32\nWhat is the greatest common divisor of 336 and 84?\n84\nWhat is the highest common divisor of 5771 and 29?\n29\nWhat is the highest common divisor of 55 and 110?\n55\nWhat is the greatest common divisor of 10 and 110?\n10\nWhat is the greatest common factor of 11185 and 5?\n5\nWhat is the highest common divisor of 16 and 3112?\n8\nWhat is the greatest common factor of 136 and 2193?\n17\nWhat is the greatest common divisor of 196 and 32?\n4\nWhat is the greatest common factor of 80 and 90?\n10\nWhat is the highest common divisor of 148 and 2294?\n74\nWhat is the highest common divisor of 41 and 7339?\n41\nWhat is the highest common divisor of 988 and 2717?\n247\nWhat is the highest common divisor of 5 and 115?\n5\nWhat is the highest common divisor" -"15*l**2 + 6*l + 7. Let u(r) = -25*r**3 + 49*r**2 + 20*r + 22. Let v(j) = -7*d(j) + 2*u(j). Give v(q).\n9\nLet v(y) = -7*y + 9*y + 1 - y. Let u be (72/16 + -6)/(6/(-16)). Suppose 5*t - 4*x = -31, -x = u*t - 5*t - 7. Calculate v(t).\n-2\nLet v = 4 + -7. Let n = 2 + v. Let k(y) = 12*y - 42. Let r(q) = 45*q - 154. Let f(b) = -22*k(b) + 6*r(b). Calculate f(n).\n-6\nLet b(p) = 7 - 6 - p**3 - 9*p + 7 + 8*p**2. Let a(t) = 2*t - 1. Let n(o) = 3*o - 98. Let f(l) = -6*a(l) + n(l). Let s be f(-11). Determine b(s).\n-6\nLet z(n) = 8 - 4911203*n - 106 + 4911213*n. Give z(8).\n-18\nLet j(h) = 42 + 58*h + 58*h - 119*h + 27 + 29. Calculate j(31).\n5\nLet j(h) = 58 + 19*h - 83 + 14 - 47 - 93. Determine j(8).\n1\nLet m(p) = -p**2 - 3*p - 7. Let d(t) = 4*t**3 + 2*t**2 - 14*t - 7. Let u be d(0). Determine m(u).\n-35" -"c**2 - 23*c - 1656. Let g be t(-31). Solve -20*f + g*f - s + 1 = 0, f - s = 2 for f.\n1\nLet g = 4818 - 4814. Solve 6 = -r + 3*r + g*x, 5*r = -5*x + 15 for r.\n3\nLet w = -4134 - -4155. Solve 3*p - b = -7, -p + 23*b + w = 18*b for p.\n-4\nLet f(a) = 2*a**2 + 5*a + 4. Let y be f(-2). Let o be (-24)/(-14)*(-357)/6. Let c be (-1 + y)*o*1/(-3). Solve 5*q + c = -5*t + 2*t, 15 = -3*q for t.\n-3\nLet c(r) = -r**3 - 7*r**2 - 2*r - 12. Let y be c(-7). Suppose -y*s = -3*x + 11, -5*s - 3*x = -22 - 3. Solve 2*z = 4*z + 2*m - 2, s*m + 23 = 3*z for z.\n5\nSuppose 3*c - 108 + 119 = k, 0 = k - 4*c - 13. Solve 3*i - 19 + 1 = -3*n, 24 = 2*i + k*n for i.\n2\nSuppose 4*d = -2*v + 9*d - 9, 4*v + d + 7 = 0. Let r be v*((-15)/(-2))/(-3)." -"/23?\n-45/23\nIs -1459 < -1396?\nTrue\nWhich is smaller: -301 or -316?\n-316\nWhich is smaller: -0.1 or -224431?\n-224431\nIs 2 >= 446/375?\nTrue\nAre 1/5 and 23502 equal?\nFalse\nIs -144499 greater than or equal to -144499?\nTrue\nWhich is smaller: 1 or 2/1055377?\n2/1055377\nWhich is greater: 0.2 or 3.19824?\n3.19824\nAre 1 and 1113/2414 equal?\nFalse\nWhich is smaller: 33990/19 or 1789?\n33990/19\nIs 4/1527 < -2.66?\nFalse\nAre 482480/7 and 68927 equal?\nFalse\nIs 2528 smaller than 2547?\nTrue\nIs -593 equal to -11249/19?\nFalse\nWhich is bigger: -0.2 or -14725/7?\n-0.2\nIs 13444 smaller than 13447?\nTrue\nWhich is smaller: -175 or -115?\n-175\nDoes 3213 = 3243?\nFalse\nWhich is greater: 8222/71 or 116?\n116\nIs -0.453 less than 154?\nTrue\nIs 1 at least 184/6475?\nTrue\nDoes 88 = -27?\nFalse\nWhich is smaller: -69670 or -69650?\n-69670\nAre 13 and 2716 nonequal?\nTrue\nWhich is greater: 11006 or 10902?\n11006\nWhich is greater: -607450 or -607448?\n-607448\nWhich is greater: -3009 or -2976?\n-2976\nWhich is bigger: 5 or 3375/613?\n3375/613\nWhich is smaller: -508582 or -508584?\n-508584\nAre -551561 and -0.1 equal?\nFalse\nWhich is greater: 1 or 3/98272?" -"llest value in 0.03, -0.5, -1, -9, -2/95, 1?\n-0.5\nWhich is the second biggest value? (a) 0.5 (b) 62/375 (c) -2\nb\nWhich is the fourth biggest value? (a) 0 (b) 3 (c) 0.2 (d) 2 (e) -2/25 (f) 8\nc\nWhich is the second biggest value? (a) 1 (b) -69 (c) -0.06 (d) -0.1 (e) -10 (f) -1/3\nc\nWhat is the second smallest value in -4, -0.9, 0.2, -7, -1?\n-4\nWhat is the fourth biggest value in 1, -2, 0.425, -1, -5?\n-2\nWhat is the second smallest value in -1/2, -0.4, 2/1079, -0.06, 0?\n-0.4\nWhich is the second smallest value? (a) 1/2 (b) 279 (c) -0.2 (d) 4\na\nWhich is the biggest value? (a) 2 (b) 2582 (c) -34\nb\nWhat is the sixth biggest value in 4, -4, 66, -0.053, 0.2, 0.4?\n-4\nWhich is the smallest value? (a) -0.5 (b) -0.31 (c) -168 (d) -5\nc\nWhat is the fourth biggest value in 3, 5/3, 0.4, 308, 5?\n5/3\nWhich is the second biggest value? (a) 0.199 (b) -0.4 (c) -5 (d) -1/2 (e) 1 (f) 4\ne\nWhich is the smallest value? (a) -77 (b) -0.5 (c) -4 (d) 0.4" -"ere in 11/4 of a millennium?\n275\nHow many millimeters are there in thirteen fifths of a centimeter?\n26\nConvert 3.849272t to nanograms.\n3849272000000000\nWhat is fourty-five halves of a litre in millilitres?\n22500\nWhat is 1/10 of a gram in micrograms?\n100000\nHow many millimeters are there in 827.8156 meters?\n827815.6\nConvert 0.3745531kg to grams.\n374.5531\nWhat is 4.485119 days in microseconds?\n387514281600\nHow many millimeters are there in 292.6667m?\n292666.7\nWhat is 3/50 of a gram in micrograms?\n60000\nWhat is 7/6 of a day in hours?\n28\nWhat is 21/4 of a year in months?\n63\nHow many months are there in 25/4 of a decade?\n750\nWhat is 163.95237s in days?\n0.001897596875\nHow many millilitres are there in 71648.65 litres?\n71648650\nHow many centimeters are there in 88.50991km?\n8850991\nConvert 70.6216644ns to weeks.\n0.000000000000116768625\nWhat is 11/4 of a litre in millilitres?\n2750\nWhat is 0.6251946 months in centuries?\n0.0005209955\nWhat is 79438.75mm in kilometers?\n0.07943875\nHow many years are there in seven eighths of a millennium?\n875\nWhat is 8/21 of a week in minutes?\n3840\nConvert 2.0176554 months to millennia.\n0.00016813795\nHow many millilitres are there in fourty-seven quarters of a litre?\n11750\nWhat" -"101 = -3*m - 47. Suppose 20*n - 10 = m*n. Sort n, 0, b in increasing order.\nb, 0, n\nSuppose -4 = -2*m + 4*p, 2*p - 1 = 3*m - 7. Let q(g) = g**2 - 9*g - 19. Let d be q(12). Suppose d - 42 = -5*z. Put m, z, 0 in decreasing order.\nz, m, 0\nSuppose -3*m = -1 - 20. Suppose -m = -i + 5*c - 2*c, 4 = -c. Let n be 6/(-4) - 14/(-4). Put 4, i, n in descending order.\n4, n, i\nLet c = -133 + 125. Put -1/10, -4, c, 0.4 in decreasing order.\n0.4, -1/10, -4, c\nLet x = -128 + 837/5. Let q be (37/(-15))/((-712)/(-11481)). Let t = x + q. Sort t, 5, 0.4 in increasing order.\nt, 0.4, 5\nSuppose -22*y - 22*y = -6*y - 76. Let g = 26 - 80/3. Put 1/4, g, y in ascending order.\ng, 1/4, y\nLet y be (-21330)/1264 - 1*-1. Put 1/4, -1, y in increasing order.\ny, -1, 1/4\nLet y(s) = -s**2 - 13*s - 36. Let r be y(-4). Put -152, -1, -2, r in descending order.\nr," -"Let l = 62.29 + -1.29. Let r = v - l. Round r to 0 dps.\n8\nSuppose -y - y - 312000 = 0. Round y to the nearest 10000.\n-160000\nLet v(m) = -4*m + 13*m + 2 + 10*m. Suppose c = -4*c + 20. Let u be v(c). What is u rounded to the nearest ten?\n80\nLet w = -5 - -7. Suppose 4*s = w*s + 196. Let m = s + -47. Round m to the nearest 10.\n50\nLet t = 2.5999995 + -2.6. Round t to 7 dps.\n-0.0000005\nLet z = -19.55 + 20. Let r = 150.45 - z. Let j = r - 150.061. Round j to two dps.\n-0.06\nLet g = 0.8 - 0.5. Let x = 0.3 - g. Let a = 0.0003 - x. What is a rounded to three dps?\n0\nLet r = -15.68 - -14. Let l = 1.67999831 + r. Round l to seven dps.\n-0.0000017\nSuppose 0 = -3*c + 392 + 307. What is c rounded to the nearest one hundred?\n200\nSuppose -c = 2*c - 9. Let b be -3 + (1 - (c +" -"igit of u?\n7\nLet z(u) = 3*u + 2*u + 2 + 2*u**2 + 0 - u**3. Let p be z(-3). Suppose -4*v + p = -0*v. What is the units digit of v?\n8\nLet f = 233 + -160. Let c = f + -44. What is the tens digit of c?\n2\nSuppose -28*u + 32 = -27*u. What is the units digit of u?\n2\nLet q(r) = 4*r + 13. Let d be q(-13). Let z = d - -66. What is the tens digit of z?\n2\nLet m(k) = k**2 + 6*k - 7. Let i be m(-7). Suppose i = 4*z - 3*z - 8. What is the units digit of z?\n8\nLet a = 5 + -7. Let x = a - -2. What is the units digit of x - (1 + (1 - 5))?\n3\nLet s(f) = 2*f**2 + 3*f - 5. Suppose -k - 3*b + b - 1 = 0, -3 = -3*k - 3*b. What is the tens digit of s(k)?\n2\nSuppose -j + 4*k - 89 = -2*j, 227 = 3*j + 4*k. What is the tens digit of j?\n6" -" = -18/5 + o. Which is greater: -3 or m?\nm\nLet g be (6/46)/((-3)/(-2)). Is 0 at most g?\nTrue\nLet y(v) = 4*v**2 - 16*v - 16. Let q(o) = -3*o**2 + 11*o + 11. Let j(h) = 7*q(h) + 5*y(h). Let t be j(-2). Is t >= -3?\nTrue\nLet w be (9/(-12))/(3 - 0). Let b be 13/(-6) - (1 + -3). Which is smaller: w or b?\nw\nSuppose -2*v - 3*u = -1 - 0, -4*v - 3*u - 7 = 0. Let f = -7 - v. Let i(l) = 2*l**3 - l**2 - l. Let h be i(-1). Is h != f?\nTrue\nLet l = 5 - 5. Suppose -3*d + 63 = -0*d. Let m be -2 + (30/d - 0). Does l = m?\nFalse\nLet t = 9 + -13. Let j = t + 6. Let k = 3.2 + -5.2. Is k less than j?\nTrue\nLet j(z) = z**3 - 2*z**2 + 2*z - 2. Let r be j(2). Suppose -2*i + 18 = r. Suppose 2*f = -i - 0. Is -3 not equal to f?\nTrue\nLet s be 2 + 0 +" -"h is smaller: t or 9.7?\nt\nSuppose 144*k - 4*b = 143*k - 181, -4*k - 5*b = 619. Is -160 < k?\nFalse\nLet v(d) = d**3 + 7*d**2 + 5*d. Let q be v(-6). Suppose -4*y = -4*f - 116, 2*f + 1 = -9. Let m be 1/(y/(-40) + 43/55). Is m less than or equal to q?\nTrue\nLet v be (576/129)/2 - 2. Suppose 87 - 80 = -7*c. Is c < v?\nTrue\nLet m = 3090 - 3477. Let s(j) = 5*j**3 - 5*j**2 - 4*j - 2. Let w be s(-4). Are m and w nonequal?\nTrue\nSuppose u - 8 = 3*u. Let t be u/6*3/2. Let y = 53259 - 266297/5. Which is greater: y or t?\ny\nLet t be (2139/184)/31*-40. Do t and -0.16 have different values?\nTrue\nSuppose -2*g - 15 = 5*i, -2*i + 6 - 31 = -3*g. Let f be (-14)/12*(-3)/4662. Let m = -29299/6660 - f. Is m at least as big as i?\nTrue\nLet s(i) = i**3 - 5*i**2 - 28*i + 132. Let u be s(6). Is u greater than or equal to 26/119?\nFalse\nLet q = -0.224" -"are there between 2:53 PM and 1:53 AM?\n660\nHow many minutes are there between 6:03 PM and 6:47 PM?\n44\nWhat is 176 minutes before 8:28 PM?\n5:32 PM\nHow many minutes are there between 8:08 AM and 9:25 AM?\n77\nHow many minutes are there between 1:58 AM and 12:26 PM?\n628\nHow many minutes are there between 1:36 AM and 4:15 AM?\n159\nWhat is 76 minutes after 11:02 PM?\n12:18 AM\nHow many minutes are there between 6:55 AM and 1:56 PM?\n421\nHow many minutes are there between 1:52 PM and 5:21 PM?\n209\nHow many minutes are there between 8:42 AM and 12:04 PM?\n202\nHow many minutes are there between 7:42 AM and 8:41 AM?\n59\nHow many minutes are there between 5:26 PM and 3:08 AM?\n582\nWhat is 111 minutes before 11:06 PM?\n9:15 PM\nWhat is 277 minutes before 5:38 AM?\n1:01 AM\nWhat is 186 minutes after 3:10 PM?\n6:16 PM\nWhat is 341 minutes before 4:39 PM?\n10:58 AM\nHow many minutes are there between 12:26 AM and 4:36 AM?\n250\nWhat is 453 minutes after 1:17 PM?\n8:50 PM\nWhat is 589 minutes after 3:31 AM?\n1:20" -"5\nLet f(w) = w**3 - 2*w**2 - 2*w + 4. Let r be f(2). Solve 4*y + r = -o - 8, 2*o - 5 = -y for o.\n4\nLet w be (1/(-3))/(2/(-24)). Suppose -2 - w = -2*s. Solve -5 = 5*p, s*h = -h + 5*p + 1 for h.\n-1\nSuppose 0 = 2*k - 3*k + 4. Let x = 10 - k. Suppose x*d = d. Solve -2*n = -4*b + 8, -2*b + 4 = -d*n + 3*n for n.\n0\nLet u be -3 + 2 + 3 + 19. Let z = 25 - u. Solve -z*y + 4*g - 20 = 0, -y + 3*g = -g + 17 for y.\n-1\nLet r be (-24)/40 - (-112)/20. Solve 0 = -4*c + r*x - 20, -4*c + 2*x - 15 = 5 for c.\n-5\nSuppose -3*a + d + 28 = 0, -3*a + 2*d = -d - 24. Solve -2*c + 5*r + 13 = -c, -2*c + 2*r = -a for c.\n3\nLet d be -3 - 45*2/3. Let z = d - -35. Solve a - 4 + 6 = u, -6 =" -"e?\nTrue\nSuppose 0 = -2*n - 3*c + 1, 5*n - c - 14 = 3*c. Let m = n + -2. Is 11 + m/2*-1 prime?\nTrue\nSuppose -s = c - 3, -4*s = -3 + 7. Suppose 0 = -c*f + 31 + 29. Is f composite?\nTrue\nLet n(w) = w**3 + 4*w**2 + 3*w. Let z be n(-3). Suppose z*s = -2*s + 154. Is s a prime number?\nFalse\nLet a = 211 - 100. Let q = 6 + -5. Suppose -q = 5*p - a. Is p composite?\nTrue\nLet m = 26 + -11. Let s = -5 + m. Is s a composite number?\nTrue\nLet f be 2 - 0*(-4 - -5). Suppose f*c - 602 = 5*w, 0*c - w = c - 287. Is c prime?\nFalse\nIs 96 + (1 - 0/2) a composite number?\nFalse\nSuppose -5 = -4*n + 9*n, 46 = 4*v + 2*n. Let j be 1 + -3 - v/(-2). Suppose 4*s + 441 = -b + j*b, -2*b + 2*s + 292 = 0. Is b prime?\nFalse\nLet g = -34 - 8. Let l = g -" -"-43)/7?\nTrue\nLet v(n) be the second derivative of -11*n**3/3 + 15*n**2/2 - 24*n. Is v(-7) a multiple of 13?\nTrue\nLet t = 16 + -16. Suppose -3*j - j + 2*x - 26 = 0, t = 5*j + 3*x + 38. Let f(i) = -i**2 - 12*i - 17. Is f(j) a multiple of 6?\nTrue\nSuppose 12 = 3*j - 51. Let c be j/2*(-12)/18. Does 12 divide 6/14 - 305/c?\nFalse\nLet s = -277 + 160. Let t = 173 + s. Does 8 divide t?\nTrue\nDoes 6 divide 526 + (-14)/(-28) + (-18)/4?\nTrue\nSuppose -v - 3*w + 89 = -2*w, 0 = w - 5. Let k = v + -72. Is k a multiple of 3?\nTrue\nIs (-1512)/(-3 + -1) + -2 + -1 a multiple of 50?\nFalse\nLet i be 75/(-10)*4/(-5). Let u be (-30)/(-8) + i/24. Suppose -u*q - 48 = -8*q. Is 8 a factor of q?\nFalse\nLet h(p) = -p**3 - 12*p**2 - 12*p - 11. Let m be h(-11). Let t = m - -7. Is 7 a factor of t - (-3)/12*0?\nTrue\nLet g = 3 + -3. Suppose" -" k = -2 - -1. Let f = -2.1 - 2. Let r = f - -0.1. Which is the closest to k? (a) -0.5 (b) 0.8 (c) r\na\nLet q = -37 - -23. Let r be ((-35)/q)/(-1)*(-4)/25. What is the nearest to r in 1, -4, -0.1?\n-0.1\nLet h(m) = 2*m - 4. Let p be h(12). Let s = 62/3 - p. Which is the closest to s? (a) -0.5 (b) -2 (c) -1/8\nc\nSuppose 3*s = 2 + 4. Let d = -4.8 + 5. Let y = -0.4 + d. What is the nearest to y in s, 1/3, -0.3?\n-0.3\nLet u = -16.9 + 0.9. Let k = u - -7. Let i = -0.86 - 0.14. Which is the nearest to i? (a) 4 (b) -2/7 (c) k\nb\nLet g = 48/5 - 42/5. Let v = 118.5 + -118.6. What is the closest to v in g, -1/7, 1?\n-1/7\nLet m be ((-22)/(-14) - 2)/((-14)/(-49)). What is the nearest to 1/4 in -2/29, m, -0.4?\n-2/29\nLet a = -4859/4 - -1214. What is the nearest to -0.2 in 1.2, a, -5, 1?\na\nSuppose -4*w" -"escending order.\n4, 3, 0, -14706\nSort -0.3, 4/181, -27, 4, -0.4, -28 in decreasing order.\n4, 4/181, -0.3, -0.4, -27, -28\nSort 0, -3, 3, 1, -2, -3950.\n-3950, -3, -2, 0, 1, 3\nPut 1/6, 0, -1/5, -1, -146 in increasing order.\n-146, -1, -1/5, 0, 1/6\nSort -3, 5, 2, -2, -51.\n-51, -3, -2, 2, 5\nPut 1, -1.6, -0.067, 3 in increasing order.\n-1.6, -0.067, 1, 3\nPut -3, -12, -47, 4, 0 in decreasing order.\n4, 0, -3, -12, -47\nSort 3, 4, -26164.\n-26164, 3, 4\nSort 3, 74, -216, 4 in ascending order.\n-216, 3, 4, 74\nSort -19, -43, -1, -2, 1 in descending order.\n1, -1, -2, -19, -43\nPut 73/2, 0.1, -2/19, -3.7, -4/5 in descending order.\n73/2, 0.1, -2/19, -4/5, -3.7\nPut -4, 1, -5, 7088 in increasing order.\n-5, -4, 1, 7088\nPut -3, -21349, -5 in increasing order.\n-21349, -5, -3\nPut 4, 18, 339, -3 in descending order.\n339, 18, 4, -3\nSort 12, 5, -3, -4, -16, 1 in descending order.\n12, 5, 1, -3, -4, -16\nSort 0.624, -0.05, 0.02, -4, -0.2 in ascending order.\n-4, -0.2, -0.05, 0.02, 0.624\nSort -0.43, -4," -"er when 482 is divided by 21?\n20\nWhat is the remainder when 7641 is divided by 3798?\n45\nWhat is the remainder when 126066 is divided by 581?\n570\nWhat is the remainder when 668737 is divided by 89?\n80\nCalculate the remainder when 37583 is divided by 65.\n13\nWhat is the remainder when 1861 is divided by 113?\n53\nWhat is the remainder when 1532 is divided by 101?\n17\nCalculate the remainder when 13241 is divided by 1472.\n1465\nWhat is the remainder when 11579 is divided by 132?\n95\nCalculate the remainder when 324959 is divided by 9847.\n8\nCalculate the remainder when 3885 is divided by 3880.\n5\nWhat is the remainder when 711990 is divided by 61?\n59\nCalculate the remainder when 11640 is divided by 69.\n48\nCalculate the remainder when 300738 is divided by 426.\n408\nWhat is the remainder when 13279 is divided by 230?\n169\nWhat is the remainder when 5483 is divided by 190?\n163\nCalculate the remainder when 4226 is divided by 140.\n26\nWhat is the remainder when 1082378 is divided by 4?\n2\nWhat is the remainder when 195345 is divided by 6511?\n15\nWhat" -"be -21*(1 + 2)/(-3). Let l be ((-14)/t)/(1/(-66)). Suppose 5*g = -3*n + 56 + 10, 2*n = -2*g + l. Does 14 divide n?\nFalse\nSuppose 0 = -o + 6*o - 100. Let p = o + -18. Suppose 7*x = p*x + 80. Is x a multiple of 4?\nTrue\nSuppose -12*f + 9*f = 3*y - 5649, -2*f + 3772 = -y. Is 42 a factor of f?\nFalse\nLet v(q) = -q**2 - 12*q - 7. Let l be v(-9). Let i = -17 + l. Does 12 divide 48/3*i/4?\nTrue\nLet c = 6 + -2. Suppose 0 = 2*n - c*n + 4. Suppose -42 = -n*s - s. Is s a multiple of 14?\nTrue\nSuppose 0 = f - 5*q + 16, 3*f - q + 15 = 3*q. Let y be 163 - f/((-4)/(-16)). Suppose -11 - y = -2*j. Is 14 a factor of j?\nFalse\nLet q = 1144 + -264. Suppose c + q = 3*z, -8 = -3*c - 2. Does 42 divide z?\nTrue\nLet d = -75 + 109. Suppose -4*i + 98 = -d. Is 3 a factor of i?\nTrue\nIs (-690)/(-45)*282/4" -"f + 622. Let q be g(-8). What is the greatest common divisor of q and 378?\n42\nLet s(f) = -f**3 + 59*f**2 + 614*f + 60. Let o be s(68). Calculate the greatest common divisor of o and 10.\n2\nSuppose -22*u + 24*u = -21*u + 460. What is the greatest common factor of u and 230?\n10\nLet v(p) = -11 - 488*p**3 + 7*p + 2*p + 485*p**3 - 15*p**2 - p + 1. Let r be v(-7). Calculate the highest common factor of r and 38.\n38\nLet b be 3 + 12/(-48) + 25/4. Let v(g) = 9*g - 66. Let i be v(b). Calculate the highest common factor of i and 50.\n5\nSuppose 0 = 5*w + t - 2772 - 1606, -2*w = 4*t - 1762. Calculate the highest common divisor of w and 630.\n35\nLet v = 2444 + -2417. What is the greatest common divisor of v and 792?\n9\nLet h(d) = d**2 - 6*d + 6. Let p be h(4). Let b be 6 - (0 - p)*-1. Let o = 422 + -420. What is the greatest common factor of o and b?\n2" -"hich is the nearest to -1/4? (a) -2/1955 (b) 6/7 (c) -3 (d) -33\na\nWhat is the closest to -41 in -69, 9, -6, -0.3?\n-69\nWhich is the nearest to -3/5? (a) -2 (b) -0.07 (c) -3/8 (d) 3 (e) -16\nc\nWhat is the closest to -3 in -2/3, 2842, -1/2?\n-2/3\nWhich is the closest to -2? (a) -400 (b) 1 (c) -1/8 (d) -0.2 (e) 5\nd\nWhat is the closest to 0.3 in -0.11, -9, 6/5, -3?\n-0.11\nWhat is the nearest to 0 in 2/5, -1/3, 5.95, 4, -0.04?\n-0.04\nWhat is the nearest to 1/10 in 0.3, -1/4, 3/31, 1/5?\n3/31\nWhich is the closest to -0.3? (a) -0.4 (b) 3 (c) 93.65\na\nWhich is the nearest to -2/7? (a) 58 (b) 0.5 (c) 213\nb\nWhich is the nearest to 2? (a) -0.3 (b) 20 (c) -0.227\nc\nWhat is the closest to -1 in -1, -12, -3/5, 1.1, -1/8?\n-1\nWhat is the nearest to -5 in 3.9, 0.89, -3/8?\n-3/8\nWhat is the nearest to -3 in 0.1, 10/27, -3/11, 0.2, -2/5?\n-2/5\nWhich is the nearest to 2/9? (a) -0.8 (b) -1 (c) -5 (d) 2/7 (e)" -"undreds digit of 282?\n2\nWhat is the units digit of 737?\n7\nWhat is the tens digit of 28886?\n8\nWhat is the units digit of 7313?\n3\nWhat is the thousands digit of 8553?\n8\nWhat is the tens digit of 3660?\n6\nWhat is the units digit of 2021?\n1\nWhat is the units digit of 4323?\n3\nWhat is the units digit of 614?\n4\nWhat is the thousands digit of 4986?\n4\nWhat is the thousands digit of 1380?\n1\nWhat is the units digit of 80868?\n8\nWhat is the units digit of 5951?\n1\nWhat is the units digit of 6?\n6\nWhat is the hundreds digit of 7765?\n7\nWhat is the thousands digit of 11666?\n1\nWhat is the tens digit of 253?\n5\nWhat is the units digit of 29311?\n1\nWhat is the units digit of 128?\n8\nWhat is the hundreds digit of 331?\n3\nWhat is the units digit of 731?\n1\nWhat is the thousands digit of 3702?\n3\nWhat is the units digit of 8050?\n0\nWhat is the units digit of 32550?\n0\nWhat is the units digit of 9095?\n5\nWhat is the" -"a prime number?\nTrue\nIs 10585969 composite?\nFalse\nIs 1123495 prime?\nFalse\nIs 939737 composite?\nFalse\nIs 2329577 a prime number?\nTrue\nIs 175211 a composite number?\nFalse\nIs 56204429 prime?\nTrue\nIs 41391983 a prime number?\nTrue\nIs 283330409 a prime number?\nTrue\nIs 1160161 composite?\nFalse\nIs 22544923 composite?\nFalse\nIs 151167461 a prime number?\nTrue\nIs 4945229 composite?\nTrue\nIs 1458203 a prime number?\nTrue\nIs 715171 composite?\nFalse\nIs 13430327 a composite number?\nTrue\nIs 1257647 composite?\nFalse\nIs 4435549 prime?\nTrue\nIs 49180459 prime?\nFalse\nIs 53105993 prime?\nTrue\nIs 2219431 prime?\nFalse\nIs 278981 composite?\nFalse\nIs 58623857 prime?\nTrue\nIs 192394105 a composite number?\nTrue\nIs 1713233 a composite number?\nTrue\nIs 122243 prime?\nFalse\nIs 2227163 a composite number?\nFalse\nIs 7598183 prime?\nFalse\nIs 16359251 a composite number?\nTrue\nIs 4787579 a composite number?\nTrue\nIs 19520761 prime?\nFalse\nIs 350462103 prime?\nFalse\nIs 8111333 a composite number?\nFalse\nIs 277645 a prime number?\nFalse\nIs 2833583 prime?\nFalse\nIs 37038697 prime?\nFalse\nIs 8507591 a composite number?\nFalse\nIs 1787509 a prime number?\nTrue\nIs 172763947 prime?\nFalse\nIs 60066631 a composite number?\nFalse\nIs 22814053 prime?\nTrue\nIs 82369013" -"placement from hqzvvqcqqqqbbhqqz. What is prob of sequence qv?\n1/17\nThree letters picked without replacement from wdjwvjipi. Give prob of sequence ijw.\n1/63\nWhat is prob of sequence zzzi when four letters picked without replacement from ziiizz?\n1/20\nCalculate prob of sequence ccc when three letters picked without replacement from {g: 5, c: 7}.\n7/44\nWhat is prob of sequence ffff when four letters picked without replacement from {f: 4}?\n1\nThree letters picked without replacement from {i: 7, h: 9}. Give prob of sequence hhi.\n3/20\nTwo letters picked without replacement from riizi. What is prob of sequence zr?\n1/20\nFour letters picked without replacement from hhhhhahahha. What is prob of sequence haha?\n7/165\nTwo letters picked without replacement from {n: 2, e: 7}. Give prob of sequence nn.\n1/36\nCalculate prob of sequence pt when two letters picked without replacement from cptccff.\n1/42\nThree letters picked without replacement from eekeekkkeekekeekkeke. Give prob of sequence ekk.\n11/95\nThree letters picked without replacement from {a: 2, o: 3, p: 7}. Give prob of sequence aoo.\n1/110\nWhat is prob of sequence xk when two letters picked without replacement from {x: 2, z: 1, k: 1}?\n1/6\nTwo letters picked without" -" 20*p**2 + 17*p - 7. Is h(13) a prime number?\nFalse\nLet d = -626 - -2185. Is d prime?\nTrue\nIs 68337/81*(-1 - -34) composite?\nTrue\nLet p be (-246)/(-4) + 13/26. Let c = -4 + 97. Let k = c - p. Is k composite?\nFalse\nSuppose 0 = -144*z + 149*z - 10630. Is z prime?\nFalse\nLet k be (4/(-2))/(3/(-33)). Suppose -t - 16527 = -k*t. Is t a prime number?\nTrue\nLet j(u) = -8*u**3 - 10*u**2 - 4*u + 5. Let v = -1 + -6. Is j(v) composite?\nFalse\nLet c(r) = -r**2 + 13*r + 4. Let o be c(12). Suppose -3*i + o = -7*i. Is -7*-2*(-142)/i a prime number?\nFalse\nLet r = -3466 + 9224. Is r prime?\nFalse\nSuppose -10 + 2 = -3*h - u, 0 = -4*h - 4*u. Suppose 2*d + q - 412 + 90 = 0, -3*d - h*q = -488. Suppose 4*r - d = -60. Is r a composite number?\nTrue\nLet d = 8 - 4. Let p be ((-4)/(-4) - d)/(-1). Suppose -4*n + x + 1325 = 0, -2*n - 2*n + 1327 = -p*x. Is n" -"rd root of 633 to the nearest integer?\n9\nWhat is 12576 to the power of 1/9, to the nearest integer?\n3\nWhat is the square root of 6077 to the nearest integer?\n78\nWhat is 55539 to the power of 1/7, to the nearest integer?\n5\nWhat is the cube root of 9098 to the nearest integer?\n21\nWhat is the seventh root of 893 to the nearest integer?\n3\nWhat is 133936 to the power of 1/3, to the nearest integer?\n51\nWhat is the fifth root of 6972 to the nearest integer?\n6\nWhat is the ninth root of 74511 to the nearest integer?\n3\nWhat is the eighth root of 3321 to the nearest integer?\n3\nWhat is 126185 to the power of 1/2, to the nearest integer?\n355\nWhat is 172 to the power of 1/3, to the nearest integer?\n6\nWhat is the tenth root of 88 to the nearest integer?\n2\nWhat is the third root of 802 to the nearest integer?\n9\nWhat is 1711 to the power of 1/2, to the nearest integer?\n41\nWhat is the eighth root of 16226 to the nearest integer?\n3\nWhat is the third root" -").\n-1\nSuppose x - 3*x + 8 = 0. Let p = -41 + 45. Let n(v) = 2 + 2*v - p*v + v + x. Determine n(0).\n6\nLet d(k) be the first derivative of 5/2*k**2 + 7 - 4*k + 1/3*k**3. What is d(-6)?\n2\nLet u(t) = t**2 + 3*t - 17. Let y(h) = 5*h**2 + 13*h - 69. Let s(k) = -k**3 - k + 1. Let c be s(2). Let d(i) = c*u(i) + 2*y(i). Determine d(0).\n15\nLet b(w) = w. Suppose -p + 5 = -4*g, g + 3 = p - 2. Give b(g).\n0\nLet l(t) = 4*t + 2*t**3 - 6*t - 6*t**2 - 2 - 3*t**3. What is l(-6)?\n10\nLet m = 15 + -13. Suppose m*p + 5*l = l + 16, 0 = -5*p - l + 31. Let r(z) = -z**3 + 7*z**2 - 7*z + 7. What is r(p)?\n1\nLet c(s) = -4*s**3 + 2*s**2 + 2*s + 3. Let r(q) = -q**3 + q + 1. Let t(l) = -c(l) + 2*r(l). Let b = 4 - 2. What is t(b)?\n7\nSuppose 4*j - 3*d - 38 =" -" remainder when 55 is divided by f(-1).\n17\nSuppose 0 = -l + 6*l. Suppose 2*d - 3*p = 6*d - 215, -3*d - 3*p + 159 = l. Calculate the remainder when d is divided by 19.\n18\nSuppose 0*w = w - 29. Let q(p) = -p**3 - 7*p**2 - 2*p - 6. Calculate the remainder when w is divided by q(-7).\n5\nSuppose -t = -5*t + 32. Calculate the remainder when 2*(75/(-2))/(-5) is divided by t.\n7\nLet t(o) = -4*o + 6. Suppose -3*d = -4*d, -3*d + 15 = -3*u. What is the remainder when t(u) is divided by 14?\n12\nSuppose 3*q - h + 4*h = 72, 4*h = 16. What is the remainder when 17 is divided by 19/4 - (-5)/q?\n2\nSuppose 5*k + 5*y + 6 = 31, k = -5*y + 13. Suppose 0 = -3*g - 0 + 15. Suppose -g*a = -0*a - 10. Calculate the remainder when k is divided by a.\n1\nSuppose -2*d - l + 12 = 0, 24 + 2 = 4*d + l. Let a be ((-24)/5)/((-5)/(-50)). Let k = -28 - a. Calculate the remainder when k is divided" -" prime factors of 278666?\n2, 139333\nList the prime factors of 1449829.\n1449829\nWhat are the prime factors of 1655721?\n3, 20441\nWhat are the prime factors of 11112922?\n2, 727, 7643\nWhat are the prime factors of 244640?\n2, 5, 11, 139\nList the prime factors of 461453.\n19, 149, 163\nWhat are the prime factors of 103804?\n2, 25951\nWhat are the prime factors of 20098398?\n2, 3, 3349733\nList the prime factors of 12808152.\n2, 3, 7, 43, 197\nWhat are the prime factors of 8651953?\n8651953\nList the prime factors of 12384851.\n12384851\nList the prime factors of 1230672.\n2, 3, 25639\nList the prime factors of 3316183.\n13, 79, 3229\nList the prime factors of 1888694.\n2, 659, 1433\nWhat are the prime factors of 461707?\n461707\nWhat are the prime factors of 77850?\n2, 3, 5, 173\nWhat are the prime factors of 12551747?\n13, 965519\nWhat are the prime factors of 853546?\n2, 426773\nWhat are the prime factors of 945198?\n2, 3, 52511\nList the prime factors of 252680.\n2, 5, 6317\nList the prime factors of 3522274.\n2, 7, 47, 53, 101\nWhat are the prime factors of 603094?\n2, 151," -"-n, 5*q + 4*n = 51. Suppose -q*b + 48 = -4*b. What is the tens digit of b?\n1\nSuppose 2*r - 5*h = 174, 4*r - 3*h - 332 = -h. What is the tens digit of r?\n8\nLet k be 1 - (1 - (34 - 0)). Let q = k - 17. What is the tens digit of q?\n1\nSuppose 5*p - 2*g - 9 - 7 = 0, 0 = p + g - 6. Suppose -147 = -p*i + s, -4*i + 2*s + 146 = -0*s. What is the tens digit of i?\n3\nLet b = -16 + 99. What is the units digit of b?\n3\nSuppose h + 0 = 30. What is the tens digit of h?\n3\nLet c(r) = 3*r - 4. Suppose 2*i + 48 = 6*i. What is the tens digit of c(i)?\n3\nSuppose 2*a = -2*r - 10, 2*r + 4 = 5*a + 1. Suppose 4*o - o = -12. What is the units digit of (0 + a)/(o/20)?\n5\nSuppose 0*q + 78 = -3*x + q, -x - 4*q - 13 = 0. Let l be ((-30)/x)/((-3)/10). What" -"s**3 + 7*s**2 - 8*s - 6. Suppose -5*d = 3*c - 18, 0 = 5*c + 2*d - 6 - 24. Let a(w) = 12*w**3 + 6*w**2 - 7*w - 5. Give c*a(m) - 5*q(m).\n7*m**3 + m**2 - 2*m\nSuppose -139 = -97*p - 50*p + 8*p. Let t(b) = b**3 - 1. Let g(k) = -6*k**3 - 3. Determine p*g(x) + 5*t(x).\n-x**3 - 8\nLet v(z) = 8*z**2 + 25*z - 9. Let c(w) = 3*w**2 + 175*w + 989. Let j be c(-52). Let s(u) = u**2 + u - 1. Give j*v(y) - 6*s(y).\n2*y**2 + 19*y - 3\nLet y(w) be the second derivative of -w**3/3 + 7*w**2/2 + 6223*w. Let a(u) = 14*u - 50. What is 6*a(c) + 44*y(c)?\n-4*c + 8\nLet w(t) = -24*t**3 - 37*t**2 + 3*t + 2. Let p(q) = -24*q**3 - 35*q**2 + 4*q + 3. Give -3*p(i) + 4*w(i).\n-24*i**3 - 43*i**2 - 1\nSuppose 261*o - 1076 - 1888 = 690. Let r(b) = -23*b - 5. Let u(q) = -11*q - 2. What is o*u(n) - 6*r(n)?\n-16*n + 2\nLet a(h) = 3*h**3 + 820*h**2 - 5. Let l(x) = 5*x**3" -" is the third biggest value in 13, -0.5, 0.4?\n-0.5\nWhat is the second biggest value in -0.1, 2, 5, 24?\n5\nWhich is the second smallest value? (a) -1 (b) 31 (c) 0.2\nc\nWhat is the biggest value in 5, -0.5, -0.18, -5, 2/91?\n5\nWhich is the smallest value? (a) 98 (b) 1.2 (c) 3/2\nb\nWhat is the second biggest value in -921, -2/3, -3?\n-3\nWhich is the third smallest value? (a) -0.8 (b) -4 (c) 3 (d) 4\nc\nWhich is the second smallest value? (a) 0.1 (b) -0.16 (c) 1\na\nWhat is the second smallest value in -27, 33, -5, -0.3?\n-5\nWhich is the second biggest value? (a) -145 (b) 1 (c) -1/3\nc\nWhat is the third biggest value in 4, 0.2, 0.365?\n0.2\nWhich is the third biggest value? (a) -3 (b) 9 (c) -7 (d) 2/9 (e) -2\ne\nWhich is the smallest value? (a) 2/11 (b) 1/4 (c) -0.2 (d) -6\nd\nWhich is the third smallest value? (a) 4 (b) -1 (c) -39 (d) -25\nb\nWhat is the third smallest value in -110, -0.3, -3?\n-0.3\nWhich is the second biggest value? (a) -2/7 (b)" -"= -44, -2*n + 2*x + 0*x = -22. Suppose -9239 = -703*g - 1506. Do g and n have the same value?\nTrue\nLet t = -16279.931 + 16278. Is 0 greater than t?\nTrue\nLet n = 6944.8 + -6945. Let u = -69413/69 + 1006. Which is smaller: u or n?\nn\nLet j(s) = 212*s - 426. Let p be j(2). Which is smaller: p or -2/81?\np\nLet j = 330 - 340. Let h = 10.1 + j. Which is smaller: h or -34?\n-34\nSuppose 2*j + 4*z - 6 = 0, -j - 2 = -2*z + 15. Let t(y) = 2*y + 11. Let l be t(6). Let i = 15 - l. Is i <= j?\nTrue\nLet a(v) = -36*v**3 + 6*v**2 + 14*v + 8. Let x be a(4). Which is greater: -2146 or x?\nx\nLet t(s) = -48*s + 2. Let u be t(-1). Let f be (-80)/u + 2/(-5). Let i be (f - -1)/(13/13). Is i greater than or equal to -2/125?\nFalse\nSuppose -4*h = 4*a + 20 - 8, 0 = h - a - 3. Let i = -714.99 + 715." -" Suppose 37*r - s = 32*r. Calculate the greatest common divisor of 252 and r.\n28\nSuppose 54*y = -109*y - 69*y + 3712. What is the highest common factor of y and 8872?\n8\nSuppose 80 = -5*s + 5*m, -5*s - 74 = 11*m - 10*m. Let g be (s - 4)/(2/(-26)). What is the greatest common factor of g and 38?\n19\nSuppose 0*c + 2*d = c, 0 = 5*c - 3*d. Suppose c*k - 137 = -5*k - 2*o, o = -k + 28. Let i = 5 + k. What is the greatest common factor of 128 and i?\n32\nSuppose -7*p = 14, -5*l + 2*p + p + 15006 = 0. Calculate the greatest common factor of l and 42.\n6\nSuppose 2*l + 5*p = 490, 4*l + p - 757 = 241. Let o = -3546 + 3556. Calculate the greatest common divisor of l and o.\n10\nLet k(c) = -78*c + 129. Let z be k(0). What is the greatest common factor of 6579 and z?\n129\nLet o = 175 - 175. Suppose o = -2*v - 0*i - 2*i + 92, -3*i = 5*v - 220." -"?\nFalse\nLet d(r) = -57*r - 56. Suppose 52 - 17 = -5*q. Does 19 divide d(q)?\nFalse\nLet p(k) = -k**3 + 25*k**2 - 12*k - 33. Let f be p(25). Let b = -195 - f. Is b a multiple of 6?\nTrue\nLet w be ((-36)/24)/((-1)/2). Let g be 0 + (1 - 2 - -1). Suppose -4*u - 4 = g, 3*q - 252 = w*u - 0*u. Does 24 divide q?\nFalse\nLet b = -4454 - -8114. Is 14 a factor of b?\nFalse\nLet q(r) = 65*r**2 - 138*r - 883. Is q(-6) a multiple of 12?\nFalse\nSuppose 5*x + 4 = 7*x. Let n be 56/10 - x*(-3)/(-10). Suppose z = -n*d + 79, -18 = -d - 4*z - 6. Does 2 divide d?\nTrue\nLet x be 82/(-2 + (6 - 3)). Suppose 0 = 4*y + 3*v - 652, -y = -4*v - x - 81. Is y a multiple of 23?\nFalse\nLet d(y) be the first derivative of -y**2/2 + 13*y - 2. Let a be d(10). Does 3 divide a - 4/(4/(-19))?\nFalse\nSuppose 47022 - 9652 = 10*t. Is t a multiple of" -" -3*w = y - 7, 0 = 5*y + w - 0*w - 35. Solve -6*c**2 + 3*c + 3*c**3 - 7 + y + 0 = 0.\n0, 1\nLet d be ((-16)/6)/((-8)/12). Suppose -d*t + 3*t - 2*v = 0, 0 = t - 3*v - 5. Factor 1/3*c**t - 1/3 - 1/3*c + 1/3*c**3.\n(c - 1)*(c + 1)**2/3\nLet l = 30 - 30. Solve 4/3*v**2 - 1/3*v - 2*v**3 - 1/3*v**5 + 4/3*v**4 + l = 0 for v.\n0, 1\nLet j be 2/(-12) - (-185)/(-240) - -1. Let b(k) be the first derivative of -2 + 0*k + 1/4*k**3 + 1/4*k**2 + j*k**4. Factor b(s).\ns*(s + 1)*(s + 2)/4\nLet j = -2 - -2. Suppose -2*k + 4 = -j. Factor 1/4*l**k + 0*l - 1/4.\n(l - 1)*(l + 1)/4\nLet d = 48 - 28. Suppose 0 = 2*g + g - 15, d = 5*w + 2*g. Let 6*j**w - 2*j + 0*j**3 + 0*j + 2*j**3 + 6*j**3 = 0. What is j?\n-1, 0, 1/4\nLet o(r) be the first derivative of 3*r**4/20 - 2*r**3/5 - 12*r**2/5 + 9. Suppose o(i) = 0. What is i?" -" 10.\n5*k - 10\nCollect the terms in -7 - 106*s + 13 - 5.\n-106*s + 1\nCollect the terms in 364772*x**3 - 182388*x**3 - 182382*x**3.\n2*x**3\nCollect the terms in -26*p**2 - 8*p**2 - 9*p**2 - 5*p**2 - p**2 + 50*p**2.\np**2\nCollect the terms in -9*l**2 + 47*l**2 - 3*l**2.\n35*l**2\nCollect the terms in 198462 - 342*f - 198462.\n-342*f\nCollect the terms in -89*k - 216*k + 1451*k.\n1146*k\nCollect the terms in 3152*j - 1068*j - 1023*j - 1067*j.\n-6*j\nCollect the terms in 4*t**3 + 4228*t - 4228*t.\n4*t**3\nCollect the terms in -107*n - 404*n - 304*n - 788*n.\n-1603*n\nCollect the terms in -1073*k + 21737*k + 3074*k.\n23738*k\nCollect the terms in 18*d + 12*d + 860 + 355.\n30*d + 1215\nCollect the terms in 137*o**2 + 30*o**2 - 64*o**2.\n103*o**2\nCollect the terms in -18*r - 15 + 5*r - 27 + 0.\n-13*r - 42\nCollect the terms in 15*z - 6*z**3 - 44*z + 23*z + 0*z**3.\n-6*z**3 - 6*z\nCollect the terms in -3 - 16*o**3 + 5 - 2 - 13*o**3.\n-29*o**3\nCollect the terms in 367*k + 2 + 191*k + 312*k.\n870*k" -"se -3*p - 25*b - 11 = -26*b, -2*p + 16 = 4*b. Let u be (12/(-10))/((-1)/(-5)). Let z be (u - (1 + -2)) + 1. Is z <= p?\nTrue\nSuppose -12 = 3*l - 4*l. Which is greater: l or 25/2?\n25/2\nLet j = 0.2 - 1.2. Let r = -1 + 1. Let m = r - -1. Which is smaller: j or m?\nj\nLet v = -0.11 + -0.19. Let m = 0.7 + -1. Let y = v - m. Which is bigger: y or -1/4?\ny\nLet z = -0.165 - -0.192. Do 1 and z have different values?\nTrue\nLet b = 16772/39 + -430. Which is smaller: b or 0?\n0\nLet j = -13 - -17.5. Is 0 at most j?\nTrue\nLet x(o) = -2*o + 32. Let b be x(16). Which is smaller: 7/6 or b?\nb\nLet m = 0 - 0. Let x = -3 - -4. Which is smaller: m or x?\nm\nLet r(m) be the second derivative of m**4/12 - 2*m**3/3 - 2*m**2 - 2*m. Let k be r(5). Which is bigger: 0 or k?\nk\nLet i = 0.3 -" -" hundred thousand.\n-1700000\nLet z = -1137841 + -56959. Round z to the nearest 100000.\n-1200000\nLet p be ((-9990)/20)/9*30. Round p to the nearest one thousand.\n-2000\nLet s = 73 + -271. Let b = -195.69 - s. What is b rounded to 1 decimal place?\n2.3\nLet m = 14509852.5225202 + -14473599.5812. Let z = m - 36371.9413. Let s = z - -119. What is s rounded to 6 decimal places?\n0.00002\nLet y = -168.6648 + 144.66. Let s = 24 + y. What is s rounded to 3 decimal places?\n-0.005\nLet r = -23.2 - -3.1. Let q = 20.099702 + r. What is q rounded to four decimal places?\n-0.0003\nLet x = 1272.93698 - 1273. Round x to 3 decimal places.\n-0.063\nLet h = -0.18 - -0.78. Let y = h + -0.5918. Round y to 3 decimal places.\n0.008\nLet l = -85.9 + 92.34. Round l to 0 dps.\n6\nLet d = -149.529 - 23.581. Round d to the nearest 10.\n-170\nSuppose -2*v = -5*a + 16, 6 + 12 = v + 4*a. Suppose -4*q = 0, -v*s + 0*q + 4*q = -18. Let" -" is the second smallest value in -4, -3, 65?\n-3\nWhich is the smallest value? (a) 0 (b) -1/5 (c) 0.2 (d) 3.8\nb\nWhich is the fourth biggest value? (a) 0.4 (b) -4 (c) -2/7 (d) 0.5 (e) -16\nb\nWhat is the smallest value in -0.4, -244, -0.01?\n-244\nWhat is the biggest value in -0.14, -0.1, 0.04, 5?\n5\nWhich is the biggest value? (a) 2/5 (b) 3 (c) -3 (d) -13\nb\nWhat is the second biggest value in -2/9, 3, 67?\n3\nWhich is the biggest value? (a) 0 (b) 4 (c) -36/5\nb\nWhich is the fourth biggest value? (a) 3/4 (b) 2 (c) 0.1 (d) 3 (e) -5.2\nc\nWhat is the third biggest value in 4, -0.4, -181?\n-181\nWhat is the biggest value in 1, -6, -2/11, 0.09?\n1\nWhat is the third biggest value in -0.1, -1, 13.02?\n-1\nWhich is the smallest value? (a) -1/7 (b) 37 (c) -2/23 (d) 0.1\na\nWhich is the biggest value? (a) 12 (b) 14 (c) -4\nb\nWhat is the second biggest value in -0.3, 1/1283, -3?\n-0.3\nWhich is the smallest value? (a) 1 (b) 0.02 (c) 6 (d) -0.031\nd" -" digit of v?\n7\nLet m = -4 - -6. Let n be (-2*3/(-1))/m. Suppose -2*u - 6 = -4*y, -n*y - 6 = u - 6*y. What is the units digit of u?\n3\nSuppose 0*d = -2*d. What is the units digit of (2 - d)*13/2?\n3\nLet j = 11 - 10. What is the units digit of (21 - j)*9/36?\n5\nLet m(r) be the third derivative of r**6/120 - 7*r**5/30 + 13*r**4/24 + 5*r**3/3 - 4*r**2. What is the units digit of m(13)?\n0\nLet z = 1 - 3. Let j = z - -1. What is the units digit of -3 + 2 + (-7)/j?\n6\nSuppose -5*c - 63 = -2*r, 0 = -0*r - 2*r + c + 43. What is the tens digit of r?\n1\nLet g = -61 + 102. Suppose 0 = 3*q - g + 5. What is the tens digit of q?\n1\nLet y be -7*(16/(-7) - -2). Suppose 4*x + 0 = y*c - 2, -x = -c + 4. Suppose -5*z = k - 75, 67 = 3*z + c*k - 2*k. What is the tens digit of z?\n1\nLet p" -"t b = 12 + p. What is b rounded to three decimal places?\n-0.01\nLet l(x) be the third derivative of -1375*x**4/3 + 2*x**2. Suppose 16 = 4*a + 8. Let q be l(a). What is q rounded to the nearest 10000?\n-20000\nLet d = 910.000231 + -910. Round d to four dps.\n0.0002\nLet j = -2521 + 2075.7. Let f = j + 464. Round f to the nearest integer.\n19\nLet z = -1497 + 1497.00261. What is z rounded to 3 dps?\n0.003\nLet q = 82.48 + -82. Let s = q - 0.47999853. What is s rounded to 7 dps?\n0.0000015\nLet p = -110 + 159. Let l = 432745 - 432695.9942. Let h = l - p. Round h to three decimal places.\n0.006\nLet r = 19.7 + -22.687. Let p = 3.06 + -0.06. Let s = r + p. Round s to three decimal places.\n0.013\nSuppose 10*x = 7*x + 33. Suppose i = 4*j - 0*i + 14, 0 = -3*j + i - x. Let u be (j + 6)*2/(-6). What is u rounded to the nearest ten?\n0\nLet w = -21 -" -"3 - 10*v**2 - 8*v + 6. Let a(n) = 16*n - 308. What is the remainder when a(26) is divided by y(11)?\n30\nSuppose -1200 = -8*o - 1120. Let x(l) = -l**2 - 10*l - 5. Let r be x(-4). Suppose -3*t - o + r = 0. Calculate the remainder when 7 is divided by t.\n1\nSuppose 10*n + 152 = 592. What is the remainder when n is divided by 0 - (-2 - -3)*-10?\n4\nSuppose -145 = -4*w + 5*b, -108 = -3*w - 0*b + 4*b. Suppose -4*t + w = -32. What is the remainder when 21 is divided by t?\n3\nLet d = -30 - -20. Let b be 1 + (-404)/d + (-4)/10. Suppose -39*a - 152 = -b*a. Calculate the remainder when a is divided by 13.\n11\nLet y(q) = -472*q + 2955. What is the remainder when 493 is divided by y(6)?\n1\nLet j = 164 - 132. Suppose -33*u = -j*u - 140. Calculate the remainder when u is divided by 31.\n16\nLet j(h) = 23*h**3 - 3 + 2 + h**2 - 7*h**3 + h. Suppose 5*g + 27*q - 30*q" -"79?\n7\nWhat is the ten thousands digit of 45059?\n4\nWhat is the units digit of 3037496?\n6\nWhat is the ten thousands digit of 2505601?\n0\nWhat is the ten thousands digit of 15209?\n1\nWhat is the tens digit of 342002?\n0\nWhat is the hundreds digit of 953433?\n4\nWhat is the ten thousands digit of 6655504?\n5\nWhat is the tens digit of 2511020?\n2\nWhat is the thousands digit of 48005?\n8\nWhat is the millions digit of 13424348?\n3\nWhat is the units digit of 686873?\n3\nWhat is the hundred thousands digit of 1012677?\n0\nWhat is the hundreds digit of 8926732?\n7\nWhat is the units digit of 9857955?\n5\nWhat is the millions digit of 2408105?\n2\nWhat is the millions digit of 3624823?\n3\nWhat is the thousands digit of 6766873?\n6\nWhat is the ten thousands digit of 7482231?\n8\nWhat is the thousands digit of 3315866?\n5\nWhat is the thousands digit of 344241?\n4\nWhat is the thousands digit of 135714?\n5\nWhat is the ten thousands digit of 835454?\n3\nWhat is the millions digit of 4959226?\n4\nWhat is the units digit of 346306?" -"6) + 3 - 2*c - 3) in the form z*c**2 + a*c + p and give a.\n4\nExpress (-970*d**2 + 211*d**2 - 424*d**2)*(0 - 3 + 2 - 2 + 1 + 2 + (-1 + 0 + 2)*(-5 + 2 + 1)) as m + b*d + c*d**2 and give c.\n2366\nRearrange (1196*i + 1433*i - 3142*i)*(2*i**3 + 4*i**3 - 2*i**3) to the form w + b*i**2 + m*i**4 + x*i + y*i**3 and give m.\n-2052\nExpress 20844*a**2 - 739*a**3 - 20844*a**2 + (-1 + 1 - 2)*(-4*a**3 + 2*a**3 + 3*a**3) as k + q*a**3 + i*a + m*a**2 and give q.\n-741\nExpress 955*j + 1010*j - 6920538 + 6920539 as l + s*j and give s.\n1965\nRearrange -r**4 - 3*r**2 + 3*r**2 + (81*r + 14*r + 33*r)*(-8244*r**3 + 36 + 8247*r**3 - 10) to h*r**3 + g + d*r**4 + s*r**2 + p*r and give p.\n3328\nExpress (2*b + b - b)*(3 + 0 - 5) - 212 - 3973*b + 666 + 3983*b + 498 as y + q*b and give q.\n6\nRearrange (-1 - 38*u + 1)*(1474*u - 1472*u - 7 + 18) to the form" -"5)*(-2*r - 6*r + 4*r) in the form j*r + h and give h.\n-2\nRearrange (-2*o**4 - o**4 + 5*o**4)*(456 + 264 + 361) to the form n*o**2 + m*o + a*o**4 + d*o**3 + i and give a.\n2162\nRearrange 3700*w**2 + 18*w - w**4 - 3700*w**2 - w**3 to the form n*w**2 + i*w + m*w**3 + o*w**4 + d and give i.\n18\nRearrange (-59*w - 31*w + 13*w + 16*w)*(-1 - 3*w**2 + 1) to the form d*w + f*w**2 + t + q*w**3 and give q.\n183\nRearrange -228*h**2 + 5731 - 5731 to the form c*h**2 + n*h + q and give c.\n-228\nRearrange -34*v - 41*v - 198*v - 301*v to the form o + c*v and give c.\n-574\nExpress 123*o**2 - 70*o**2 - 1 - 79*o**2 in the form k*o**2 + c*o + a and give a.\n-1\nExpress -50 - 3*x + 134 - 66 in the form g + h*x and give h.\n-3\nExpress 4*a - 6*a + 15*a + 0*a - 5*a in the form p*a + f and give f.\n0\nExpress (-74 + 74 + 5*o**2)*(o - o + 2*o**2 + (-2*o +" -"24 divide 123672?\nTrue\nDoes 4 divide 45?\nFalse\nIs 134 a factor of 20541?\nFalse\nIs 7 a factor of 2504?\nFalse\nIs 25 a factor of 775?\nTrue\nIs 4515 a multiple of 3?\nTrue\nIs 114 a factor of 5884?\nFalse\nIs 6 a factor of 662?\nFalse\nIs 16127 a multiple of 11?\nFalse\nDoes 6 divide 2130?\nTrue\nIs 18 a factor of 5523?\nFalse\nIs 55 even?\nFalse\nIs 265 a multiple of 4?\nFalse\nIs 123 a multiple of 41?\nTrue\nIs 1344 a multiple of 18?\nFalse\nDoes 9 divide 1161?\nTrue\nIs 72 a factor of 2952?\nTrue\nIs 56 a factor of 19312?\nFalse\nDoes 7 divide 739?\nFalse\nIs 4060 a multiple of 70?\nTrue\nIs 71 a factor of 1147?\nFalse\nIs 24 a factor of 3432?\nTrue\nIs 596 a multiple of 14?\nFalse\nDoes 4 divide 500?\nTrue\nIs 1212 a multiple of 12?\nTrue\nIs 15 a factor of 2700?\nTrue\nDoes 76 divide 12008?\nTrue\nIs 14 a factor of 36705?\nFalse\nDoes 100 divide 14000?\nTrue\nIs 113 a multiple of 5?\nFalse\nIs 1812 a multiple of 12?\nTrue\nIs 41 a" -" = -13*z + 3332 - 2682. What is the remainder when 443 is divided by z?\n43\nLet w(m) = m**2 - m + 119. Let g be -4 + 4 - 0/1. What is the remainder when w(g) is divided by 33?\n20\nLet o = 6561 - 6525. What is the remainder when 168 is divided by o?\n24\nSuppose 3*j - 33 = 157*n - 160*n, -5*j - 55 = -5*n. What is the remainder when 54 is divided by n?\n10\nLet c be -4 + 1 - (2 - 7). Let v be (90/(-24))/(c/(-8)). Calculate the remainder when ((-25)/v)/(5/(-255)) is divided by 44.\n41\nSuppose -8*d - 7*d = -66 - 54. Calculate the remainder when 546 is divided by d.\n2\nLet o be (-519)/((3/2)/(-1)). Let b(q) = -q**2 + 84*q + 4841. What is the remainder when (o/4)/((-1)/(-2)) is divided by b(123)?\n41\nLet y be (-2)/(-4) + (-2)/4. Let p be ((-12)/60*6)/(6/(-20)). Suppose p*q + x = -y*x + 303, 3*x - 309 = -4*q. Calculate the remainder when q is divided by 26.\n23\nSuppose 106*l + 4*y = 108*l - 144, -5*y - 45 = 0. What is the remainder" -" - 35 - 37 - 42, m - 24*q - 24 = 0 for m.\n24\nSolve 4*j = 4*u - 4, -u = -4*j - 3*u - u + 24 for j.\n3\nSolve 9*w - 547 = 7*m + 80, 2*m + 149 - 19 = -2*w - 40 for w.\n2\nSolve -5*b + 1007 = 22*g, -2*g + 8*b + 74 + 26 = 0 for g.\n46\nSolve 5*p - 3*t - 24 = 0, -69*t = -p - 4*p - 61*t + 39 for p.\n3\nSolve 10 + 112 = -2*p - 12*z + 12*z - 32*z, p + 5*p = 3*z - 69 for p.\n-13\nSolve -65*y - 99*y - 650 + 170 = 3*b, 3*b + 2*y - 6 = 0 for b.\n4\nSolve -4*j = 3*b + 26, 54 = -160001*j + 159989*j - 5*b for j.\n-2\nSolve 3*k - 6014 = -6044, 12*v = 7*k + 34 for v.\n-3\nSolve 21*c + 462 = -14*g + 3*g - 7*g, -g = 16*c - 13*c + 11 + 22 for g.\n-21\nSolve -11*s + 33 = v, -7220*v = 3*s - 7223*v - 45 for" -"+ 0*f**5 + 0*f**2 - 76 + 11/7*f**7 + 3/2*f**6 + 0*f + 0*f**4. Find the third derivative of g(j) wrt j.\n1320*j**3 + 540*j**2\nLet d(x) = x**3 + 5*x**2 + 3. Let o be d(-5). Suppose o*f + 18 = 6*f. Find the second derivative of -23*k**2 + 48*k**2 - 28*k**2 + f*k wrt k.\n-6\nLet c(n) be the second derivative of n - 17*n**2 - 59 - 85/6*n**3. Differentiate c(j) wrt j.\n-85\nFind the third derivative of 34*s**4 + 2420*s + 2*s**4 - 27*s**4 - s**2 - 5*s**4 - 1 + 15*s**3 - 36*s**5 - 6*s**4 wrt s.\n-2160*s**2 - 48*s + 90\nDifferentiate -1827 + 95*u**2 - 24*u**2 + 296*u - 293*u wrt u.\n142*u + 3\nLet s(w) = -9*w**4 + 953*w**3 - 7695*w**2 - 4*w + 12. Let n(a) = 3*a**4 + a - 3. Let y(l) = 4*n(l) + s(l). Find the third derivative of y(b) wrt b.\n72*b + 5718\nSuppose 0 = -u - 4*j + 2, 3*j + 2*j + 6 = 3*u. What is the third derivative of 108*w + 4 - u - 108*w + 202*w**6 - 45*w**2 wrt w?\n24240*w**3\nLet m(o) = 339*o -" -"7 to the nearest integer?\n28\nWhat is the third root of 92295 to the nearest integer?\n45\nWhat is 6760 to the power of 1/3, to the nearest integer?\n19\nWhat is the cube root of 3300 to the nearest integer?\n15\nWhat is 1542 to the power of 1/2, to the nearest integer?\n39\nWhat is the square root of 5163 to the nearest integer?\n72\nWhat is the third root of 176 to the nearest integer?\n6\nWhat is the tenth root of 40589 to the nearest integer?\n3\nWhat is 3911 to the power of 1/6, to the nearest integer?\n4\nWhat is 2305 to the power of 1/2, to the nearest integer?\n48\nWhat is the third root of 36257 to the nearest integer?\n33\nWhat is the cube root of 21099 to the nearest integer?\n28\nWhat is 21300 to the power of 1/6, to the nearest integer?\n5\nWhat is the square root of 422 to the nearest integer?\n21\nWhat is the square root of 842 to the nearest integer?\n29\nWhat is the seventh root of 11282 to the nearest integer?\n4\nWhat is 1777 to the power of 1/3, to" -" common factor of z and 12.\n12\nLet k(n) = n**2 + 54*n + 257. Let z be k(-50). Calculate the greatest common factor of z and 9.\n3\nLet b(o) = 5*o + 3*o - 3 - 9*o. Let i be b(-7). What is the greatest common divisor of i and 14?\n2\nSuppose -k - 4*x + 70 = 0, 2*k - 115 = -4*x + 9. Let h = -53 - -76. Suppose h*b - k = 20*b. What is the greatest common factor of 12 and b?\n6\nLet o be -189*(95/38)/((-2)/4). Calculate the highest common factor of 35 and o.\n35\nSuppose -4 = 4*c, 5*g - c + 4*c = 12. Suppose -3*f + 0 = 5*y + 6, -g*f = 3*y. What is the greatest common divisor of f and 21?\n3\nSuppose 2*g - 4*t - 16 = 0, 35 = -3*g + 7*g - 5*t. Suppose -4*l + 62 = -g. Calculate the greatest common divisor of 2 and l.\n2\nLet w = -211 - -319. Let j(f) = f**2 - 22*f + 124. Let h be j(8). What is the greatest common divisor of w and h?\n12\nSuppose" -"(v/(-7))/(10/35). Does 2 divide 9/a + (-11)/(-2)?\nFalse\nLet g(t) = -t**3 - 2*t**2 - t. Let m be g(-1). Suppose m*h - 12 = -4*h. Suppose -2*l = -h*l + 65. Is 14 a factor of l?\nFalse\nLet v be 7/((-35)/(-100)) - 0. Suppose m = -5*n - v, -4*n = -m + 5*m. Is m a multiple of 5?\nTrue\nLet p be 2/9 + (-312)/(-54). Suppose -5*q - 99 - p = 0. Let c = 13 - q. Is c a multiple of 17?\nTrue\nLet i = 81 + -371. Let l = -204 - i. Does 7 divide l?\nFalse\nLet t = 27 - 7. Suppose 3*a + t - 56 = 0. Does 8 divide a?\nFalse\nSuppose -3426 = -4*f + 2*m, m - 855 = 48*f - 49*f. Does 8 divide f?\nTrue\nLet x be 4/18 - 6945/27. Let y = x - -361. Is y a multiple of 26?\nTrue\nLet g(n) = n**3 - n**2 - 2*n + 3. Let u be g(2). Suppose -u*l = 2*l - 20, -4*z = l - 56. Does 4 divide z?\nFalse\nLet y be 6 + -2 +" -"t is next in -28, -99, -264, -559, -1020, -1683, -2584?\n-3759\nWhat is the next term in -1401, -2801, -4201, -5601?\n-7001\nWhat comes next: -13, -13, -7, 11, 47?\n107\nWhat comes next: 1963, 1960, 1957, 1954, 1951, 1948?\n1945\nWhat comes next: 70, 156, 242, 328?\n414\nWhat comes next: 2001, 1993, 1971, 1929, 1861, 1761, 1623?\n1441\nWhat is next in -737, -738, -739, -740, -741, -742?\n-743\nWhat is the next term in -9, -12, -17, -24, -33?\n-44\nWhat comes next: -6, -13, -22, -33, -46, -61?\n-78\nWhat is the next term in -95, -218, -415, -680, -1007, -1390, -1823, -2300?\n-2815\nWhat is next in -26, -74, -154, -266, -410?\n-586\nWhat is next in 14, 160, 558, 1334, 2614, 4524, 7190, 10738?\n15294\nWhat is the next term in 829, 1662, 2495, 3328, 4161, 4994?\n5827\nWhat comes next: 107, 135, 163, 191, 219, 247?\n275\nWhat is the next term in -5767, -5769, -5771, -5773, -5775?\n-5777\nWhat is the next term in -119, -233, -347?\n-461\nWhat comes next: -5, -3, 1, 7?\n15\nWhat is next in -57, -118, -169, -204, -217?\n-202\nWhat comes next: -10, -7," -"ative of -497*q**5 + 245*q**5 - 64*q**4 - 7*q + 76 + 3 + 249*q**5 wrt q?\n-60*q**3 - 768*q**2\nLet k(p) be the third derivative of 0 + 0*p**3 + 0*p**5 - 1/60*p**6 - 12*p**2 - 2*p + 1/10*p**7 + 37/12*p**4. Find the second derivative of k(a) wrt a.\n252*a**2 - 12*a\nSuppose 14*t - 7*t - 105 = 0. Find the third derivative of t*z**3 - 17*z**2 - 86*z**5 - 15*z**3 + 42*z**2 wrt z.\n-5160*z**2\nFind the second derivative of 23 - 93*q**2 - 89*q**3 + 26*q**2 - 23 + 127*q**3 + 2071*q wrt q.\n228*q - 134\nLet z(d) = -907*d**2 - 2409*d - 26. Let j(k) = -907*k**2 - 2410*k - 24. Let t(p) = 13*j(p) - 12*z(p). Find the second derivative of t(i) wrt i.\n-1814\nLet h = 95 - 92. Differentiate -78*b**3 - 167 - 82*b**3 - 73*b**h + 56*b**3 wrt b.\n-531*b**2\nLet y(i) = 7*i + 25. Let s be y(21). What is the second derivative of -8 + 32*g**4 + s*g - 90*g - 84*g wrt g?\n384*g**2\nDifferentiate u - 4*u + 3*u**2 + 59030*u**4 + 1146 - 59028*u**4 + 2*u + 8438 with respect to u.\n8*u**3" -" t(p) = p**2 - 25*p - 406. Give t(32).\n-182\nLet f(o) = -o**3 - 11*o**2 - 2*o + 34. Give f(-6).\n-134\nLet a(v) = -v**3 - 31*v**2 - 221*v - 24. What is a(-20)?\n-4\nLet y(x) = -44*x**2 + 359*x - 25. Calculate y(8).\n31\nLet m(b) = 66*b - 656. What is m(10)?\n4\nLet t(q) = -q**3 + 28*q**2 - 25*q - 193. What is t(27)?\n-139\nLet i(k) = -13*k + 231. Give i(21).\n-42\nLet l(q) = -q**2 - 33*q + 23. What is l(-35)?\n-47\nLet r(v) = v**3 - 94*v**2 + 766*v - 33. What is r(85)?\n52\nLet d(c) = 16*c + 37. What is d(-10)?\n-123\nLet x(r) = 6353*r + 63533. What is x(-10)?\n3\nLet k(h) = 2*h**3 + 54*h**2 - 59*h + 5. Give k(-28).\n89\nLet m(w) = w**3 + 30*w**2 + 60*w + 114. What is m(-28)?\n2\nLet d(f) = f**3 - 34*f**2 + 15*f - 503. What is d(34)?\n7\nLet p(w) = -24*w + 196. Give p(3).\n124\nLet h(j) = j**3 + 25*j**2 - 78*j + 232. Calculate h(-28).\n64\nLet b(p) = -p**3 + 5*p**2 - 56*p + 155." -"025746?\n4\nWhat is the millions digit of 826127274?\n6\nWhat is the ten millions digit of 21254506?\n2\nWhat is the ten thousands digit of 4773318732?\n1\nWhat is the hundred thousands digit of 7044928006?\n9\nWhat is the tens digit of 196181756?\n5\nWhat is the tens digit of 1047549475?\n7\nWhat is the hundreds digit of 184510680?\n6\nWhat is the hundred millions digit of 122767329?\n1\nWhat is the units digit of 29300724?\n4\nWhat is the hundred thousands digit of 1237354954?\n3\nWhat is the tens digit of 312935?\n3\nWhat is the units digit of 49051288?\n8\nWhat is the thousands digit of 1637649772?\n9\nWhat is the ten thousands digit of 7293094?\n9\nWhat is the tens digit of 451001114?\n1\nWhat is the ten thousands digit of 431428609?\n2\nWhat is the ten thousands digit of 1674333818?\n3\nWhat is the units digit of 1337964699?\n9\nWhat is the ten thousands digit of 31872542?\n7\nWhat is the thousands digit of 86615025?\n5\nWhat is the units digit of 766486795?\n5\nWhat is the millions digit of 55106529?\n5\nWhat is the ten millions digit of 3039105615?\n3\nWhat is the ten" -"= -376.5855 - 2.1945. Let y = 374 + x. Let l = y - -3.7. What is l rounded to 1 decimal place?\n-1.1\nLet z = 0.3077 + -0.332. What is z rounded to three dps?\n-0.024\nLet v = -12548399 + 21448399. Round v to the nearest one million.\n9000000\nLet i = 1.061 - 21.2814. Let k = i - -20.62. Let p = k - 0.4. What is p rounded to three decimal places?\n0\nLet q = 205.605 - 203.90498. Let l = -1.7 + q. What is l rounded to four dps?\n0\nLet k = 0.08858 + -0.01072. Let g = -7.8 + 7.877. Let t = k - g. Round t to four decimal places.\n0.0009\nLet j(t) = -22246*t**2 - 7*t + 5. Let f be j(-7). What is f rounded to the nearest 100000?\n-1100000\nLet s = -0.39 + 0.39106. What is s rounded to four decimal places?\n0.0011\nSuppose 0*z - 12 = -4*b + z, 5*z = -5*b + 40. Suppose -4*s = -3*i - 0*s + 458, -i + b*s = -142. Let o = i - 288. What is o rounded to the nearest" -"sadakvsssdsa. Give prob of picking 2 a and 1 d.\n7/190\nWhat is prob of picking 2 n when two letters picked without replacement from nssenensksnlexn?\n2/21\nTwo letters picked without replacement from {b: 2, t: 2, r: 1, s: 1, u: 1, m: 1}. What is prob of picking 1 u and 1 s?\n1/28\nCalculate prob of picking 2 c and 1 x when three letters picked without replacement from {x: 5, c: 3}.\n15/56\nTwo letters picked without replacement from kufllfuuff. Give prob of picking 2 l.\n1/45\nCalculate prob of picking 2 j when two letters picked without replacement from {w: 1, j: 11}.\n5/6\nThree letters picked without replacement from {l: 1, p: 4, o: 2, z: 1}. What is prob of picking 2 p and 1 z?\n3/28\nCalculate prob of picking 1 f and 1 q when two letters picked without replacement from {f: 3, q: 8, p: 6}.\n3/17\nFour letters picked without replacement from {c: 5, p: 3}. Give prob of picking 3 p and 1 c.\n1/14\nFour letters picked without replacement from {n: 3, z: 1, l: 3, v: 3, w: 8}. Give prob of picking 3 w and" -"et i = j + 856. Is i a composite number?\nTrue\nLet l(m) = -m**2 + 8*m + 6. Let q(d) = d + 15. Let w be q(-13). Let o be w + 4 - (2 - 3). Is l(o) a composite number?\nFalse\nLet o = 621 - 609. Let l be 44908/14 + 4/14. Is l/o + (-2)/6 a prime number?\nFalse\nSuppose 4*i + 4383 = 28187. Is i composite?\nTrue\nLet w be (-14)/(-10) + (-9)/(-15). Let u(r) = 19*r - w + 2 + 6*r + 3. Is u(2) a composite number?\nFalse\nLet r(h) be the third derivative of h**4/3 - 19*h**3/3 + 45*h**2. Is r(9) prime?\nFalse\nSuppose 6*w = 4130 + 2296. Let l = w + -518. Is l a composite number?\nTrue\nSuppose -3*l - 3*y + 584 = -679, -l - 3*y + 413 = 0. Suppose l = 5*v + 150. Is v composite?\nTrue\nLet o be (-8)/6*(-18)/4. Let x be (-186)/310*-1*(1 + 4). Suppose g + g + 61 = l, 0 = x*g - o. Is l a prime number?\nFalse\nIs (3 - -4720) + 0 - -4 prime?\nFalse\nLet g" -" 9:28 AM?\n139\nWhat is 44 minutes after 3:31 PM?\n4:15 PM\nHow many minutes are there between 8:20 AM and 6:51 PM?\n631\nWhat is 184 minutes after 2:17 PM?\n5:21 PM\nWhat is 49 minutes before 2:03 AM?\n1:14 AM\nWhat is 217 minutes after 2:45 AM?\n6:22 AM\nWhat is 448 minutes before 2:47 PM?\n7:19 AM\nWhat is 255 minutes before 9:13 AM?\n4:58 AM\nHow many minutes are there between 9:06 PM and 11:13 PM?\n127\nWhat is 292 minutes after 3:30 AM?\n8:22 AM\nWhat is 277 minutes after 10:08 PM?\n2:45 AM\nHow many minutes are there between 10:33 PM and 2:59 AM?\n266\nWhat is 51 minutes after 11:24 PM?\n12:15 AM\nWhat is 663 minutes after 9:13 PM?\n8:16 AM\nWhat is 130 minutes before 1:29 PM?\n11:19 AM\nWhat is 160 minutes before 8:45 AM?\n6:05 AM\nHow many minutes are there between 8:35 AM and 8:23 PM?\n708\nHow many minutes are there between 9:07 PM and 1:16 AM?\n249\nWhat is 583 minutes before 9:42 PM?\n11:59 AM\nWhat is 514 minutes after 2:00 AM?\n10:34 AM\nHow many minutes are there between 11:05 AM and 1:21 PM?" -"**3 + z**2\nLet u(c) = c**2 - c - 4. Let g(i) = -i**2 + 2*i + 3. Give 3*g(p) + 4*u(p).\np**2 + 2*p - 7\nLet b(w) = -2*w**3 + 4*w**2 - w + 6. Let q(a) be the second derivative of a**5/20 - a**4/12 - a**2/2 + 3*a. What is -b(r) - 4*q(r)?\n-2*r**3 + r - 2\nLet b(y) = -1. Let r(i) = 3*i - 22 - 4*i + 9 + i**2 + 14. What is b(a) - r(a)?\n-a**2 + a - 2\nLet j(f) = -18*f + 6. Let s(w) = -w - 1. Calculate -j(k) - 4*s(k).\n22*k - 2\nLet i(t) = 3*t**3 - 7*t**2 + 8*t - 6. Let u(c) = 2*c**3 - 6*c**2 + 7*c - 5. Suppose -2*y + 45 = 59. Calculate y*u(z) + 6*i(z).\n4*z**3 - z - 1\nLet p(k) = 54*k**2 - 8*k + 5. Let y(x) = -18*x**2 + 3*x - 2. Determine 3*p(o) + 8*y(o).\n18*o**2 - 1\nLet b = 0 - 7. Let n(p) = 9*p + 7. Let c = 0 - 3. Let z(v) = -4*v - 3. Give b*z(i) + c*n(i).\ni\nLet u(f) = -6*f" -"the fourth root of 24374908 to the nearest integer?\n70\nWhat is 14515607 to the power of 1/2, to the nearest integer?\n3810\nWhat is 972750557 to the power of 1/3, to the nearest integer?\n991\nWhat is the third root of 1179451254 to the nearest integer?\n1057\nWhat is 4926752472 to the power of 1/3, to the nearest integer?\n1702\nWhat is 274585553 to the power of 1/5, to the nearest integer?\n49\nWhat is the ninth root of 44736270 to the nearest integer?\n7\nWhat is the eighth root of 6881110306 to the nearest integer?\n17\nWhat is 94616660 to the power of 1/6, to the nearest integer?\n21\nWhat is the ninth root of 137575690 to the nearest integer?\n8\nWhat is 2439989642 to the power of 1/2, to the nearest integer?\n49396\nWhat is the tenth root of 138415121 to the nearest integer?\n7\nWhat is the cube root of 50644602 to the nearest integer?\n370\nWhat is the third root of 48978600 to the nearest integer?\n366\nWhat is the third root of 22226043 to the nearest integer?\n281\nWhat is the square root of 278285994 to the nearest integer?\n16682\nWhat is the third" -"j**3 + 6*j**2 - 7*j + 6. Let y be k(-7). Suppose -y*b + 3*b + 27 = 4*s, 2*s = -b + 13. Let o(t) = t - 3. What are the prime factors of o(s)?\n3\nLet x = 31 + -16. List the prime factors of x.\n3, 5\nLet m = 14 - 5. What are the prime factors of m?\n3\nLet v(p) = 13*p + 3. Let q be v(-2). Let w = q + 12. Let i = w + 14. What are the prime factors of i?\n3\nLet h be 14/49 - (-258)/(-21). List the prime factors of h/(-6) + 0 + 21.\n23\nLet j = 13 + -2. Suppose -t = -j - 2. List the prime factors of t.\n13\nLet m(o) = o - 4. Let s be m(8). Suppose -s = -b - 5. Let x = b - -6. What are the prime factors of x?\n5\nSuppose -i + 5*k - 2 = 8, 2*k + 35 = 3*i. Suppose 2*b - 4*b - n + i = 0, 3*n - 20 = -b. What are the prime factors of b?\n5\nLet g" -" millennium?\n2\nWhat is 15/4 of a week in minutes?\n37800\nHow many micrometers are there in 3/10 of a centimeter?\n3000\nWhat is five quarters of a millennium in decades?\n125\nWhat is 51/2 of a hour in seconds?\n91800\nWhat is 11/8 of a milligram in micrograms?\n1375\nHow many years are there in seven halves of a millennium?\n3500\nHow many years are there in 0.92152 centuries?\n92.152\nConvert 0.3057379 millilitres to litres.\n0.0003057379\nWhat is 21/8 of a decade in months?\n315\nWhat is thirteen fifths of a kilogram in grams?\n2600\nWhat is two fifteenths of a millennium in months?\n1600\nHow many months are there in eleven quarters of a century?\n3300\nHow many millilitres are there in 0.03775l?\n37.75\nHow many months are there in 11/10 of a decade?\n132\nWhat is 996.8473 micrometers in kilometers?\n0.0000009968473\nHow many months are there in 53.038 decades?\n6364.56\nHow many centimeters are there in one fifth of a meter?\n20\nConvert 5201.957km to nanometers.\n5201957000000000\nHow many milligrams are there in 3/32 of a kilogram?\n93750\nConvert 58126.54 hours to seconds.\n209255544\nHow many microseconds are there in 4.890742 minutes?\n293444520\nWhat is 21.00498t in" -"64, 2325, 3486?\n4647\nWhat comes next: -1463, -2919, -4375, -5831?\n-7287\nWhat is next in 33, 28, 21, 12, 1, -12, -27?\n-44\nWhat is next in -4, -24, -58, -112, -192, -304?\n-454\nWhat is the next term in 52, 72, 92, 112, 132?\n152\nWhat is the next term in -191, -196, -213, -248, -307?\n-396\nWhat is the next term in -25933, -25937, -25943, -25951, -25961?\n-25973\nWhat is next in 50, 106, 162, 218, 274?\n330\nWhat is next in -19, -63, -203, -493, -987, -1739, -2803, -4233?\n-6083\nWhat is the next term in -1807, -7262, -16353, -29080?\n-45443\nWhat is next in -300, -303, -306, -309?\n-312\nWhat comes next: -347, -349, -351, -353, -355?\n-357\nWhat comes next: -28, -32, -36, -40, -44, -48?\n-52\nWhat comes next: 289, 287, 275, 247, 197?\n119\nWhat is next in 22, 101, 314, 727, 1406, 2417, 3826, 5699?\n8102\nWhat comes next: 192, 766, 1722, 3060, 4780, 6882?\n9366\nWhat is next in 4, 5, 0, -17, -52, -111, -200?\n-325\nWhat is the next term in -7864, -15730, -23596?\n-31462\nWhat comes next: 82, 98, 132, 190, 278, 402, 568?\n782\nWhat comes" -"(r) = 6*r**2 + 16*r. Let p be -5 + (-11 - -5) + -5. Calculate p*g(s) + 5*o(s).\n-2*s**2\nLet s(n) = -n - 1. Let f(m) = 6*m + 7. Calculate -f(v) - 4*s(v).\n-2*v - 3\nLet k(i) = i**3 + i**2 + i. Let c(g) = -8*g**3 + 4*g**2 + 4*g. Calculate -c(d) + 4*k(d).\n12*d**3\nLet m(y) = 6 + 0*y + 0*y - 4*y**2. Suppose 11 = -2*a + 5*n + 4, -2 = a - 4*n. Let b(u) = 11*u**2 - 17. Determine a*b(g) - 17*m(g).\n2*g**2\nLet n(o) = o**2 - 3*o + 5. Suppose 0 = -5*b + y - 30, -5 + 30 = -3*b + 2*y. Let m be 3/2 - 1/(-2). Let a(k) = -529 - 2*k + 531 + k. Give b*a(v) + m*n(v).\n2*v**2 - v\nLet r(n) = 4*n**2 + 2*n - 8. Let o(m) = m**2 + m - 3. Calculate 11*o(h) - 4*r(h).\n-5*h**2 + 3*h - 1\nLet i = -8 - -7. Let g(f) = -f - f + f + 0. Let x(j) = -2*j**3 + 12*j. Let m = 4 - 16. What is i*x(o) + m*g(o)?\n2*o**3\nLet" -"es?\n0.00579333\nConvert 969740.3l to millilitres.\n969740300\nHow many months are there in 6/5 of a decade?\n144\nWhat is 617.592 millennia in centuries?\n6175.92\nWhat is 21/5 of a gram in milligrams?\n4200\nWhat is fourty-two fifths of a microgram in nanograms?\n8400\nHow many kilograms are there in 3/5 of a tonne?\n600\nHow many months are there in eleven tenths of a millennium?\n13200\nConvert 974.1327 centimeters to kilometers.\n0.009741327\nHow many litres are there in 19.76983 millilitres?\n0.01976983\nConvert 478473.9 millilitres to litres.\n478.4739\nConvert 640807.1 micrometers to millimeters.\n640.8071\nWhat is thirteen fifths of a micrometer in nanometers?\n2600\nHow many nanoseconds are there in three fifths of a microsecond?\n600\nHow many centimeters are there in one quarter of a kilometer?\n25000\nWhat is thirty-one fifths of a hour in seconds?\n22320\nWhat is 941.2266 millilitres in litres?\n0.9412266\nHow many nanograms are there in 184.947 kilograms?\n184947000000000\nConvert 0.070971l to millilitres.\n70.971\nWhat is 3/40 of a millennium in years?\n75\nHow many seconds are there in 95730.66 minutes?\n5743839.6\nHow many millilitres are there in 55165.22 litres?\n55165220\nConvert 760308.1 centuries to months.\n912369720\nConvert 373708.1ml to litres.\n373.7081\nHow many millilitres" -" + -2). Let d be (22688/6 - -2)/(1/z). Round d to the nearest ten thousand.\n-200000\nSuppose 94940181 = -7*o - 131964819. Round o to the nearest 1000000.\n-32000000\nLet u = 6.2 + -2.44. Let v = -3.759378 + u. Round v to 5 dps.\n0.00062\nLet s = -613.9 - -613.1318. Let q = 24.2548 - s. Let r = 25 - q. Round r to two decimal places.\n-0.02\nLet f = -265.87 - -4.87. Let r = 261.0000415 + f. Round r to 5 dps.\n0.00004\nLet r = -34.71293939 + 34.712. What is r rounded to 4 dps?\n-0.0009\nLet n = -8 + 2. Let z = 5.14 + n. Let q = 0.860143 + z. Round q to five decimal places.\n0.00014\nLet g = -53.9924 - 6.7706. Round g to 1 decimal place.\n-60.8\nLet g = -62 + 63.113. Let z = 11827.907 + -11828. Let v = z + g. What is v rounded to one dp?\n1\nLet k = 0.48 + 313.52. Let a = k + -313.702. Round a to 2 decimal places.\n0.3\nLet a = -36.587942748 - -36.588. What is a rounded to 5 dps?" -"a + 0*a**3 + 0*a**4 + 0 - 251/2*a**2 + 187/20*a**5. Differentiate t(q) wrt q.\n561*q**2\nLet l(d) be the first derivative of -1/5*d**5 + 1/4*d**4 + 28 - 32*d**2 + 0*d**3 + 0*d. Find the second derivative of l(u) wrt u.\n-12*u**2 + 6*u\nSuppose 5*r + 12 - 47 = 0. Suppose 691 = r*c - 6*c. What is the second derivative of c - 17*o**2 - o - 691 wrt o?\n-34\nLet w(j) be the third derivative of -859*j**8/336 + j**6/60 - 329*j**4/6 + 3*j**2 - 525*j. What is the second derivative of w(r) wrt r?\n-17180*r**3 + 12*r\nLet q be -4 + (-2 - 0)/(-2) - -39. Find the second derivative of -15*w**3 + 4*w**3 - 120*w - 7*w**3 + q*w wrt w.\n-108*w\nLet a(k) be the second derivative of -183*k**6/5 - 85*k**4/12 - k**3/2 + 14*k + 17. What is the third derivative of a(h) wrt h?\n-26352*h\nLet g = 69 - 53. What is the derivative of 1 - 115*m**4 + 19 + 29 + 73 - g wrt m?\n-460*m**3\nLet h(l) = 2994*l**4 + 1337*l + 11. Let r(m) = -2996*m**4 - 1341*m - 14. Let k(f) =" -"+ 157. Let w be a(r). Solve 0 = w*m - 2*z - 33, -6*m + 3*m = 2*z - 7 for m.\n5\nSuppose 18*a = 7*a - 165. Let k = a - -21. Let u(m) = 6*m - 29. Let w be u(k). Solve 4*c + 11 = -f, -f = -0*c + 3*c + w for c.\n-4\nLet g(o) = -34*o - 6. Let q be g(-3). Let j = 319 + -315. Suppose 16*u - q = j*u. Solve -5*d + 3*z + 1 = -2, 0 = 2*z - u for d.\n3\nLet l be -10*((-23)/(-2))/23 - (-4 + -1). Solve -4*j + 2*a + 2 = l, 8*a = 3*j + 4*a + 1 for j.\n1\nLet b(d) = 10*d - 35. Let s be b(13). Suppose -100 = -13*t + s. Solve -2*v - 2*p = v - 16, 3*p - t = 0 for v.\n2\nLet o = -62 - -66. Suppose n - 4*u + o = -2, 3*u = -2*n + 32. Solve -5*c - 20 = -5*m - n*c, 10 = -5*m + 5*c for m.\n1\nLet d(z) = -z**3 + 37*z**2 +" -"s of 764259050.\n2, 5, 37, 413113\nList the prime factors of 9128734.\n2, 4564367\nList the prime factors of 71015438.\n2, 13, 1009, 2707\nWhat are the prime factors of 56797517?\n7, 19, 61007\nList the prime factors of 674326519.\n107, 6302117\nList the prime factors of 9002623636.\n2, 71, 31699379\nWhat are the prime factors of 2596209053?\n1493, 1738921\nWhat are the prime factors of 7856493?\n3, 2618831\nWhat are the prime factors of 3245922225?\n3, 5, 7, 13, 47, 3373\nWhat are the prime factors of 799502779?\n799502779\nList the prime factors of 47064643.\n47064643\nList the prime factors of 75336227.\n3253, 23159\nList the prime factors of 341073684.\n2, 3, 7, 67, 20201\nWhat are the prime factors of 122775980?\n2, 5, 127, 48337\nWhat are the prime factors of 420314734?\n2, 7, 163, 184187\nWhat are the prime factors of 85410553?\n61, 1400173\nList the prime factors of 102547765.\n5, 41, 500233\nWhat are the prime factors of 3001999042?\n2, 7, 214428503\nWhat are the prime factors of 366076960?\n2, 5, 107, 21383\nList the prime factors of 2237982371.\n2237982371\nWhat are the prime factors of 67729532?\n2, 13, 1302491\nWhat are the prime factors" -" 19)*(-2*g + 0*g + 0*g) as c + n*g**2 + v*g and give n.\n-15\nExpress -131 + 131 - 7*m in the form b*m + a and give b.\n-7\nRearrange -3*q - 2*q + 2*q + (-1 + 0 - 1)*(-3*q + 5*q - q) + (0*q + q - 3*q)*(1 + 1 + 0) to the form c*q + l and give c.\n-9\nExpress -2*j**2 + 2*j**2 + j**2 + (-j**2 + j - j)*(-2 + 2 + 2) - 9 + 9 + 6*j**2 in the form k*j**2 + c*j + q and give k.\n5\nRearrange (117 - 117 - 63*w)*(w - w - 3*w**2) to the form j*w**3 + z*w + c*w**2 + t and give j.\n189\nRearrange (-3*a + 0 + 0 + 2*a - a - 3*a + (-1 + 1 + 2*a)*(-4 + 4 - 2))*(-2*a + 0 - 7 + 8) to k*a + u + i*a**2 and give i.\n18\nRearrange (-t**2 - 6*t**2 + 0*t**2)*(t**2 - 1 + 1 + (0*t - 2*t + 0*t)*(-3*t - t + 2*t)) to c*t**4 + z*t**3 + u*t + k + o*t**2 and give c.\n-35\nExpress -t +" -", 4, -0.08.\nm, -0.08, 4\nLet y be ((-42)/(-70))/((-6)/4). Put -0.1, 2/5, y in increasing order.\ny, -0.1, 2/5\nLet f = -7.5 - -3. Let u = f + 4. Let a = u - -0.6. Put a, 5, -5 in increasing order.\n-5, a, 5\nLet d be (12/(-4) - -2) + 12/3. Sort d, 4, -4, 2 in increasing order.\n-4, 2, d, 4\nLet g = 0.3 + 0.7. Let u = 1.19 + -1.19. Sort g, -0.3, u in ascending order.\n-0.3, u, g\nLet u(t) = -t**3 - 40*t**2 - 40*t - 38. Let h be u(-39). Suppose -7 = 5*x + 3*s, -2*s + 6*s + 19 = 3*x. Suppose -3 - x = -2*f. Sort f, h, 4.\nh, f, 4\nLet o = -0.08 + 0.08. Let m = 0 - 0.2. Let l = -5.06 + 0.06. Sort m, l, o in decreasing order.\no, m, l\nSuppose 2*t - 4 = 6*t - 2*v, -5*t - 23 = 2*v. Suppose -4*k - 20 = k. Put t, k, 1 in decreasing order.\n1, t, k\nLet v = -31 - -31.09. Sort 2, v, -5 in increasing order." -"here between 1:04 AM and 5:55 AM?\n291\nHow many minutes are there between 12:54 PM and 8:19 PM?\n445\nHow many minutes are there between 6:49 AM and 6:18 PM?\n689\nWhat is 202 minutes after 6:52 AM?\n10:14 AM\nWhat is 342 minutes after 4:25 AM?\n10:07 AM\nHow many minutes are there between 6:03 PM and 10:49 PM?\n286\nHow many minutes are there between 9:06 PM and 5:46 AM?\n520\nHow many minutes are there between 9:40 AM and 4:07 PM?\n387\nWhat is 675 minutes after 9:45 PM?\n9:00 AM\nWhat is 266 minutes before 12:39 PM?\n8:13 AM\nWhat is 166 minutes before 7:10 PM?\n4:24 PM\nHow many minutes are there between 2:56 AM and 1:40 PM?\n644\nWhat is 42 minutes before 4:20 AM?\n3:38 AM\nWhat is 589 minutes after 9:08 PM?\n6:57 AM\nHow many minutes are there between 5:45 AM and 6:56 AM?\n71\nWhat is 195 minutes after 10:41 AM?\n1:56 PM\nWhat is 96 minutes after 8:10 PM?\n9:46 PM\nHow many minutes are there between 11:13 PM and 12:04 AM?\n51\nWhat is 578 minutes before 11:39 PM?\n2:01 PM\nHow many minutes are there between" -" = -129*z**3 + 3*z**2 + 2*z - 2. What is the least common multiple of g(-2) and 14?\n7266\nLet u(f) = -40*f - 146. Calculate the smallest common multiple of 4 and u(-5).\n108\nLet o = -5505359/119 + 46264. Find the common denominator of o and -13/7.\n119\nSuppose 0 = 3*v - 8*v - 2*s + 124, 0 = 2*s - 4. Calculate the lowest common multiple of v and 96.\n96\nWhat is the common denominator of -37/2 and (198/(-9933))/(20/7)?\n430\nLet j(a) = -318*a - 3. Calculate the least common multiple of j(-1) and 270.\n1890\nLet l = -15191 - -243141/16. Let g = -600 + 2339/4. Find the common denominator of g and l.\n16\nSuppose -3*h - h + 5*w + 1032 = 0, 3*h + 3*w = 774. What is the smallest common multiple of h and 51?\n4386\nSuppose q - 5*q - g = -471, 3*q - 377 = 4*g. Find the common denominator of -17/22 and (43/(-8))/(5 - q/28).\n66\nLet b be 1/(-6) + 161043/54. Let x = -2974 + b. Let j = 1057/2 - 567. Find the common denominator of x and j.\n18\nFind" -" p: 1, e: 1}. Give prob of sequence me.\n1/14\nThree letters picked without replacement from kqkq. What is prob of sequence kqk?\n1/6\nWhat is prob of sequence oo when two letters picked without replacement from {o: 4, a: 6, h: 3, k: 1}?\n6/91\nCalculate prob of sequence ddxg when four letters picked without replacement from {x: 3, r: 4, d: 2, g: 7, w: 1}.\n1/1360\nTwo letters picked without replacement from rrrrrrqrqrrrrrerr. What is prob of sequence re?\n7/136\nFour letters picked without replacement from juyyxu. Give prob of sequence uujx.\n1/180\nFour letters picked without replacement from {i: 3, g: 13}. Give prob of sequence iigg.\n3/140\nFour letters picked without replacement from xppxxruuuxnxxuxnnpur. Give prob of sequence pnpn.\n1/3230\nThree letters picked without replacement from {z: 1, v: 4, g: 2, y: 3, c: 2, o: 2}. What is prob of sequence oco?\n1/546\nFour letters picked without replacement from {o: 3, n: 4}. Give prob of sequence nnon.\n3/35\nThree letters picked without replacement from {t: 1, g: 7, i: 3, c: 5}. What is prob of sequence ccc?\n1/56\nCalculate prob of sequence pnn when three letters picked without replacement from {b:" -" 98*l**3 + 194*l**3.\n-31*l**3\nCollect the terms in 304*i**2 - 155*i**2 - 2068*i**3 + 1960*i**3 - 153*i**2.\n-108*i**3 - 4*i**2\nCollect the terms in 10095*c**2 + 2*c + c + 1114 - 1113.\n10095*c**2 + 3*c + 1\nCollect the terms in -6465 - 6472 - 6461 - 6472 - 6473 + 32339 + 20*f.\n20*f - 4\nCollect the terms in -11711*n**3 - 11726*n**3 - 11728*n**3 + 35173*n**3.\n8*n**3\nCollect the terms in -3 + 1 - 15768*i - 17706*i - 6110*i.\n-39584*i - 2\nCollect the terms in 2*i**2 + 5*i + 171 - 4*i + 249 - 531 - i.\n2*i**2 - 111\nCollect the terms in -35793*j**2 + 20853*j - 20853*j.\n-35793*j**2\nCollect the terms in -1818*u - 110*u**3 - 9 - 6*u**2 + 11 + 1818*u.\n-110*u**3 - 6*u**2 + 2\nCollect the terms in 3*n**2 - 39 - 4*n**2 + 39 - 28171*n**3.\n-28171*n**3 - n**2\nCollect the terms in 1 - 2 + 172081*l**2 - 1735526*l**2.\n-1563445*l**2 - 1\nCollect the terms in -3 + 114*o + 37*o + 5 - 37*o + 6.\n114*o + 8\nCollect the terms in -2400745*a**3 - 12 + 7 + 2400739*a**3.\n-6*a**3 - 5\nCollect the" -" divided by 11 + k/((-9)/12)?\n3\nSuppose 2*t - 3*r = -t + 111, 0 = -3*t + r + 107. Let s = -1 - -4. Suppose -37 = -s*q - 10. What is the remainder when t is divided by q?\n8\nLet b = -13 + 23. Let d be 928/(-20) + (-6)/b. Let p = d + 133. Calculate the remainder when p is divided by 22.\n20\nLet l(f) = -2*f + 4. Let r(x) = x + 1. Let j be r(-7). Let p(b) = -3*b**3 - 17*b**2 + 8*b + 21. Calculate the remainder when l(j) is divided by p(-6).\n7\nLet t(u) = u**2 + 10*u - 43. Calculate the remainder when 60 is divided by t(-14).\n8\nLet h = 100 + -83. Let k = -39 + 70. What is the remainder when k is divided by h?\n14\nLet x(d) = d**3 + 9*d**2 - 12*d. Let n be x(6). Suppose -152 = 4*j - n. What is the remainder when j is divided by 21?\n16\nSuppose -5*c = 4*q - 27, -3*c - 37*q + 40*q = -27. Suppose -3*w + 37 = -r, 5*w + 5*r" -"5\nIn base 12, what is 0 - -8?\n8\nIn base 12, what is -1912 + 4?\n-190a\nIn base 5, what is 11 + -43?\n-32\nIn base 14, what is -30 + 5?\n-29\nIn base 9, what is -3 + -1846?\n-1850\nIn base 11, what is -2 + 277?\n275\nIn base 3, what is 220 + 110020?\n111010\nIn base 8, what is -104 - 157?\n-263\nIn base 11, what is -2 - 58?\n-5a\nIn base 9, what is 75 - -1?\n76\nIn base 3, what is 102 + -1200?\n-1021\nIn base 5, what is 0 - -104312?\n104312\nIn base 13, what is 24 + -25?\n-1\nIn base 7, what is 2 - -1252?\n1254\nIn base 16, what is -2 + 191?\n18f\nIn base 14, what is 6 + ba?\nc2\nIn base 9, what is -102 - -3?\n-88\nIn base 4, what is -3 + -21303?\n-21312\nIn base 9, what is 2 + -26?\n-24\nIn base 11, what is 6 + -23?\n-18\nIn base 13, what is 56 + 0?\n56\nIn base 13, what is 16 - -18?\n31\nIn" -" 5, x = 4*a - 15 for a.\n5\nSuppose 0 = 5*s - 5*h - 40, -5*h - 9 = 3*s + 7. Solve -i - 1 = -s*m - 2, 5*m = -2*i - 20 for i.\n-5\nLet i = -2 + 4. Suppose -4*k = 2*j - 20, -i*k - 4*j + 11 = -11. Solve -k*v = -3*r - 6, 0*v + v = 2*r + 6 for r.\n-4\nLet z(c) = -4*c**2 + 25*c + 17. Let u(f) = -f**2 + 6*f + 4. Let p(t) = 9*u(t) - 2*z(t). Let r be p(4). Solve d + 6 = -0*y + y, y - 11 = r*d for d.\n-5\nLet r be (-4)/(-10) - 69/(-15). Suppose -4*l + 38 = -0*q + r*q, -3*q = 3*l - 27. Solve 3*u - 6*u - v - 3 = 0, -v = 5*u + l for u.\n-2\nLet h = 24 - 24. Let a = -4 + 6. Solve -3*b = -5*i + 12, 5*i - a*b = -h*b + 13 for i.\n3\nLet j be 3 - (2 + (-10)/5). Solve 2*h = -o + 11, 0 = -j*o -" -" = 4*p + 3*s - 43, -4*p + 2*s = -38. Suppose p = 2*u, -u - 30 = -5*i - 0*u. Let l = 12 - i. Put -3, 4, l in ascending order.\n-3, 4, l\nLet v be (-12)/3*2/(-4). Put -3, 4, v in decreasing order.\n4, v, -3\nLet n(g) = -g + 1. Let q be (-3 - -7)/(0 - -2). Let d be n(q). Sort d, -5, -2 in decreasing order.\nd, -2, -5\nLet q(z) = z. Let g be q(4). Put 3/5, 1, g in decreasing order.\ng, 1, 3/5\nLet a = 14 + -8. Suppose 2*x - 2 = a. Sort 5, x, 4/5.\n4/5, x, 5\nSuppose 8 = -5*n + 4*d, 3*n - 5*d = 3 - 0. Let u(p) = -p**3 + 11*p**2 + 2. Let o be u(11). Let f(a) = -4*a. Let w be f(-1). Sort n, w, o in descending order.\nw, o, n\nSuppose 0*j + j - 3*v + 13 = 0, 8 = j + 4*v. Sort j, -2, -5 in increasing order.\n-5, j, -2\nLet y = 29 - 49. Let w = -12 - y. Suppose 0*t =" -"35, 0.5?\n0.5\nWhich is the fourth smallest value? (a) -2/81 (b) 0 (c) -0.5 (d) 0.1 (e) 1.37\nd\nWhat is the biggest value in -0.08, -2/15, -0.1?\n-0.08\nWhat is the third biggest value in 14, -0.09, -0.2, -2?\n-0.2\nWhat is the biggest value in -11, 0.24, -1/2, -2?\n0.24\nWhat is the smallest value in -1/8, 1/150, -5?\n-5\nWhat is the smallest value in 15, -3/7, 1?\n-3/7\nWhat is the biggest value in 4, -1/14, 162, 2, -1?\n162\nWhat is the second biggest value in -2, 0.2, 26/7?\n0.2\nWhich is the third biggest value? (a) -0.4 (b) -5 (c) 4/3 (d) 81\na\nWhich is the third biggest value? (a) -1/4 (b) -1/73 (c) 22\na\nWhat is the second smallest value in 0.5, -0.3, -0.1, -0.12?\n-0.12\nWhich is the second smallest value? (a) -2 (b) -1.3 (c) -2/35 (d) -7/5 (e) 0.4\nd\nWhich is the third smallest value? (a) 2 (b) -1/2 (c) -218\na\nWhat is the biggest value in 5, 16, -0.09?\n16\nWhat is the second biggest value in 1/5, 0.1, -0.4, -10?\n0.1\nWhat is the biggest value in 2, -1/2, 0.2, 1/9?\n2\nWhich" -"*2 + 3*m - 5. Let b = 18 - 16. Let j(k) = k**2 + 14 - k - 13 - b*k**2. What is -3*j(u) - n(u)?\n-4*u**2 + 2\nLet q(s) = s**3 - 13*s**2 + 2*s + 1. Let l(y) = 4*y**3 - 93*y**2 + 12*y - 53. Calculate -l(m) + 6*q(m).\n2*m**3 + 15*m**2 + 59\nLet x(r) = 0*r - 55728 + 3*r + 55728. Let n(o) = -o - 1. Give 2*n(d) + x(d).\nd - 2\nLet g = -9 + 11. Suppose -1 = v, g*j - 2*v = 2 + 6. Let h(y) = y + 1. Let a(p) be the third derivative of -p**4/4 - p**3/2 - 2797*p**2. Determine j*h(i) + a(i).\n-3*i\nLet j(o) = -o**2 + 10*o - 2. Let x be (2 - -4 - (-4 - -8)/2) + -6. Let k(g) = g**2 - 9*g + 3. What is x*k(t) - 3*j(t)?\nt**2 - 12*t\nLet o be (4 - (-49)/14) + 42/(-28). Let j(t) = 9*t**2 - 6*t - 7. Let b(w) = 5*w**2 - 3*w - 3. Calculate o*j(u) - 11*b(u).\n-u**2 - 3*u - 9\nLet j(f) = 14*f**2 - 24 + 5" -"s digit of q?\n1\nLet y be (-2)/14 + (-15804)/14. What is the tens digit of y/(-13) + 3 + 4/26?\n9\nLet k(i) = -i**3 + 13*i**2 - 11*i - 14. Let d be k(12). Let o(g) = -2*g - 3*g - 3*g**3 + g - 4*g**2 - 3. What is the tens digit of o(d)?\n1\nLet k be (2 - -4) + -9 + 1 + -165. Let b = -33 - k. What is the hundreds digit of b?\n1\nLet o = -69 + 74. What is the tens digit of (-3 - -4)/o + 856/20?\n4\nLet m be ((-8)/10)/(4/(-20)). Suppose -4*i - 3*j = -146, -181 + 43 = -m*i + j. What is the tens digit of i?\n3\nSuppose -5 + 93 = -4*g. Let u = g + 53. What is the units digit of u?\n1\nLet g(n) = -n**3 - 25*n**2 - 36*n - 102. What is the units digit of g(-26)?\n0\nLet l(u) = -u. Let g be l(-7). Suppose g*n - 3*n = 16. What is the units digit of n?\n4\nLet y = -102 + 166. Let n = y + -27." -"0\nWhat is -8814 divided by 6?\n-1469\nWhat is -14 divided by 12?\n-7/6\nCalculate 350 divided by 25.\n14\nCalculate -1164 divided by 388.\n-3\nCalculate -56 divided by -8.\n7\nCalculate 1 divided by 203.\n1/203\nCalculate -3252 divided by -6.\n542\nDivide 432 by 216.\n2\nDivide 450 by 23.\n450/23\n16 divided by 58\n8/29\nWhat is -1698 divided by 566?\n-3\nWhat is 0 divided by -134?\n0\nDivide -34 by 34.\n-1\n8545 divided by 5\n1709\nCalculate 296 divided by 2.\n148\n-41 divided by -6\n41/6\nCalculate -17988 divided by -6.\n2998\nDivide 5 by -6.\n-5/6\nDivide -155 by -30.\n31/6\nWhat is 33561 divided by 2?\n33561/2\nCalculate 444 divided by -12.\n-37\nCalculate 592 divided by 2.\n296\nDivide 61 by -5.\n-61/5\nCalculate -5220 divided by -87.\n60\n-4288 divided by -134\n32\nWhat is 2100 divided by -4?\n-525\nWhat is -147 divided by 2?\n-147/2\nWhat is 107 divided by 81?\n107/81\nCalculate -500 divided by -10.\n50\nWhat is -452 divided by 1?\n-452\nCalculate -304 divided by -3.\n304/3\n18 divided by -2\n-9\nDivide -2955 by -591.\n5\nDivide 582 by -2." -"e 92 = i + 2*j, i - 3*j = -i + 212. What is the greatest common factor of g and i?\n20\nLet r(x) = -x**3 + 10*x**2 + x. Let n be r(-4). Suppose 8*l - 4*l - n = 0. Let y be 603 - 14/(-35)*5. What is the highest common divisor of l and y?\n55\nLet a(g) = -296*g - 7604. Let n be a(-27). Calculate the highest common factor of 36 and n.\n4\nSuppose -490*c + 526*c = 24948. Calculate the greatest common divisor of 63 and c.\n63\nSuppose 103 = -2*t + 85. Let l(z) = -5*z + 6. Let b be l(t). What is the highest common divisor of 153 and b?\n51\nLet y = 1659 + -915. Suppose -24*m + 178*m = 81*m + 1752. What is the greatest common factor of m and y?\n24\nLet b(z) = -6*z**2 + 80*z + 18. Let r be b(16). Let n = 260 + r. Calculate the greatest common factor of 440 and n.\n22\nSuppose -6 = -5*t + 9. Let y be 6*t*(2 + -1). Let u be (65/(-25) - 1)*-15. Calculate the greatest common divisor" -"\nHow many nanoseconds are there in 4.175113 days?\n360729763200000\nHow many kilometers are there in 66.89677um?\n0.00000006689677\nHow many millimeters are there in 0.3751695km?\n375169.5\nConvert 797.9616kg to milligrams.\n797961600\nHow many millilitres are there in nine tenths of a litre?\n900\nConvert 9709.817 years to decades.\n970.9817\nHow many grams are there in 19.75167 kilograms?\n19751.67\nConvert 824.4402 centimeters to nanometers.\n8244402000\nWhat is 6/25 of a milligram in micrograms?\n240\nHow many milligrams are there in three eighths of a gram?\n375\nWhat is 36.30313ml in litres?\n0.03630313\nWhat is fourty-three halves of a millennium in centuries?\n215\nHow many minutes are there in 2/9 of a day?\n320\nWhat is 1/4 of a gram in milligrams?\n250\nConvert 86234.3 centuries to months.\n103481160\nWhat is 680.1848 years in months?\n8162.2176\nWhat is 164679.5 decades in years?\n1646795\nConvert 0.0966933 years to months.\n1.1603196\nConvert 9222.789nm to kilometers.\n0.000000009222789\nHow many nanograms are there in seventeen halves of a microgram?\n8500\nWhat is seventeen quarters of a gram in milligrams?\n4250\nWhat is five quarters of a microgram in nanograms?\n1250\nHow many microseconds are there in 9.889972 hours?\n35603899200\nHow many minutes are there in 7/2 of" -"Suppose 3*g - 1 = d. Is g <= 2?\nTrue\nSuppose 6*m - 5*m = 4*c, 3*m + c - 13 = 0. Let q(x) = -10*x + 41. Let w be q(m). Is -3/100 less than w?\nTrue\nLet r = 4554 - 41045/9. Are -6 and r nonequal?\nTrue\nLet p(j) = 3*j - 1. Let h be p(1). Suppose 3 = h*n - 13. Suppose -4*z + 4 = -2*o, 5*o = 5*z - n - 2. Is -4/7 equal to o?\nFalse\nLet j = 83 - 51. Suppose -2*o = -96 - j. Is 64 greater than o?\nFalse\nLet c be (-284)/(-10) + (-4)/10 + 0. Let t = c - 37. Which is greater: t or -8?\n-8\nLet r(w) = -3*w**3 + w**2 - 21*w - 57. Let f be r(-4). Do 235 and f have the same value?\nTrue\nSuppose -6 = -7*r + 5*r. Suppose 3*c = -3*b, -c = r*b - 0*c. Does -4 = b?\nFalse\nLet j = 1.4 + -1.57. Let g = j - 1.53. Let x = -1.8 - g. Is x not equal to 1?\nTrue\nLet g be -1 - -1" -"he prime factors of 163493?\n11, 89, 167\nList the prime factors of 3070318.\n2, 1031, 1489\nWhat are the prime factors of 646935?\n3, 5, 17, 43, 59\nWhat are the prime factors of 30660186?\n2, 3, 19, 61, 4409\nList the prime factors of 435278.\n2, 103, 2113\nWhat are the prime factors of 1263835?\n5, 252767\nList the prime factors of 8674939.\n7, 13, 7333\nList the prime factors of 217141.\n17, 53, 241\nList the prime factors of 39578.\n2, 7, 11, 257\nList the prime factors of 236763.\n3, 37, 79\nWhat are the prime factors of 23544821?\n2221, 10601\nWhat are the prime factors of 432076?\n2, 109, 991\nList the prime factors of 2100723.\n3, 700241\nWhat are the prime factors of 1854?\n2, 3, 103\nWhat are the prime factors of 239029?\n7, 34147\nList the prime factors of 296616.\n2, 3, 17, 727\nWhat are the prime factors of 158154?\n2, 3, 43, 613\nList the prime factors of 23105.\n5, 4621\nList the prime factors of 6991508.\n2, 1747877\nList the prime factors of 734309.\n29, 25321\nList the prime factors of 11416449.\n3, 11, 345953\nWhat are the prime" -"6362776.\n2, 8969, 58763\nList the prime factors of 588442134.\n2, 3, 7, 397, 35291\nWhat are the prime factors of 367313579?\n7043, 52153\nWhat are the prime factors of 69488190?\n2, 3, 5, 772091\nWhat are the prime factors of 1299997670?\n2, 5, 19, 6842093\nWhat are the prime factors of 8377383?\n3, 7, 56989\nList the prime factors of 6645890938.\n2, 37, 89809337\nList the prime factors of 2169321580.\n2, 5, 19, 97, 229, 257\nList the prime factors of 113215340.\n2, 5, 7, 808681\nList the prime factors of 199204591.\n59, 439, 7691\nWhat are the prime factors of 15558073?\n3803, 4091\nList the prime factors of 3172716441.\n3, 37, 9527677\nList the prime factors of 256443836.\n2, 11, 19, 23, 13337\nWhat are the prime factors of 259036135?\n5, 51807227\nList the prime factors of 1497697127.\n17, 73, 70991\nWhat are the prime factors of 161624640?\n2, 3, 5, 19, 8861\nWhat are the prime factors of 231766877?\n61, 599, 6343\nList the prime factors of 36603375.\n3, 5, 97609\nList the prime factors of 357188512.\n2, 2897, 3853\nList the prime factors of 347048437.\n347048437\nWhat are the prime factors of 194764107?\n3, 64921369\nWhat" -"any centimeters are there in 7/8 of a kilometer?\n87500\nHow many nanometers are there in 1/4 of a micrometer?\n250\nHow many years are there in 18/5 of a century?\n360\nWhat is 628312.3 millilitres in litres?\n628.3123\nHow many centimeters are there in 61/2 of a meter?\n3050\nHow many months are there in 3/40 of a decade?\n9\nHow many minutes are there in eleven quarters of a week?\n27720\nHow many seconds are there in 11/2 of a minute?\n330\nHow many nanograms are there in three eighths of a microgram?\n375\nWhat is 44021.66km in micrometers?\n44021660000000\nConvert 147.363921 nanoseconds to days.\n0.0000000000017056009375\nHow many millilitres are there in 13/5 of a litre?\n2600\nHow many millilitres are there in seven quarters of a litre?\n1750\nWhat is 3690.005 millimeters in centimeters?\n369.0005\nWhat is 1.463659 litres in millilitres?\n1463.659\nWhat is 12/25 of a gram in milligrams?\n480\nConvert 1.9021572 months to decades.\n0.01585131\nConvert 1.843696 years to centuries.\n0.01843696\nHow many milligrams are there in 57/5 of a gram?\n11400\nHow many micrometers are there in 3/8 of a millimeter?\n375\nConvert 45720.44um to meters.\n0.04572044\nWhat is 15/4 of a litre in" -"uc?\n5/26\nWhat is prob of sequence uxux when four letters picked without replacement from xxuuuuxxxu?\n5/63\nCalculate prob of sequence eiii when four letters picked without replacement from {e: 3, i: 4}.\n3/35\nCalculate prob of sequence dund when four letters picked without replacement from hrhurhnnnednhrnhh.\n0\nTwo letters picked without replacement from epppppppveppeeipv. What is prob of sequence ev?\n1/34\nThree letters picked without replacement from {j: 1, h: 1, b: 1, q: 1, w: 1}. What is prob of sequence bjq?\n1/60\nTwo letters picked without replacement from {p: 2, c: 1, i: 1, a: 5}. Give prob of sequence ia.\n5/72\nThree letters picked without replacement from qjjjqj. What is prob of sequence qjq?\n1/15\nCalculate prob of sequence cccc when four letters picked without replacement from bbcccccbbccbbbbcbcb.\n21/646\nTwo letters picked without replacement from igwwbpz. Give prob of sequence pi.\n1/42\nWhat is prob of sequence ykk when three letters picked without replacement from kyyykkyyyjkjkyy?\n16/273\nFour letters picked without replacement from {h: 4, a: 8, t: 1}. What is prob of sequence tahh?\n4/715\nTwo letters picked without replacement from {s: 5, f: 1, h: 3, r: 2, m: 1, u: 3}. Give prob" -" p(d) = 3*d**2 + 6*d - 5. Let v(l) = 16*l**2 + 30*l - 24. Let a(i) = 11*p(i) - 2*v(i). Determine a(-7).\n0\nLet q(k) = -3*k**2 + 5 + 4*k**2 - 2*k**2 + k - 3. Give q(-2).\n-4\nLet m(k) = 2*k**3 + 4*k**2 + 3*k + 2. Let l be m(-2). Let r be l/(2 + (-10)/3). Let d(h) = h**3 - 2*h**2 - 5*h + 3. Calculate d(r).\n-3\nLet d(z) = -z**2 - 9*z - 6. Let u be d(-8). Let k be u + 1 - (1 + -3). Let o(n) = -5*n - n**3 - n + 9 + k*n. What is o(0)?\n9\nLet u(t) = 1 + t + 7 - 8. Give u(-2).\n-2\nLet c(p) be the first derivative of 2*p**3/3 - 2*p + 1. Let u be 2/(5/3 + -1). Suppose -4*d - 2 = -u*a + 2, -4*d + 4 = -a. Give c(d).\n6\nLet c = -2 - -7. Suppose -4*v - v = -l + c, v = 4*l + 18. Let h(b) be the first derivative of -b**4/4 - 5*b**3/3 - b**2 - 6*b + 1. Determine h(l).\n4\nLet h(w) =" -"dreds digit of y?\n1\nLet i(u) = -2*u**3 + 172*u**2 + 51*u + 64. What is the ten thousands digit of i(85)?\n1\nSuppose -2*l + 96 = 86. Let i be 1*(-1 + (-60)/l). What is the tens digit of (7 - (-6 - -21))/(1/i)?\n0\nLet p = -16431 + 31025. What is the ten thousands digit of p?\n1\nLet y = 27464 - 24652. What is the hundreds digit of y?\n8\nLet q(y) = y**3 + 16*y**2 + 38. Let k be q(-16). Suppose 0 = 36*m - k*m - 34. Let n = m - -80. What is the units digit of n?\n3\nSuppose 17*u - 238125 + 29824 = 0. What is the hundreds digit of u?\n2\nLet u = -3660 - -6260. Suppose u = -32*d + 40*d. What is the hundreds digit of d?\n3\nLet k(f) = 423*f**3 + 13*f - 215*f**3 + 29*f**2 - 72 - 207*f**3. What is the tens digit of k(-28)?\n4\nLet f(k) = 1307*k**2 + 9*k + 18. What is the ten thousands digit of f(-3)?\n1\nLet w = 640 - 250. Suppose y - 4*v = 362, 4*y +" -"= -83*q - 588 for q.\n-21\nSolve -94*v - 301 = 451 for v.\n-8\nSolve 61 = -83*g + 1573 + 480 for g.\n24\nSolve -67 = -18*p + 81 + 68 for p.\n12\nSolve -41 = 30*o + 222 + 547 for o.\n-27\nSolve 385 - 38 = 71*u - 150 for u.\n7\nSolve -19*n - 687 = -459 for n.\n-12\nSolve 1496 - 1317 + 4886 = 1013*b for b.\n5\nSolve 563 = 22*q + 145 for q.\n19\nSolve 3*a = -13 - 1 - 25 for a.\n-13\nSolve -19*x + x + 0 + 18 = 0 for x.\n1\nSolve -245*r = -176*r for r.\n0\nSolve -100204*c = -100242*c - 494 for c.\n-13\nSolve 163*o - 1488 = -458 + 763 for o.\n11\nSolve 128 + 260 = 97*s for s.\n4\nSolve 66*y + 1035 = -29*y - 105 for y.\n-12\nSolve -24*r - 509 = 433 - 1398 for r.\n19\nSolve 93*k - 384 = -35*k for k.\n3\nSolve -997*j - 4301 = 3675 for j.\n-8\nSolve 9*v - 21*v + 363 = 21*v for v.\n11" -"ress (-13 + 13 - 2*t**3)*(1439*t + 5083*t + 1 - 181*t - 1) as d*t**4 + y*t**3 + k*t**2 + u + j*t and give d.\n-12682\nRearrange t**2 - 6*t**3 - 3*t - 108*t**3 + 4*t**2 - 10*t**3 + t to a + p*t**3 + i*t + y*t**2 and give y.\n5\nExpress ((-2*w + 1 - 1)*(2 - 3 - 2) + 0*w + w + 2*w)*(529568*w**3 - 78 + 10 - 529587*w**3) as y*w**4 + t*w**2 + p*w**3 + h*w + l and give l.\n0\nRearrange 23*b + 430*b**3 - 24 + 18 + 6 - 8*b to the form d*b**2 + x*b**3 + q + z*b and give z.\n15\nExpress (-1 + 1 - 2*w**2)*(51*w**2 + 23*w**2 + 79*w**2) - 2*w**3 + 2*w**3 + w**4 as b*w**3 + i*w**4 + r*w**2 + k + p*w and give i.\n-305\nExpress p - 3*p + 963742*p**2 - 3 - 963542*p**2 in the form b*p + j*p**2 + s and give j.\n200\nRearrange (4 - 7 + 2)*(9 - 13 + 30)*(3 - 3 + 3)*(7 + 2*x - 2*x + 2*x**3) to the form w*x**2 + q*x + k*x**3 + v and give" -" - v = 3*o - 3. Let x = 22 - v. Solve 2*z + 3*z - 4*n = 23, -3*z - x*n = -1 for z.\n3\nLet d be 1961/371 + 5/7 + -1. Solve -i = -d*u - 18, -6 = 2*u - i - 0*i for u.\n-4\nLet s(w) = -87*w**3 - 2*w**2 + 3. Let j be s(-1). Let m = j - 86. Solve -5*h = 20, -10 = -0*f + m*f + 4*h for f.\n3\nLet i(h) = -h + 22. Let u be i(17). Solve -j - 3*o - u = 0, 10 = 4*j - 0*j + 2*o for j.\n4\nLet f(y) = -y**2 - 12*y - 9. Let l be f(-11). Suppose 4*i + 0*t - 4*t = 36, -l*i = -t - 13. Suppose 2 = 2*p - 2. Solve i*j + 1 = -p*m + 3, 2*m - 2 = -3*j for j.\n0\nLet i be 301/49 + 2/(-14). Suppose 2*j = -s, 5*s - i*j = -3*j. Suppose -3*v + s*v = 0. Solve c = -0*b - b + 2, v = 5*c + 3*b - 12 for c.\n3\nSuppose 0" -" 5\nList the prime factors of 75954.\n2, 3, 12659\nList the prime factors of 114737.\n7, 37, 443\nList the prime factors of 1339.\n13, 103\nList the prime factors of 7098.\n2, 3, 7, 13\nList the prime factors of 5135.\n5, 13, 79\nList the prime factors of 4732.\n2, 7, 13\nList the prime factors of 1626.\n2, 3, 271\nWhat are the prime factors of 950?\n2, 5, 19\nWhat are the prime factors of 6878?\n2, 19, 181\nList the prime factors of 81945.\n3, 5, 607\nWhat are the prime factors of 25099?\n19, 1321\nList the prime factors of 511.\n7, 73\nWhat are the prime factors of 764?\n2, 191\nList the prime factors of 110628.\n2, 3, 7, 439\nList the prime factors of 11957.\n11, 1087\nList the prime factors of 2292.\n2, 3, 191\nList the prime factors of 460.\n2, 5, 23\nList the prime factors of 9701.\n89, 109\nList the prime factors of 3902.\n2, 1951\nList the prime factors of 25199.\n113, 223\nWhat are the prime factors of 6804?\n2, 3, 7\nWhat are the prime factors of 5566?\n2, 11, 23\nList" -"-3/2446. What is the common denominator of h and u?\n576\nFind the common denominator of -73/42 and (72/14)/(42/9).\n294\nFind the common denominator of 8372/312 + -2 + 0 + -1 and 63/562.\n1686\nLet t = 1/56700 - -5099/226800. What is the common denominator of -187/450 and t?\n3600\nWhat is the common denominator of (-2)/6 + (-1729)/(-84) and -19/18?\n36\nLet h = 2 + -6. Find the common denominator of (-139)/h - 3/12 and 16/5.\n10\nLet m = 28 - 31. Let u(r) = -r - 7. Let o be u(m). Let p = o + 14. What is the smallest common multiple of 7 and p?\n70\nLet d be (-3)/9 + (-4)/(36/(-21)). Suppose 0 = -d*z + 6. Calculate the lowest common multiple of z and 6.\n6\nCalculate the common denominator of (-1 - 16/(-14))*264/1914 and -10/261.\n1827\nLet a(l) = -l**2 - 46*l - 82. Calculate the lowest common multiple of a(-44) and 24.\n24\nLet t be ((-15)/(-6))/(1/1498). Let g = t - 52477/14. Find the common denominator of g and (-7)/(56/(-39))*-4.\n14\nLet f be (-2)/(-8) - 220/(-64)*-227. Let x = 784 + f. What is the common denominator" -"at is 7/2 of a litre in millilitres?\n3500\nHow many millilitres are there in 27/4 of a litre?\n6750\nWhat is seventy-one fifths of a millisecond in microseconds?\n14200\nHow many kilograms are there in 3/25 of a tonne?\n120\nHow many seconds are there in 3750.393 days?\n324033955.2\nWhat is 7/4 of a millennium in decades?\n175\nConvert 67995.72 micrometers to millimeters.\n67.99572\nHow many months are there in 1/30 of a century?\n40\nHow many seconds are there in 13/5 of a hour?\n9360\nConvert 0.9387871ng to grams.\n0.0000000009387871\nConvert 566649.2 micrograms to tonnes.\n0.0000005666492\nConvert 0.0960359 millilitres to litres.\n0.0000960359\nWhat is 0.6379118 millilitres in litres?\n0.0006379118\nWhat is fourty-five eighths of a centimeter in micrometers?\n56250\nWhat is 13/5 of a millennium in decades?\n260\nConvert 238998.7 micrometers to meters.\n0.2389987\nWhat is 2418.649ng in micrograms?\n2.418649\nHow many tonnes are there in 710658.9kg?\n710.6589\nWhat is 0.6443059 years in months?\n7.7316708\nWhat is 6714.97 millilitres in litres?\n6.71497\nConvert 15421.18851 nanoseconds to weeks.\n0.000000000025497996875\nConvert 7.936081l to millilitres.\n7936.081\nWhat is fourty-four fifths of a century in years?\n880\nHow many micrometers are there in one fifth of a centimeter?\n2000\nHow many months" -"54?\nTrue\nDoes 73 divide 881768?\nFalse\nIs 67 a factor of 3504376?\nFalse\nIs 38 a factor of 335859?\nFalse\nIs 1129732 a multiple of 23?\nFalse\nIs 181 a factor of 14459185?\nTrue\nDoes 567 divide 4868262?\nTrue\nIs 55566 a multiple of 343?\nTrue\nIs 24505 a multiple of 377?\nTrue\nIs 17 a factor of 935102?\nTrue\nIs 2924 a multiple of 731?\nTrue\nDoes 65 divide 41145?\nTrue\nIs 18 a factor of 365886?\nTrue\nIs 973349 a multiple of 13?\nTrue\nIs 254744 a multiple of 56?\nTrue\nIs 1857752 a multiple of 52?\nTrue\nIs 2424032 a multiple of 104?\nTrue\nDoes 69 divide 3677266?\nFalse\nIs 13594 a multiple of 23?\nFalse\nIs 1208690 a multiple of 217?\nTrue\nIs 2721122 a multiple of 381?\nFalse\nDoes 12 divide 83260?\nFalse\nIs 7 a factor of 1155483?\nTrue\nIs 164927 a multiple of 68?\nFalse\nIs 10 a factor of 3584060?\nTrue\nIs 540 a factor of 1186423?\nFalse\nIs 50945 a multiple of 5?\nTrue\nIs 3960036 a multiple of 333?\nTrue\nIs 30995 a multiple of 171?\nFalse\nIs 55016 a multiple of 261?\nFalse\nIs 4 a factor of" -" 3*c.\n-9*c\nCollect the terms in 320458 + 3*y - 320458.\n3*y\nCollect the terms in -14*g - 15*g + 51*g - 13*g - 10*g.\n-g\nCollect the terms in 6*u**2 - 6*u**2 + 4*u**3.\n4*u**3\nCollect the terms in -275 + 551 + 4*o**3 - 276.\n4*o**3\nCollect the terms in -810 + 810 - 4*y**2 + 4*y.\n-4*y**2 + 4*y\nCollect the terms in 50*c + 126*c + 9*c - 31*c.\n154*c\nCollect the terms in -13*q**2 - 13*q**2 + 10*q**2.\n-16*q**2\nCollect the terms in -41*q + 71*q - 72*q.\n-42*q\nCollect the terms in 83*t**2 + 58*t**2 - 139*t**2.\n2*t**2\nCollect the terms in -9*r + 0*r + 4*r + 3*r.\n-2*r\nCollect the terms in 7*c - 13*c - 5*c.\n-11*c\nCollect the terms in 0*t**2 - 7*t**2 + 9*t**2 + 0*t**2.\n2*t**2\nCollect the terms in -25*y**2 - 5*y - 11*y + 26*y**2.\ny**2 - 16*y\nCollect the terms in -g + 46 - 6*g + 4*g + 0*g.\n-3*g + 46\nCollect the terms in 31*r - 19*r + 19*r + 8*r.\n39*r\nCollect the terms in 2*k**2 + 269*k**3 + 514*k**3 - 2*k**2.\n783*k**3\nCollect the terms in 1823*p**2 - 33 +" -"y = 11 + -7. Suppose -4*r = -3*n - 41, -y*r + 3*n + 55 = r. Let m = r - 11. Solve 4*x = -4*h + 20, m*h - 4 + 1 = 3*x for h.\n3\nLet v(a) = 11*a**3 - 2 + 3 - 7*a - 5*a**2 - 12*a**3. Let h be v(-3). Solve w - 1 - 2 = 0, 2*f + 2*w = -h for f.\n-5\nSuppose 7*z - 2*z = 4*x + 7, 4*z + 7 = -x. Let n be (3 - z)*(-6)/(-24) + 1. Solve -4*u - 17 = -d, -d = -2*u - n*d - 1 for u.\n-3\nLet v(q) = -q**2 - 4*q + 34. Let k be v(4). Solve 0 = 4*p + 3*r + 32, -6*p = -k*p - 5*r for p.\n-5\nLet f be (-28)/(-42)*13*3. Solve 29 = -5*q + c, -4*c + f = -4*q - 10 for q.\n-5\nSuppose 0 = 2*i - i. Let q(h) = h**2 + 3*h + 2. Let c be q(-3). Suppose 2*k = 5*l + 7 + 36, -l = c*k - 37. Solve i = y - 1, -4*g - 4*y =" -"4, l in decreasing order.\nl, t, -4\nLet c be (1/(-6))/((-1)/1). Let h = 1/25 + -57/175. Let d be 5/(-3)*25/(-125). Sort h, c, d in decreasing order.\nd, c, h\nLet l(j) = j**3 + 0*j**3 - 10 + j - 2*j**2 + 0*j. Let v be l(3). Suppose 0 = 4*w - v*n - 30, -3*n - 7 = -3*w + 14. Put 5, -5, w in descending order.\nw, 5, -5\nLet y(n) = -735*n + 5140. Let o be y(7). Let d = 3 - 2.9. Let v = -0.08 - -0.1. Sort o, v, d in increasing order.\no, v, d\nLet j = 3 - 3. Let d = j + -0.5. Let o = -2/33 + -7/66. Put o, d, 0.3 in increasing order.\nd, o, 0.3\nLet r be (2/10)/(2/10). Let l(c) = -c**3 + 6*c**2 - 4*c. Let p be l(5). Suppose 4*t + 4*x = -36, 51 = -5*t - 2*x - 0*x. Sort p, t, r in increasing order.\nt, r, p\nLet o be 2/3*(696/(-56) + 12). Sort 5, 1/4, o in increasing order.\no, 1/4, 5\nLet v = -916 + 921. Let h be (-4)/10" -" places?\n-6.21\nWhat is 3.8813 rounded to 1 dp?\n3.9\nRound -20293000 to the nearest one hundred thousand.\n-20300000\nWhat is -2644100 rounded to the nearest 10000?\n-2640000\nRound 0.00215684 to 5 decimal places.\n0.00216\nRound 0.01075 to three decimal places.\n0.011\nRound -0.000001331 to seven decimal places.\n-0.0000013\nRound -0.000049933 to six decimal places.\n-0.00005\nRound -12 to the nearest 10.\n-10\nRound -0.000075127 to 6 dps.\n-0.000075\nWhat is -0.00146 rounded to four decimal places?\n-0.0015\nWhat is -0.000008796 rounded to seven dps?\n-0.0000088\nRound -0.00023152 to 4 dps.\n-0.0002\nRound 8232 to the nearest one hundred.\n8200\nWhat is -3696000 rounded to the nearest one hundred thousand?\n-3700000\nRound -802100 to the nearest 100000.\n-800000\nWhat is -0.00057 rounded to 4 dps?\n-0.0006\nRound 0.292402 to one dp.\n0.3\nWhat is 0.000761 rounded to five dps?\n0.00076\nRound 5.99 to 0 dps.\n6\nRound -2.301 to 1 decimal place.\n-2.3\nWhat is 142.4 rounded to the nearest 10?\n140\nRound 0.000009445 to 7 dps.\n0.0000094\nWhat is 0.35717 rounded to two decimal places?\n0.36\nRound -7405.2 to the nearest 1000.\n-7000\nWhat is 1689030 rounded to the nearest one hundred thousand?\n1700000\nRound 0.000000827 to seven decimal" -"and 1 t?\n12/455\nTwo letters picked without replacement from pppuppppxupupppppx. Give prob of picking 1 x and 1 p.\n26/153\nCalculate prob of picking 4 l when four letters picked without replacement from leeellelle.\n1/42\nFour letters picked without replacement from zxkzkkxkzzkkkqk. What is prob of picking 4 k?\n2/39\nCalculate prob of picking 1 b and 3 m when four letters picked without replacement from mbbbmbumbbbuu.\n7/715\nFour letters picked without replacement from {s: 7, x: 7, b: 2, u: 1}. What is prob of picking 1 s, 2 x, and 1 b?\n21/170\nCalculate prob of picking 1 p and 1 j when two letters picked without replacement from {j: 1, e: 1, v: 2, p: 2, b: 1}.\n2/21\nCalculate prob of picking 1 i and 1 n when two letters picked without replacement from {n: 1, i: 2, f: 1, u: 1}.\n1/5\nFour letters picked without replacement from aaaaaaazazzaaaaazaa. Give prob of picking 3 a and 1 z.\n455/969\nWhat is prob of picking 1 o and 1 a when two letters picked without replacement from wcccwaocyccwccwcy?\n1/136\nWhat is prob of picking 2 z when two letters picked without replacement from {q: 2," -"3*i**2 + i - 7. Let l(m) = 4*p(m) + 3*r(m). What is the remainder when 24 is divided by l(-5)?\n11\nLet k = -11 - -12. Let b(n) = 12*n**3 - n + 1. What is the remainder when 35 is divided by b(k)?\n11\nLet c = 68 - 34. Calculate the remainder when c is divided by 12.\n10\nSuppose 3*r + 4*l = 35, 4*l - 3*l = -5*r + 64. Suppose -106 = -3*u + 2. Calculate the remainder when u is divided by r.\n10\nSuppose -2*b - 10 = p + 2*p, 4 = -4*b - 2*p. Suppose -5*n + 10 = m, 2*m + 0 = -5*n + 15. Calculate the remainder when b is divided by n.\n0\nLet g(k) = k**3 + 5*k**2 - 4*k + 4. Let a be g(-6). Let u = 49 + a. What is the remainder when u is divided by 11?\n8\nLet n = 16 - 4. Calculate the remainder when 23 is divided by n.\n11\nLet v = -116 + 123. What is the remainder when 23 is divided by v?\n2\nSuppose 3*f + 2*f = 25. Calculate the" -"52 PM\nHow many minutes are there between 9:37 AM and 11:13 AM?\n96\nWhat is 703 minutes before 4:24 AM?\n4:41 PM\nWhat is 132 minutes after 10:52 AM?\n1:04 PM\nWhat is 323 minutes before 12:44 PM?\n7:21 AM\nHow many minutes are there between 2:26 PM and 3:58 PM?\n92\nWhat is 547 minutes after 7:59 PM?\n5:06 AM\nWhat is 223 minutes before 8:45 PM?\n5:02 PM\nWhat is 250 minutes after 4:52 PM?\n9:02 PM\nHow many minutes are there between 10:59 AM and 3:03 PM?\n244\nWhat is 631 minutes before 12:44 PM?\n2:13 AM\nWhat is 54 minutes after 6:11 AM?\n7:05 AM\nWhat is 444 minutes before 10:26 PM?\n3:02 PM\nHow many minutes are there between 12:28 AM and 4:19 AM?\n231\nWhat is 145 minutes after 7:04 PM?\n9:29 PM\nHow many minutes are there between 9:04 AM and 8:14 PM?\n670\nWhat is 317 minutes after 5:10 AM?\n10:27 AM\nWhat is 418 minutes before 2:14 PM?\n7:16 AM\nHow many minutes are there between 4:32 AM and 3:27 PM?\n655\nWhat is 154 minutes before 9:50 AM?\n7:16 AM\nHow many minutes are there between 11:07 PM and" -" 0.3116 to 2 decimal places.\n0.31\nRound 0.000004785 to seven decimal places.\n0.0000048\nRound -6870000 to the nearest one million.\n-7000000\nRound -23.837 to the nearest ten.\n-20\nWhat is -68141000 rounded to the nearest 1000000?\n-68000000\nRound -0.00000045 to six decimal places.\n0\nWhat is 0.0141636 rounded to three decimal places?\n0.014\nRound -0.00008205 to 5 dps.\n-0.00008\nWhat is 0.000002362 rounded to seven decimal places?\n0.0000024\nRound 2871 to the nearest 100.\n2900\nRound -15411000 to the nearest 100000.\n-15400000\nWhat is 2630700 rounded to the nearest 10000?\n2630000\nRound 0.000002929 to 6 dps.\n0.000003\nRound 0.00447756 to five dps.\n0.00448\nWhat is 480 rounded to the nearest one thousand?\n0\nRound 1529000 to the nearest one hundred thousand.\n1500000\nWhat is -0.00001516 rounded to six decimal places?\n-0.000015\nRound -0.0002742 to five decimal places.\n-0.00027\nRound -61.27 to the nearest ten.\n-60\nWhat is 9207800 rounded to the nearest 1000000?\n9000000\nRound 108860000 to the nearest 1000000.\n109000000\nRound 0.00025275 to 5 dps.\n0.00025\nWhat is 272.2 rounded to the nearest ten?\n270\nWhat is -0.0002793 rounded to 5 decimal places?\n-0.00028\nWhat is 3882.7 rounded to the nearest one hundred?\n3900\nRound 0.0783 to three decimal" -"q, 0.4\nLet u = -1885 + 1895. Sort 4, 1/2, u, 2.\n1/2, 2, 4, u\nSuppose -1 + 0 = -g. Suppose -2*t - u + 0 = -4, -5*t - 3*u = -12. Suppose 2*p = -t*p. Sort -5, p, g in increasing order.\n-5, p, g\nLet u be 2 + 6 - 4 - 144/27. Sort -2/5, u, 12/7, 1/4.\nu, -2/5, 1/4, 12/7\nSuppose 0 = -3*v - 2 + 5. Suppose -5*u = -x - 105, u = 5*u - 5*x - 84. Suppose 0 = -t + 25 - u. Put t, 2, v in descending order.\nt, 2, v\nLet n = 47 - 127. Let w = n - -64. Put w, 1, 0, 2/13 in descending order.\n1, 2/13, 0, w\nLet k(p) be the second derivative of -p**5/20 + p**4/6 - p**3/6 - p**2 - 2*p. Let u be k(2). Let n be (-1 + -5)*3/(-9). Put -3, n, u in descending order.\nn, -3, u\nLet a = 5 + -3. Suppose 0 = -4*n - 315 + 287. Sort -2, n, -3, a in increasing order.\nn, -3, -2, a\nLet p be 34/(-8) - 2/(-8)." -"65/30475382. Let q = o + k. Find the common denominator of -3/14 and q.\n14\nLet m be -1 + 0 + 14830/14826. Let r = 68363/4942 + m. Let p = 3186 - 31929/10. Find the common denominator of r and p.\n30\nLet r = -217741 + 1521403/7. Let q = 82039/28 + r. Let n = -2548 + q. Find the common denominator of n and 101/10.\n20\nSuppose 2 = -3*q + 4*q. Calculate the least common multiple of 22 and q.\n22\nLet g = 5 - -5. Let x(q) = -q**3 + 3*q**2 - q + 4. What is the smallest common multiple of g and x(3)?\n10\nLet l(d) = -d**2 + 4*d - 1. Let k be l(2). Suppose 0 = k*u - 19 + 1. Calculate the least common multiple of 10 and u.\n30\nLet b(l) be the second derivative of 1/6*l**3 + 3*l + 0 + l**2 + 1/12*l**4. Calculate the lowest common multiple of b(3) and 14.\n14\nSuppose 2*d = 5*b - 18, -4*b = 5*d + 8 + 4. Suppose -21 + 61 = b*s. Suppose -s = -4*m - m. Calculate the least common" -"- 2*r + 5 = 0. Let x be (-1)/r + (-95)/(-25). Solve -4 = x*j, l - m = 3*j - 3 for l.\n2\nLet z(i) = -i**2 - 17*i - 72. Let f be z(-9). Solve 3*o = -y - y - 14, f = 2*o - y for o.\n-2\nLet o be ((-2)/(-3))/(14/315). Suppose -11*p = -16*p + o. Solve -4*h + p*n - 25 = -0*n, 0 = -5*h - 4*n - 8 for h.\n-4\nSuppose -6*d + 2*d - 4*f = -4, 5 = -5*f. Suppose 42 = 4*q - 2*h, -2*q + d*h = -6*q + 62. Solve 3*c = -2*s + q, -4*s = c - s - 9 for c.\n3\nLet u(x) be the first derivative of -8*x**2 + 1/4*x**4 + 14/3*x**3 - 11*x - 5. Let m be u(-15). Solve 2*w = -s - 4*s + 17, -2*w - m*s + 14 = 0 for w.\n1\nLet r be (-1)/3*(-15 - -9). Let o(x) = -x**r + 11 - 6 - 7*x + 6 + 5. Let h be o(-7). Solve 3*y + 3*s + 12 = -0*y, -y + 3*s = -h for y.\n1" -" of 3278.\n2, 11, 149\nList the prime factors of 7948.\n2, 1987\nWhat are the prime factors of 103624?\n2, 12953\nList the prime factors of 8611.\n79, 109\nWhat are the prime factors of 14070?\n2, 3, 5, 7, 67\nList the prime factors of 67135.\n5, 29, 463\nWhat are the prime factors of 7055?\n5, 17, 83\nWhat are the prime factors of 5183?\n71, 73\nList the prime factors of 9057.\n3, 3019\nWhat are the prime factors of 12400?\n2, 5, 31\nList the prime factors of 40312.\n2, 5039\nWhat are the prime factors of 3447?\n3, 383\nWhat are the prime factors of 24775?\n5, 991\nList the prime factors of 12962.\n2, 6481\nList the prime factors of 7934.\n2, 3967\nList the prime factors of 90603.\n3, 10067\nWhat are the prime factors of 32582?\n2, 11, 1481\nList the prime factors of 3040.\n2, 5, 19\nList the prime factors of 8678.\n2, 4339\nList the prime factors of 7536.\n2, 3, 157\nWhat are the prime factors of 1535?\n5, 307\nList the prime factors of 1707.\n3, 569\nWhat are the prime factors of 8308?\n2, 31," -"n -3/5, 1, 0.2, n?\n-3/5\nLet n be (-1)/(-20)*4*0. Which is the nearest to n? (a) -0.05 (b) -0.3 (c) 1 (d) -7\na\nLet u = 2.01 - 0.01. Let c = 0.5 - 0.5. Let i = -3.15818 + 0.15818. What is the closest to u in -0.2, c, i?\nc\nLet t = 1.38 + -1.58. Let i be (-43)/21 - 14/49. Let r = i + 3. Which is the closest to 0? (a) -3/4 (b) t (c) r\nb\nLet q = 0.03635 + -2.03635. Let j be 2/6 - (-30)/(-36). What is the nearest to -0.1 in -9, q, j, 2/9?\n2/9\nLet d = 6967 + -6968. What is the closest to -2 in d, 2, 0.3, 97?\nd\nLet u = 12840 + -12756. What is the nearest to -1 in 0, -6, u?\n0\nLet h(k) = k + 6. Let x be h(-4). Suppose -118 = -x*b - 48. Suppose -b + 19 = -4*j. What is the closest to 2 in -3, j, -0.5?\nj\nLet m = -21724/9 + 2410. Which is the nearest to 1? (a) -0.1 (b) 2 (c) m (d) 1/3\nd\nLet r" -"s -3 - 205?\n-208\nIn base 16, what is -1 + -ecb?\n-ecc\nIn base 5, what is -404 - -110?\n-244\nIn base 15, what is 3 + -7d1?\n-7cd\nIn base 13, what is 517 - -4?\n51b\nIn base 11, what is -249 - -30?\n-219\nIn base 4, what is -1 + 21113?\n21112\nIn base 8, what is 3174 - -3?\n3177\nIn base 8, what is 1704 + -2?\n1702\nIn base 5, what is -2 + 41410?\n41403\nIn base 3, what is 120 + -20000?\n-12110\nIn base 8, what is -4 + 146?\n142\nIn base 9, what is -23 - 12?\n-35\nIn base 11, what is -145a - -2?\n-1458\nIn base 12, what is -19 - 3?\n-20\nIn base 16, what is a47 - -4?\na4b\nIn base 7, what is 3101 + 11?\n3112\nIn base 10, what is 10 - 358?\n-348\nIn base 5, what is -442 + 30?\n-412\nIn base 6, what is 312 + -11?\n301\nIn base 3, what is -11 - 1202?\n-1220\nIn base 16, what is 520 + 3?\n523\nIn base 16, what is -42" -"n + 40. Calculate u(2).\n-10\nLet h(l) = -2*l**2 + 20*l + 8. Give h(10).\n8\nLet m(z) = 2*z**2 + 7*z - 1. Calculate m(-3).\n-4\nLet k(z) = -25*z**2 - 198*z + 7. Determine k(-8).\n-9\nLet n(s) = 2*s - 10. What is n(-8)?\n-26\nLet u(b) = 2*b**2 + 18*b + 11. What is u(-8)?\n-5\nLet x(v) = v + 10. Give x(-2).\n8\nLet d(n) = -3*n**3 - 3*n**2 + n + 1. What is d(-2)?\n11\nLet z(l) = -8*l + 123. Determine z(15).\n3\nLet z(i) = -14*i - 32. Give z(-5).\n38\nLet t(j) = -j**3 + 9*j**2 + 9*j - 10. Calculate t(10).\n-20\nLet w(r) = -r**2 + 11*r + 23. What is w(11)?\n23\nLet x(k) = 5*k + 1. Give x(-1).\n-4\nLet k(q) = -4*q - 20. Determine k(-14).\n36\nLet h(c) = 41*c**3 + 2*c**2 + 2*c + 1. Calculate h(-1).\n-40\nLet i(h) = 3*h + 39. What is i(0)?\n39\nLet s(g) = -26*g - 95. Calculate s(-5).\n35\nLet q(t) = t**3 + 20*t**2 - 93*t + 27. Calculate q(-24).\n-45\nLet r(t) = -t**2 + 10*t - 5. Give r(11)." -"True\nIs 126 a multiple of 5?\nFalse\nIs 85843 a multiple of 11?\nFalse\nIs 20 a factor of 2260?\nTrue\nIs 29 a factor of 343?\nFalse\nIs 1258 a multiple of 37?\nTrue\nIs 46 a multiple of 23?\nTrue\nDoes 26 divide 20766?\nFalse\nIs 31 a factor of 26064?\nFalse\nIs 23 a factor of 2277?\nTrue\nIs 35 a factor of 9678?\nFalse\nDoes 56 divide 3808?\nTrue\nIs 544 a multiple of 12?\nFalse\nDoes 27 divide 73?\nFalse\nIs 1568 a multiple of 26?\nFalse\nDoes 3 divide 345?\nTrue\nDoes 6 divide 25364?\nFalse\nIs 1381 a multiple of 24?\nFalse\nDoes 31 divide 389?\nFalse\nIs 15 a factor of 555?\nTrue\nIs 19 a factor of 15118?\nFalse\nDoes 68 divide 272?\nTrue\nDoes 74 divide 962?\nTrue\nDoes 16 divide 286?\nFalse\nIs 256 a multiple of 4?\nTrue\nIs 20 a factor of 150840?\nTrue\nIs 445 a multiple of 4?\nFalse\nDoes 12 divide 7464?\nTrue\nIs 3768 a multiple of 12?\nTrue\nDoes 2 divide 1222?\nTrue\nIs 140 a factor of 60675?\nFalse\nIs 89 a factor of 50540?\nFalse\nDoes 69 divide 1104?" -"2. Suppose -3*h + 1 = 4*u - 9, -3*u + 13 = 5*h. Is v(h) composite?\nTrue\nLet y = 5161 - 3012. Is y a prime number?\nFalse\nLet v(w) = -w**3 - 2*w**2 + w. Let j be v(-3). Let q be 38/j + 12/18. Is (-2)/7 - (-247)/q a composite number?\nTrue\nLet t(z) = 2*z - 1. Let o be t(2). Suppose 0*p - 3*p + 9 = 0, o*x + 4*p - 18 = 0. Suppose 4*n + 3*j - x*j - 57 = 0, 0 = 5*n + 5*j - 60. Is n a prime number?\nFalse\nSuppose -5*u + 5549 = 2*x, 2*x + 5*u - 5529 = 4*u. Is x composite?\nTrue\nLet d(y) = -9*y - 35. Is d(-10) prime?\nFalse\nLet c(q) = q**3 - 11*q**2 + 2*q - 9. Is c(11) prime?\nTrue\nIs 5677/9 + 55/45 + -1 a prime number?\nTrue\nSuppose 2*i + 2*i + 6 = 5*g, -3*g = -2*i - 4. Let b be (6/(-2))/(1/(-35)). Suppose -c - g*c = -b. Is c a composite number?\nTrue\nSuppose -5*o + 25 = -5*y, -o - 2*y = 3*o - 20. Let u be" -"kllszlstss.\n2/85\nTwo letters picked without replacement from {d: 2, w: 1, r: 3, a: 4, v: 5, y: 5}. What is prob of picking 1 a and 1 w?\n2/95\nThree letters picked without replacement from ffjffcjqjajjfjfcf. What is prob of picking 2 j and 1 a?\n3/136\nCalculate prob of picking 1 a and 1 f when two letters picked without replacement from {a: 5, f: 13}.\n65/153\nThree letters picked without replacement from ururru. What is prob of picking 1 r and 2 u?\n9/20\nTwo letters picked without replacement from bbcbxbbcgbbgxxbb. Give prob of picking 1 c and 1 b.\n3/20\nThree letters picked without replacement from sswswwwwswsqfqwfwb. What is prob of picking 1 w, 1 f, and 1 b?\n1/51\nWhat is prob of picking 1 x, 1 l, and 1 m when three letters picked without replacement from xlljlmlll?\n1/14\nTwo letters picked without replacement from jcjcjc. What is prob of picking 1 j and 1 c?\n3/5\nTwo letters picked without replacement from {v: 3, e: 1, j: 3, m: 6, y: 1}. What is prob of picking 1 e and 1 m?\n6/91\nCalculate prob of picking 3 u when three letters" -"t t be (-12)/(-3)*(1 + 0). Let k(b) = b**2 - 4*b + 3. Let z be k(t). Suppose -33 + 462 = z*w. Is w prime?\nFalse\nSuppose t + 1 - 4 = 0. Let h(x) = 26*x**t + 3*x - 25*x**3 + x + 1 + 10*x**2 - 11. Is h(-7) composite?\nFalse\nLet j(v) = 7242*v + 229. Is j(8) prime?\nFalse\nIs -18 + 167178/24 - (-6)/(-8) prime?\nTrue\nIs (-7 + 1)*10566/(-108) prime?\nTrue\nSuppose -4*l + 963 = u, -7*l = -2*u - 2*l + 1991. Is u composite?\nFalse\nLet f(d) = -d**3 - d. Let v(r) = -10*r**3 + 4*r**2 + 7*r + 3. Let u(y) = 3*f(y) + v(y). Let x be u(-3). Suppose -92 = -5*g + x. Is g composite?\nTrue\nLet x = 2152 - 819. Let i = x - 641. Is i/8 + 1/2 composite?\nTrue\nSuppose -6*h + 146377 = 5*h. Is h prime?\nFalse\nLet g = 14993 + 3860. Is g prime?\nFalse\nLet k be ((-1012)/6)/(-2)*6/2. Let m = k - 126. Is m a prime number?\nTrue\nSuppose 19*v - 101004 = -18791. Is v prime?\nTrue\nLet v be" -"q for q.\n2\nLet b(y) = -y**2 - 23*y - 53. Let h be b(-20). Solve 2*k - h = -9 for k.\n-1\nSuppose 196 + 197 = -3*a + 5*n, -a + 5*n - 131 = 0. Let s = 143 + a. Solve 0 = -11*f + s*f - 4 for f.\n4\nSuppose 4*p = 5*p. Suppose -3*z + z + 6 = p. Suppose z*f + 1 = 5*n, 0 = -3*n - 5 + 20. Solve 0 = 6*d - 2*d + f for d.\n-2\nLet o be -2*(-5)/4*2. Suppose 5*w - 4*s = -3*s + 18, 3*w + o*s = 22. Solve -w*t + 15 = 3 for t.\n3\nSuppose 0 = 4*r + 4*x + 16, 4*r + 5*x = 4*x - 13. Let o(w) = -w + 5. Let q be o(r). Suppose j = -3*j + q. Solve 0*y - 10 = -j*y for y.\n5\nSuppose -4*k + 121 = 7*k. Suppose 3*v = k*v + 5*v. Solve v = -u + 4 for u.\n4\nLet y(f) = 3*f**3 + 47*f**2 + 72*f + 73. Let a(t) = 2*t**3 + 31*t**2 + 48*t + 49." -"\n2\nLet k be (-4 - -1)/(2/(-2)). Let t be ((27/(-2))/k)/(45/(-30)). Let m(v) be the third derivative of v**5/60 - v**4/6 - v**3/3 - 2*v**2. Give m(t).\n-5\nLet s be -3 + 3 - 0/(-2). Let o(f) be the second derivative of 2*f**2 + 0 - 1/6*f**3 + 14*f. Give o(s).\n4\nLet a(g) = 5*g**2 - 10*g + 7. Suppose -56 + 19 - 78 = -115*h. What is a(h)?\n2\nLet h(c) be the third derivative of -c**5/60 - 11*c**4/24 - 29*c**3/6 - 91*c**2. Let j be h(-6). Let f(x) = -31*x**2 - 2*x + 1. What is f(j)?\n-32\nLet s(m) = 64*m**2 - 27*m - 48. Let g(r) = -20*r**2 + 2*r. Let x(w) = 3*g(w) + s(w). Determine x(7).\n1\nLet a(d) = d**3 + 6*d**2 + 5*d - 2. Let g(q) = -6*q - 5. Let z(b) = -1. Let k(i) = g(i) - 6*z(i). Suppose 5*x + 1 = 6. Let p be k(x). Determine a(p).\n-2\nLet v(d) be the first derivative of 1/3*d**3 + 2*d - 5 + d**2. Let k be v(-3). Let j(q) = q**3 - 4*q**2 - 5*q - 6. Determine j(k).\n-6\nLet k(c) = -61*c" -"ve of -j**4/12 + j**3/3 + 2*j**2. Suppose 28*m = 34*m. Suppose m*k - 11 = 3*k - 2*q, 0 = q + 2. Give g(k).\n12\nLet c(k) be the first derivative of 7*k + 2/3*k**3 - 7/2*k**2 - 59. Give c(5).\n22\nLet f(i) = i**3 + 18*i**2 - 16*i + 63. Let y be 270/(-14) - -11*36/1386. Determine f(y).\n6\nLet t(k) be the third derivative of k**6/120 + k**5/20 - 5*k**4/24 + 2*k**2. Suppose -2*j = 4*r - 92, -4*j = -3 + 11. Let x be (32/r)/((-2)/6). Determine t(x).\n4\nSuppose 0 = -14*t - 57 + 267. Let q be (t/(-20))/(3/(-12)). Let o(j) = j**3 - 2*j**2 - 2*j + 2. Calculate o(q).\n5\nLet q(d) = -8*d - 7. Suppose 6*h + 552 = -3*h - 37*h. What is q(h)?\n89\nLet q(z) = -7*z - 34. Let c = 10069 - 10076. Determine q(c).\n15\nSuppose -5 = -5*z, -3*s - s - z + 17 = 0. Let l be (18/6)/(s/(-24)*-2). Let p(q) = -q**3 + 10*q**2 - 10*q + 12. Give p(l).\n3\nLet b(f) = f**2 + 13*f + 2. Suppose 227 + 585 = -58*i. Give b(i).\n16" -"ob of picking 2 l when two letters picked without replacement from {u: 7, l: 2}?\n1/36\nCalculate prob of picking 3 b when three letters picked without replacement from qbqqqqqqbqqbqqqqbqq.\n4/969\nTwo letters picked without replacement from {l: 1, h: 2, n: 2, j: 4}. What is prob of picking 1 j and 1 h?\n2/9\nCalculate prob of picking 1 j and 2 n when three letters picked without replacement from nnnnnjjjnljjljjnjn.\n14/51\nTwo letters picked without replacement from {k: 2, r: 5, g: 4, y: 2}. What is prob of picking 1 r and 1 k?\n5/39\nThree letters picked without replacement from vvyy. Give prob of picking 1 v and 2 y.\n1/2\nThree letters picked without replacement from boobbbbbb. What is prob of picking 2 o and 1 b?\n1/12\nCalculate prob of picking 3 i and 1 r when four letters picked without replacement from {a: 2, l: 2, r: 1, i: 5, t: 5, m: 5}.\n2/969\nCalculate prob of picking 1 w, 1 l, and 1 q when three letters picked without replacement from ppqqplglspsggwssqsqp.\n2/285\nThree letters picked without replacement from {q: 7, f: 2, p: 3, b: 5}. What is" -"alse\nWhich is bigger: 7050 or 7044?\n7050\nWhich is greater: 313 or 404?\n404\nWhich is bigger: 12971 or 12975?\n12975\nIs -9 not equal to -1162/125?\nTrue\nIs -402218 bigger than -402217?\nFalse\nWhich is greater: 148 or -260?\n148\nDoes 0 = -3/7844?\nFalse\nWhich is smaller: -1076 or -1182?\n-1182\nAre 24071 and -130 nonequal?\nTrue\nIs 357/40 at most 3/17?\nFalse\nIs -233024 < -233024?\nFalse\nWhich is smaller: -5640.1 or -1?\n-5640.1\nWhich is smaller: -2/41807 or 2.2?\n-2/41807\nWhich is bigger: 7460 or 7465?\n7465\nIs 3.9 < -7?\nFalse\nIs 1 > 5/13723?\nTrue\nIs 2337285 less than 2337285?\nFalse\nWhich is smaller: -2/30507 or 7?\n-2/30507\nIs -656/9 at most -482?\nFalse\nWhich is bigger: 12249 or 12248?\n12249\nWhich is smaller: -5249589 or -5249588?\n-5249589\nWhich is smaller: 0 or -33/47561?\n-33/47561\nAre 44.66 and 0 unequal?\nTrue\nWhich is smaller: -1.44402 or 2.8?\n-1.44402\nWhich is bigger: 425/48 or 9?\n9\nWhich is greater: 2 or -2/9031?\n2\nIs -2002/701 smaller than -4?\nFalse\nIs -418532/15 at most as big as -27903?\nFalse\nIs -92555 greater than 0.13?\nFalse\nIs -1476 at least as big as -1511?\nTrue\nIs" -" -1814 less than or equal to 313?\nTrue\nDo -749915/3 and -249972 have the same value?\nFalse\nWhich is greater: 637 or 19?\n637\nIs -1462 less than 123?\nTrue\nWhich is smaller: 31917 or 31925?\n31917\nIs 1 greater than or equal to 2/449843?\nTrue\nWhich is smaller: 168 or 386?\n168\nWhich is smaller: 166886 or 166859?\n166859\nWhich is bigger: 493 or 436?\n493\nIs 0 != 1/284478?\nTrue\nWhich is greater: -35708 or -249964/7?\n-35708\nWhich is greater: 2/16143 or 0.042?\n0.042\nIs -1/213750 bigger than 2?\nFalse\nWhich is bigger: -50384 or -50380?\n-50380\nWhich is bigger: -1037 or -524?\n-524\nWhich is bigger: 0 or 46/327?\n46/327\nWhich is smaller: -2257 or -3?\n-2257\nAre 3023 and 1.3 equal?\nFalse\nIs 53187 != -0.1?\nTrue\nWhich is bigger: -2/7 or -1/591670?\n-1/591670\nWhich is bigger: 161109 or 161114?\n161114\nDo -7 and -450/77 have different values?\nTrue\nDoes 51421 = 51400?\nFalse\nIs 13 < -1465?\nFalse\nIs 72328 bigger than 72325?\nTrue\nWhich is smaller: -223412 or -223415?\n-223415\nIs -143 at least 152?\nFalse\nIs -7517489 at least as big as -7517490?\nTrue\nWhich is smaller: -44311/4 or -11078?\n-11078\nWhich is" -"y 21?\n19\nWhat is the remainder when 47 is divided by 21?\n5\nCalculate the remainder when 33 is divided by 13.\n7\nWhat is the remainder when 1357 is divided by 34?\n31\nCalculate the remainder when 4719 is divided by 59.\n58\nCalculate the remainder when 345 is divided by 146.\n53\nCalculate the remainder when 1552 is divided by 515.\n7\nCalculate the remainder when 100 is divided by 18.\n10\nCalculate the remainder when 356 is divided by 116.\n8\nCalculate the remainder when 352 is divided by 131.\n90\nWhat is the remainder when 29369 is divided by 22?\n21\nWhat is the remainder when 645 is divided by 36?\n33\nCalculate the remainder when 437 is divided by 34.\n29\nWhat is the remainder when 154 is divided by 74?\n6\nCalculate the remainder when 96 is divided by 29.\n9\nCalculate the remainder when 266 is divided by 88.\n2\nWhat is the remainder when 268 is divided by 134?\n0\nWhat is the remainder when 3021 is divided by 24?\n21\nWhat is the remainder when 5802 is divided by 1931?\n9\nCalculate the remainder when 137 is divided by 9." -"*r = -240, n - 90 = -0*n + r. Suppose 4*j = -j + n. Calculate the remainder when 49 is divided by j.\n15\nSuppose 5*m = 10*m - 265. Calculate the remainder when m is divided by 14.\n11\nLet h be 2/(-6) - (-30)/9. Suppose 3*c + 5*i = 64, 2*i + 31 = 2*c + h*i. What is the remainder when c is divided by 4?\n1\nLet q = -5 - -4. Let g = 0 - q. Suppose 5*y = 6 - g. Calculate the remainder when 2 is divided by y.\n0\nLet x be (-282)/8 + (-3)/(-12). Let y = x - -54. What is the remainder when y is divided by 7?\n5\nLet g = -175 + -27. Let j = g - -305. Calculate the remainder when j is divided by 35.\n33\nSuppose -16*j + 47 = -1233. What is the remainder when j is divided by 27?\n26\nCalculate the remainder when 75 is divided by (-3)/(-5) + 561/15.\n37\nLet o be 2/1 + 1 + -2. What is the remainder when ((-8)/20)/(4/(-10)) is divided by o*((-2)/(-2) - 0)?\n0\nLet q(k) = 31*k**2 -" -"*n for n.\n2\nLet h(o) be the first derivative of -o**4/4 - o**3/3 + 5*o**2/2 + 2*o + 2. Suppose -4*g - 9 = -g. Let d be h(g). Solve -2*x - 1 = 9, 5*i - 15 = d*x for i.\n-2\nSuppose -27 = -2*v - 2*y - 9, -2*y + 10 = 0. Suppose -2*x - v = -0. Let w be 1/x - 27/(-6). Solve 0*c + 2*c + 3*n = 2, 4*n = -w*c for c.\n-2\nSuppose -2 = -3*n + 7. Let w = 5 - n. Let d(g) = g + 1. Let z be d(5). Solve -r + 5 = 0, w*y = 2*r - 2 - z for y.\n1\nLet g = 1 - -3. Let c be (-6)/g - 5/10. Let m = c + 4. Solve m*i + 4 = 2*k, 5*i + 0*i + 17 = -2*k for k.\n-1\nLet d(c) = -c + 14. Let z be d(9). Solve 4*k - 2 = -z*b + 5, 0 = 3*b + 2*k - 3 for b.\n-1\nLet l(x) = 7*x + 5. Let q(t) = 4*t + 3. Let w(d) = -3*l(d) +" -"07\nThree letters picked without replacement from {q: 2, e: 1, z: 1, c: 1, s: 1, w: 1}. What is prob of sequence zew?\n1/210\nWhat is prob of sequence do when two letters picked without replacement from {b: 2, o: 3, d: 3}?\n9/56\nWhat is prob of sequence wwwm when four letters picked without replacement from wwwwmwwmwm?\n1/8\nThree letters picked without replacement from {k: 3, d: 1, z: 1, n: 1, r: 1}. Give prob of sequence nzr.\n1/210\nWhat is prob of sequence yk when two letters picked without replacement from kynylkyyul?\n4/45\nThree letters picked without replacement from zeerfeeeeerrrrzeezfe. Give prob of sequence fef.\n1/342\nWhat is prob of sequence fek when three letters picked without replacement from {y: 1, f: 3, n: 1, d: 3, e: 6, k: 1}?\n3/455\nWhat is prob of sequence rcfc when four letters picked without replacement from cfrrcfrc?\n3/140\nTwo letters picked without replacement from {f: 9, l: 1, a: 7, h: 2}. Give prob of sequence al.\n7/342\nThree letters picked without replacement from {e: 1, b: 12}. What is prob of sequence bbe?\n1/13\nFour letters picked without replacement from {g: 3, t: 3}. Give" -"/3\nLet s = 16 + -8. What is b in 7*b**3 - 3*b**3 + s*b**4 - 3*b**2 - 2*b**4 + b**2 = 0?\n-1, 0, 1/3\nLet a(k) be the third derivative of k**5/300 - 13*k**4/120 + 2*k**3/5 + k**2 + 184. Factor a(f).\n(f - 12)*(f - 1)/5\nLet b(s) = 6*s**2 + 322*s - 322. Let q(i) = -19*i**2 - 969*i + 967. Let d(z) = -7*b(z) - 2*q(z). Solve d(m) = 0.\n-80, 1\nLet t = 347 + -345. Let r(u) be the first derivative of -u**t - 1/2*u**4 + 0*u + 8 - 4/3*u**3. Let r(k) = 0. Calculate k.\n-1, 0\nLet s = -877 + 886. Let a(z) be the first derivative of -3/4*z**4 + s*z - 21/2*z**2 - 6 - 17/3*z**3. Find o such that a(o) = 0.\n-3, 1/3\nLet a(q) = 17*q**2 - 242*q + 1521. Let s(d) = -6*d**2 + 81*d - 507. Let u = -7 - -4. Let z(g) = u*a(g) - 8*s(g). Factor z(t).\n-3*(t - 13)**2\nLet l(y) = -2*y**2 - 2*y + 27. Let i be l(-4). Let b(h) be the first derivative of 1/3*h**i + 0*h - 2 - 1/4*h**4 + 0*h**2." -"+ 4\nCollect the terms in -5*m - 974 + 1948 - 974.\n-5*m\nCollect the terms in 1596006*a**3 + 3 - 1596010*a**3 + 3 - 4.\n-4*a**3 + 2\nCollect the terms in 5381811 - 5381811 - 26*r**2.\n-26*r**2\nCollect the terms in -58*j**3 - 23*j - 46*j + 1970*j**3.\n1912*j**3 - 69*j\nCollect the terms in -m - 14*m - 3 - m + 5*m - 24*m.\n-35*m - 3\nCollect the terms in 3 + 3 + 1 - 7 + 3148*f.\n3148*f\nCollect the terms in -5958742222 + 5958742222 + 2*z**2.\n2*z**2\nCollect the terms in 37*h**2 - 37*h**2 - 457*h**3 + 224*h**3 + 228*h**3.\n-5*h**3\nCollect the terms in -101 - 105 + 322 + 10*z - 116.\n10*z\nCollect the terms in 1051*u - 3160*u + 1057*u + 1051*u.\n-u\nCollect the terms in -62*i**3 - 52*i**3 - 63*i**3 + 246*i**3 + i**2 - 63*i**3.\n6*i**3 + i**2\nCollect the terms in -37*a**3 - 33*a**3 + 134*a**3 - 32*a**3 - 37*a**3.\n-5*a**3\nCollect the terms in 33865*z + 2*z**2 - 33865*z.\n2*z**2\nCollect the terms in 890*y**2 + 1168*y**2 + 671*y**2.\n2729*y**2\nCollect the terms in 2*h**2 + 1219 + 1218 - 2435 -" -" 3) to base 7\n-400\n-2358 (base 12) to base 11\n-2a77\nConvert -4814 (base 10) to base 15.\n-165e\nConvert 105541 (base 6) to base 8.\n21545\nConvert 19711 (base 10) to base 2.\n100110011111111\nConvert -1012012 (base 3) to base 7.\n-2351\nConvert -67 (base 9) to base 5.\n-221\nWhat is 200020211 (base 3) in base 4?\n3033322\nConvert 6809 (base 11) to base 16.\n2303\n45000 (base 6) to base 15\n1cc9\nWhat is -38709 (base 10) in base 4?\n-21130311\n7e5 (base 16) to base 10\n2021\n-2501 (base 8) to base 3\n-1211211\nWhat is 112 (base 7) in base 6?\n134\nWhat is 122043 (base 6) in base 2?\n10101001001011\nWhat is 160 (base 15) in base 16?\n13b\nConvert -30311 (base 4) to base 3.\n-1010102\n-1556 (base 8) to base 15\n-3d8\nConvert -474 (base 11) to base 9.\n-687\n23322 (base 9) to base 2\n11110011010100\na5 (base 13) to base 5\n1020\nWhat is 1001110011100 (base 2) in base 13?\n2392\nConvert 250462 (base 7) to base 11.\n31500\nWhat is 101101100010011 (base 2) in base 6?\n255535\nWhat is 423 (base 15) in base 14?\n4a9\nWhat is" -"73 = -j, j = -4*h + 142. What are the prime factors of h?\n5, 7\nLet v(j) = 5*j**2 + j + 7. What are the prime factors of v(3)?\n5, 11\nLet f(t) = t + 12. Let x be f(0). Let q = -6 + x. What are the prime factors of -2*3/(-18)*q?\n2\nLet n = -206 - -38. Let a = 96 + n. What are the prime factors of a/(-7) - 8/28?\n2, 5\nLet f(i) = i**2 + 10*i - 11. Let y be f(-11). Let m be (-81)/(-3)*(y + -1). Let z = -15 - m. What are the prime factors of z?\n2, 3\nSuppose -5*p + 3*v + 27 = 0, -p - 4*v - 5 = -2*v. Let i = p + 3. What are the prime factors of i?\n2, 3\nLet w = 123 + -37. List the prime factors of w.\n2, 43\nSuppose 0*k + 4*k + 20 = 0. Let s = 9 + k. List the prime factors of s.\n2\nSuppose -a = 3*f - 307, 8*f - 3*f - 1515 = -5*a. List the prime factors of a.\n7, 43" -"*p**2. Let t = -2 - -4. Determine h(t).\n8\nLet i(v) be the first derivative of 3*v**2/2 + v + 5. Calculate i(4).\n13\nLet c(r) = r - 1. Let n be c(4). Let q(h) = h**2 - 2*h + 2. Let g be q(3). Let w(u) = 1 + 2 + u**n + g*u**2 + 4*u - u. Give w(-4).\n7\nLet h(r) = r - 4. Let w(t) be the second derivative of -t**2/2 + t. Let v(u) = -3*h(u) + 6*w(u). Suppose 6 = a - 0. Give v(a).\n-12\nLet x(s) = -5*s - 13908*s**2 + 13916*s**2 + 4*s. Calculate x(1).\n7\nLet q(w) = -w**2 + w. Let x(c) = -c**3 - 12*c**2 + 9*c - 1. Let s(f) = -6*q(f) + x(f). Determine s(-6).\n-19\nSuppose -4 = -2*i, 2*k - 5*i = -10 - 34. Let p = k - -22. Let y(m) = -3 - m**2 + 9*m + 2*m - 7*m - p*m. Give y(-4).\n-15\nSuppose 4 = 2*k - 6*x + 3*x, -3*k + 6 = -x. Suppose 22 = z + 5*t, z + 1 = k*t - 5. Let l(b) = -z*b + 7*b**2 -" -", -2*b + r = 3*k + 6 for b.\n-2\nSuppose -6*t + 13 = 1. Let a be t + (5 - 16) - -1. Let n be a/((-6)/(-3)) - -23. Solve -4*x - n + 8 = -z, -z + 3 = -2*x for x.\n-4\nSuppose -5*b - t = -28 + 15, -3*b - 4*t + 1 = 0. Suppose -3*g + 36 = -b*p, -6*g + 8 = -2*g + 4*p. Solve -5*y = 4*s - g, 0 = 2*y - 3*y + 3 for s.\n-2\nSuppose 108 - 185 = -7*n. Solve n*s - 3*l = 8*s + 15, s = -l + 5 for s.\n5\nSuppose 0 = 2*v - v. Suppose -2*c + c - 104 = v. Let x = c - -107. Solve 0 = -3*y + d - x - 2, -3*d = -4*y for y.\n-3\nSuppose -66 = -3*w + 117. Suppose 54*x = w*x - 42. Solve -4*j + r - 2 = -r, -3*j - x = 3*r for j.\n-1\nLet b(s) = -6*s**3 + 2*s**2 + s - 4. Let u be b(2). Let y = u - -47. Solve" -" 1589*l**3 - 1590*l**3 - 1587*l**3.\n-5*l**3\nCollect the terms in 1227*s**3 + 3*s + 1080*s**3 - 3*s - 2625*s**3.\n-318*s**3\nCollect the terms in -1112*b**3 + 267*b**3 - 32*b + 32*b + 489*b**3 + 350*b**3.\n-6*b**3\nCollect the terms in -14 + 17*o**2 + 259*o + 258*o - 516*o - 6.\n17*o**2 + o - 20\nCollect the terms in -1041462*g - 2 + 2 - 631740*g.\n-1673202*g\nCollect the terms in 12*d**3 + 4*d**3 + 3*d**3 + 0*d**3 + d**3 - 265 - 2*d**2.\n20*d**3 - 2*d**2 - 265\nCollect the terms in -14*a + 25*a - 7*a + a - 4*a - 5*a.\n-4*a\nCollect the terms in 2*m**3 - 7 + 6 - 19*m**3 + 16*m**3 - 3 + 5.\n-m**3 + 1\nCollect the terms in 227 - 217 - 10 + 428*q**2.\n428*q**2\nCollect the terms in -2*x**3 + 10746*x - 23457 - 10747*x - 327825.\n-2*x**3 - x - 351282\nCollect the terms in -215 + 584 - 207 - 28*p - 158.\n-28*p + 4\nCollect the terms in -181*g - 145*g - 147*g - 145*g + 620*g - 3.\n2*g - 3\nCollect the terms in 2043 - 250*m - 110*m +" -"2\nLet a = 23512 - 23410. Solve 5*w + 2*k = 15, -5*w + a = 3*k + 87 for w.\n3\nSuppose 4*u + 86 = -x, -3*x - 3*u = x + 344. Let g = x + 189. Suppose 14*b = g - 33. Solve -3*h + 11 = b*c, 3*c - 4*h + 5 = -0*c for c.\n1\nLet r(t) = 111*t + 28. Let g be r(-2). Let h = g + 205. Solve 0 = -0*j + 5*j + 3*k - h, 0 = -3*j + 5*k - 7 for j.\n1\nLet o = -258 - -260. Suppose -4*z - l = -o*z - 6, -5*l - 6 = z. Solve 3*h = 5*i + 5 + 4, 14 = -z*h - 2*i for h.\n-2\nSuppose r - 28 = 53*f - 49*f, -r + 16 = -2*f. Solve 21 = -w - r*h + 8*h, -5*w - 2*h = -5 for w.\n-1\nSuppose -2*j = 86*k - 88*k - 76, 14*j - 4*k - 482 = 0. Solve 0 = -4*w - 69*s + 65*s - 12, -4*w + 5*s = -j for w.\n2\nLet a be" -"7069 + -7229. Is q < c?\nTrue\nLet v = 1613805/631124 - -8/12137. Is 3 smaller than v?\nFalse\nLet a = 29781 + -29789. Suppose -3*r = 3*n + 29 - 8, 0 = -5*r - 25. Let k be 68/(-6) + (1 - n). Is k greater than a?\nFalse\nLet u be (-18)/36*(-1 + 134 + -1). Let k = 72 + u. Let l = k - 15. Is l > -11?\nTrue\nSuppose -4*h + 110 = -2*k, -h = 3*k + 3*h + 185. Let v = k + 99. Let c be (-4)/40*4 - (-36)/v. Do c and -2/165 have different values?\nTrue\nSuppose 5*i + 7 = 77. Suppose -3*y + 0*y = -4*b - 25, 0 = -5*b + 4*y - 30. Let q = i + b. Is 0.2 <= q?\nTrue\nLet x be (5/2235)/((2/(-12))/(95/38)). Is x equal to 1?\nFalse\nLet p(r) = r + 15. Let x be p(-7). Suppose 12 = t + x. Let y(z) = 4*z**2 - 5*z + 3. Let g be y(t). Is 46 at least as big as g?\nFalse\nLet c = -119 + 151. Let h(m) = -m**3" -"+ 47. What is z(p)?\n-9\nLet s be (-80)/(-4) + (-5 - -2). Suppose 2 = -3*f + s. Let w(q) = -q**2 + 5*q + 3. Give w(f).\n3\nLet z(l) = l**3 + 6*l**2 + 4*l - 3. Let j be ((-23 - -3)/4)/1. What is z(j)?\n2\nLet w(c) = 15*c**2 + c. Let l be w(-1). Suppose 3*s + 3 = 3*y + 9, 3*y + s - l = 0. Suppose u = -y*u + 4. Let d(f) = f. Give d(u).\n1\nLet l(i) = -i - 2. Let v be l(-6). Let w = 3 - v. Let o(c) be the first derivative of -5*c**4/4 + c**3/3 + c**2/2 + c + 3. Calculate o(w).\n6\nLet x(t) = 0 + t**2 - 1 - t**2 + t**2. What is x(1)?\n0\nSuppose -2*k = -12*k - 50. Let z(o) = o**2 + 4*o - 3. Determine z(k).\n2\nSuppose 0*v - 4 = -4*v. Suppose -4*u - 3 = y + v, -5*u + y - 5 = 0. Let j(k) = -16*k**2 - 1. Give j(u).\n-17\nLet k(y) = 3*y + 2*y + 1 - 2*y + 1 +" -"nearest one million.\n-3000000\nWhat is -0.000001827521773 rounded to 7 dps?\n-0.0000018\nWhat is 623263.066 rounded to the nearest one hundred thousand?\n600000\nRound -7.0561242 to 1 decimal place.\n-7.1\nRound -0.01005862475 to five decimal places.\n-0.01006\nWhat is 0.7427450342 rounded to three dps?\n0.743\nRound -115.905412 to two dps.\n-115.91\nWhat is 0.0085934853 rounded to 3 decimal places?\n0.009\nRound -0.0010156734 to seven dps.\n-0.0010157\nWhat is -10948.97754 rounded to the nearest ten?\n-10950\nRound -28499421.7 to the nearest one hundred thousand.\n-28500000\nRound 0.0274131573 to three decimal places.\n0.027\nWhat is 1852.9793297 rounded to 2 dps?\n1852.98\nRound 0.008006393857 to 6 dps.\n0.008006\nWhat is 0.01057600625 rounded to three dps?\n0.011\nWhat is 396315.52 rounded to the nearest 1000?\n396000\nRound 0.0003783018167 to five decimal places.\n0.00038\nWhat is -0.091781345 rounded to two decimal places?\n-0.09\nRound 14615084.11 to the nearest 10000.\n14620000\nRound 0.0016152002 to 3 dps.\n0.002\nWhat is 14549742.1 rounded to the nearest one hundred thousand?\n14500000\nRound 0.0000000420095512 to 7 dps.\n0\nWhat is 2650.664611 rounded to the nearest one hundred?\n2700\nWhat is 20.10853058 rounded to the nearest integer?\n20\nWhat is -0.00019417729 rounded to 6 decimal places?\n-0.000194\nWhat is -0.0000113531408 rounded" -"mainder when 6619 is divided by 77?\n74\nCalculate the remainder when 183 is divided by 10.\n3\nCalculate the remainder when 6317 is divided by 40.\n37\nWhat is the remainder when 7158 is divided by 179?\n177\nCalculate the remainder when 83 is divided by 28.\n27\nCalculate the remainder when 8715 is divided by 4353.\n9\nWhat is the remainder when 223 is divided by 57?\n52\nWhat is the remainder when 523 is divided by 22?\n17\nCalculate the remainder when 155 is divided by 53.\n49\nWhat is the remainder when 705 is divided by 16?\n1\nWhat is the remainder when 39062 is divided by 13?\n10\nCalculate the remainder when 164 is divided by 43.\n35\nWhat is the remainder when 4658 is divided by 421?\n27\nCalculate the remainder when 530 is divided by 135.\n125\nWhat is the remainder when 620 is divided by 194?\n38\nWhat is the remainder when 379 is divided by 19?\n18\nWhat is the remainder when 1759 is divided by 117?\n4\nCalculate the remainder when 97 is divided by 39.\n19\nCalculate the remainder when 154 is divided by 12.\n10\nWhat is the" -" d be (4/16)/(12/(-48)). Put d, -9, 1 in descending order.\n1, d, -9\nLet a = -6.4 + 6.313. Let j = a + -0.113. Put -2, j, 3 in descending order.\n3, j, -2\nLet l = 1.2 + 0.7. Let q = l + -1.9. Put 1/3, 0.5, q in decreasing order.\n0.5, 1/3, q\nSuppose -399 + 347 = 13*w. Suppose 0 = -4*o - 3 - 1. Put o, w, 5 in increasing order.\nw, o, 5\nLet u be -1 - (-4 + (-5)/(4 + -9)). Suppose -5*w + 4*z = -17, 2*w + 3*w - 5*z = 15. Suppose x = w*x + 8. Sort 3, u, x in descending order.\n3, u, x\nLet q = 9.78 - 9.98. Sort -5, q, -107 in increasing order.\n-107, -5, q\nSuppose -d + 20 = -6*d. Suppose 27 = 123*q - 114*q. Sort 0, 1, d, q.\nd, 0, 1, q\nLet x = -0.9 - -8.9. Let t = 7 - x. Let u = 16 - 15. Sort t, u, -4 in descending order.\nu, t, -4\nLet a = -2127.97 + 2128. Put a, 1/4, -0.08 in descending order.\n1/4, a," -"1571\nList the prime factors of 1446.\n2, 3, 241\nWhat are the prime factors of 1012?\n2, 11, 23\nWhat are the prime factors of 20846?\n2, 7, 1489\nList the prime factors of 6866.\n2, 3433\nList the prime factors of 1078.\n2, 7, 11\nWhat are the prime factors of 5772?\n2, 3, 13, 37\nList the prime factors of 2122.\n2, 1061\nList the prime factors of 45987.\n3, 15329\nWhat are the prime factors of 23704?\n2, 2963\nList the prime factors of 4138.\n2, 2069\nWhat are the prime factors of 1032?\n2, 3, 43\nWhat are the prime factors of 2062?\n2, 1031\nWhat are the prime factors of 88552?\n2, 11069\nList the prime factors of 4951.\n4951\nWhat are the prime factors of 22641?\n3, 7547\nWhat are the prime factors of 14890?\n2, 5, 1489\nList the prime factors of 109375.\n5, 7\nList the prime factors of 2089.\n2089\nList the prime factors of 4175.\n5, 167\nList the prime factors of 63886.\n2, 17, 1879\nWhat are the prime factors of 240?\n2, 3, 5\nWhat are the prime factors of 6234?\n2, 3, 1039\nWhat are the" -"e nearest to -5 in -4, s, 4?\n-4\nLet d = -1.7 + 10.2. Let k = 8.1 + 0.9. Let b = d - k. What is the closest to 0 in 2/7, -1/3, b?\n2/7\nLet q = 0.39 + -0.59. Let u = 10 - 10.4. What is the nearest to -2 in q, 2/3, u?\nu\nLet m = -1.8 - 2.2. Let a(n) = -3 + 2*n**2 + 13*n + 0*n + 0*n - n. Let k be a(-6). What is the nearest to 0 in m, 1/12, k?\n1/12\nSuppose 0 = t - 2*s - 4, 4*t = 3*t + s + 2. Which is the nearest to -1/3? (a) t (b) -1/10 (c) 0.25 (d) 1/5\nb\nLet i = -638.2 - -638. Let u = 1 + -1. Which is the closest to -0.2? (a) 6/5 (b) u (c) i\nc\nLet u = -19 + 31. Let x = -47/4 + u. Which is the nearest to 1? (a) x (b) -0.4 (c) -0.2\na\nLet t(w) = w**2 + 62*w + 230. Let h be t(-58). Which is the nearest to h? (a) 5 (b) 3 (c) 0" -" - -131. Put l, -3, 14 in increasing order.\n-3, l, 14\nSuppose -2*p - 5*v + 5 = 0, -p - 5*v + 10*v = 20. Sort -4, p, 1.\np, -4, 1\nLet m = 22 - 21. Sort m, 1/4, -3.\n-3, 1/4, m\nSuppose -22 = 4*q - 6. Let v(f) = 2*f + 5. Let m be v(q). Let r = 0 - 0.2. Put m, 1/2, r in decreasing order.\n1/2, r, m\nLet h = -53 + 53.3. Sort 3, -3, h in decreasing order.\n3, h, -3\nLet w(y) = y**2 + 15*y + 3. Let g be w(-15). Put -4, g, -5, 5 in ascending order.\n-5, -4, g, 5\nSuppose 5*z = -2*s - 0*z - 39, -5*z - 60 = 5*s. Sort -3, 4, s in decreasing order.\n4, -3, s\nSuppose -13 = 2*v - 3*j, v - 2*v - 5*j + 13 = 0. Suppose 0*q = -5*q - 5*p + 20, 0 = -2*q - p + 7. Suppose 8*h = q*h + 10. Sort 1, v, h.\nv, 1, h\nLet c = -12 + 26. Suppose -m - f = 9, f + c" -"ng order.\n-3/5, p, k\nSuppose 65*d = 84*d - 98*d + 316. Sort 3, -6, 2, 1, d in descending order.\nd, 3, 2, 1, -6\nSuppose -24*x + 57*x + 264 = 0. Let r be (123/164)/(3/x). Sort -26, 0.1, 2/5, r in increasing order.\n-26, r, 0.1, 2/5\nLet c = -682 - -682.01. Let f = 35 - 38. Put f, c, -2, 0.3 in ascending order.\nf, -2, c, 0.3\nSuppose -5*b = -10*b - 15. Let p be (-60)/45*6/4. Let t be (15/(-15))/(0 + 1). Put t, p, b in ascending order.\nb, p, t\nLet a be ((24/(-12))/6)/(2/(-12)). Suppose -k = -0*k - 2*k. Put -3, 5, k, a in decreasing order.\n5, a, k, -3\nLet p = -5.12 - -5. Let i = p - -0.62. Let u = 182 + -551/3. Sort -1/4, u, i in decreasing order.\ni, -1/4, u\nLet k = 31838.98 + -31839. Let q = 20.68 + -21. Let l = 0.4 + q. Put k, 2, l in descending order.\n2, l, k\nLet h be (1425/(-4275))/(0 + (-2)/162). Sort -15, 3, h in decreasing order.\nh, 3, -15\nLet b(k) = k**2 -" -"t q be z(-4). Calculate the greatest common factor of q and 6.\n6\nLet o(v) = v**2 + 14*v - 15. Let q be o(-17). Calculate the highest common factor of q and 18.\n18\nLet o be -3*(4640/(-12))/8. What is the greatest common divisor of 58 and o?\n29\nLet m(v) = v**3 - 5*v**2 + 4*v - 7. Let l be m(5). What is the highest common divisor of l and 65?\n13\nSuppose -a + 1 + 41 = 5*d, -26 = -2*d - 5*a. Let g be (880/(-77))/((-4)/14). What is the greatest common divisor of g and d?\n8\nLet u be (-102)/2*(-11)/3. What is the greatest common factor of 17 and u?\n17\nLet n = 23 - -1. Let a be (0*2/(-2))/2. Suppose -4*k - 5 + 17 = a. Calculate the highest common divisor of k and n.\n3\nLet d(r) = r**3 + 9*r**2 + 9*r + 2. Let h be d(-6). Calculate the highest common factor of h and 14.\n14\nSuppose 0*s - 2*s + 10 = 0. Let j(n) = n + 1. Let u be j(s). Let c(x) = -x**3 - 7*x**2 + 7*x - 5. Let" -"8 = -4*i + 3*i, -3*i + t*m - k = 0 for i.\n4\nLet i be (-10)/(-15)*(-3)/(-2). Suppose -3 = -2*m + i. Solve m*y + 3*y = -15, -o + 5*y + 19 = 0 for o.\n4\nLet x(l) = -l**2 + 8*l + 9. Let y be x(9). Let r = y + 3. Suppose -17 = -3*q + 2*q. Solve -2*d = r*s - q, -s + 5*d + 0*d = 0 for s.\n5\nLet i = -152 + 154. Solve 4*f + 5 = -5*t, i*t + f + 2 = -0 for t.\n-1\nLet i = -7 - -11. Solve -i*s + 2*l = -18, s = -3*l - 5 - 8 for s.\n2\nLet d = -2 - -5. Let r be 8 + 0/((-9)/d). Suppose 0*b - r = -2*b. Solve b*i = 2*n - 16, n = -3*i - 1 - 6 for n.\n2\nSuppose -6*u + 2*g = -u - 16, 2*u = 4*g. Suppose 2*a + 0*a = 10. Solve -3*r + a = -4*j, 2*j - 2 = -u*r + 5*j for r.\n-1\nSuppose 4 = -4*m - 4*n, -2*m -" -"- 18/7*f**7 + 0*f**4. What is the third derivative of d(s) wrt s?\n-2160*s**3 + 120*s**2\nFind the third derivative of -c**5 + 2*c**5 - 120*c**3 + 125*c**3 + 906*c**2 - 3*c**6 - 891*c**2 + 89 wrt c.\n-360*c**3 + 60*c**2 + 30\nWhat is the first derivative of -945 + 189 - 1202*z - 955 + 315 - 1220 wrt z?\n-1202\nLet d(n) be the first derivative of -92*n**6 + n**4/2 + 2013*n**2/2 - 1211. Find the second derivative of d(l) wrt l.\n-11040*l**3 + 12*l\nLet o(j) = 21. Let y(i) = i - 43. Let q(w) = -5*o(w) - 2*y(w). Let u be q(-26). Differentiate -u + 57*r - 90*r + 52*r with respect to r.\n19\nWhat is the second derivative of 323 + 219*y**5 - 3184919*y**4 - y + 763*y**5 + 3184919*y**4 wrt y?\n19640*y**3\nLet g(i) = 3914*i**5 + 5*i**2 + 440*i. Let p(s) = -1955*s**5 - 2*s**2 - 220*s. Let o(h) = -3*g(h) - 7*p(h). Find the third derivative of o(w) wrt w.\n116580*w**2\nLet f be (-100)/(-30)*6/4 - 3. Find the third derivative of 2*t**2 - 346 - 8*t**2 + 5*t**f + 113*t**4 + 280 wrt t.\n2712*t\nLet i(j) =" -"/y. Let u(w) = -4*w**2 - 3. Let z(x) = -11*x**2 - 8. Determine r*z(s) + 8*u(s).\ns**2\nLet t(q) = -5*q**2 + q - 1. Let r(o) = -4*o**2 + o - 1. Let b = -2830 + 2826. Determine b*r(k) + 3*t(k).\nk**2 - k + 1\nLet q(r) = -2*r**3 + 153*r**2 - 5*r. Let u(t) = -3*t**3 + 229*t**2 - 8*t. Calculate 8*q(l) - 5*u(l).\n-l**3 + 79*l**2\nLet s(v) = -5*v**2 + 4*v + 6. Let z(p) = -6*p**2 + 5*p + 7. Let t = 32 - 30. Let q = 5 + t. Suppose 5 = 6*m - q*m. Determine m*s(k) + 4*z(k).\nk**2 - 2\nLet k(i) = -6*i + 42. Let r(y) = y + 3. Give -2*k(d) - 10*r(d).\n2*d - 114\nLet k(c) be the second derivative of 7/2*c**2 - 1/6*c**3 + 5*c + 0. Let m(u) be the first derivative of -u + 1. Determine -k(j) - 5*m(j).\nj - 2\nLet d(s) = 27*s**2 + 29*s + 2. Let i(u) = 14*u**2 + 15*u + 1. Calculate -6*d(v) + 11*i(v).\n-8*v**2 - 9*v - 1\nLet x(w) = w**2. Let y(g) = 10*g**2 + 2*g. Let z(p)" -"be t(20). Does z = -905?\nFalse\nLet z be (-5)/20 + 29266/8 + (2 - -5). Is 1 != z?\nTrue\nLet q be ((-2)/3)/(2 + 2552/(-1287)). Suppose -3*u = 68 + 145. Let v = 31 + u. Which is smaller: v or q?\nv\nLet b = -0.48962 - -0.18962. Let n = -3562/3 + 1271. Let m = 83 - n. Which is smaller: m or b?\nm\nLet w = -88/245 - 2/49. Let p = -10979.4 + 10977.65. Which is smaller: p or w?\np\nLet c = -4576 - -4576. Is c equal to -1/427?\nFalse\nLet j = -35 - -133. Let k = 199/2 - j. Which is smaller: 30 or k?\nk\nLet s be (22604/(-22))/((-26)/143). Is 5651 smaller than s?\nFalse\nLet n be 178/3 + (-10)/(-15). Suppose -6*j = -3*j + n. Let a be -48 + j/30 + (-16)/(-6). Which is greater: -47 or a?\na\nLet p = -54 + 62. Suppose -2*i + 5*i = 9, 2*v - p = -2*i. Let j be 80/(-129) - 2/(-3). Is v > j?\nTrue\nLet p be 72/2133*(-135)/(-6). Which is smaller: p or 1?\np\nLet g" -"uppose 2*f = 4*f - 10. Suppose 2*i - 3*i + 2*y + 7 = 0, 0 = -i - 4*y - 5. Suppose -2*j**f - 2*j**3 - 7*j**4 - 6*j**5 + i*j**5 = 0. What is j?\n-1, -2/5, 0\nLet v(t) be the second derivative of -2*t**7/21 + 4*t**6/15 + 2*t**5/5 - 4*t**4/3 - 2*t**3/3 + 4*t**2 + 20*t. Solve v(z) = 0 for z.\n-1, 1, 2\nFactor 2/5*l**2 - 4/5*l + 2/5.\n2*(l - 1)**2/5\nLet g(c) be the third derivative of 1/60*c**5 + 0*c**3 - c**2 + 0 - 1/48*c**4 + 0*c - 1/240*c**6. Solve g(m) = 0.\n0, 1\nLet a = -20 + 22. Let s be (-13 - -10)/((-33)/a). Let s*k + 0 + 6/11*k**2 = 0. Calculate k.\n-1/3, 0\nSuppose -1 = 4*v - 9. Suppose -v*k = 4*g - k - 11, 2*k - 4 = g. Factor 2*d**4 + 2*d**g - 2*d**3 - 2*d**2.\n2*d**3*(d - 1)\nLet k = 97 + -383/4. Let -k*n**2 + 0 + 1/2*n**3 - 1/2*n + 5/4*n**4 = 0. What is n?\n-1, -2/5, 0, 1\nSuppose -5*a + 31 = 6. Factor -16*v + 5*v**a - 8*v**2 - 3*v**5 - 3*v**3" -"hest common divisor of 1576 and 1246764932.\n788\nWhat is the highest common divisor of 51537652 and 14744?\n7372\nWhat is the greatest common factor of 100128 and 402?\n6\nWhat is the highest common factor of 37990655 and 589?\n31\nCalculate the highest common divisor of 15 and 1569115.\n5\nCalculate the greatest common factor of 2280 and 77115528.\n456\nCalculate the highest common factor of 2240 and 2231488.\n448\nWhat is the greatest common divisor of 17200 and 17100240?\n3440\nCalculate the greatest common factor of 2265 and 10972113.\n453\nWhat is the highest common factor of 13643 and 12866?\n7\nCalculate the greatest common divisor of 78 and 28499406.\n78\nCalculate the greatest common divisor of 27741178 and 494.\n38\nWhat is the highest common factor of 24810 and 112870?\n10\nCalculate the highest common factor of 42194 and 1064559.\n73\nCalculate the greatest common divisor of 6136 and 79976.\n104\nWhat is the highest common divisor of 632 and 87172471?\n79\nCalculate the highest common factor of 2046 and 223292256.\n2046\nCalculate the greatest common divisor of 722736 and 1499964.\n2868\nWhat is the greatest common divisor of 1320 and 8134360?\n40\nCalculate the greatest common" -"of 21036?\n2, 3, 1753\nList the prime factors of 24721.\n59, 419\nWhat are the prime factors of 7560?\n2, 3, 5, 7\nWhat are the prime factors of 4329?\n3, 13, 37\nWhat are the prime factors of 632?\n2, 79\nList the prime factors of 1993.\n1993\nList the prime factors of 4177.\n4177\nWhat are the prime factors of 3518?\n2, 1759\nList the prime factors of 1669.\n1669\nList the prime factors of 79148.\n2, 47, 421\nWhat are the prime factors of 153568?\n2, 4799\nWhat are the prime factors of 163?\n163\nList the prime factors of 14341.\n14341\nList the prime factors of 7131.\n3, 2377\nList the prime factors of 1103.\n1103\nList the prime factors of 9048.\n2, 3, 13, 29\nList the prime factors of 62453.\n19, 173\nList the prime factors of 1846.\n2, 13, 71\nWhat are the prime factors of 21097?\n17, 73\nWhat are the prime factors of 395?\n5, 79\nList the prime factors of 1260.\n2, 3, 5, 7\nList the prime factors of 14483.\n7, 2069\nWhat are the prime factors of 6056?\n2, 757\nList the prime factors of 13532.\n2," -".\n65/1224\nWhat is prob of sequence dff when three letters picked without replacement from ffyfldyddfy?\n2/55\nWhat is prob of sequence eet when three letters picked without replacement from {t: 4, g: 1, l: 1, e: 4, w: 3}?\n4/143\nTwo letters picked without replacement from wwwwwmwmmtwwwmmww. What is prob of sequence ww?\n55/136\nWhat is prob of sequence aam when three letters picked without replacement from {n: 1, m: 2, a: 2, e: 1}?\n1/30\nThree letters picked without replacement from eejpp. What is prob of sequence eej?\n1/30\nThree letters picked without replacement from {f: 2, z: 1, n: 1, m: 3, a: 1, u: 3}. What is prob of sequence nau?\n1/330\nTwo letters picked without replacement from ffgfx. What is prob of sequence xg?\n1/20\nWhat is prob of sequence zlkl when four letters picked without replacement from klwwwkzkzkkkkll?\n1/390\nThree letters picked without replacement from hwmtmhbmmmbwmpmww. Give prob of sequence ttm.\n0\nTwo letters picked without replacement from nnnwwxnwwnnwxwxnwx. What is prob of sequence xw?\n14/153\nWhat is prob of sequence toto when four letters picked without replacement from otjtjjbojkjojjjoo?\n1/1428\nTwo letters picked without replacement from lpupprruurp. Give prob of sequence ur.\n9/110" -":08 AM?\n677\nWhat is 53 minutes before 10:08 AM?\n9:15 AM\nHow many minutes are there between 3:19 PM and 6:20 PM?\n181\nHow many minutes are there between 7:03 PM and 4:46 AM?\n583\nHow many minutes are there between 10:22 PM and 10:57 PM?\n35\nWhat is 12 minutes before 2:35 PM?\n2:23 PM\nWhat is 12 minutes after 2:41 PM?\n2:53 PM\nHow many minutes are there between 4:23 AM and 4:06 PM?\n703\nHow many minutes are there between 4:26 PM and 5:56 PM?\n90\nWhat is 203 minutes after 1:24 PM?\n4:47 PM\nHow many minutes are there between 2:41 AM and 12:58 PM?\n617\nWhat is 231 minutes after 10:23 AM?\n2:14 PM\nHow many minutes are there between 4:13 AM and 5:13 AM?\n60\nWhat is 141 minutes after 3:42 AM?\n6:03 AM\nHow many minutes are there between 5:50 AM and 1:09 PM?\n439\nWhat is 324 minutes before 11:52 PM?\n6:28 PM\nHow many minutes are there between 8:40 PM and 6:29 AM?\n589\nWhat is 59 minutes before 3:13 PM?\n2:14 PM\nHow many minutes are there between 10:45 PM and 10:51 PM?\n6\nHow many minutes are there" -"t from {s: 4, h: 8, x: 1}.\n4/39\nTwo letters picked without replacement from yxeyyesxyysyxyyxye. What is prob of picking 2 e?\n1/51\nTwo letters picked without replacement from {b: 12, d: 7, c: 1}. Give prob of picking 1 b and 1 c.\n6/95\nCalculate prob of picking 2 z and 1 c when three letters picked without replacement from zzbbzchczecczzheb.\n3/34\nWhat is prob of picking 1 h and 2 x when three letters picked without replacement from {d: 4, x: 8, v: 1, a: 1, h: 2}?\n1/10\nWhat is prob of picking 1 j, 1 k, and 1 z when three letters picked without replacement from {v: 2, z: 1, j: 2, e: 1, k: 1}?\n2/35\nThree letters picked without replacement from oommmoommmomo. Give prob of picking 2 m and 1 o.\n63/143\nWhat is prob of picking 1 n and 2 s when three letters picked without replacement from {n: 3, s: 6, d: 6}?\n9/91\nTwo letters picked without replacement from {g: 4, l: 6, d: 2, v: 3, i: 1}. What is prob of picking 2 g?\n1/20\nThree letters picked without replacement from mefagamng. What is prob of picking 1" -" + 7. Is x greater than 2?\nTrue\nLet u = 63 + -63. Which is greater: u or -1?\nu\nSuppose 2*c - 5*p = 7, -2*p - 1 = 5. Is c less than or equal to -4?\nTrue\nLet m = 121644/791 - 234/113. Let j = 152 - m. Do -1 and j have different values?\nTrue\nLet y be 77/(-175) - ((-64)/(-20) - 3). Are y and -2 unequal?\nTrue\nLet q = 0 - 4/3. Which is smaller: q or -3?\n-3\nLet w = 13 - 19. Let t be w/(-2)*(-2)/12. Which is smaller: t or 0.2?\nt\nSuppose -4*a - 4*n + 51 - 11 = 0, 0 = 4*n - 8. Suppose -4 = o + x, o - 5*x = 2*o + a. Is -2 at most o?\nFalse\nLet f be (-11 + 14)*2/(-6). Which is bigger: -2/5 or f?\n-2/5\nLet r = 86 - 77. Which is greater: r or -0.07?\nr\nLet o = 1 + -1. Let j = 7122573/35 + -203474. Let n = j + -144/5. Do o and n have the same value?\nFalse\nLet b = 16 - 12. Let c" -"0 and 85/896.\n4480\nWhat is the least common multiple of 23 and 253?\n253\nFind the common denominator of -39/56 and -29/5.\n280\nCalculate the common denominator of -103/858 and 41/780.\n8580\nCalculate the lowest common multiple of 692 and 16.\n2768\nCalculate the lowest common multiple of 726 and 847.\n5082\nCalculate the common denominator of 127/680 and 79/5848.\n29240\nWhat is the smallest common multiple of 819 and 168?\n6552\nFind the common denominator of 37/224 and 15/868.\n6944\nCalculate the smallest common multiple of 504 and 146.\n36792\nFind the common denominator of -16/7 and 5/27.\n189\nCalculate the lowest common multiple of 576 and 80.\n2880\nCalculate the lowest common multiple of 180 and 36.\n180\nCalculate the least common multiple of 8848 and 6.\n26544\nWhat is the smallest common multiple of 56 and 14?\n56\nCalculate the common denominator of 109/3768 and -71/24.\n3768\nWhat is the common denominator of -29/2384 and -13/4?\n2384\nCalculate the lowest common multiple of 1785 and 45.\n5355\nCalculate the smallest common multiple of 6 and 210.\n210\nWhat is the lowest common multiple of 4 and 2040?\n2040\nWhat is the smallest common multiple of 71" -"7 for r.\n2\nLet o be 0/(20*(-10)/(-50)). Solve o = 6*j - 0*j - q - 30, -4*q = -4*j + 20 for j.\n5\nLet l(b) = b**2 - 91*b + 2003. Let y be l(54). Solve -5 = -5*p - y*t + 10, -3*p = -2*t + 11 for p.\n-1\nSuppose 208 = 164*a - 112*a. Solve a*t - 16 = -4*v - 8, 6 = 3*v + 4*t for v.\n2\nSuppose 3*h + 5*n - 7 - 35 = 0, 0 = 5*h - 2*n - 39. Solve 0 = 3*w + 3*z - 4*z - h, -2*z = 2*w - 14 for w.\n4\nLet n(a) = -31*a - 337. Let z be n(-11). Solve -2*k + 4 + 2 = 0, z*k - 20 = 2*m for m.\n-4\nSuppose -2*j - 4 = 0, k = j - 2*j + 10. Suppose -4 - k = -4*q. Suppose y - 10 = -m, -10*m + 14*m - 15 = y. Solve v - 16 - 1 = 5*s, 31 = -q*s - m*v for s.\n-4\nLet o be 12/(-15)*(-5)/(-7)*(-168)/48. Solve 5*x + 71*t - 72*t = 5, -o*t - 10" -"0 = -3*z - 5*p, 3*z + 5*p = 8*z + 10. Let k be z/((-3 - -3) + 1). Suppose 2*t - 2 - 32 = k. Calculate the highest common factor of 187 and t.\n17\nSuppose v = 2*b - 217, -2*b - 3*v + 202 + 11 = 0. What is the highest common factor of b and 12?\n12\nLet n(p) be the first derivative of -p**3/3 + 5*p**2/2 + 34*p - 23. Let q be n(8). Calculate the highest common divisor of 40 and q.\n10\nSuppose -2643 = -4*c + 5*o + 829, 3*c - 2599 = 5*o. Calculate the highest common factor of c and 194.\n97\nLet i(b) = -51*b + 105. Let j be i(2). Calculate the greatest common divisor of j and 96.\n3\nLet g = 68 + -86. Let l be 2/6*111/1. Let j = g + l. What is the highest common factor of j and 19?\n19\nSuppose -3*z - z = -8. Suppose z*w = 4*w. Suppose 0 = -2*d, w = -4*o + d - 2*d + 36. What is the greatest common divisor of o and 3?\n3\nLet i be 6/(-9)" -"0\nFind the common denominator of -24/14695 and 67/217486.\n1087430\nCalculate the common denominator of 59/22380 and -121/55950.\n111900\nWhat is the lowest common multiple of 9 and 122639?\n1103751\nCalculate the least common multiple of 398655 and 81.\n1195965\nCalculate the smallest common multiple of 31482 and 54.\n31482\nWhat is the common denominator of -69/2204 and 77/18?\n19836\nFind the common denominator of -18/154517 and 35/14047.\n154517\nWhat is the common denominator of -79/66 and -109/8778?\n8778\nWhat is the smallest common multiple of 219948 and 183290?\n1099740\nFind the common denominator of -193/22680 and 73/360.\n22680\nCalculate the least common multiple of 35800 and 1324600.\n1324600\nWhat is the common denominator of 16/9 and 40/34641?\n34641\nWhat is the lowest common multiple of 1130 and 1171584?\n5857920\nFind the common denominator of 37/486 and 179/12852.\n115668\nWhat is the lowest common multiple of 924 and 12144?\n85008\nWhat is the lowest common multiple of 17625 and 75?\n17625\nCalculate the smallest common multiple of 13920 and 32.\n13920\nFind the common denominator of -31/3564 and 47/352.\n28512\nCalculate the smallest common multiple of 64040 and 25616.\n128080\nCalculate the common denominator of 49/10670 and -29/53350.\n53350\nCalculate" -"3).\n3\nWhat is -1 - 2 - (0 + -7)?\n4\nWhat is the value of (5 - 1) + (-22 - -9) + 6?\n-3\n(-51 - -38) + 3 + 0 + 1\n-9\n-4 - (2 - 10) - 0\n4\nEvaluate (3 - -1) + -2 + 1.\n3\nWhat is 2 - -5 - ((5 - 14) + 13)?\n3\nEvaluate -3 + 5 + (-1 - 7) + 4.\n-2\nWhat is the value of 6 - (12 + -4) - 3 - 5?\n-10\nEvaluate (1 + -1 - -1) + 5 - 4.\n2\nCalculate (4 - (3 + -3) - 11) + 4.\n-3\nWhat is 5 + -1 - (-18 - (-33 + 15))?\n4\nWhat is -2 + (6 - (6 - 3))?\n1\nWhat is the value of (-3 - (4 + 1 + -4)) + 4?\n0\nEvaluate 1 - (-4 + -4 + 5).\n4\nWhat is -4 + 5 - (-6 - -2)?\n5\n0 + 0 + 2 + -1 + 1\n2\nWhat is the value of (4 - 2) + -20 + -2 + 20?\n0\nCalculate -5 + (-1 -" -"6*o - 97*o.\n146*o\nCollect the terms in 12*a**3 + 9*a**3 + 5*a**3 - 25*a**3.\na**3\nCollect the terms in 3 - 3*o + 6 - 13 + 11*o + 7.\n8*o + 3\nCollect the terms in 316*l**2 - 820*l**3 - 158*l**2 - 158*l**2 - 9*l**3.\n-829*l**3\nCollect the terms in 108862*k + 44898*k + 57779*k.\n211539*k\nCollect the terms in -13155462 + 13155462 + u**3.\nu**3\nCollect the terms in 1 + 0 - 352*l**2 - 1 + 350*l**2.\n-2*l**2\nCollect the terms in 1 + 70 - 71 + 1053*p.\n1053*p\nCollect the terms in -2445211051 - 6*l + 2445211051.\n-6*l\nCollect the terms in 229 + 2*z + 3*z - 3*z.\n2*z + 229\nCollect the terms in -27*m**2 + 27*m**2 - m + 173*m**3 - m.\n173*m**3 - 2*m\nCollect the terms in 27*s + 22 - 33*s + 14.\n-6*s + 36\nCollect the terms in -1015*w + 323*w + 322*w + 368*w.\n-2*w\nCollect the terms in 25*k**2 - 18*k**2 - 13*k**2 - 71641*k + 71641*k.\n-6*k**2\nCollect the terms in -2*l**2 - 128861 - 128881 + 257742.\n-2*l**2\nCollect the terms in -6*y + 5*y - 4*y**3 + 4*y.\n-4*y**3 + 3*y" -"*k**3 + 0*k + k**2 - 2 - 1/2*k**4. Factor g(n).\n2*n*(n - 1)**2*(n + 1)\nLet w(u) be the third derivative of u**9/514080 - u**8/85680 + u**7/42840 + u**5/15 + 9*u**2. Let d(j) be the third derivative of w(j). Factor d(o).\n2*o*(o - 1)**2/17\nFind c such that 0*c + 0 - 9/5*c**2 - 1/5*c**4 - 2*c**3 = 0.\n-9, -1, 0\nSolve 5*q**4 - 33*q - 20*q**2 + 37*q + 5*q**3 - 32*q + 5*q**3 - 12*q = 0.\n-2, 0, 2\nSuppose 0 = -5*f + 240 - 225. Let -5/3*k**f + 1/3*k - k**2 - 2/3*k**4 + 1/3 = 0. What is k?\n-1, 1/2\nLet s = -47 - -51. Let r be 52/20 - s/2. What is d in 3/5*d - 6/5 + r*d**2 = 0?\n-2, 1\nSuppose -4*x + 2 = 54*i - 53*i, -3*i + 6 = -x. Determine b, given that -2 - 225/2*b**i + 30*b = 0.\n2/15\nLet k = -4 - -20. Determine l, given that -32*l - 32*l**2 - 44*l**5 + 4*l**4 + 78 + k*l**3 + 42*l**5 - 14 = 0.\n-2, 2\nLet u be ((-132)/(-165))/(14/10 - 1). Factor -8/7*h**u - 18/7 - 24/7*h." -"Product of -0.254 and -10.\n2.54\nMultiply 1 and -554.6.\n-554.6\nWhat is 0.057 times -0.7?\n-0.0399\nWhat is the product of -3.829 and 0.5?\n-1.9145\nCalculate -0.1*-24.\n2.4\nMultiply -1731 and 1.4.\n-2423.4\nCalculate -2*-152.\n304\n-86.03 * -5\n430.15\n-5*-11.14\n55.7\nProduct of 0.239 and 3.6.\n0.8604\nWhat is the product of 12 and 1195?\n14340\nWhat is the product of -49.4 and -0.4?\n19.76\nWhat is -509 times 6?\n-3054\n0.1 times -406\n-40.6\n0.3 times 77\n23.1\nWhat is the product of 0.13 and -0.047?\n-0.00611\n0.4 times 103\n41.2\nMultiply 0.3 and 424.\n127.2\n24*0.184\n4.416\n-37 * -0.035\n1.295\nWhat is the product of 151 and 0?\n0\nWhat is the product of 0.3 and 400?\n120\n5*-2362\n-11810\nCalculate -0.075*8.1.\n-0.6075\n-0.3 times -4.8\n1.44\n-16 times 1.7\n-27.2\n-0.3*-52\n15.6\n476*0.05\n23.8\nMultiply -11.6 and -32.\n371.2\nProduct of 0.1 and -0.1353.\n-0.01353\nCalculate -1.1*-29.\n31.9\nWork out 0.1 * 116.\n11.6\nWhat is 38.73 times 0.3?\n11.619\nWork out 0.1 * 222.\n22.2\nWork out -0.62 * -0.01.\n0.0062\nWhat is the product of -10758 and -2?\n21516\nCalculate 0.09*-1.7.\n-0.153\nCalculate 5*42.\n210\nWork out -0.2 * 71.\n-14.2\n-1.8*-0.3" -"444653 to the nearest integer?\n113\nWhat is the tenth root of 45365 to the nearest integer?\n3\nWhat is 941138 to the power of 1/3, to the nearest integer?\n98\nWhat is the fifth root of 28858 to the nearest integer?\n8\nWhat is 4660069 to the power of 1/10, to the nearest integer?\n5\nWhat is the square root of 7259870 to the nearest integer?\n2694\nWhat is 31698033 to the power of 1/3, to the nearest integer?\n316\nWhat is the ninth root of 7570601 to the nearest integer?\n6\nWhat is the ninth root of 307455 to the nearest integer?\n4\nWhat is 669098 to the power of 1/2, to the nearest integer?\n818\nWhat is 693618 to the power of 1/3, to the nearest integer?\n89\nWhat is 97179 to the power of 1/2, to the nearest integer?\n312\nWhat is the fifth root of 6554357 to the nearest integer?\n23\nWhat is 3565717 to the power of 1/10, to the nearest integer?\n5\nWhat is the fifth root of 1646 to the nearest integer?\n4\nWhat is the square root of 6281428 to the nearest integer?\n2506\nWhat is the square root of 191739" -"-721 = -3*s + d, 5*s - 1204 = -0*s + 4*d. Is s a multiple of 13?\nFalse\nLet j(l) = l**3 + 4*l**2. Let h be j(-4). Suppose h*w + 120 = 3*w. Let c = -24 + w. Is c a multiple of 6?\nFalse\nSuppose -5*p = -2*y + 1823, -277 = y + 2*p - 1211. Is 11 a factor of y?\nTrue\nLet m be (-5 - (-12)/4)*-1. Suppose 5*y = 10*y. Suppose -m*d + 45 + 13 = y. Is 15 a factor of d?\nFalse\nLet c = 641 + -201. Is 4 a factor of c?\nTrue\nSuppose -7*h + 4*h = -99. Let u = h - 13. Let o = u - 14. Does 2 divide o?\nTrue\nLet g(r) = 100*r - 187. Is 14 a factor of g(10)?\nFalse\nSuppose u - 4*m - 6 = 0, -19 = u + m - 0*m. Let t be (-18 - u) + (-4)/(-1). Suppose 2*z - 155 = -5*d - 0*d, t = -4*d + z + 137. Is d a multiple of 33?\nTrue\nLet y = -411 + 501. Is 5 a factor of y?\nTrue" -"uppose -j = -x - 3*x + 112, -3*j - 17 = -x. Let q = 42 + -27. What is the third derivative of 10*a**6 + q*a**2 - x*a**6 - 7*a**6 + 5*a**2 wrt a?\n-3120*a**3\nLet n(g) be the second derivative of g**3/2 - g**2 + 10*g. Let k be n(7). Find the second derivative of -25*s**3 - 32*s**3 + k*s + 39*s**3 wrt s.\n-108*s\nLet x(n) be the second derivative of -32*n**6/5 + 1210*n**2 - 2*n - 1784. Find the first derivative of x(z) wrt z.\n-768*z**3\nLet z(q) = 9935*q**5 + 10*q**3 - 5*q**2 + 1605*q + 5. Let s(n) = 2*n**3 - n**2 - 2*n + 1. Let d(l) = 5*s(l) - z(l). Find the second derivative of d(p) wrt p.\n-198700*p**3\nSuppose 0 = -5*i + 900. What is the second derivative of 23*w + i*w**3 + 2 - 65*w**3 + 2*w**2 - 15*w wrt w?\n690*w + 4\nWhat is the second derivative of -106 + 72*h + 2270*h**4 + 36 + 35 + 45 wrt h?\n27240*h**2\nSuppose 5*i + 17 = 82. Let c = 16 - i. What is the third derivative of -8*w**3 + 12*w**3 - 20*w**2 +" -"*i for u.\n4\nSuppose -4*y + 4*c = -72, 0 = -0*c - 2*c - 8. Let t be ((-4)/6)/(y/(-63)). Solve 0 = -2*i - 4*b - 0*b + 6, t*i = -4*b + 1 for i.\n-5\nLet u be (16/(-4) - (4 + -4)) + 6. Solve 11 = -2*g - 5*n - 4, g + 3 = u*n for g.\n-5\nSuppose 5 - 3 = i. Suppose i*j + 26 = 2*w, 0*w - 74 = -5*w - 4*j. Suppose -3*c = -w - 7. Solve -g - 13 = -4*d, c*d - 3*d + 3*g = 9 for d.\n3\nLet l(j) = -j**3 + 16*j**2 + 16*j + 18. Let h be l(17). Suppose 7 + 8 = 3*y. Solve 5*g = 2*r + 14 + h, 0 = -4*r - y*g + 45 for r.\n5\nSuppose 4*v = 2*v. Suppose -12*u + 13*u - 26 = v. Let h = u + -24. Solve 0 = -5*g + h*r - 8, 0 = g - 0*g - 2*r for g.\n-2\nSuppose 2*t - 2 = 0, -k + 2 + 2 = 2*t. Solve j = k*p + 2*p -" -"*s**2 + u*s and give u.\n79\nExpress 15 + 12 + 6*v**2 - 10 - 5 in the form l + q*v**2 + s*v and give s.\n0\nRearrange 743*w**4 - w**2 - w - 3*w + 2*w**3 - 742*w**4 - w**2 + 5 - 2 to the form g + m*w**3 + z*w + h*w**2 + a*w**4 and give g.\n3\nRearrange -171 + 61 - 2*b**2 + 519 to the form j*b + k*b**2 + w and give w.\n409\nExpress (19*g**2 - 1561*g + 1561*g - 4)*(3*g**2 + 0*g**2 + 4*g**2) in the form u*g**3 + i*g + y*g**2 + b + l*g**4 and give y.\n-28\nRearrange (2 - 4 - 1 - 4)*(16*r - 10*r + 15*r) to p*r + j and give p.\n-147\nExpress 3*y + y**4 + 2 + 3*y**3 + 5*y - 12*y + 2*y in the form w*y**2 + q*y + d*y**4 + n*y**3 + i and give q.\n-2\nExpress k + 2*k**4 - 4*k + k + 1969 + 8*k**2 - 1968 - 5*k**4 in the form z*k**2 + j*k + w*k**4 + h + o*k**3 and give j.\n-2\nRearrange -399*o**3 + 0*o**2 - 2*o**2 +" -"1856 = 3*d + 796, -2*d - 1779 = -3*f. Let l = -6 - 8. Let a = l - d. Is a a composite number?\nTrue\nSuppose -r = -f + 2*f, 2*r = -3*f. Suppose 3*i - 47 = 4*x, r = -0*i + 3*i - x - 50. Let d(h) = -h**3 + 23*h**2 - 6*h + 25. Is d(i) a prime number?\nTrue\nIs (4*(-9)/(-36))/(2/((-2325244)/(-2))) prime?\nTrue\nLet c be (9/(-2) - -3)/((-12)/464). Suppose 3*n = c + 32. Suppose -x - 19 = -r, -2*r + 5*x = x - n. Is r prime?\nTrue\nSuppose -995*d - 55 = -1000*d. Is d/110 - 4509/(-10) prime?\nFalse\nLet u(r) = 469*r - 45. Let q be u(5). Suppose 0 = -4*a - l - 11760, -a - q = -3*l + 653. Is (-5 + a + 4)*2/(-4) prime?\nTrue\nLet l(a) = 2*a**3 + 16*a**2 - 8*a + 5. Let v = 67 + -64. Let z be 34/v + (-8)/36*-3. Is l(z) prime?\nTrue\nLet p = 14 + -4. Suppose 0 = 4*u - 640 - 588. Suppose -p*t - u = -11*t. Is t prime?\nTrue\nLet s = 65" -"-18\nSolve 4002 = -184*s - 3726 for s.\n-42\nSolve -1653*y + 28089 - 125616 = 0 for y.\n-59\nSolve 0 = 805*k - 91*k - 19816 + 5584 - 3618 for k.\n25\nSolve -659*b - 1513*b = -115996 - 14324 for b.\n60\nSolve 5431*g - 3053 = 5502*g for g.\n-43\nSolve 568*n - 272*n = 351*n - 5005 for n.\n91\nSolve -755*y - 21094 - 17541 - 22520 = 0 for y.\n-81\nSolve 1558712*m + 4736 = 1558840*m for m.\n37\nSolve -1209*t + 1929*t - 239653 = 5819*t for t.\n-47\nSolve 259088 + 41897 = 94*g + 6402*g - 296647 for g.\n92\nSolve -126*x - 2560 = 2012 - 1548 for x.\n-24\nSolve 0 = -360*f + 12440*f - 906000 for f.\n75\nSolve -1637*i + 3657 = -7802 for i.\n7\nSolve 126*p - 3875 + 551 + 392 = 848 for p.\n30\nSolve -41518 + 100414 = -3461*b - 13651 - 145496 for b.\n-63\nSolve -74*c - 4*c - 6823 - 1133 = 0 for c.\n-102\nSolve -91*h - 522*h + 28431 - 10749 = 650*h for h.\n14\nSolve -121*h = 60*h" -"*l + l)*(2 - 2 + l**4) + 2*l**5 - 6*l**5 + 2*l**5.\n348*l**5\nExpand (-5 + 6 + 2 + (-2 + 1 + 2)*(0 - 3 - 3) + 1 - 2 - 3)*(4*h - 3*h + h).\n-14*h\nExpand (5*o - 2*o + 3*o)*(3 + 1 - 5)*(11 + 3 + 14).\n-168*o\nExpand 1 - 2 - 2*t + t + 5*t - 2*t - t + (-20*t + 5*t - 5*t)*(3 - 1 - 3).\n21*t - 1\nExpand (6*m - m + m)*(8 - 4 - 6) - 5*m + m + 2*m - 3.\n-14*m - 3\nExpand (-6*m**4 + 14*m**4 + 6*m**4)*((4 - 3 - 2)*(-3*m + 0*m + 2*m) + 27 - 14*m - 27).\n-182*m**5\nExpand (-54 - 48*f + 54)*(6 + 4 - 6).\n-192*f\nExpand (4 - 2 + 6)*(473 + 43*l - 473).\n344*l\nExpand ((4 - 4 - 1)*(3 - 2 - 2) + 2 + 0 - 1 + 2 - 4 + 3)*(0*a + 3*a - a + (1 + a - 1)*(1 - 3 + 6)).\n18*a\nExpand (-1 + 1 + 2*t)*(-20*t - 84 + 141 - 18).\n-40*t**2 + 78*t\nExpand" -"+ q*g + 4*b, 3*b + 3 = g. Suppose -8*n + g*n = 33500. Round n to the nearest 1000.\n-7000\nLet h = -281 - -781. Let d be h/((-1353)/(-450) + -3). Suppose -3*u = -0*u + d. Round u to the nearest 10000.\n-30000\nLet a = -0.1082 - -385.8082. Round a to the nearest ten.\n390\nSuppose -t - 2*p = 1223006, -5*t = -9*p + 8*p + 6114997. Round t to the nearest one hundred thousand.\n-1200000\nLet n be (-6)/(-9) + (-2194816)/(-12). Suppose -5*d = n + 102098. Round d to the nearest ten thousand.\n-60000\nLet b = 9121.9994577 + -9122. What is b rounded to 5 decimal places?\n-0.00054\nLet b = 492694786 + -220140220. Let p = -145354570 + b. Let j be (-1)/(-2) - p/(-8). What is j rounded to the nearest 1000000?\n16000000\nSuppose 0 = -42*o + 45*o + 148800000. Round o to the nearest 1000000.\n-50000000\nLet p(u) = 3*u + 8. Let n be p(-3). Let w be n + 6/2 + 33099998. Round w to the nearest 1000000.\n33000000\nSuppose 13 = t + 4*h - 3, 0 = -2*t + 2*h - 18. Let" -"h - -8) + (-14)/5. What is the nearest to 0 in g, a, 5?\na\nLet k = 125.1 + -125. What is the nearest to k in -0.16, 0.3, 0.4?\n0.3\nLet c = 76/15 + -14/3. Let z = 13 - 18. What is the nearest to 3 in z, c, 0.1?\nc\nSuppose 0*u - 24 = 3*u. What is the nearest to u in -3/5, 3, -2?\n-2\nLet f be (17 - 18)/(1/(-3)). Let t = -5.1 + 1.1. Which is the nearest to f? (a) -2 (b) t (c) 3\nc\nLet h be (-1 + 3)*(-1)/(-7). Suppose 5*g + 2 = 4*g. Let z be g/(-72) - (-4)/(-16). What is the nearest to z in h, 0, 3?\n0\nLet x be 25/14 - (-2)/(-7). Which is the nearest to -1? (a) x (b) 2 (c) 11\na\nLet d(y) = 2*y - 9. Suppose -7*p + 42 = -p. Let a be d(p). What is the closest to 0.1 in 1/7, -3, a?\n1/7\nLet y = 16 + -7. Let c = 9.4 - y. What is the nearest to 2/9 in -0.4, c, -5?\nc\nLet d = 24.55" -"60 - 16760 - 12*h**3 as s*h**3 + r*h + a + g*h**2 and give g.\n40\nRearrange 18*b**2 + 32 - 33 + 2*b**3 + 2*b - 22*b**2 + 4*b**4 to o*b + v*b**3 + i*b**4 + a*b**2 + x and give o.\n2\nRearrange (3*r**2 + r**2 - 2*r**2)*(28*r - 18*r - 21*r - 11) to the form n + g*r**3 + p*r**2 + k*r and give n.\n0\nExpress 3*b - 26*b - 11*b + (-9 + 1 + 5)*(1 - 1 - 2*b) in the form k*b + y and give k.\n-28\nExpress -4*b**2 - 10 - 2*b**2 + 12 - 6*b**3 + b**2 in the form g*b**2 + r*b + u + k*b**3 and give g.\n-5\nRearrange ((1 + 2 - 2)*(2*q - 2*q - 6*q) + 2*q - 5*q - 1 - 1 + (1 + 1 - 4)*(2*q + 1 - 1))*(8*q + 0*q - 4*q) to the form i*q**2 + m + d*q and give d.\n-8\nRearrange 237*n - 800*n - 116*n - 842*n to the form b*n + h and give b.\n-1521\nExpress ((6*l - 2*l - 3*l)*(4*l**3 - 3*l**3 - 3*l**3) - 5*l**4 + 2*l**4 +" -"2 - k + 7. Give 4*s(v) + 3*u(v).\nv**3 + 2*v**2 - 4*v + 4\nLet p(q) = -2*q - 11. Let h(n) = -5*n - 19. What is 4*h(z) - 9*p(z)?\n-2*z + 23\nLet q(z) = 8*z**3 + 6*z**2 + 6*z - 6. Suppose 59 - 5 = 3*s. Let k(j) = 27*j**3 + s*j - 17 - 4*j**3 - j + 17*j**2. Calculate -6*k(l) + 17*q(l).\n-2*l**3\nLet z(u) = u**2 + 6. Let x(j) = 3*j**2 + 72*j - 35. Let i be x(-24). Let c(a) = 5*a**2 + 35. Determine i*z(v) + 6*c(v).\n-5*v**2\nSuppose 2*k + 4*r + 118 = -58, 5*k - 2*r = -416. Let m be k/56*((-2)/3)/(-1). Let z(w) = 2*w**2 + w + 3. Let v(b) = -5 + b + 5. Determine m*z(p) + v(p).\n-2*p**2 - 3\nLet m(r) = 1 - 2 - 3*r + 4*r. Let u(y) = -5*y + 5. Suppose -37*h = -43*h + 24. What is h*m(o) + u(o)?\n-o + 1\nLet a(k) = -k**2 + 1. Let u(g) = 172*g**2 - 5. Give 10*a(x) + 2*u(x).\n334*x**2\nLet m(r) = -13*r - 17. Suppose 36*l = 41*l - 20. Let" -"est common factor of 16 and 848.\n16\nCalculate the greatest common divisor of 26 and 416.\n26\nCalculate the greatest common divisor of 120 and 340.\n20\nCalculate the greatest common divisor of 6728 and 464.\n232\nWhat is the greatest common divisor of 1295 and 70?\n35\nWhat is the highest common factor of 11 and 66?\n11\nCalculate the highest common divisor of 2261 and 5491.\n323\nCalculate the greatest common divisor of 9980 and 20.\n20\nCalculate the highest common divisor of 286 and 26.\n26\nCalculate the highest common factor of 2185 and 19.\n19\nWhat is the highest common divisor of 175 and 10?\n5\nWhat is the greatest common divisor of 24 and 15?\n3\nWhat is the highest common divisor of 616 and 112?\n56\nCalculate the highest common divisor of 84 and 476.\n28\nWhat is the highest common divisor of 175 and 420?\n35\nWhat is the highest common divisor of 378 and 119?\n7\nWhat is the highest common factor of 896 and 320?\n64\nWhat is the highest common divisor of 60 and 200?\n20\nCalculate the greatest common factor of 588 and 1344.\n84\nCalculate the greatest" -"value? (a) 4 (b) -57 (c) -0.2\nc\nWhat is the third biggest value in -2, -3, 0.051?\n-3\nWhich is the biggest value? (a) 1 (b) -2 (c) -9\na\nWhich is the biggest value? (a) -277 (b) -2/9 (c) -1/5\nc\nWhich is the second smallest value? (a) -2 (b) 1 (c) 0.2 (d) 1/2 (e) -1\ne\nWhat is the second biggest value in -3, -9, 0.3?\n-3\nWhich is the third biggest value? (a) 0.2 (b) -2/3 (c) -0.027\nb\nWhich is the third biggest value? (a) -0.3 (b) 5 (c) 30\na\nWhich is the third smallest value? (a) -12 (b) -3 (c) -4 (d) 9\nb\nWhich is the third biggest value? (a) 0.03 (b) -14 (c) 1/9\nb\nWhat is the third biggest value in -4, -4/3, -0.1, 108?\n-4/3\nWhat is the smallest value in -23, -2, 3/7?\n-23\nWhat is the fourth biggest value in 5, 1/6, 5/2, -3/8?\n-3/8\nWhich is the fourth biggest value? (a) -53 (b) 2/9 (c) 5 (d) -0.3\na\nWhich is the second biggest value? (a) -2 (b) -0.4 (c) -3/2 (d) 4/7 (e) -3\nb\nWhich is the smallest value? (a) -0.4 (b) 1" -"12 = -l - 9 for l.\n1\nSolve -11*h + 8*h + n = 0, 4*n = h for h.\n0\nSolve 4*n + 2*g - 22 = 0, 0 = -n - 4*g + g + 13 for n.\n4\nSolve 4*a = -5*s + 20, a + 2*a - 15 = -4*s for s.\n0\nSolve 0 = r + 3*r - 4*h - 24, -3*r + 5*h + 28 = 0 for r.\n1\nSolve 0 = -163*r + 162*r + 2*p + 7, -4*p = 5*r - 21 for r.\n5\nSolve t + 5*u = 4*u, -3*t + 5*u - 32 = 0 for t.\n-4\nSolve 0 = 2*w + 4*f + 47 - 29, 11 = -w - 3*f for w.\n-5\nSolve 0 = -4*s + 4*w + 8, -11*s + 13*s + 21 = -3*w for s.\n-3\nSolve -6 = -v + t, -3*v - 20*t - 6 = -15*t for v.\n3\nSolve -25 + 37 = 4*q + 4*n, 0 = -n + 4 for q.\n-1\nSolve -3*i - u - 3 = 0, 4*i = 5*i + 5*u + 1 for i.\n-1\nSolve -3*o" -"*q**3 + q**2 - q - 2. Let u be g(-2). Let r(p) = 5*p**2 - p + 27. Let h be r(u). Suppose -h = -2*c - c. Is c prime?\nFalse\nLet n(m) = -1801*m + 99. Let d(v) = 901*v - 50. Let b(l) = 5*d(l) + 2*n(l). Let c be b(6). Suppose 6*s = 1540 + c. Is s a composite number?\nFalse\nLet h(n) be the first derivative of 7*n**2/2 - 26*n + 6. Suppose 4*b - 7*b = -27. Is h(b) a prime number?\nTrue\nLet i(g) = 660*g**3 - 26*g**2 + 36*g + 25. Is i(7) a prime number?\nTrue\nSuppose -5*o - u + 16 = 0, -o + 8*u = 11*u + 8. Suppose 2*y + v + 6717 = 3*y, -o*v = -8. Is y a composite number?\nFalse\nLet j = -5940948 - -8479565. Is j a prime number?\nTrue\nSuppose -2*y = 3*w - 5, 5*y + w - 2*w + 30 = 0. Let q be 5/(y/1813) - (5 - 3). Is 2 - (0/(-3) + q) a prime number?\nFalse\nSuppose -4*k = -3*k - m - 2052, 0 = 5*k + 4*m - 10269. Is" -"14*m. Solve -m*k = 6, t + 3*t + 5*k + 15 = 0 for t.\n0\nLet j = -6 - -14. Suppose j*v = -4*v + 24. Solve -4*t = 7 + 5, -g - t - v = 0 for g.\n1\nLet q(c) = -c**2 + 11*c - 4. Let z be q(10). Let m be z*((-15)/(-9) - 1). Solve 5*h = t + 16, -m*t - 13 = -2*h - h for h.\n3\nSuppose 11 - 2 = 3*s. Let w(z) = 1 + 40*z + 11*z**2 - 9*z - z**3 - 16*z. Let a be w(12). Solve -a + 9 = 5*p + 4*f, 3*f = -s*p - 18 for p.\n-4\nSuppose -13*l = -y - 10*l + 20, -2*y + 4*l = -30. Solve -d = s - 2, -y*d - 4*s + 14 = 1 for d.\n5\nLet x = -28 + 31. Suppose 4*p + x*p - 21 = 0. Solve -8 = -5*v - 4*b, -v + p*b + 2*b - 10 = 0 for v.\n0\nLet o = -20 + 22. Suppose -4*k - 2*t + 20 = 0, 13 = o*k + 5*t -" -"7).\n1\nLet r(i) = 14 + i**3 + 9 - 5*i**2 - 22 + 6*i**2. What is r(0)?\n1\nLet q(f) = -f**3 - 6*f**2 + f + 6. Let z(b) = b**2 + 8*b - 2. Let n be z(-8). Let y be -2 + 4 + 16/n. Give q(y).\n0\nLet l be ((-4)/10)/(2/(-10)). Let w(v) = 2*v + 2. What is w(l)?\n6\nLet g(i) = 5*i - 2*i**3 - 4*i - i**2 + 4 - 3. Let m = -2 + 1. What is g(m)?\n1\nLet v(a) = 2*a + 0 + 2 + 2*a + 3*a**2. Let w(s) = -s**2 + 7*s + 2. Let j be w(7). Suppose 0 = -6*y + j*y - 2*x - 18, -2*y = -x - 1. Calculate v(y).\n6\nLet r = 7 + -5. Let j(q) = -r*q + q**2 - 3 + 0*q + 0. Calculate j(3).\n0\nLet a(y) be the third derivative of -y**4/24 - 2*y**3/3 - 5*y**2. Let z = -3 + 1. Let m(s) = s**3 + 2*s**2 + s - 1. Let w be m(z). Determine a(w).\n-1\nLet y(g) = -13*g**2 + 3*g + 3. Let d(v) =" -" 1075 = -123*u for u.\n-11\nSolve 289 + 401 = -46*y for y.\n-15\nSolve -6*x + 129 - 141 = 0 for x.\n-2\nSolve -565*u = -22*u - 6437 - 622 for u.\n13\nSolve -1792*u + 1319 - 3051 = 5436 for u.\n-4\nSolve 105*x + 814 = 265 - 396 for x.\n-9\nSolve 217*b - 118*b = -693 for b.\n-7\nSolve 16389 = 1081*w - 474*w for w.\n27\nSolve 26 - 126 = 100*o for o.\n-1\nSolve -8*t - 124 = -32*t + 68 for t.\n8\nSolve -26*s + 142*s = 0 for s.\n0\nSolve -4*p - 4*p + 374 = -30*p for p.\n-17\nSolve 91*r - 822 = 907 for r.\n19\nSolve 252 = 23334*r - 23306*r for r.\n9\nSolve -31383 = -218*g + 1169*g for g.\n-33\nSolve 1213 = -106*h + 259 for h.\n-9\nSolve 26*t + 7348 - 7764 = 0 for t.\n16\nSolve 13*l + 4*l - 2*l = 3*l for l.\n0\nSolve -704*m + 717*m = 52 for m.\n4\nSolve -11*t - 50*t = -29*t + 288 for t.\n-9\nSolve 36*a + 10 -" -"\nLet w(t) = t**3 + 9*t**2 - 13*t + 4. Let s be w(-11). What is the units digit of ((-229)/(-5))/((-19)/s)?\n9\nSuppose -2*n + 5*z = 7, n + 0*n + 2 = 2*z. Suppose n*d - 160 = -d. Suppose -2*c + 5*s + d = 0, 3*c + 0*c - s - 22 = 0. What is the units digit of c?\n6\nSuppose 2*w - w - 5*o - 17 = 0, -2*w - 3*o = 5. Suppose 0 = m - 4 + w. Suppose -m*d + 93 = -9. What is the units digit of d?\n1\nLet j = -664 + 3409. What is the tens digit of j?\n4\nSuppose k = -2*d + 1253, 2*k - d + 6265 = 7*k. What is the hundreds digit of k?\n2\nLet k = 39 + -38. Let u(n) = 24*n + 1. Let l be u(k). Suppose -8*a + l + 255 = 0. What is the tens digit of a?\n3\nLet w be -2*1/2 + 4. Suppose -2*x + 5*x - w = 0. What is the units digit of (2/(-4) - x)*-6?\n9\nLet h = -2 - 0." -"1, 5, -3, -1 in descending order.\n1494, 5, 1, -1, -3\nPut -9, -10, -56 in ascending order.\n-56, -10, -9\nPut 0, 3, -63 in increasing order.\n-63, 0, 3\nPut 3, -597, 0 in increasing order.\n-597, 0, 3\nPut 4, -6, -1, 5 in descending order.\n5, 4, -1, -6\nSort -3, -2, 39, 2, 5.\n-3, -2, 2, 5, 39\nPut -1/2, -3/2, -0.1, -1 in decreasing order.\n-0.1, -1/2, -1, -3/2\nSort 3, 4, -4, -234 in ascending order.\n-234, -4, 3, 4\nPut 34, 2, -2, 5 in decreasing order.\n34, 5, 2, -2\nSort 2/5, 0.5, 2, -6/11 in increasing order.\n-6/11, 2/5, 0.5, 2\nSort 2, 1, -10, 214, -4 in increasing order.\n-10, -4, 1, 2, 214\nSort 0.1, -356, 2 in decreasing order.\n2, 0.1, -356\nSort 6, 2/9, 0.2, 1 in descending order.\n6, 1, 2/9, 0.2\nPut -19, 3, 2, 4, -82 in ascending order.\n-82, -19, 2, 3, 4\nSort -2, 5, 3, 28 in descending order.\n28, 5, 3, -2\nSort 2, -2, 95, -42 in descending order.\n95, 2, -2, -42\nSort -4, -1684, 2 in decreasing order.\n2, -4, -1684\nSort 114, -3," -" + 1*(-2 - -2). Suppose 4 = 4*s - 4*a, -5*s + 4 = -s + 5*a. Let x(k) = -4*k - s + 1. Give x(u).\n-4\nLet u(t) = -2*t**3 - 2*t**2 + t + 2. Suppose 0 = h + 4*h + 135. Let s = 39 + h. Suppose 4*a + s = 4. Determine u(a).\n8\nLet g(q) = q**2 + 1. Let f be 3/(-12) - 3/4. Let j be 8/2*(-4)/(-8). Let t = j + f. Calculate g(t).\n2\nLet b(s) = -3*s - 4. Let g be b(-4). Let o(i) = 2 + 14 + g*i + i**2 - 4 - 6. Give o(-6).\n-6\nSuppose 2*a - 2*f - 12 = 0, 0 = 2*f + 2 - 0. Let v(d) = 2 - 4*d + a*d - 3*d + d. Determine v(3).\n-1\nLet m(n) = -3*n + 1. Let g(d) = -7*d + 1. Let i(a) = -2*g(a) + 5*m(a). Determine i(-4).\n7\nSuppose 0*t - y = 5*t + 35, y = -2*t - 17. Let k be -1*((1 - -1) + t). Let c(d) = d**3 + 0*d**3 + 1 + 1 + d + k*d**2. Give" -"3/6 - 4024*i. Find the second derivative of f(z) wrt z.\n10680*z**2\nLet u(v) be the third derivative of 0*v - 1/24*v**4 + 0*v**6 + 0 + 31/3*v**3 + 0*v**5 + 59*v**2 - 7/10*v**7. What is the second derivative of u(c) wrt c?\n-1764*c**2\nLet o(p) = 150*p**2 - 18*p - 2810. Let v(s) = 50*s**2 - 6*s - 934. Let u(i) = -4*o(i) + 11*v(i). Differentiate u(r) with respect to r.\n-100*r + 6\nLet a(h) = 2617*h**3 + 8570*h**2 + 12*h - 4. Let t(c) = c**3 - 18*c**2 + 3*c - 1. Let j(g) = -a(g) + 4*t(g). What is the third derivative of j(q) wrt q?\n-15678\nLet o(k) be the second derivative of 1079*k**6/30 - 683*k**2/2 - 1966*k. Differentiate o(p) with respect to p.\n4316*p**3\nSuppose 0 = -m + 428 - 425. What is the third derivative of -10*c**m + 3*c**4 - c**4 - 266*c - 30*c**2 + 133*c + 137*c wrt c?\n48*c - 60\nLet d = -69 + 85. Let r(h) be the first derivative of -21*h + h**3 + d - 7*h**3 + 4. What is the derivative of r(x) wrt x?\n-36*x\nLet q(n) be the third derivative of" -"= 4*b**3 + 5*b**2 - 30*b + 5. Let m(i) = -5*p(i) + 9*y(i). Let h(j) = -7*j**3 - 6*j**2. Give -5*h(a) - 6*m(a).\n-a**3\nLet m(r) = 11081*r + 35. Let i(l) = 30*l + 1. What is -35*i(g) + m(g)?\n10031*g\nLet n(d) = 1. Let b(i) = 32*i - 2. Let k(y) = 455*y + 1. Let v be k(0). Determine v*b(p) + n(p).\n32*p - 1\nLet b be (-2 + (-10)/(-6))/(1/(-3)). Let z(l) = -l**2 - l. Let y(j) be the third derivative of -j**4/24 - 129*j**2. Determine b*y(q) - z(q).\nq**2\nLet w(d) = 1 - 2*d**2 + d**3 + 5*d + 1 - d**2. Let a(y) = y**3 - y**2 + y + 1. Let l = -27815 + 27814. Let c = -6 + 9. Give c*a(q) + l*w(q).\n2*q**3 - 2*q + 1\nSuppose -f + 5*d + 107 = 22, -2*d = f - 64. Let r be 5*7/f*132/6. Let t(u) = -7*u. Let l(c) = 13*c. What is r*t(k) + 6*l(k)?\nk\nLet v(j) = -3*j - 4*j + 4*j + 5. Let q(y) = 4*y - 6. Suppose -4*z = -54 - 66. Let o = z +" -"rob of sequence zgz?\n4/323\nThree letters picked without replacement from {w: 6}. What is prob of sequence www?\n1\nCalculate prob of sequence rlrr when four letters picked without replacement from rrrllldd.\n3/280\nWhat is prob of sequence ic when two letters picked without replacement from {u: 4, c: 3, x: 5, i: 4}?\n1/20\nCalculate prob of sequence ppf when three letters picked without replacement from {f: 14, p: 5}.\n140/2907\nCalculate prob of sequence ya when two letters picked without replacement from {a: 1, y: 3}.\n1/4\nCalculate prob of sequence arba when four letters picked without replacement from jbaarajrjjaaa.\n1/286\nThree letters picked without replacement from aaazaydaaaaxayatdaat. Give prob of sequence ydy.\n1/1710\nCalculate prob of sequence tlok when four letters picked without replacement from lkotzllzztt.\n1/880\nThree letters picked without replacement from fuxxhuuhuffy. What is prob of sequence xhh?\n1/330\nFour letters picked without replacement from {f: 4, e: 10}. Give prob of sequence eeee.\n30/143\nTwo letters picked without replacement from oxbjooojoocbbo. Give prob of sequence oj.\n1/13\nWhat is prob of sequence ew when two letters picked without replacement from {e: 4, w: 1, l: 2, z: 1, i: 9}?\n1/68\nTwo letters" -"n**2 - 2*n - 42. Calculate h(0).\n-42\nLet x(t) = 75*t + 6. What is x(1)?\n81\nLet n(j) = j**2 + 6*j - 27. Calculate n(4).\n13\nLet g(a) = -9*a + 5. Determine g(-4).\n41\nLet a(d) = 4*d**2 + 23*d - 9. Determine a(-7).\n26\nLet z(p) = p + 21. Calculate z(-6).\n15\nLet v(d) = -6*d**2 + d - 2. Give v(-2).\n-28\nLet h(v) = 8*v - 120. What is h(16)?\n8\nLet i(n) = 10*n + 10. Determine i(2).\n30\nLet c(l) = -30*l**2 + l - 1. Give c(-1).\n-32\nLet p(w) = 7*w + 10. What is p(-4)?\n-18\nLet b(f) = 11*f**2 - 2*f. Give b(-1).\n13\nLet g(d) = -28*d + 8. Calculate g(2).\n-48\nLet l(m) = -m + 46. Determine l(16).\n30\nLet y(j) = -j**2 + 8*j - 4. Give y(8).\n-4\nLet q(o) = o**3 + 7*o**2 + 6*o. Give q(-6).\n0\nLet j(z) = 8*z - 23. Determine j(12).\n73\nLet x(u) = u**3 - 5*u**2 + 7*u + 1. What is x(3)?\n4\nLet n(t) = -50*t + 2. Calculate n(1).\n-48\nLet n(u) = -5*u - 2. Give n(4).\n-22\nLet" -"1 (b) l (c) y\nc\nSuppose 38 = 13*g + 12. Let x = -0.1 + 0.1. Let i be (-2)/2*7/(-35). What is the nearest to x in 0.4, i, g?\ni\nLet g = 88 + -266/3. Let v = 8.7 + 0.3. Let s = v - 9.4. Which is the closest to -0.1? (a) s (b) -0.5 (c) g\na\nLet y = -10.2 + 30.2. Let s = y - 17. Which is the closest to 0.1? (a) 0.4 (b) s (c) 6/11\na\nLet a = -45835/23 + 1993. What is the closest to -2 in 1/2, -1/9, a?\n-1/9\nLet x = 36 + -38.3. Let k = -2.3 - x. Let t = -6.5 - -6.5. Which is the nearest to k? (a) 0.2 (b) 1 (c) t\nc\nLet t be 2 - 0 - (-5 + 9). Let k be 11/132 + t/6. Let x = 341/6 - 117/2. What is the closest to 2/7 in k, 1, x?\nk\nLet w = 0.8 - -2.2. Let a = -0.03 - 0.02. Let q = -1.05 - a. What is the closest to q in -2, w, 1?\n-2\nLet" -"j.\n1\nLet g(d) = -6 + 18 + 3*d + d - 6. Let l be g(2). Suppose -f - 2*f + 1 = 2*a, 2*f = -4*a + l. Solve 0 = -a*r + 5, -5*r + 3 - 1 = -3*v for v.\n1\nLet w be (-3 - (-49)/21) + 170/30. Solve -w*k + l - 21 + 25 = 0, -3*l = -5*k + 2 for k.\n1\nSuppose 11*d - 4*d = 182. Suppose 10 = 3*f - d. Suppose 7 = 3*y + 4*c, -4*y = -6*c + 10*c - f. Solve -3*v + 3*t = -7 - 5, -y*v - 2*t + 6 = 0 for v.\n2\nLet f be (550/(-25) - -21)*-7. Solve -f = 2*p - 3*t, 16 = 8*p - 4*p + 4*t for p.\n1\nLet g be (-6 - 0/3) + 6078. Let d be g/308 - 4/(-14). Solve -b = 4*b + 10, 4*b + d = 4*y for y.\n3\nLet r be ((-11)/5 + 2)*(66 + -41) - -10. Solve 2*t + r*b - 7 = 0, -5 = 2*t - 6*t - b for t.\n1\nLet m(g) = -2*g**2 + 15*g" -"101542, -101545?\n-3*z - 101527\nWhat is the r'th term of 7863, 15829, 23795, 31761, 39727?\n7966*r - 103\nWhat is the f'th term of -9962, -19913, -29864, -39815, -49766?\n-9951*f - 11\nWhat is the l'th term of 6580, 13157, 19728, 26293?\n-3*l**2 + 6586*l - 3\nWhat is the k'th term of -20076, -20082, -20088, -20094?\n-6*k - 20070\nWhat is the j'th term of 16673, 16735, 16807, 16895, 17005?\nj**3 - j**2 + 58*j + 16615\nWhat is the b'th term of -16070, -16081, -16104, -16145, -16210, -16305, -16436, -16609?\n-b**3 - 4*b - 16065\nWhat is the v'th term of 221, 200, 165, 110, 29, -84, -235, -430?\n-v**3 - v**2 - 11*v + 234\nWhat is the d'th term of -241, -537, -859, -1219, -1629, -2101, -2647?\n-2*d**3 - d**2 - 279*d + 41\nWhat is the c'th term of -75, -60, -7, 96, 261, 500, 825, 1248?\n2*c**3 + 7*c**2 - 20*c - 64\nWhat is the m'th term of 2405, 2409, 2395, 2357, 2289, 2185?\n-m**3 - 3*m**2 + 20*m + 2389\nWhat is the d'th term of 1044, 1022, 984, 930?\n-8*d**2 + 2*d + 1050\nWhat is the b'th term of" -"3?\n3\nLet x = -17 - 5. Let v = x + 21.7. Let g = 7.6 - 2.6. What is the biggest value in g, v, -5?\ng\nLet y = -6.99 + -0.01. Let k = -10.6 - -3.7. Let q = y - k. Which is the biggest value? (a) 2/7 (b) q (c) 0.3\nc\nSuppose 0 = l - 24 + 4. Let v be ((-6)/(-15))/((4/(-1))/l). Which is the smallest value? (a) v (b) 0.2 (c) 1.3\na\nLet w = 889 - 883. What is the second biggest value in -3/5, 32, w, -2?\nw\nLet p = -679 + 675. Which is the smallest value? (a) -0.3 (b) 2 (c) 3 (d) p\nd\nLet q be (0 + 12/22)/1. Let j = 51.44 - 53.44. Which is the second smallest value? (a) q (b) 5 (c) j\na\nLet m be (-6)/(-33) + (-133)/308. What is the smallest value in -0.4, 0.2, 2, m?\n-0.4\nLet f = -3.6 - -3.52. Let g = f - -0.28. What is the fourth biggest value in g, 0.23, -1, -0.3?\n-1\nLet i = -86 - -93. Which is the second smallest value?" -"271 to the power of 1/9, to the nearest integer?\n7\nWhat is the cube root of 72397798 to the nearest integer?\n417\nWhat is 6040091 to the power of 1/2, to the nearest integer?\n2458\nWhat is the third root of 306541033 to the nearest integer?\n674\nWhat is 24942544 to the power of 1/2, to the nearest integer?\n4994\nWhat is 2293506972 to the power of 1/7, to the nearest integer?\n22\nWhat is the seventh root of 67423240 to the nearest integer?\n13\nWhat is 993776568 to the power of 1/10, to the nearest integer?\n8\nWhat is the third root of 74876599 to the nearest integer?\n421\nWhat is 3066826871 to the power of 1/7, to the nearest integer?\n23\nWhat is the cube root of 41323638 to the nearest integer?\n346\nWhat is 340577298 to the power of 1/2, to the nearest integer?\n18455\nWhat is 7015724 to the power of 1/9, to the nearest integer?\n6\nWhat is 1232988162 to the power of 1/5, to the nearest integer?\n66\nWhat is the seventh root of 4189945759 to the nearest integer?\n24\nWhat is the seventh root of 459294302 to the nearest integer?\n17\nWhat" -" smallest common multiple of 8 and l(-18).\n8\nLet l = -53541/20 - -2678. Calculate the common denominator of -2 + ((-57)/66)/(-1) and l.\n220\nLet b be 2 - (-1 - -2 - 0). Let q(n) = 10*n**3 - 1. What is the least common multiple of q(b) and 14?\n126\nLet g be 350 - (4 + -1) - 2. Let j = g - 4159/12. What is the common denominator of 49/6 and j?\n12\nCalculate the smallest common multiple of 8*((-4)/28)/(4/(-14)) and 4.\n4\nWhat is the common denominator of 25/6 and (-6)/15*790/24?\n6\nLet p = -6 + -24. What is the common denominator of 6/15 - (-87)/p and (-3)/18 + 43/(-48)?\n16\nSuppose -2*n = n - 9. Let k be (0/(-2) - 1) + n. Suppose -3*m + 68 = 2*j, k*m - m - 17 = 5*j. Calculate the lowest common multiple of m and 14.\n154\nLet g = 2 + -1. Suppose 5*p - 5*v = 35, 5*v + 6 = 3*p - 19. What is the least common multiple of (-1)/g*(3 + -4) and p?\n5\nFind the common denominator of 10/27 and ((-10)/7)/((-72)/(-105)).\n108\nLet i(y) = 4*y**2" -"q**2\nLet d(q) be the third derivative of -2*q**2 + 0*q**6 - 5*q**3 + 0*q + 0*q**5 + 0*q**4 + 4/21*q**7 + 0. Differentiate d(m) wrt m.\n160*m**3\nWhat is the second derivative of -72*k - 11*k**5 - 105 - 98 + 205 + 14*k wrt k?\n-220*k**3\nLet l(u) = -u - 5. Let a = -24 - -16. Let x be l(a). What is the second derivative of -3*g + 40*g**x - 4*g + 10*g**4 - 40*g**3 wrt g?\n120*g**2\nLet m(u) be the third derivative of -u**5/60 + u**3/6 + 15*u**2. Let z(y) = -6*y**2 - 17. Let n(c) = -4*m(c) - z(c). What is the first derivative of n(a) wrt a?\n20*a\nLet j(w) be the third derivative of -w**8/56 - w**6/40 - 23*w**5/20 + w**2 - w. What is the third derivative of j(l) wrt l?\n-360*l**2 - 18\nSuppose h - 2*h + 4*y = 10, 2*y - 4 = h. Differentiate -140*j**h + 140*j**2 - 16 + 14*j**3 with respect to j.\n42*j**2\nLet o(n) = 3*n**2 + 2*n - 3. Let z be o(1). What is the third derivative of 27*r**2 - r**z + 0*r**6 - 9*r**6 + 2*r**6 wrt r?\n-840*r**3" -"*c - 37 = 4*j, j - 2*j - 6 + 8 = 3*c + 10 for c.\n1\nSolve -5*j + 159 + 183 = 4*j + 141*f - 153*f, 0 = -2*j + 2*f + 56 for j.\n-2\nSolve 54852*x = 5*c + 54854*x - 33, 3*c - 17*x = 9*x + 47 for c.\n7\nSolve -2*g + 1510*l - 1511*l = -5 - 4, -6*l = -3*g - 24 for g.\n2\nSolve 17 = 3*c - 3*p - 4, -2*c - p = p + 34 for c.\n-5\nSolve 7*m + 351 = -0*n - 5*n, 5*m - 5*n - 51621 = -51846 for m.\n-48\nSolve -272*r + 9 + 6 = -273*r - 4*y, -54*y + 58*y + 9 = r for r.\n-3\nSolve -i - 264 = -6*a, -56 + 1376 = 2*i + 30*a for i.\n0\nSolve 0 = 2*q - 10*b + 24, 3*q + 14810 = 2*b + 14800 for q.\n-2\nSolve 0 = 2*n - 16*d - 56, 5*d = -3609*n + 3610*n - 19 for n.\n4\nSolve -15101*q + 7549*q + 50 = 5*y - 7557*q, 0 = -2*y - 5*q" -"5 + (-30)/50. Let a be (-12)/(-9)*(-9)/(-6). Suppose y*b = -a*b. Is b less than -4/9?\nFalse\nLet k = 167 - 73. Let q = k + -119. Let i be 5 - (2 + 4) - q. Which is smaller: 0 or i?\n0\nLet m be (4/((-8)/(-33)) - 2)/((-1851)/(-1234)). Is 6 equal to m?\nFalse\nLet f = 3031 + -2840. Is f at least as big as 1?\nTrue\nSuppose -2*p - 4*g - 2212 = 0, 0 = -65*p + 70*p - 3*g + 5595. Is -1114 != p?\nTrue\nSuppose 6*x = -3*y, -24 = 4*y + 38*x - 33*x. Which is smaller: -565/33 or y?\n-565/33\nSuppose -z + 3 = 4*r + 4*z, -3*z - 13 = -5*r. Let l(w) = w**3 - 2*w**2 - 1. Let j be l(r). Is j != -1/12?\nTrue\nLet z be 68/42*3 + 16/112. Let f be (-22 - (-20 - -3)) + -2 + 5. Is f < z?\nTrue\nLet s be (172/301)/((-4)/14). Let r be -62 + s + -2 + (7 - 7). Which is bigger: -65 or r?\n-65\nLet k = 16 - 23. Suppose 0 = 82*o -" -" 1. Let u = 689 - 251. Suppose -566 = -m*o + u. Is o a prime number?\nTrue\nLet a(n) = 2*n - 14. Let q be a(16). Suppose 2*i + 2*c = q, 0 = -4*i - 3*c - 0 + 32. Suppose 4*b + 11 - 30 = -y, -4*y + 43 = i*b. Is y composite?\nFalse\nLet k(f) = -30*f - 12. Let n be k(-4). Let w = n + 199. Is w a composite number?\nFalse\nLet f(u) = 147*u**2 - 15*u + 17. Let z(g) = 73*g**2 - 8*g + 8. Let s(n) = 6*f(n) - 11*z(n). Is s(5) prime?\nTrue\nLet g be (3 - 4)/((-1)/3). Suppose 5*s - 5 = -w + 14, -g*w = -s - 25. Let v = 154 + w. Is v prime?\nTrue\nSuppose 56363 - 12564 = 7*o. Is o composite?\nFalse\nSuppose -267 = -8*y + 5*y. Suppose 145 = 6*z - y. Is z a prime number?\nFalse\nLet z(j) = -225*j + 2. Let s(l) = -674*l + 5. Let i(q) = 2*s(q) - 7*z(q). Is i(1) a composite number?\nFalse\nLet l be ((-1)/(-2) + 1)*2. Suppose -l*c + 3" -"nder when p is divided by 26?\n24\nLet z(q) = -514*q + 706. What is the remainder when z(0) is divided by 113?\n28\nLet c = -487 + 541. Suppose 2*v - c = 32. Calculate the remainder when 146 is divided by v.\n17\nSuppose -2*c + 3*p + 148 = 0, 0*c + 2*c = -p + 148. Let z = c + -89. Let x(w) = w**2 + 17*w + 67. What is the remainder when 147 is divided by x(z)?\n36\nSuppose -4*n + 17 = 5. Suppose -n*d + 46 = 13. Let g(r) = -28*r - 36. What is the remainder when g(-4) is divided by d?\n10\nLet u = 485 - 245. Suppose 0 = w + u - 279. Calculate the remainder when 310 is divided by w.\n37\nSuppose -3*o + 245 = 2*o. Let b = 155 - 150. Suppose -2*x - 90 = -7*x - b*c, 0 = 3*x - 2*c - 49. What is the remainder when o is divided by x?\n15\nWhat is the remainder when 201932/36 - 46/207 is divided by 17?\n16\nSuppose 0 = 5*c - 20, 5*v + c" -" j = g + -56.00000098. Round j to seven dps.\n-0.000001\nLet u = -45.98 + 41. Let x = u - -5. What is x rounded to one decimal place?\n0\nSuppose 2*j - 13 = x - 0, -5*j = 10. Let y = -10 - x. What is y rounded to the nearest integer?\n7\nSuppose 7*c - 2*c = -35. Let v be (7 - -31)*c/2. Round v to the nearest 10.\n-130\nLet f = 553094 - 553094.1517685. Let u = -1.6517865 - f. Let z = u - -1.5. What is z rounded to five dps?\n-0.00002\nLet y be ((-3)/2)/(1/(-2)). Let r = 30 - y. Round r to the nearest ten.\n30\nLet r = 1.8 + -1.796. Let v = r + 11.696. Round v to the nearest integer.\n12\nLet b(k) = -k**3 - k - 2. Let o be b(-2). Suppose -5*g + 4*v = 34, 0 = -5*g - v - 29 - 0. Let h = g + o. What is h rounded to 0 dps?\n2\nLet g = -10 - -16. Let k = -6.03 + g. Round k to 1 dp.\n0\nLet r" -" = 102 - 96. What is the least common multiple of q and 11?\n66\nLet j be (9/(-4))/((-12)/(-224)). What is the smallest common multiple of 11 and j/(-5) + 4/(-10)?\n88\nLet u be 573/(-27) + (-2)/(-9). Find the common denominator of u/70*250/(-12) and 43/9.\n36\nLet a = 41 + -21. Suppose -3*v + a = u, 2*v + 4*u = 7*v - 56. Suppose -k - 4*f = -0*f, f = 2*k - 9. Calculate the lowest common multiple of v and k.\n8\nFind the common denominator of 33/7 and 31*(1 - 0)/(-4).\n28\nLet v(m) = -m + 12. Let j be v(0). Suppose -u - j = -2*u. What is the smallest common multiple of u and 10?\n60\nLet l = -20353365143/1154660 + 31/288665. Let n = -17621 - l. Calculate the common denominator of -25/12 and n.\n60\nSuppose 5*i = 3*h - 12, 20 = 3*i + 6*h - h. Suppose y + i*y = 20. What is the common denominator of -39/14 and (2/y)/(8/(-530))?\n56\nLet u = -6 - -6. Suppose v + 4*x + 38 = u, 5*x - 63 = -2*v + 5*v. Calculate the common denominator" -"ivided by -2\n12489/2\n406 divided by -7\n-58\nCalculate 3478 divided by -74.\n-47\nDivide 219 by -3.\n-73\n512 divided by -2\n-256\nCalculate 736 divided by 46.\n16\nDivide 1 by -49.\n-1/49\nCalculate 5320 divided by -1064.\n-5\n-196 divided by -49\n4\nWhat is 432 divided by 27?\n16\nWhat is 2400 divided by 30?\n80\n-5 divided by 767\n-5/767\n-29 divided by 8\n-29/8\nWhat is 5 divided by -4?\n-5/4\nDivide 47 by 47.\n1\nWhat is -3282 divided by 2?\n-1641\n0 divided by 802\n0\n3 divided by -1174\n-3/1174\nCalculate 1 divided by -50.\n-1/50\nCalculate -1596 divided by 114.\n-14\nDivide -84 by 2.\n-42\nWhat is -1 divided by 93?\n-1/93\nDivide 17 by 122.\n17/122\nWhat is 1206 divided by -134?\n-9\n-22 divided by -87\n22/87\nWhat is 0 divided by -34?\n0\nCalculate 11 divided by -228.\n-11/228\nDivide -20964 by 6.\n-3494\nDivide -584 by 6.\n-292/3\n218 divided by -2\n-109\nCalculate -2 divided by 294.\n-1/147\nDivide -5 by 48.\n-5/48\nCalculate 3735 divided by 747.\n5\nCalculate 482 divided by -1.\n-482\nCalculate -104 divided by -1.\n104\n-57 divided" -"= 33 - 20 - 4*d - 19. Calculate l*f(j) + 6*p(j).\n2*j\nLet h(y) be the first derivative of -3*y**4/4 + 2*y**3/3 + y**2/2 + 5*y - 23. Let o(v) = 2*v**3 - 2*v**2 - 4. Determine -4*h(t) - 5*o(t).\n2*t**3 + 2*t**2 - 4*t\nLet n(x) = 287*x**3 + 28*x**2 - 28. Let p(y) = 32*y**3 + 3*y**2 - 3. What is 3*n(g) - 28*p(g)?\n-35*g**3\nLet i(s) = -3*s - 6. Let z be i(-7). Let j be z/(-2)*(-4)/6. Let y(v) = 3*v**2 - v + 1. Let l(t) = -t**2. Calculate j*l(w) + y(w).\n-2*w**2 - w + 1\nLet a(v) = -25*v**3 + 40*v**2 - 40*v - 40. Let p(h) = 2*h**3 - 3*h**2 + 3*h + 3. Let t = 16 + -56. Determine t*p(j) - 3*a(j).\n-5*j**3\nLet i(p) = -4*p + 1. Suppose 0 = -2*c + 2, -x - 17 = -2*x - 5*c. Suppose x = -4*a, -2*u - a = u - 3. Let t(d) = 1 + 5 - 21*d + 0. What is u*t(h) - 11*i(h)?\n2*h + 1\nSuppose 0 = t + m + 9, 5*t = -0*t - 4*m - 40. Suppose -13 =" -"*5/5 - 5*h**2 - h. Let a(v) = 255*v - 1010. Let o be a(4). Let l(r) = -6 + 0 + 4 + 3. Give o*l(p) + f(p).\n-4*p**3\nLet b(z) = 11*z. Let o(t) = -62*t + 80. Calculate 6*b(u) + o(u).\n4*u + 80\nLet r(h) = h**3 - 3*h**2 + 2*h. Let n(o) = -5*o**3 + 14*o**2 + 168*o + 2. Determine n(z) + 4*r(z).\n-z**3 + 2*z**2 + 176*z + 2\nLet i(n) = 30*n. Suppose -2108*a - 12 = -4*z - 2112*a, 4*a - 18 = -2*z. Let u(f) = -31*f. What is z*i(w) - 2*u(w)?\n-28*w\nLet m(k) = k**3 + 3*k**2 + 3*k + 3. Let t = -27931 - -27934. Let a(w) = w**3 + 1. Calculate t*a(j) - m(j).\n2*j**3 - 3*j**2 - 3*j\nLet f(z) = z**2 - 3*z + 1 - 2*z + 6*z. Let u be (-8838)/(-12) - 2/4. Let x(y) = 4 + 3*y**2 + 739*y - u*y + y**2. Calculate -5*f(j) + x(j).\n-j**2 - 2*j - 1\nLet k(g) = -25*g - 3. Suppose -2*r + i - 2 = -2*i, -r + 2*i - 1 = 0. Let v(l) = -9*l. Let y(q)" -". What is the greatest common divisor of 8 and z?\n4\nSuppose -5*t + r + 17 = -2*r, r = -4. Suppose -2*c + 7 = t. Let k be 15*(4/c)/2. Calculate the highest common factor of k and 80.\n10\nSuppose 4*r - 5*u - 3 = 0, 3*u - 32 = -r - 2*u. What is the greatest common factor of 63 and r?\n7\nSuppose 3*l - 4*w = -7, 2*l + 0*w = w + 2. What is the greatest common factor of l and 9?\n3\nLet z(p) = 28*p - 4. Let s be z(2). Calculate the greatest common divisor of 13 and s.\n13\nLet q be (-10)/(-4)*(-2 + 4). Let o(x) = -x - 4. Let b be o(-9). Let a = b + 0. Calculate the highest common factor of q and a.\n5\nLet z be -1 + (3 - 2)/(-1). Let m(g) = 6*g. Let j be m(z). Let i be (-483)/(-4) + j/16. What is the greatest common factor of i and 15?\n15\nLet k = 0 - -4. Let l(j) = 0*j + 2 + 5*j**2 - j**2 + 5*j - k*j. Let t" -" is the hundreds digit of 346807?\n8\nWhat is the hundred thousands digit of 2538297?\n5\nWhat is the units digit of 125404?\n4\nWhat is the ten thousands digit of 3767369?\n6\nWhat is the thousands digit of 6037854?\n7\nWhat is the ten thousands digit of 164524?\n6\nWhat is the hundred thousands digit of 610583?\n6\nWhat is the thousands digit of 507092?\n7\nWhat is the units digit of 2830422?\n2\nWhat is the ten thousands digit of 55448?\n5\nWhat is the hundred thousands digit of 6107229?\n1\nWhat is the millions digit of 1273484?\n1\nWhat is the tens digit of 482114?\n1\nWhat is the ten thousands digit of 129705?\n2\nWhat is the hundred thousands digit of 863050?\n8\nWhat is the tens digit of 425614?\n1\nWhat is the units digit of 23081444?\n4\nWhat is the tens digit of 5863775?\n7\nWhat is the thousands digit of 4345?\n4\nWhat is the units digit of 4441360?\n0\nWhat is the hundred thousands digit of 520711?\n5\nWhat is the units digit of 11186779?\n9\nWhat is the units digit of 313240?\n0\nWhat is the thousands digit of 53964?\n3" -", 103\nWhat are the prime factors of 210627?\n3, 29, 269\nList the prime factors of 291904.\n2, 4561\nWhat are the prime factors of 746899?\n746899\nWhat are the prime factors of 1028105?\n5, 13, 15817\nList the prime factors of 221476.\n2, 17, 3257\nList the prime factors of 2914529.\n29, 100501\nList the prime factors of 1407450.\n2, 3, 5, 11, 853\nList the prime factors of 248836.\n2, 7, 8887\nList the prime factors of 2587564.\n2, 7, 92413\nList the prime factors of 728376.\n2, 3, 11, 31, 89\nWhat are the prime factors of 22623524?\n2, 7, 11, 73453\nList the prime factors of 2579666.\n2, 29, 79, 563\nWhat are the prime factors of 13995735?\n3, 5, 13, 5521\nList the prime factors of 12839671.\n13, 43, 103, 223\nList the prime factors of 232340.\n2, 5, 11617\nList the prime factors of 2722151.\n83, 32797\nList the prime factors of 48419.\n7, 6917\nWhat are the prime factors of 494554?\n2, 107, 2311\nWhat are the prime factors of 72296?\n2, 7, 1291\nList the prime factors of 14965556.\n2, 1361, 2749\nWhat are the prime factors of 878492?\n2, 17," -"8\nLet m(u) = u**3 - 16*u**2 + 29*u - 15. Let k be m(14). What is the lowest common multiple of 9 and k/2 + (-145)/(-10) + -5?\n9\nSuppose -3*r = o - 82, -2*o + 31*r - 30*r + 178 = 0. Calculate the lowest common multiple of 24 and o.\n264\nSuppose 2*u - 5*w = 375, 5*u + 264 = -4*w + 1284. Calculate the common denominator of (-2 + 28/15)/((-22)/u) and 49/30.\n330\nSuppose 0 = -4*x + 213 - 25. Suppose -x = -3*q - 11. What is the lowest common multiple of q and 24?\n24\nLet n = 154 - 157. Calculate the common denominator of -121/36 and (2/(-66))/((-48)/15 - n).\n396\nLet u = -32 + 48. Let w = u + -14. Calculate the smallest common multiple of (-3)/2*(3 - 15) and w.\n18\nCalculate the common denominator of -115/36 and (-321)/(-27) - 252/63.\n36\nLet t(n) = -2*n + 1. Suppose 0 = z - 3*d + 11, d = 3*z + 4*d - 3. Let x = -10 - -17. Calculate the least common multiple of t(z) and x.\n35\nSuppose 0 = w - 3*p +" -" the nearest to 4? (a) -1/32 (b) 4 (c) 1.11 (d) -50 (e) -2/17\nb\nWhat is the closest to -1 in 7/6, -0.61805, 1?\n-0.61805\nWhich is the nearest to -0.1? (a) 37 (b) -1/6 (c) -1 (d) 31/4 (e) -3\nb\nWhat is the nearest to 0 in 9134, 127, 0.3, 2/9?\n2/9\nWhich is the nearest to -1/3? (a) 1/17 (b) 187/4 (c) -0.2 (d) 11\nc\nWhich is the nearest to 7/6? (a) -4/765 (b) 1/3 (c) -11 (d) -0.1 (e) 0\nb\nWhat is the nearest to -28037 in -3, -3/7, -2/9, -93?\n-93\nWhat is the nearest to 2 in -1/5, 1.574, -0.6, -1123?\n1.574\nWhich is the nearest to 1/3? (a) 1/11 (b) 1/2 (c) -17 (d) 25 (e) -20\nb\nWhat is the nearest to 16/15 in -4, -2/9, -1, 3277/2?\n-2/9\nWhich is the closest to 0? (a) 0 (b) -1242 (c) -2/151 (d) 0.09\na\nWhich is the nearest to 2/791? (a) -0.4 (b) 0 (c) 144 (d) -6\nb\nWhich is the nearest to 1? (a) 1/5 (b) -2 (c) 1045 (d) -4/165\na\nWhat is the closest to 0 in -2, -0.5, -163, 2/407?\n2/407\nWhat is the" -"7a + -b8?\nceb2\nIn base 8, what is -2032 - 3532?\n-5564\nIn base 4, what is 112210022 + -323221?\n111220201\nIn base 7, what is -24652164541 + -5?\n-24652164546\nIn base 13, what is -62793 + -2a?\n-627c0\nIn base 9, what is -31 - 184454?\n-184485\nIn base 7, what is 25623631314 - -1?\n25623631315\nIn base 3, what is 122001110002 - 10110120?\n121220222112\nIn base 15, what is 7be9 - 45?\n7ba4\nIn base 8, what is 45220 - -537?\n45757\nIn base 5, what is -21433110313 - -20?\n-21433110243\nIn base 2, what is 1111111000000011000010 - -10000?\n1111111000000011010010\nIn base 3, what is 211202012212020222 + 2?\n211202012212021001\nIn base 15, what is -291b + d40c?\na9e1\nIn base 14, what is -9 - 4c03cd1?\n-4c03cda\nIn base 14, what is 11 + -124c86a?\n-124c859\nIn base 2, what is 1 - 110110001001111110010101100?\n-110110001001111110010101011\nIn base 8, what is -550 - 12165662?\n-12166432\nIn base 16, what is -130 - -2984?\n2854\nIn base 14, what is 2bc0674 + b?\n2bc0681\nIn base 2, what is -100 + -10000010111000011010000?\n-10000010111000011010100\nIn base 15, what is 4ab125 + -1b?\n4ab109\nIn base 14, what is -91188c -" -"060*u + 634414*u**3 + 3774*u wrt u.\n28044*u\nLet k = -24034 + 24037. Let l(j) be the second derivative of 0*j**2 + 29/12*j**4 + 0 + 7/3*j**k + 9*j. What is the second derivative of l(r) wrt r?\n58\nLet u be (-14)/(-49) - (-38)/14. Find the third derivative of 46*b**3 - 3*b**5 + 9*b**4 - 46*b**u - 10*b**2 + 4 - 3 wrt b.\n-180*b**2 + 216*b\nLet g(i) be the second derivative of 181*i**6/10 + 3*i**5/10 + i**4/3 + i**3/6 - 13*i**2 + 284*i - 11. Find the third derivative of g(u) wrt u.\n13032*u + 36\nLet h(g) = -1636*g + 4061. Let c(q) = 11*q + 2. Let l(u) = 4*c(u) + h(u). What is the first derivative of l(j) wrt j?\n-1592\nLet w(z) = -88*z**2 + 256*z - 2845. Let r(j) = 38*j**2 - 128*j + 1423. Let d(s) = 14*r(s) + 6*w(s). What is the derivative of d(h) wrt h?\n8*h - 256\nWhat is the third derivative of 48*d**2 - 10*d**4 + 28 - 168*d + 615*d - 2*d**3 - 449*d - 25*d**5 wrt d?\n-1500*d**2 - 240*d - 12\nLet y(o) be the second derivative of 2455*o**4/6 + 43*o**3/6 -" -" is the u'th term of -246, -248, -250, -252?\n-2*u - 244\nWhat is the p'th term of -2, 44, 90?\n46*p - 48\nWhat is the k'th term of 7, 26, 55, 94?\n5*k**2 + 4*k - 2\nWhat is the a'th term of -206, -829, -1866, -3317, -5182?\n-207*a**2 - 2*a + 3\nWhat is the y'th term of 88, 333, 740, 1309, 2040, 2933, 3988?\n81*y**2 + 2*y + 5\nWhat is the h'th term of -253, -500, -759, -1036, -1337, -1668, -2035?\n-h**3 - 240*h - 12\nWhat is the d'th term of 226, 236, 244, 250?\n-d**2 + 13*d + 214\nWhat is the v'th term of -18, -43, -70, -99?\n-v**2 - 22*v + 5\nWhat is the n'th term of -148, -188, -254, -346, -464, -608, -778?\n-13*n**2 - n - 134\nWhat is the o'th term of 24, 42, 74, 126, 204?\no**3 + o**2 + 8*o + 14\nWhat is the b'th term of 688, 689, 690, 691, 692?\nb + 687\nWhat is the j'th term of -2738, -2737, -2736, -2735?\nj - 2739\nWhat is the g'th term of 19, 1, -21, -47?\n-2*g**2 - 12*g + 33\nWhat" -" (a) 0.5 (b) 5/9 (c) 4/7\na\nWhat is the closest to -11 in -0.5, -2/9, 5, -5?\n-5\nWhat is the closest to -2.1 in 1/3, 1, 2?\n1/3\nWhich is the closest to -1? (a) -8/7 (b) -1 (c) 1/2 (d) -1/2\nb\nWhich is the nearest to 0.4? (a) -0.3 (b) 0 (c) -3 (d) 5/3\nb\nWhich is the nearest to 0? (a) 0.2 (b) -2 (c) 23\na\nWhich is the nearest to 1? (a) 0.015 (b) 0 (c) -24/13\na\nWhich is the nearest to -1/3? (a) -37 (b) -15 (c) 4\nc\nWhich is the nearest to 2? (a) 10 (b) -3 (c) -4 (d) 0.5\nd\nWhich is the nearest to -2/7? (a) 0.5 (b) -4 (c) -0.5\nc\nWhat is the closest to -0.9 in -0.035, -2, -2/7, -1?\n-1\nWhich is the closest to 1? (a) 2/15 (b) -3 (c) -1 (d) 70\na\nWhat is the nearest to -7 in 0.4, -32, 0?\n0\nWhat is the nearest to -1 in -0.4, 15.4, -3?\n-0.4\nWhich is the closest to 2? (a) -1/3 (b) 92 (c) -3\na\nWhat is the nearest to -0.06 in -3, -45, 1/4, 1?" -"ger?\n240\nWhat is -4.26598596 rounded to 0 dps?\n-4\nWhat is 4203060070 rounded to the nearest 100000?\n4203100000\nWhat is -0.0096980494 rounded to three dps?\n-0.01\nRound -0.001077756666 to six dps.\n-0.001078\nWhat is -0.0001706582106 rounded to 5 decimal places?\n-0.00017\nWhat is -10598134.8 rounded to the nearest one thousand?\n-10598000\nWhat is 2257327 rounded to the nearest one million?\n2000000\nRound -0.000009325400547 to seven dps.\n-0.0000093\nRound 92.8248349 to 1 dp.\n92.8\nWhat is 9056145700 rounded to the nearest 1000000?\n9056000000\nWhat is 166.128504 rounded to the nearest ten?\n170\nRound -0.00003752319549 to seven dps.\n-0.0000375\nRound 96396.941 to the nearest one hundred.\n96400\nWhat is 305.28336 rounded to the nearest ten?\n310\nWhat is -73108145 rounded to the nearest one million?\n-73000000\nWhat is 0.0239222929 rounded to 5 dps?\n0.02392\nWhat is 0.00001000063942 rounded to 6 dps?\n0.00001\nRound -2485.05482 to 0 dps.\n-2485\nWhat is -1471658.5216 rounded to the nearest 100000?\n-1500000\nRound -5743.096204 to the nearest 1000.\n-6000\nRound -1770.494319 to the nearest 100.\n-1800\nWhat is -0.001078664648 rounded to 6 decimal places?\n-0.001079\nWhat is 81.5084186 rounded to the nearest 10?\n80\nWhat is 0.000000608547897 rounded to 7 dps?\n0.0000006\nWhat is 14650.604756 rounded" -"+ i*a + u*a**2 + r*a**4 + s*a**3 and give r.\n-13512\nExpress -4458*o + 12562*o - 2857*o as m*o + b and give m.\n5247\nRearrange 704*k + 2*k**3 + 722*k + 708*k - 10*k**4 - 2111*k - 29*k**2 to the form d*k + n*k**3 + c + z*k**2 + t*k**4 and give t.\n-10\nRearrange ((-2 - 1 + 1)*(1 + 2 - 4) + 29 + 6 + 185)*(-9 + 6 - 7)*(-2*b - 3*b + 6*b)*(1 - 5 + 3) to the form k*b + h and give k.\n2220\nRearrange (3 - 5 + 4 + (-1 - 2 - 2)*(5 - 4 + 0)*(2 - 3 + 2))*(102*y - 1 - 100*y + 12) to the form v*y + g and give g.\n-33\nExpress -5*m**2 + 5*m**3 + 117*m - 154*m + 59*m + (4 - 4 - 3*m**2)*(0*m + 3*m - 2*m) as n*m**3 + d*m**2 + q*m + p and give d.\n-5\nRearrange -1179 - 1161 + 2340 + 1167*g to the form w*g + s and give w.\n1167\nRearrange (-302 - 16*y + 302)*(-2 + 3 + 2)*(-119*y - 2 - 15*y + 0) to the form l" -"is the greatest common factor of o and 90?\n10\nSuppose 3*b = 14*b - 1331. What is the greatest common divisor of 363 and b?\n121\nLet h(b) = b**3 + 8*b**2 + 10*b + 7. Let p be h(-6). Let o = -10 + p. Suppose -3 = -y + o. Calculate the highest common factor of 8 and y.\n4\nSuppose 8*o - 110 = 3*o. Let u = o - -16. Calculate the highest common divisor of 95 and u.\n19\nLet l = -3 - -9. Let p(a) = -1091*a + 2236. Let b be p(2). Calculate the greatest common divisor of l and b.\n6\nLet b(y) = -y**2 + 22*y - 4. Let n be b(18). Let q = 76 - 42. What is the greatest common factor of q and n?\n34\nSuppose 4*v = f - 2*f + 165, 15 = 3*f. Suppose 3*g - 4*d = -15, 4*g - 2*d + 7 = -d. Let m be 5/((-5)/2) + 13 + g. What is the greatest common factor of m and v?\n10\nLet m = 6 - -3. Let x(n) be the third derivative of n**5/20 + 4*n**3 +" -"531 - 307 = -a*r. Is 38 a factor of r?\nFalse\nIs 179 - 1 - (-3 + 38 + -27) a multiple of 2?\nTrue\nSuppose 55 = 3*y + 52. Let n = 5 - y. Suppose -n*k = -4*j - 748, 923 = 2*k + 3*k + j. Does 16 divide k?\nFalse\nLet j = -15937 + 18009. Is 37 a factor of j?\nTrue\nLet p(v) = v**3 + 12*v**2 - 10*v + 34. Let a be p(-13). Let r = a + -9. Is (-21)/r*(-376)/(-12) a multiple of 25?\nFalse\nSuppose 0 = -5*w + l + 22, -2*w + 16 = -6*l + 2*l. Is 32 a factor of (4/(-6))/(11464/2868 - w)?\nFalse\nIs 24 a factor of (-20)/(-14)*(-16825830)/(-475)?\nFalse\nIs (93240/33)/((-58)/(-319)) a multiple of 60?\nTrue\nDoes 67 divide 73022/20 - 1/10?\nFalse\nLet j(a) = -a + 19. Suppose 10*v + 4 = 9*v, -4*x + 16 = v. Suppose 3*d = -x*d - 128. Is j(d) a multiple of 7?\nTrue\nSuppose -960 + 3996 = 6*b. Suppose -k = -2, 4*k = t + 2*k - b. Is 10 a factor of t?\nTrue\nSuppose -48*c + 144*c" -"t is the m'th term of 296, 1101, 2442, 4319, 6732, 9681, 13166?\n268*m**2 + m + 27\nWhat is the m'th term of -958332, -958333, -958334, -958335, -958336?\n-m - 958331\nWhat is the t'th term of -2649, -2694, -2729, -2748, -2745, -2714, -2649?\nt**3 - t**2 - 49*t - 2600\nWhat is the l'th term of 99483, 198965, 298447, 397929?\n99482*l + 1\nWhat is the i'th term of -1957, -2000, -2043?\n-43*i - 1914\nWhat is the y'th term of -7942, -63540, -214460, -508366, -992922, -1715792?\n-7944*y**3 + 3*y**2 + y - 2\nWhat is the r'th term of -17936, -17946, -17952, -17948, -17928, -17886, -17816?\nr**3 - 4*r**2 - 5*r - 17928\nWhat is the x'th term of 364, 1072, 2132, 3550, 5332?\nx**3 + 170*x**2 + 191*x + 2\nWhat is the y'th term of 712468, 1424937, 2137406?\n712469*y - 1\nWhat is the i'th term of 10380, 10405, 10446, 10503, 10576, 10665?\n8*i**2 + i + 10371\nWhat is the c'th term of -90, -104, -128, -162, -206?\n-5*c**2 + c - 86\nWhat is the y'th term of -290669, -290673, -290677, -290681, -290685, -290689?\n-4*y - 290665\nWhat is the v'th term of" -" 1, y: 10, v: 2, t: 1}. What is prob of picking 1 p and 1 v?\n2/153\nWhat is prob of picking 1 y and 1 c when two letters picked without replacement from {y: 1, c: 2, x: 7, n: 4, k: 4}?\n2/153\nFour letters picked without replacement from rrsss. Give prob of picking 4 r.\n0\nWhat is prob of picking 1 j and 1 b when two letters picked without replacement from {j: 2, s: 4, d: 3, b: 9, z: 1}?\n2/19\nThree letters picked without replacement from {a: 1, n: 4, l: 5}. Give prob of picking 1 l, 1 n, and 1 a.\n1/6\nWhat is prob of picking 1 s and 2 n when three letters picked without replacement from {z: 1, o: 7, s: 1, n: 8}?\n7/170\nWhat is prob of picking 1 y and 1 a when two letters picked without replacement from {a: 3, y: 1, r: 1, e: 2}?\n1/7\nWhat is prob of picking 1 i and 1 h when two letters picked without replacement from ghgih?\n1/5\nTwo letters picked without replacement from {q: 2, m: 1, e: 1, y: 2, u: 7, z:" -"l**2 + 2*l + 9\nWhat is the y'th term of 61, 125, 193, 265?\n2*y**2 + 58*y + 1\nWhat is the n'th term of 4128, 4137, 4146, 4155, 4164?\n9*n + 4119\nWhat is the o'th term of 176, 514, 1048, 1778?\n98*o**2 + 44*o + 34\nWhat is the f'th term of 2437, 2434, 2415, 2368, 2281, 2142, 1939?\n-2*f**3 + 4*f**2 - f + 2436\nWhat is the i'th term of -11072, -22155, -33238, -44321, -55404?\n-11083*i + 11\nWhat is the q'th term of 9023, 18044, 27063, 36080?\n-q**2 + 9024*q\nWhat is the i'th term of -2, -50, -208, -536, -1094, -1942?\n-10*i**3 + 5*i**2 + 7*i - 4\nWhat is the h'th term of 75, 182, 369, 678, 1151?\n7*h**3 - 2*h**2 + 64*h + 6\nWhat is the l'th term of 20, 38, 64, 92, 116, 130, 128?\n-l**3 + 10*l**2 - 5*l + 16\nWhat is the i'th term of -7, -276, -1023, -2488, -4911?\n-40*i**3 + i**2 + 8*i + 24\nWhat is the h'th term of 70636, 70631, 70614, 70579, 70520, 70431, 70306, 70139?\n-h**3 + 2*h + 70635\nWhat is the s'th term of -2160, -17360, -58636, -139026," -"4*h - 13, i*h + 2*t + 11 = -t. Calculate g(h).\n-2\nLet p(h) = 3*h - 1. Suppose 4*n = 5*v - 18, v + n - 4 = -2*v. Suppose v = c + c. Suppose 0*q - c = -q. Give p(q).\n2\nLet t(z) be the second derivative of -z**3 + 17*z**2/2 + 24*z - 10. Determine t(2).\n5\nLet i be (-3)/15*(10/1)/(-1). Let d(v) be the first derivative of -5 - 1/3*v**3 + 1/4*v**4 - 4*v + 0*v**i. Calculate d(0).\n-4\nLet y be -4*1 - (32 + -29). Let h(f) = 3*f. Let b(z) = z. Let o(m) = -4*b(m) + h(m). Give o(y).\n7\nLet k(a) = -9*a + 7. Let v(u) = 49*u - 36. Let s(w) = -11*k(w) - 2*v(w). Suppose -4*g - 8 = -3*r, 5*g - 5*r + 3 = -2. Give s(g).\n-10\nLet b(w) = 2 + w - 4*w + 4*w. Let x(g) = g - 1. Let o be x(6). Calculate b(o).\n7\nLet g(v) = -3*v + 10. Let c be ((-6)/4)/(6/(-8)). Let j(a) = 7*a - 21. Let q(l) = c*j(l) + 5*g(l). Let r = -600 - -600. What is q(r)?" -"of 4 and 235502.\n471004\nWhat is the lowest common multiple of 5512 and 24804?\n49608\nWhat is the common denominator of 29/36198 and 85/54?\n108594\nWhat is the lowest common multiple of 8140 and 14652?\n73260\nWhat is the common denominator of 4/2779 and 69/5558?\n5558\nWhat is the lowest common multiple of 72 and 19960?\n179640\nCalculate the lowest common multiple of 467704 and 147696.\n2806224\nWhat is the least common multiple of 80 and 56340?\n225360\nCalculate the lowest common multiple of 184728 and 36.\n554184\nWhat is the lowest common multiple of 1964 and 2946?\n5892\nFind the common denominator of 5/97396 and 17/206030.\n5356780\nCalculate the common denominator of 41/5 and 52/21655.\n21655\nFind the common denominator of -97/50610 and 163/43380.\n303660\nWhat is the common denominator of -89/11352 and -29/35088?\n385968\nFind the common denominator of -85/22 and -11/860.\n9460\nWhat is the common denominator of -77/36 and 27/63280?\n569520\nWhat is the smallest common multiple of 17960 and 425652?\n4256520\nWhat is the least common multiple of 314762 and 12?\n1888572\nFind the common denominator of 9/430 and 28/1297.\n557710\nFind the common denominator of -41/232348 and 41/580870.\n1161740\nWhat is the lowest" -"- 678*q + 37324 for q.\n86\nSolve -2132*k + 1372 = -1111*k - 1070*k for k.\n-28\nSolve 0 = 5193*j - 78319 + 727444 for j.\n-125\nSolve -74*l + 2106 - 2769 = 134*l + 8073 for l.\n-42\nSolve 353*u = -355*u + 696*u + 120 for u.\n10\nSolve 264*z - 48455 = -2526*z - 18776 + 134931 for z.\n59\nSolve -871*b = -1743*b + 881*b - 12 + 264 for b.\n-28\nSolve 922829*x = 923950*x + 110979 for x.\n-99\nSolve 19871*u - 1097395 = 218956 + 432297 for u.\n88\nSolve 51708 + 2592 = 2715*a for a.\n20\nSolve -19332 = -5609*g + 6683*g for g.\n-18\nSolve 1233*v + 1430 = 1275*v - 796 for v.\n53\nSolve -247*d + 1504 + 2942 = 0 for d.\n18\nSolve -71*i = -140*i - 197*i + 9516 + 2720 for i.\n46\nSolve 0 = -2678574*j + 2678579*j + 210 for j.\n-42\nSolve -545262 = 3629*h + 5362*h - 263*h + 838*h for h.\n-57\nSolve 4287 - 38926 = -517*v for v.\n67\nSolve 37144 + 94568 = -3430*z - 1174*z + 488*z for z.\n-32\nSolve -2652*z" -".241739. What is u rounded to two decimal places?\n-0.1\nLet f = 38.41 + -39. Let k = -7.41 + f. Let d = k - -6.88. Round d to 1 decimal place.\n-1.1\nLet x = 10.1575880671 + -10.1576. What is x rounded to seven decimal places?\n-0.0000119\nLet x be ((-63)/24)/7 - 812670/(-80). Let d = -7248 + x. What is d rounded to the nearest one thousand?\n3000\nSuppose 0 = -5*t + i + 206, -3*t - 5*i = 25 - 143. Let m(s) = 2726*s + t*s - 6 + 5. Let h be m(3). Round h to the nearest 1000.\n8000\nLet u = 5155 - 5155.0000164. Round u to 5 decimal places.\n-0.00002\nLet i = 416.4521002 - -54.5479257. Let s = 471 - i. Round s to six decimal places.\n-0.000026\nLet p be (-27)/18 - 14581287/2. Let i = p - -1290645. Round i to the nearest 1000000.\n-6000000\nLet o = -284.1 + 280.572. What is o rounded to zero dps?\n-4\nLet l = 1.5020030562 + -1.502. Round l to 6 dps.\n0.000003\nLet y = 239.77 + -176500.77. Let b = -176108.9928 - y. Let q =" -"/a)/((-6)/(-28)). Let g(s) = -4*s - 18. Let c be g(-7). Solve 4*i + 7 = -t - j, -3*t = 4*i + c for i.\n-4\nSuppose -19 = -g - 3*j, 2*g - 5*j + 8 - 2 = 0. Let z = 13 + -18. Let o = g + z. Solve 3*t - o*k + 16 = 0, -4*t - t - 3*k = 14 for t.\n-4\nLet s(q) = -21*q - 121. Let f be s(-6). Solve -n = y - 3*n + 1, f*y - 8 = -3*n for y.\n1\nLet z be ((-4)/(-3))/((-2)/3). Let l = z - -4. Let k be 3/l + (-2)/4. Solve 4*p = -2*h + k + 5, 2*h = 5*p - 21 for h.\n-3\nLet q(i) = 6*i - 61. Let k be q(11). Solve -3*m + d - 17 = m, m - 22 = -k*d for m.\n-3\nLet f(s) = -s**3 - 8*s**2 - 6*s + 9. Let l be f(-7). Let k be (-2)/12*l*-1*6. Solve 4*h + 3*q = 0, -h - q = k - 1 for h.\n3\nLet i(k) = -k - 1. Let q be i(-13)." -"= 7 for l.\n5\nLet v(c) = -c + 2. Let k be v(-6). Let n be -4*(1 + (-18)/k). Solve p = 2*p + n for p.\n-5\nLet h = 19 - 16. Solve -3*p = -6 - h for p.\n3\nLet h = 3 - -2. Suppose -z = -h*z + 12. Suppose 8*c - z*c = 20. Solve -3*y + y = c for y.\n-2\nLet j(l) be the first derivative of l**2 - 8*l - 2. Let s be j(6). Suppose 2*t - 18 = 2*v, -t + 18 = t - 4*v. Solve o + t = s*o for o.\n3\nLet r = 4 - 0. Let w be 5/(2/(2/1)). Suppose 4*c - 28 = -2*k, 2*c = -w*k - 0*c + 70. Solve -r*x = 6 + k for x.\n-5\nSuppose 5*c = 4 + 6. Suppose 4*b - 3*o - 1 = 0, 3*b + 2*o = 17 + 5. Suppose 2*t = 4*s - 6, -3*s + 0 = -b*t + 3. Solve -r + c = -s*r for r.\n-1\nSuppose 5*u = 2*u. Let z be (-2)/(-8) - 11/(-4). Solve g = -u +" -"35969, 36536, 37265?\n81*n**2 + 35240\nWhat is the l'th term of -301714, -301716, -301718, -301720, -301722?\n-2*l - 301712\nWhat is the x'th term of 32600, 130379, 293344, 521495, 814832, 1173355, 1597064?\n32593*x**2 + 7\nWhat is the u'th term of -13426, -13416, -13392, -13348, -13278, -13176?\nu**3 + u**2 - 13428\nWhat is the a'th term of -147, -510, -1123, -1986, -3099?\n-125*a**2 + 12*a - 34\nWhat is the j'th term of -29007, -57982, -86907, -115758, -144511, -173142?\n4*j**3 + j**2 - 29006*j - 6\nWhat is the r'th term of 1434, 2878, 4322?\n1444*r - 10\nWhat is the j'th term of 191, 725, 1599, 2801, 4319, 6141, 8255, 10649?\n-2*j**3 + 182*j**2 + 2*j + 9\nWhat is the v'th term of 4947, 9874, 14801, 19728?\n4927*v + 20\nWhat is the b'th term of 838, 891, 1030, 1297, 1734?\n7*b**3 + b**2 + b + 829\nWhat is the y'th term of 21440, 21422, 21370, 21266, 21092, 20830, 20462?\n-3*y**3 + y**2 + 21442\nWhat is the z'th term of -99, -222, -427, -714?\n-41*z**2 - 58\nWhat is the i'th term of 9485, 18971, 28455, 37937?\n-i**2 + 9489*i - 3\nWhat is" -" is divided by 69?\n62\nWhat is the remainder when 41361 is divided by 81?\n51\nWhat is the remainder when 6880 is divided by 287?\n279\nWhat is the remainder when 3549 is divided by 456?\n357\nCalculate the remainder when 83925 is divided by 24.\n21\nWhat is the remainder when 60790 is divided by 422?\n22\nCalculate the remainder when 788 is divided by 461.\n327\nCalculate the remainder when 48137 is divided by 16044.\n5\nWhat is the remainder when 107739 is divided by 35846?\n201\nWhat is the remainder when 58775 is divided by 1130?\n15\nWhat is the remainder when 5538 is divided by 73?\n63\nCalculate the remainder when 34941 is divided by 39.\n36\nWhat is the remainder when 23331 is divided by 49?\n7\nWhat is the remainder when 85740 is divided by 62?\n56\nWhat is the remainder when 3248024 is divided by 75?\n74\nWhat is the remainder when 32607 is divided by 694?\n683\nWhat is the remainder when 3146 is divided by 944?\n314\nCalculate the remainder when 1226272 is divided by 669.\n664\nCalculate the remainder when 10319 is divided by 321.\n47\nCalculate the remainder" -"/9 - 0. What is v(r)?\n-1\nLet x(b) be the third derivative of b**4/12 - b**3 + b**2. Let m be ((-15)/5)/((-6)/8). Give x(m).\n2\nLet m be (-2)/(-6) + 2/3. Let d(l) = 5*l**3 - 1. Let b(p) = -10*p**3 - p**2 + 3. Let s be 20/(-5)*(-5)/(-4). Let a(g) = s*d(g) - 2*b(g). Determine a(m).\n-4\nSuppose -15 = -4*c + 5. Let p(h) = -6 - 8*h + h**2 - 2*h + c*h. Calculate p(5).\n-6\nLet i(p) be the second derivative of p**6/120 + p**5/15 - p**4/4 + 2*p**3/3 - 7*p**2/2 - p. Let a(g) be the first derivative of i(g). Determine a(-5).\n9\nLet l(m) = m**3 + 4*m**2 + 3*m + 6. Let i(j) = -j**3 - 5*j**2 - 4*j - 7. Let r(k) = -5*i(k) - 6*l(k). What is r(1)?\n1\nSuppose -5*m = -w - 2*m - 9, -4*m + 22 = 2*w. Suppose -t - w*i + 2*i - 5 = 0, 0 = 4*t + 3*i + 18. Let r(g) = g**2 + 4*g. Give r(t).\n-3\nSuppose -d + 28 = 4*p + 3*d, -4*d = 5*p - 34. Let x(h) = h - 4. Give x(p).\n2" -"ith respect to t.\n2*t\nLet z(t) = -t**3 + t**2 - t. Let b(q) = 4*q - 2*q**2 - 10*q**3 - 2*q**2 + 0*q - 17 + 0*q**2. Let u(c) = -b(c) - 4*z(c). Differentiate u(w) wrt w.\n42*w**2\nLet f = 19 - 11. Suppose s = z + f, 0*z - 2*z = s + 4. Differentiate 0*t**3 - 2 - 3*t**3 + 0 - s wrt t.\n-9*t**2\nLet p be -2*((-9)/6)/3. Let d be 10/p + -2 + 3. Find the third derivative of m**6 - 4*m**6 - d*m**2 + 0*m**6 + 20*m**2 wrt m.\n-360*m**3\nLet f(u) be the first derivative of -293*u**5/5 + 208*u**2 + 428. Find the second derivative of f(y) wrt y.\n-3516*y**2\nLet u(h) = h**2 - h + 2. Let w be u(0). Suppose 0 = 2*n, -2*d + 4 = w*d + 4*n. What is the derivative of 3 - 2 + 5*k**4 - 6 - d wrt k?\n20*k**3\nLet v(o) be the second derivative of 74*o**6/15 - 121*o**3/6 + 21*o + 3. What is the second derivative of v(k) wrt k?\n1776*k**2\nFind the third derivative of 3443*y**6 + y**2 - 10 + 68 - 3438*y**6" -". What is the closest to f in 2/5, 2/37, -2/249, 2?\n2/5\nLet y(r) = -r**3 - 16*r**2 + 37*r + 20. Let t be y(-18). Let l be (3 - (5 + t)) + 15/4. Which is the closest to l? (a) -0.3 (b) -5 (c) -3/4\na\nLet f = -480.4 + 542. Let z = -56.6 + f. What is the nearest to -5 in -1/7, -0.2, z, 4/9?\n-0.2\nLet q = 82.05 + -85.05. What is the nearest to 0 in -1.9, q, 0.08, -2?\n0.08\nSuppose 0 = b + b. Suppose -2*t - 9 = t. Let g = -64 - -67. What is the closest to 0.1 in t, g, b?\nb\nLet l = 34053.9 - 34054. Let t be 32/(-66) - 8/(-12). What is the closest to -1/2 in -2, t, l?\nl\nSuppose -18*f + 23*f = 105. Let u be ((f - 14) + -9)*(-2)/(-18). What is the closest to 0.9 in -0.4, 1/2, u, -3/8?\n1/2\nLet n = -15.3 + 2.3. Let k = 6.8355 + -6.4355. Which is the closest to 0.3? (a) -1/5 (b) k (c) n\nb\nLet j = -7677 -" -"se 3*p + 71 = b, 0*b = 4*p - 2*b + 92. Let v be (10/p)/((-2)/5). Suppose 4*u + v - 5 = 0. Solve -u = -2*i + 5 for i.\n3\nLet d be 2 + 2 + -4 - 0. Let s(i) = i**3 - i**2 + i + 6. Let p be s(d). Let q be ((-8)/6)/(p/(-18)). Solve -q*m - 20 = m for m.\n-4\nLet j = 12 + -24. Let r = 1 + j. Let t = -7 - r. Solve -4*c + 12 = t for c.\n2\nLet b = 62 - 61. Solve -9 + b = 2*q for q.\n-4\nLet d(y) = 4*y**3 - 3*y**2 - y - 3. Let h be d(3). Suppose -2*o + h = 3*o. Solve i = 4*i - o for i.\n5\nLet i be ((-1)/((-1)/2))/(-2). Let z be 42/9 - i/3. Let g(n) = 2*n + 2. Let y be g(z). Solve 3*o = 6*o + y for o.\n-4\nLet x(n) = -2*n**3 + 24*n**2 + 2*n - 8. Let f be x(12). Let p = 7 - 4. Solve 1 = -p*r + f for r.\n5" -"u(v) = 166*v**2 - 58*v - 1257. What is the ten thousands digit of u(-16)?\n4\nLet m = -245 - 880. Let z = 1825 + m. What is the units digit of z?\n0\nLet r = 26870 + -1902. What is the tens digit of r?\n6\nLet d(b) = 1. Let s(t) = 13*t + 42. Let p(m) = 5*d(m) - s(m). Let x be p(-19). Suppose 8*q - x = q. What is the tens digit of q?\n3\nLet m = 27740 + -13423. What is the thousands digit of m?\n4\nLet c(o) = 2*o**2 - 2*o - 6. Let l be c(-3). Suppose -2*k + 28 = -2*m, -l = m - 5*k + 8. Let d = m + 75. What is the tens digit of d?\n6\nSuppose 2*d + 37 = 189. Suppose 93*r = 76*r. Let g = d - r. What is the tens digit of g?\n7\nSuppose -81*u = -79*u - 1238. Suppose 0 = i - u + 525. What is the tens digit of i?\n9\nLet d be ((-12)/15)/(28/70). What is the units digit of ((-30198)/168)/(d/8)?\n9\nLet v be -1 -" -". What is prob of picking 1 g and 1 k?\n7/78\nTwo letters picked without replacement from {o: 6, z: 7, y: 2}. Give prob of picking 1 y and 1 o.\n4/35\nCalculate prob of picking 2 u when two letters picked without replacement from iiiiuuiiiiiiiuiiiui.\n2/57\nFour letters picked without replacement from {x: 1, n: 9, o: 2, v: 3, w: 4}. Give prob of picking 3 v and 1 o.\n1/1938\nCalculate prob of picking 1 u and 1 q when two letters picked without replacement from pqfkuqfff.\n1/18\nCalculate prob of picking 1 t and 1 e when two letters picked without replacement from {e: 3, t: 2, s: 1, g: 6}.\n1/11\nTwo letters picked without replacement from {e: 2, u: 16}. Give prob of picking 2 u.\n40/51\nThree letters picked without replacement from {q: 2, r: 1, h: 1}. What is prob of picking 1 h and 2 q?\n1/4\nTwo letters picked without replacement from nhn. What is prob of picking 2 n?\n1/3\nCalculate prob of picking 2 x when two letters picked without replacement from xxjxxj.\n2/5\nTwo letters picked without replacement from qqqpqnnpnnnnpqnqppq. Give prob of picking 1" -"g = -3800.2909 + 3781.29. Let u = o - g. Round u to three dps.\n0.001\nLet l = -298.3 - -298.2999859. Round l to 7 dps.\n-0.0000141\nLet k(h) = 134614*h**2 - 14*h + 416. Let m be k(13). What is m rounded to the nearest one hundred thousand?\n22800000\nLet y(g) = -219001*g + 1. Let a(k) = -1. Let t(b) = 3*a(b) + y(b). Let z be t(-2). Round z to the nearest 10000.\n440000\nLet h = 1832.28 + -1870. Round h to the nearest integer.\n-38\nLet m = 48 + -51. Let x be 0 + 6/m - (1129998 + 0). What is x rounded to the nearest 100000?\n-1100000\nLet l = 0.09 + 0.07. Let x = 0.1435 - l. Round x to 3 decimal places.\n-0.017\nLet z = -4.2 + 27.2. Let b = -22.984 + z. What is b rounded to three decimal places?\n0.016\nSuppose 4*h - 2*h + 2*x = 0, 5*x + 18 = 4*h. Suppose 0 = 2*a + 5*v + 7, 0 = -4*a + h*a + v - 13. Let q be 1380*1*4/a. Round q to the nearest one hundred.\n-900\nLet" -"?\n101111\nIn base 9, what is 3 + -1848?\n-1845\nIn base 11, what is 29 + -1?\n28\nIn base 15, what is -537 - -4?\n-533\nIn base 4, what is -1232 + 2?\n-1230\nIn base 4, what is 130 - -102?\n232\nIn base 9, what is -1 - 13?\n-14\nIn base 9, what is 16 + -3?\n13\nIn base 3, what is 111 - -1112?\n2000\nIn base 5, what is -40 + 13?\n-22\nIn base 10, what is 12 - 33?\n-21\nIn base 15, what is -37 - 6?\n-3d\nIn base 14, what is 1015 + 4?\n1019\nIn base 5, what is -13102 + 0?\n-13102\nIn base 15, what is -a5 + 2?\n-a3\nIn base 7, what is -3 - -254?\n251\nIn base 5, what is -2 - 11212?\n-11214\nIn base 2, what is 1110 - -1101111?\n1111101\nIn base 3, what is 211221 + -120?\n211101\nIn base 10, what is 255 - -35?\n290\nIn base 10, what is 5321 - 5?\n5316\nIn base 2, what is -10101101110 + -11?\n-10101110001\nIn base 14, what is -63 + -3?\n-66" -"e remainder when 15799345 is divided by 112.\n65\nWhat is the remainder when 12568629 is divided by 8135?\n54\nCalculate the remainder when 1163782 is divided by 581884.\n14\nWhat is the remainder when 7270422 is divided by 4718?\n4702\nWhat is the remainder when 15524956 is divided by 156?\n148\nWhat is the remainder when 23696895 is divided by 7898961?\n12\nCalculate the remainder when 36373998 is divided by 18186995.\n8\nCalculate the remainder when 1574304 is divided by 79.\n71\nCalculate the remainder when 9801 is divided by 4804.\n193\nWhat is the remainder when 5560607 is divided by 110?\n107\nWhat is the remainder when 18080 is divided by 1117?\n208\nWhat is the remainder when 583923 is divided by 662?\n39\nCalculate the remainder when 46374501 is divided by 88.\n85\nWhat is the remainder when 573434 is divided by 204?\n194\nWhat is the remainder when 6341281 is divided by 98?\n93\nWhat is the remainder when 17708 is divided by 69?\n44\nCalculate the remainder when 227023 is divided by 2441.\n10\nWhat is the remainder when 280804 is divided by 5616?\n4\nWhat is the remainder when 42656209 is divided by 3046871?" -"o the form q*m + z + j*m**3 + t*m**4 + x*m**2 and give z.\n3\nExpress (0*z - 3*z - 5*z)*(5*z - 1 + 1) + (0*z - 2*z - 3*z)*(0*z + z - 2*z) + (-2*z - z + 2*z)*(-3*z + 3*z - 2*z) in the form m + y*z + s*z**2 and give s.\n-33\nRearrange -1599*f + 5 - 564*f + 161*f - 5 to n*f + l and give n.\n-2002\nExpress 0*o**2 - 50*o**3 - 11*o + 18*o**3 - 6*o**3 + 0*o**2 as p*o + q*o**2 + c + x*o**3 and give p.\n-11\nExpress (v - 4*v + 2*v)*(-5*v + 15*v - 88986*v**2 - 10*v + 32387*v**2) as i*v**2 + r*v**3 + p + w*v and give r.\n56599\nExpress 5 + k - 5 - 4*k + 6*k - k + (-2*k - 4*k + 4*k)*(-1 + 0 + 0) - 21 - k - 24 + 36 + (14 - 14 + 7*k)*(-2 - 3 + 3) as p + z*k and give p.\n-9\nRearrange 6*d**2 + 25*d + 54*d + 35*d + 24*d - 8 - 194*d to the form t*d**2 + l*d + k and give t.\n6" -"-f*r - 3. Let z = 198 - 242. Determine r*c(u) + z*v(u).\n-4*u\nLet b(n) be the third derivative of -n**6/30 + n**5/10 - n**4/12 - n**3 - n**2 + 408*n. Let j(q) = 3*q**3 - 5*q**2 + q + 5. What is 5*b(x) + 6*j(x)?\n-2*x**3 - 4*x\nLet n(f) = 2 + 2*f - 2 + 2 - 3*f**2. Suppose 0 = -546*d + 868*d - 322. Let c(z) = -1. Let x(k) = k + 3. Let u(q) = -2*c(q) - x(q). Calculate d*n(b) + 2*u(b).\n-3*b**2\nLet r(i) = 316*i**2 - 39*i - 10. Let y(s) = -473*s**2 + 55*s + 15. Determine -7*r(f) - 5*y(f).\n153*f**2 - 2*f - 5\nLet a(h) = -3*h**3 + 4*h**2 - 72*h + 3. Let i(d) = 13*d**3 - 18*d**2 + 285*d - 12. Give 9*a(f) + 2*i(f).\n-f**3 - 78*f + 3\nLet t(b) = -8*b + 2 + 5*b + 21 + 5*b. Let d(x) = 2*x + 23. Give 3*d(a) - 4*t(a).\n-2*a - 23\nLet m(f) = 2*f + 1. Let h(w) = -5*w - 22 + 11 + 15. Let x be h(0). Let p(a) be the second derivative of -a**3/2 - a**2/2" -"e 117/(4 + -3)*(-2)/(-6). Calculate the highest common divisor of 663 and z.\n39\nSuppose -3*r + 16 = 5*q, 2*q - 8 - 2 = 0. Let z be (r - (-14 + -2))*2. Suppose 5*i = z + 9. Calculate the greatest common divisor of 1 and i.\n1\nSuppose -4*a = -69 - 95. Let l = a - 23. Let q = -217 + 415. What is the highest common factor of q and l?\n18\nLet w be 306/15 + (-3)/(-5). Let a = w - 29. Let h(x) = -x - 4. Let n be h(a). What is the highest common divisor of 12 and n?\n4\nLet o(g) = -10*g - 2. Let u be o(5). Let v be -7*(u/(-14) - 4). Suppose 4*s - 13 = w - 60, -v*w + 2*s = -70. What is the greatest common factor of w and 217?\n31\nSuppose -8*z = 8*z - 5632. What is the greatest common factor of 160 and z?\n32\nLet g be 6/((-24)/(-4)) - 5/(-1). Let p = 19 - -5. What is the highest common factor of p and g?\n6\nLet l be -20*(1/(-4) + -1). Let" -"52\nWhat is 75557.7 years in decades?\n7555.77\nHow many millilitres are there in 172.458 litres?\n172458\nConvert 0.415374l to millilitres.\n415.374\nWhat is fourty-two fifths of a microgram in nanograms?\n8400\nHow many months are there in five sixths of a millennium?\n10000\nWhat is 55774.2 meters in centimeters?\n5577420\nWhat is 23/3 of a year in months?\n92\nWhat is 11/2 of a milligram in micrograms?\n5500\nHow many nanometers are there in 11/2 of a micrometer?\n5500\nWhat is 8.338594 litres in millilitres?\n8338.594\nWhat is 45/4 of a litre in millilitres?\n11250\nHow many nanometers are there in 1/5 of a micrometer?\n200\nConvert 1055047.7 days to weeks.\n150721.1\nWhat is 1774.57662 seconds in days?\n0.02053908125\nWhat is thirty-one fifths of a millimeter in micrometers?\n6200\nWhat is 42437.71ml in litres?\n42.43771\nWhat is 9863.847 millennia in decades?\n986384.7\nHow many nanograms are there in 129225.5t?\n129225500000000000000\nConvert 6.66285 minutes to nanoseconds.\n399771000000\nHow many hours are there in 549274.5 microseconds?\n0.00015257625\nHow many millilitres are there in eleven halves of a litre?\n5500\nWhat is 4/3 of a millennium in months?\n16000\nHow many millilitres are there in 0.299829 litres?\n299.829\nWhat is 29/5 of" -"\nIs 23144473529 a composite number?\nTrue\nIs 121742977 prime?\nTrue\nIs 1442177819 prime?\nTrue\nIs 402122093 a prime number?\nFalse\nIs 50623749617 a composite number?\nTrue\nIs 6570496979 a composite number?\nTrue\nIs 1309114187 a composite number?\nFalse\nIs 3775465081 a prime number?\nTrue\nIs 4531157621 a composite number?\nFalse\nIs 50306903 a composite number?\nTrue\nIs 106515828373 a composite number?\nFalse\nIs 51953310163 a prime number?\nFalse\nIs 434233847797 prime?\nTrue\nIs 7202993603 prime?\nFalse\nIs 13429148539 a prime number?\nFalse\nIs 3805469279 prime?\nTrue\nIs 2658884707 prime?\nTrue\nIs 594908243 a prime number?\nTrue\nIs 3535632521 a composite number?\nFalse\nIs 9537023 a prime number?\nTrue\nIs 3613479787 composite?\nTrue\nIs 49662283027 prime?\nFalse\nIs 5658003779 a prime number?\nFalse\nIs 3186732566 a prime number?\nFalse\nIs 672167929 composite?\nFalse\nIs 34473225169 a prime number?\nTrue\nIs 2031136942 composite?\nTrue\nIs 3145199107 a prime number?\nTrue\nIs 5253455213 composite?\nFalse\nIs 479256721 composite?\nTrue\nIs 583212379 a prime number?\nFalse\nIs 899183447 a prime number?\nTrue\nIs 88113595697 a prime number?\nTrue\nIs 20884764671 a composite number?\nTrue\nIs 62733200141 a prime number?\nTrue\nIs 1815502993 a composite number?\nFalse\nIs 2066935207 composite?\nTrue\nIs 4768478503 prime?\nFalse" -"pose -337 = 5*d - 17. Let f = d + 110. Suppose -3*c - l + f = 0, 2*l - 7*l = 5*c - 90. Calculate the remainder when 23 is divided by c.\n9\nSuppose -30 = -3*d - 3*l, 4 = 5*d - 2*l - 11. Suppose 5*p - 50 = d. Let n = p - 6. What is the remainder when 34 is divided by n?\n4\nSuppose -5*q - 6*q = 165. Let j be -35 + 5/(q/(-9)). What is the remainder when 91 is divided by (-700)/j + 1 + 4/32?\n22\nLet c(s) be the third derivative of -s**6/120 + 7*s**5/30 + s**4/4 - 20*s**3/3 - 20*s**2 + 2. What is the remainder when c(14) is divided by 2?\n0\nLet c(u) = 351*u + 582. Let h(m) = 70*m + 116. Let d(z) = 2*c(z) - 11*h(z). Calculate the remainder when d(-2) is divided by -2*7/(-4)*2.\n3\nLet r = -2199 + 3000. Calculate the remainder when r is divided by 27.\n18\nSuppose 29*q - 225 = 10*q + 10*q. What is the remainder when 2272 is divided by q?\n22\nSuppose -5*d = -24*y + 20*y - 475," -" 2124?\n1062\nWhat is the greatest common factor of 33626363 and 207598?\n4513\nWhat is the highest common divisor of 4494760 and 21830?\n370\nCalculate the highest common divisor of 29244 and 90864.\n12\nCalculate the highest common factor of 642 and 363586.\n214\nCalculate the greatest common divisor of 1311535 and 4068549.\n5581\nWhat is the highest common divisor of 296452 and 10348?\n52\nWhat is the highest common divisor of 574273 and 4984?\n7\nWhat is the highest common factor of 10503 and 4788979?\n389\nWhat is the highest common divisor of 478 and 13103653?\n239\nWhat is the greatest common divisor of 99336056 and 16?\n8\nCalculate the greatest common factor of 53312600 and 220.\n220\nWhat is the highest common factor of 16339323 and 63?\n21\nWhat is the greatest common divisor of 9576 and 17130400?\n1064\nCalculate the highest common divisor of 3599397 and 333.\n333\nWhat is the highest common factor of 156 and 68895606?\n78\nWhat is the highest common factor of 21307352 and 308?\n44\nCalculate the highest common factor of 40152 and 787416.\n168\nWhat is the greatest common factor of 2 and 205219586?\n2\nCalculate the greatest common divisor of" -"is divided by a(30)?\n5\nWhat is the remainder when ((-78816)/(-64))/((-5)/(-2) + -1) is divided by 232?\n125\nLet i(c) = -12*c - 1. Suppose 0 = -8*j + 792 - 40. Let f = 122 - j. What is the remainder when f is divided by i(-1)?\n6\nLet q(h) = h**3 + 8*h**2 + 8*h + 47. Calculate the remainder when 166 is divided by q(-7).\n6\nLet v = -191 + 191. Suppose v = 109*u - 110*u + 29. What is the remainder when 173 is divided by u?\n28\nLet r = -215 + 268. Calculate the remainder when 69 is divided by r.\n16\nLet j = 6154 - 5792. What is the remainder when 1456 is divided by j?\n8\nWhat is the remainder when 1844 is divided by (-61)/(-8) + 8/(-64)*-3 - -65?\n19\nSuppose -34874 = -54*y - 52*y. Calculate the remainder when y is divided by 11.\n10\nSuppose l - 26 = -2*p - 4*l, 0 = 3*p - 2*l - 77. Let x = p - -2. Calculate the remainder when x is divided by 16.\n9\nLet r(t) = 230*t + 149. What is the remainder when" -"e root of 6653 to the nearest integer?\n82\nWhat is the cube root of 131640 to the nearest integer?\n51\nWhat is 340 to the power of 1/2, to the nearest integer?\n18\nWhat is 1283 to the power of 1/7, to the nearest integer?\n3\nWhat is the cube root of 5794 to the nearest integer?\n18\nWhat is the third root of 3627 to the nearest integer?\n15\nWhat is the eighth root of 13966 to the nearest integer?\n3\nWhat is 1421 to the power of 1/3, to the nearest integer?\n11\nWhat is 5498 to the power of 1/2, to the nearest integer?\n74\nWhat is the ninth root of 28312 to the nearest integer?\n3\nWhat is 2839 to the power of 1/3, to the nearest integer?\n14\nWhat is 22583 to the power of 1/3, to the nearest integer?\n28\nWhat is 23545 to the power of 1/2, to the nearest integer?\n153\nWhat is the third root of 648 to the nearest integer?\n9\nWhat is 12871 to the power of 1/2, to the nearest integer?\n113\nWhat is the seventh root of 1906 to the nearest integer?\n3\nWhat is 805" -" -388, -722, -1178, -1768, -2504?\n-3398\nWhat is next in -32, -31, -30, -29?\n-28\nWhat is next in 53, 63, 73, 83, 93, 103?\n113\nWhat comes next: 460, 926, 1392, 1858?\n2324\nWhat is next in -21480, -21478, -21476, -21474?\n-21472\nWhat comes next: 4, 19, 50, 97, 160?\n239\nWhat is next in -14, -15, -4, 25, 78, 161, 280?\n441\nWhat is next in -492, -984, -1476?\n-1968\nWhat is next in 55, 81, 103, 121, 135?\n145\nWhat is the next term in 224, 206, 180, 146?\n104\nWhat is the next term in -10, -11, -12, -13, -14, -15?\n-16\nWhat is next in 859, 865, 873, 883?\n895\nWhat is the next term in 1246, 1248, 1250, 1252?\n1254\nWhat comes next: 100, 451, 1030, 1831, 2848, 4075?\n5506\nWhat comes next: -13342, -26682, -40022, -53362, -66702, -80042?\n-93382\nWhat is next in -212, -427, -642, -857, -1072?\n-1287\nWhat is the next term in -413, -411, -409, -407?\n-405\nWhat comes next: -114, -101, -88?\n-75\nWhat comes next: 2, -7, -20, -37?\n-58\nWhat is the next term in 7, 59, 151, 289, 479, 727, 1039, 1421?\n1879\nWhat is the" -"cond derivative of s(u). Factor h(p).\n-2*(p + 21)**2/9\nLet m(a) = -3*a**3 - 22*a**2 - 33*a + 63. Let i(z) = -5*z - 4*z + 19*z - z**2 - 10*z. Let b(g) = -5*i(g) - m(g). Solve b(d) = 0.\n-7, -3, 1\nLet z(h) be the first derivative of h**6/3 - 39*h**5/5 + 45*h**4 + 100*h**3/3 + 1561. Factor z(v).\nv**2*(v - 10)**2*(2*v + 1)\nSuppose -37 - 29 = -6*f. Suppose -f*q + 6 = -9*q. Factor 2*w**3 - 6*w**2 + 2 + 3*w**5 - 8*w**3 - 3*w**4 + 6*w**4 + q*w + 1.\n3*(w - 1)**2*(w + 1)**3\nLet s(z) be the third derivative of z**7/630 - z**6/36 + 3*z**5/20 - z**4/4 - 8*z**2 - 5*z. Find h, given that s(h) = 0.\n0, 1, 3, 6\nLet s(m) = -m**3 - 18*m**2 - 146*m - 884. Let i be s(-12). Solve 38*l**3 + 0 - 15/2*l**i + 8*l - 34*l**2 = 0.\n0, 2/5, 2/3, 4\nLet f = -182392 - -547180/3. Find g such that f + 1/3*g**2 - 5/3*g = 0.\n1, 4\nSuppose 0 + 2 = o. Suppose 0 = 3*r + 2*j - 1 - 11, -8 = -o*r +" -"pose -2*k + 3*k - 5 = 0. Suppose 2*u + 17 = -2*u - 5*n, 0 = k*n + 25. Find the second derivative of 2*s - s**u - 3*s + 2*s wrt s.\n-2\nFind the third derivative of -3*g**3 + g**3 + 4*g**3 + 5*g**3 - 8*g**2 wrt g.\n42\nSuppose -4*z - 9 = -1. Let u(n) = -n + 1. Let c(r) = 3*r**2 - r - 2. Let a(g) = z*u(g) - c(g). What is the second derivative of a(b) wrt b?\n-6\nLet q(r) = r**3 - 6*r**2 + 1. Let v be q(6). Find the third derivative of -1 + v - 3*b**5 - 4*b**2 wrt b.\n-180*b**2\nLet p(u) = 11*u**2 - 2*u - 4. Let b(d) = 32*d**2 - 6*d - 11. Let o(v) = 4*b(v) - 11*p(v). What is the second derivative of o(t) wrt t?\n14\nLet j(f) = f**3 - 8*f**2 + 9*f - 9. Let m be j(7). What is the second derivative of 3*a**5 - 5*a**m - 3*a**5 - 5*a wrt a?\n-100*a**3\nLet t(a) = -6*a**3 - 5*a - 5*a**4 + 0*a - 8*a**5 + a**3. Let o(d) = d**5 + d**4 + d**3." -"in 541452.9g?\n541.4529\nWhat is 3/8 of a century in months?\n450\nWhat is 1/10 of a millennium in decades?\n10\nWhat is 43.32477t in kilograms?\n43324.77\nConvert 0.4823992l to millilitres.\n482.3992\nWhat is 19.70375 litres in millilitres?\n19703.75\nHow many minutes are there in 76561.24 days?\n110248185.6\nConvert 439.4668 millimeters to centimeters.\n43.94668\nWhat is 17/4 of a tonne in kilograms?\n4250\nWhat is 0.9219603 litres in millilitres?\n921.9603\nWhat is fourty-four fifths of a century in months?\n10560\nWhat is 25/7 of a week in minutes?\n36000\nWhat is 33/5 of a litre in millilitres?\n6600\nHow many millilitres are there in 27/4 of a litre?\n6750\nWhat is 91/4 of a gram in milligrams?\n22750\nConvert 90.10697l to millilitres.\n90106.97\nWhat is 18/5 of a millennium in centuries?\n36\nHow many millilitres are there in one fifth of a litre?\n200\nConvert 57.20532 litres to millilitres.\n57205.32\nWhat is thirteen eighths of a litre in millilitres?\n1625\nWhat is three fifths of a kilometer in meters?\n600\nWhat is six fifths of a millimeter in micrometers?\n1200\nWhat is 2539.98 milliseconds in hours?\n0.00070555\nWhat is 6/5 of a micrometer in nanometers?\n1200\nHow many months are" -"- 3*v - 2 = 0. Find the second derivative of -2*r + v*r + r**2 - r wrt r.\n2\nLet o(g) be the second derivative of g**9/15120 - g**6/240 - g**4/3 + 2*g. Let l(z) be the third derivative of o(z). Find the second derivative of l(y) wrt y.\n12*y**2\nLet j(q) be the second derivative of q**9/15120 - q**5/40 + q**4/4 - 3*q. Let u(m) be the third derivative of j(m). What is the first derivative of u(i) wrt i?\n4*i**3\nLet i(w) = 7*w**4 - 9*w**2 - 5. Let n(z) = 10*z**4 - 14*z**2 - 8. Let h(a) = -8*i(a) + 5*n(a). Find the third derivative of h(u) wrt u.\n-144*u\nLet t(l) = 5*l - 1. Let y(m) = -2*m. Let a(b) = -6*t(b) - 14*y(b). Differentiate a(i) wrt i.\n-2\nSuppose 5*q = -7 + 27. Differentiate -17 + 8 + 6*m**q + 5 wrt m.\n24*m**3\nLet q(i) = i**2 - i + i**3 + 0 - 2*i**3 + 3 + 0*i**2. Let h be q(0). Differentiate -1 - 2*r**3 + h + 2*r**3 - r**4 wrt r.\n-4*r**3\nLet z be 6/(-7)*(-7)/1. Suppose x = -q + z, -5*q - 7 =" -"t one million?\n-3000000\nLet g = 195065 - 134432. Round g to the nearest ten thousand.\n60000\nLet t be (159/3)/((-28)/(-25732)). Suppose 0 = -5*k + 25993 + t. Round k to the nearest 1000.\n15000\nLet u = 773.424488 - 760.42448682. Let f = -12.2 - 0.8. Let a = u + f. What is a rounded to seven dps?\n0.0000012\nLet d = -6073 - -6310.45. Round d to the nearest 100.\n200\nLet j = -8345.1016 - -2.6016. What is j rounded to the nearest one hundred?\n-8300\nLet a be (-6)/4*(-264)/99. Suppose 4*t = 12, -5*s + 20 - 3 = -t. Suppose -1 = 5*z + s, -a*h + 3*z - 5197 = 0. Round h to the nearest 1000.\n-1000\nLet k = 322.64 - -2.36. Let t = k - 324.9999686. Round t to 5 decimal places.\n0.00003\nLet n = -1803402974.8000781 + 1803404707.8. Let u = n + -1733. What is u rounded to 6 decimal places?\n-0.000078\nLet s = 69.11 - -0.89. Let t = s - 10. Let c = t - 59.99971. What is c rounded to 4 decimal places?\n0.0003\nLet u = -37 + 40." -" + c*o + t*o**3 and give z.\n8\nExpress 6*n**2 - n**2 + 3*n**2 - 4*n**2 - 3*n in the form a*n**2 + u*n + h and give u.\n-3\nExpress (-5 + 51 + 55)*(2*o + 1 - 1) in the form f + c*o and give c.\n202\nExpress -97*k + 18*k**3 + 2 + 48*k + 49*k as m + o*k + s*k**2 + d*k**3 and give m.\n2\nRearrange -2*w**2 - 6*w**2 - 3*w**2 + 2*w**2 + w to the form t + z*w + l*w**2 and give z.\n1\nRearrange (y - 2 + 0 + 0)*(3*y - y + y) to the form k*y**2 + x*y + u and give k.\n3\nRearrange -48*q**2 + 22*q - 22*q to the form h*q + i*q**2 + j and give i.\n-48\nExpress (-4*m + 0*m + m)*(-1 + 6 - 3)*(2*m + 7*m + m) in the form s*m**2 + o*m + y and give s.\n-60\nExpress (0*t - 3*t - t)*(-2*t**2 + 5*t**2 - 2*t**2) - 3*t**2 - t**3 + t**2 + 4*t**2 in the form f*t**2 + n + p*t**3 + k*t and give p.\n-5\nRearrange 0 - 5*f + 4*f**3" -" = -11563/1665 - 41/370. Calculate the common denominator of 1/81 and h.\n162\nLet l be (-5 + 196/40)*152. Let y = l - -207/10. Find the common denominator of y and 61/2.\n2\nLet w(g) = -227*g**2 + 0*g + 220*g**2 - 3 + 4*g. Let s be w(2). Let x = -21 - s. What is the smallest common multiple of x and 6?\n6\nLet x = -310 - -311. What is the least common multiple of x and 36?\n36\nLet l(z) = -z**3 - 2*z**2 + 3*z + 3. Let m be l(-3). Suppose m*w - 48 = 45. What is the smallest common multiple of 2 and 2/6*(-10 + w)?\n14\nLet s(b) = 3*b**2 - 11*b + 38. Suppose -4*m - 4*f = -8, -f + 14 = 5*m + 3*f. What is the least common multiple of m and s(4)?\n42\nLet d = -625 - -3601. Let x = d + -26843/9. Find the common denominator of 83/16 and x.\n144\nLet h = -190 + 211. Calculate the least common multiple of h and 48.\n336\nLet t = -28 - -46. Suppose -6*v = -2*r - 7*v + 57," -"49 and 43031.\n1163\nCalculate the greatest common factor of 2046 and 6291318.\n66\nWhat is the highest common divisor of 30456 and 166530024?\n3384\nCalculate the highest common divisor of 108 and 6022890.\n54\nWhat is the highest common divisor of 66149946 and 486?\n486\nCalculate the highest common factor of 29381582 and 87.\n29\nWhat is the highest common factor of 101 and 534970?\n1\nWhat is the highest common factor of 1350652 and 18952?\n92\nWhat is the highest common factor of 9915 and 432885?\n15\nWhat is the highest common divisor of 3013 and 260912?\n23\nCalculate the highest common factor of 1127346 and 3971.\n209\nCalculate the greatest common factor of 12288 and 1785984.\n384\nWhat is the greatest common factor of 3628512 and 1116?\n36\nCalculate the greatest common divisor of 11118218 and 218.\n218\nWhat is the highest common divisor of 1228 and 29163158?\n614\nCalculate the highest common divisor of 1060 and 13823725.\n265\nWhat is the greatest common divisor of 215025 and 45496?\n47\nWhat is the greatest common divisor of 313252 and 132131?\n71\nWhat is the highest common factor of 8517952 and 11968?\n1088\nWhat is the highest common" -"605/(-360696) - 135/(-315)).\n2, 19, 113\nLet n(k) = 201*k - 300. Let o be n(8). Suppose 467*u - 464*u = o. What are the prime factors of u?\n2, 109\nLet d be 8/((2 + -3)/((-1)/2)). Suppose -2*b = -b - d. Suppose 2*t - 123 = -b*r - 3*t, 2*t = 5*r - 162. List the prime factors of r.\n2\nLet v be (-6)/(-6) + 24*-22. Let y = v + 1006. List the prime factors of y.\n479\nSuppose -4*p - 3*a + 39 = 0, -3*p + 23 = -0*a + a. Suppose -5*m + 21 = -4*g, -m - 15 = -2*g + p*g. What are the prime factors of (23 - m - 5) + -4?\n13\nSuppose 26301 = -134*d + 167*d. What are the prime factors of d?\n797\nSuppose -3*w = -2*x + 5, -2*x = 4*w + w - 13. Suppose 5*n = 21 + x. Suppose 2*q - 5*l + l - 150 = 0, n*q = l + 420. What are the prime factors of q?\n5, 17\nLet d(z) = 6*z**2 + 14*z - 85. Let l(a) = a**2 + 26*a + 9. Let o be" -"he next term in -144, -279, -414?\n-549\nWhat comes next: -2, -16, -40, -74, -118?\n-172\nWhat comes next: 141, 287, 437, 591, 749?\n911\nWhat is the next term in 53, 207, 463, 821?\n1281\nWhat is next in 8, 29, 86, 197, 380, 653, 1034, 1541?\n2192\nWhat comes next: 289, 595, 901, 1207, 1513, 1819?\n2125\nWhat is the next term in 37, 52, 91, 166, 289?\n472\nWhat comes next: 60, 87, 114, 141, 168?\n195\nWhat is next in -6686, -6687, -6688, -6689, -6690, -6691?\n-6692\nWhat is the next term in 54, 31, 6, -21, -50?\n-81\nWhat is next in -21, -77, -171, -303, -473, -681?\n-927\nWhat is next in 8, 45, 106, 191, 300?\n433\nWhat comes next: -7, -34, -103, -232, -439?\n-742\nWhat is next in 120, 242, 364, 486?\n608\nWhat is next in 542, 540, 536, 530, 522, 512, 500?\n486\nWhat comes next: 47, 88, 129, 170, 211, 252?\n293\nWhat is next in -101, -202, -317, -452, -613, -806, -1037?\n-1312\nWhat is next in 231, 228, 223, 216, 207, 196?\n183\nWhat is the next term in -42, -131, -220?\n-309\nWhat is" -"0 + 5. Let u = 10/9 + -11/18. What is the nearest to u in g, k, -1/4?\ng\nLet i = 1.6 - 0.6. Let z = 2.5 + -3. Let u = -0.2 - z. Which is the closest to i? (a) 0.1 (b) u (c) 0\nb\nLet w = -1.33 + 5.41. Let l = 0.08 - w. Which is the closest to 0.1? (a) 0.3 (b) l (c) 2/19\nc\nLet l = 1 - -1. Let z be 3/(-3)*(l - 1). What is the nearest to z in 0.2, -1, 0.1?\n-1\nLet z = -0.6 - 2.4. Let v = -5 + 5. Suppose v*h - 4*p = h - 1, -3*h - 5*p = -3. Which is the closest to -2/5? (a) h (b) 0.3 (c) z\nb\nLet o be 0/(-2) - (-6)/(-56)*-4. Which is the closest to 0.08? (a) o (b) 0 (c) -1/5\nb\nLet y = 34 - 33. Which is the nearest to -3? (a) -3 (b) y (c) -4\na\nLet j = 14 + -13.6. Let k = 0.4 - j. Which is the closest to -4? (a) 2/17 (b) k (c) -4\nc" -"0.14. What is the third smallest value in m, 1/4, -1/4?\n1/4\nLet b = -0.37 - -0.47. Suppose 5*u = -2*f, -2*u + 2*f = u + 16. What is the second smallest value in b, u, 1/4?\nb\nLet n = 52.93 + -53. What is the second smallest value in 2, n, 0.01?\n0.01\nLet r = -0.18 - -0.2. Which is the second smallest value? (a) 4/7 (b) 1/5 (c) r\nb\nLet y be (-20)/(-18) - 4 - -3. Which is the smallest value? (a) 0 (b) -3 (c) y (d) 2/13\nb\nLet n = -60/29 + 656/261. Let h(a) = -a**3 - a**2 + a - 3. Let k be h(0). Let z be (-2 - k)/(0 - 2). What is the second biggest value in 0.1, z, n?\n0.1\nLet s = 1 + -1.3. Let k = 3.01 - 0.01. Let g = 0 - k. Which is the biggest value? (a) 0.3 (b) g (c) s\na\nLet s = 30.9 + -31. What is the third smallest value in s, 0.5, 3/2?\n3/2\nSuppose -6 = 3*h - h. Suppose -2*y + 1 = 5*r, 5*y - 12 =" -"?\n15002142125\nIn base 11, what is 2a - -4004742?\n4004771\nIn base 12, what is 2546728 - -5?\n2546731\nIn base 11, what is -43859 - -1460?\n-423a9\nIn base 4, what is -11 + -201232210?\n-201232221\nIn base 16, what is 68b - -748d?\n7b18\nIn base 3, what is -220201000001 + 20222?\n-220200202002\nIn base 11, what is -9308290 - 0?\n-9308290\nIn base 2, what is -1011100101 + 111110000011?\n110010011110\nIn base 13, what is 10 - -10c2b508?\n10c2b518\nIn base 14, what is 1d120801 + -2?\n1d1207dd\nIn base 15, what is -2 - 4ca91c?\n-4ca91e\nIn base 8, what is 16740 + 3427?\n22367\nIn base 9, what is -2 - -773820?\n773817\nIn base 6, what is 113231550 + 11?\n113232001\nIn base 11, what is -2589 + 134?\n-2455\nIn base 4, what is 130 - 2000323020?\n-2000322230\nIn base 5, what is 134422 + 2224?\n142201\nIn base 14, what is 2bc - 52b9?\n-4ddb\nIn base 14, what is -d + 143b8d?\n143b80\nIn base 7, what is -3 + -224102264?\n-224102300\nIn base 12, what is 7aa - 505a?\n-4470\nIn base 2, what is 11110011001111011 + -1010000?\n11110011000101011" -" for h.\n5\nLet z be -2 + -2*(-1)/(-1) + 5. Solve -z + 6 = -5*p for p.\n-1\nLet u be (-4)/(-1) - (-17 - -6). Let w(v) = v**2 + 3*v - 2. Let t be w(-4). Solve u = -t*m - 3*m for m.\n-3\nSuppose -41 = -2*x + p + 2, -4*x + 3*p + 89 = 0. Solve 0 = -3*d + 8*d - x for d.\n4\nLet j(l) be the third derivative of -l**4/24 + l**3 - 14*l**2. Let u be j(2). Solve 0*m - u*m = 8 for m.\n-2\nLet b be (-64 + 62)*34/(-4). Solve 16 = -h + b for h.\n1\nSuppose -5*a + 3*h = -162, -4*h = 3*a - 2*h - 82. Suppose -9*d = -3*d - a. Solve d + 7 = 3*v for v.\n4\nSuppose 0*v - 2*v - 168 = -2*p, -5*p - 4*v = -402. Let i = 85 - p. Solve 4*s - 1 = i*s for s.\n1\nSuppose -3*s - 28 = -58. Suppose o + 7 = s. Solve o*j + 0 + 3 = 0 for j.\n-1\nLet o = 11 + -19." -"its digit of -1 - (2 + -7)*1?\n4\nLet w(v) = v + 2 + 2 - 8. Let a be w(4). Suppose 0 = -a*y + 2*y - 20. What is the units digit of y?\n0\nSuppose 4*i - 11 = 105. Suppose -5 + i = x. What is the units digit of x?\n4\nSuppose 0 = -5*g - 5*b + 650, 4*g - g + b = 390. What is the units digit of g?\n0\nLet r(n) = -n**2 - 3*n - 1. Let g be r(-1). Let p(z) be the second derivative of 2*z**5/5 + z**4/12 - z. What is the units digit of p(g)?\n9\nSuppose -10 = -4*f + 2*f. What is the units digit of f?\n5\nLet m be 4/6 + (-29)/3. Let r be 101/9 - (-2)/m. Suppose 2 = q - r. What is the units digit of q?\n3\nSuppose v = -4*v - 280. Let b be (3/(-4))/(21/v). Suppose 4*q - 39 = -4*y - q, -b*q + 38 = 3*y. What is the tens digit of y?\n1\nSuppose -w = 3*w - 252. What is the units digit of w?\n3\nSuppose" -"ose -17*n - t = -24*n. Solve -k - k + n = h for k.\n2\nLet z = 226 + -221. Let b be 10/z*(4 - (-12)/(-8)). Solve -b*p - 20 = -5 for p.\n-3\nLet x be (-26)/182 + 192/21. Solve -30*v = -x*v - 147 for v.\n7\nLet i = -11059 - -11064. Solve 288 = -31*o - i*o for o.\n-8\nLet c(n) = 2*n**2 + 16*n + 6. Let p be c(-8). Suppose -p*x + 0 = -36. Let w be ((-9)/(-5) - 1)*5. Solve -w*f = -x*f + 6 for f.\n3\nSuppose -28*w - 4*y = -25*w - 1312, -450 = -w + 5*y. Solve 0 = -11*a - 44*a + w for a.\n8\nSuppose 11*m + 32 = 27*m. Let k(c) = -c**2 + 9*c + 13. Let t be k(10). Solve -t*p - 5 = -m for p.\n-1\nLet u(a) = -a**3 + 4*a**2 - a - 4. Suppose -t - 8 = -2*b, 0*t + 6 = 4*b + 3*t. Let n be u(b). Let x be (-1029)/(-196) + 6/8. Solve -n*f + x = 16 for f.\n-5\nSuppose -5*m + 63 = 2*r" -" -4*r + 64, -k - 4*k = -5*r + 60. Is 15 equal to r?\nFalse\nSuppose 0 = -3*z - 12, 3*y = -2*y + 5*z + 65. Is 10 less than y?\nFalse\nLet j = -2.3 + 2.5. Which is smaller: j or -2?\n-2\nLet h = -29 + 31. Let p = -4 - -5. Which is greater: p or h?\nh\nLet f = -458 + 35268/77. Is f > 0?\nTrue\nLet d = -1 - -0.9. Let b = d - 0. Let t = -0.33 + -0.67. Which is smaller: t or b?\nt\nSuppose 7 = -4*d - 3*r - 4, -2*d = -4*r - 22. Which is bigger: 1/18 or d?\nd\nLet j = 11 - 8. Let g = j - 3. Let h = 0.01 + -1.01. Are h and g unequal?\nTrue\nLet r(y) = y**3 - 4*y**2 + 3*y - 1. Let s be r(2). Let g be (0*(2 - 1))/s. Which is smaller: g or -2?\n-2\nLet i = -30839/70 + 881/2. Is i greater than or equal to 1?\nFalse\nLet x = 55 - 55. Which is smaller: x or" -"letters picked without replacement from {e: 1, g: 1, w: 3, f: 5}?\n1/144\nThree letters picked without replacement from {g: 1, s: 1, z: 2, c: 1, h: 1, a: 1}. What is prob of sequence hza?\n1/105\nFour letters picked without replacement from {c: 13, s: 5}. What is prob of sequence cccs?\n143/1224\nCalculate prob of sequence rc when two letters picked without replacement from lrllccrzrzrllldzdl.\n4/153\nWhat is prob of sequence thu when three letters picked without replacement from ttuutwhutththuw?\n12/455\nFour letters picked without replacement from rrdddrpdprrrrrpp. Give prob of sequence rrrr.\n1/26\nWhat is prob of sequence lx when two letters picked without replacement from {s: 1, l: 17, x: 1}?\n17/342\nCalculate prob of sequence fmni when four letters picked without replacement from fimniffnmnnnmmffm.\n25/5712\nCalculate prob of sequence tqr when three letters picked without replacement from qrt.\n1/6\nTwo letters picked without replacement from {v: 12, o: 6}. Give prob of sequence vo.\n4/17\nWhat is prob of sequence dldm when four letters picked without replacement from {k: 5, e: 1, l: 2, m: 1, g: 2, d: 4}?\n1/1365\nFour letters picked without replacement from bbbbbgg. Give prob of sequence bbbb." -" -90.043 + o. What is c rounded to two dps?\n-0.04\nLet o be (-6)/(6*(-1)/4). Suppose -5194105 = o*d - 230121. Let j = d - -1920996. Round j to the nearest one hundred thousand.\n700000\nLet j(s) = -473335*s + 5. Let o be j(-6). Let v(n) = 3*n - 25. Let d be v(10). Suppose o = q - 5*q + d*h, -3*q - 2130012 = -4*h. Round q to the nearest 100000.\n-700000\nLet o = -118.5 + -4.5. Let d = o - -122.99999838. Round d to 7 dps.\n-0.0000016\nSuppose -5 = 4*f + 5*p - 21, 2*f - p = 8. Suppose 2*u + 44226 = -x, f*u + u + 110559 = -x. Let h = -27889 + u. Round h to the nearest ten thousand.\n-50000\nLet r(m) be the second derivative of 5917*m**4/3 - m**3/6 - 15*m**2/2 + 4*m + 1. Let q be r(-3). What is q rounded to the nearest one hundred thousand?\n200000\nSuppose -222 = -4*i - 2*z, i - 73 = -2*z - 19. Let n be (i/(-12) + 4)*6. Let r be n/12*3 + 10000001. Round r to the nearest 1000000.\n10000000\nLet p(m) =" -"18 - -27. Suppose l*w - 4*w = 4*o - 9, 0 = -w - 5*o - 25. Let z(k) = -4 - 5*k**2 + 2*k - k**3 - 2*k. Give z(w).\n-4\nLet q = -4 + -1. Let i(s) be the first derivative of -3*s**2 - 2*s**3 + 4 - 1/4*s**4 + 4*s. Give i(q).\n9\nLet o = 44 + -40. Let m(z) be the third derivative of z**7/5040 - 7*z**6/720 - 2*z**5/15 - 5*z**2. Let j(k) be the third derivative of m(k). Give j(o).\n-3\nLet r(x) = -6*x - 2. Let s(o) = o**2 + 5*o - 6. Let n = -6 - 1. Let w be s(n). Let h = -10 + w. Give r(h).\n10\nLet q(y) = -y - 3. Let d be q(-10). Suppose -d + 3 = f. Let k(g) = -g**3 - 5*g**2 - 7*g - 5. What is k(f)?\n7\nLet x(j) = 17*j**3 - 11*j**2 + 2*j + 14. Let q(c) = 5*c**3 - 4*c**2 + c + 4. Let o(t) = 7*q(t) - 2*x(t). Give o(5).\n-10\nLet m(z) = -z + 13. Let a(c) = -17*c + 179. Let q be a(10). Determine m(q).\n4" -") = q**2 - 9*q + 10. Let f be b(8). Suppose p = f*p - 44. Calculate the common denominator of 113/10 and 3/12 - 79/p.\n110\nFind the common denominator of 49/2 and ((5/5)/(-1))/((-4)/49).\n4\nLet p = 84 - 19. Suppose 2*g = 5*k - g - 85, 5*k + g - p = 0. Calculate the lowest common multiple of 6 and k.\n42\nSuppose -3*l = -2*l - 1, -5*j = 3*l - 6403. Let d = j + -811. What is the common denominator of 10/12*d/35 and 18/7?\n42\nSuppose 4*n = -n + 5. What is the smallest common multiple of n and 4?\n4\nWhat is the smallest common multiple of (-3)/(-3 - -9)*-22 and 21?\n231\nLet v = -32 - -35. Suppose -3*n + 44 = n + 2*z, z - 32 = -3*n. Calculate the least common multiple of n and v.\n30\nLet w(f) = f**2 - 12*f - 37. Calculate the lowest common multiple of w(16) and 12.\n108\nSuppose 0 = -5*z + 2 + 8. What is the least common multiple of z and 7?\n14\nFind the common denominator of 13/22 and (-3060)/(-400) -" -"570. Suppose -3*g = -p + u. Solve -n - g*n - 15 = 0 for n.\n-5\nSuppose -235 = 2*n - 7*n. Let u = 48 - n. Suppose 8*m - u = 15. Solve -h = -m*h - 1 for h.\n-1\nSuppose -4 = -x - 7. Let m be (-65)/x - 11/(-33). Suppose 3*a - 3*z = 54, 7*z = -2*a + 2*z + m. Solve 7 = -3*f + a for f.\n3\nSuppose -4*j - 10 = 5*v, -v - 10 + 27 = -3*j. Suppose v*t + 3*s = 21, 10*t - 13*t + 34 = 2*s. Let l be (3 - 2) + 2 + 0. Solve l*i + i = -t for i.\n-3\nLet n be (33/3)/(3/9). Solve -27*k + n*k = 6 for k.\n1\nLet r = -323 - -367. Suppose 2 = -2*u, 4*q + r*u - 23 = 43*u. Solve 0 = -q*t + 2*t + 4 for t.\n1\nLet n(g) = g**3 - 43*g**2 + 353*g - 24. Let b be n(32). Solve -29*c - b = -27*c for c.\n-4\nSuppose -18*i + 702 = -5*i. Suppose i*p - 11 = 97." -"Let c = b - y. Is c a multiple of 2?\nTrue\nIs -5 + 4 + 50/1 a multiple of 2?\nFalse\nSuppose -2*k + 2*x + 46 = 0, 2*k - 2*x - 103 = -3*k. Suppose -k - 7 = -m. Is 13 a factor of m?\nTrue\nLet b = 47 - 7. Is 8 a factor of b?\nTrue\nIs 33 a factor of (4/(-5))/((-12)/2910)?\nFalse\nLet b be -4*(3/4 - 2). Let k = b + -2. Suppose k*m - 53 = 76. Is 20 a factor of m?\nFalse\nLet q = -29 + 34. Let x(d) = d**3 - 4*d**2 + 5*d - 12. Does 19 divide x(q)?\nTrue\nLet z = 31 - -7. Suppose -u - u + z = 0. Is 19 a factor of u?\nTrue\nSuppose 3*u = 3 + 6. Suppose -2*l = u*l - 70. Is 7 a factor of l?\nTrue\nSuppose -53 = -2*a + 107. Let i = -36 + a. Is 11 a factor of i?\nTrue\nSuppose 0*t + 24 = 3*t. Is 8 a factor of t?\nTrue\nLet z = 8 - 14. Suppose 0 = -4*y" -"**2 + v*h + o*h**4 and give t.\n12\nExpress i**4 - 123*i**2 - 652 + 267 - 129*i**2 - 10*i**3 + 254*i**2 as s*i + c*i**2 + k*i**3 + z*i**4 + g and give k.\n-10\nRearrange -82760 - 4*x**3 + 5*x**3 - 970*x + 82761 + x**2 to the form w + b*x**2 + d*x + i*x**3 and give b.\n1\nExpress -77 + 28 + 2704*g**2 + 19 + 30 in the form a + v*g**2 + s*g and give v.\n2704\nRearrange -3*q + 5*q + 0*q + (4*q - 5*q + 3*q)*(-22826 + 1539 + 907) to the form o*q + g and give o.\n-40758\nRearrange 4*n**4 - 10 + 6*n**2 + 2*n**3 + 0*n**2 + 17 - 2*n**2 - 2*n**2 + 3*n to the form b*n**2 + h*n**4 + j*n + y*n**3 + k and give k.\n7\nExpress 0 - 536*m**4 + 508*m**4 - 7 - 18*m - 31*m + 5 in the form h + v*m**4 + k*m**3 + a*m**2 + p*m and give h.\n-2\nExpress 549*t + 705*t - 23 - 25 + 75 - 29 as f + a*t and give f.\n-2\nRearrange -1067*i - 1058*i +" -"*s + b*p - 5 = 6*p, -3*s - 5*p = 40 for s.\n-5\nLet q(y) = -3*y**3 + 3*y**2 - y. Let h be q(3). Let f = h + 66. Solve -5*z + 9*u - 4*u - 25 = 0, -5*z + u - f = 0 for z.\n-1\nSuppose -2*x - 16*x = -18. Solve p = -5*h - x, -7*h = -4*h + 4*p - 13 for h.\n-1\nLet s(n) = -n + 15. Let w be s(6). Suppose -w + 6 = -a. Suppose -3*v = 3*h - a, 0 = -v - 4*v - 4*h + 9. Solve j = -v*m + 3*m - 8, 0 = j - 5*m - 13 for j.\n-2\nLet i = 4 + -1. Suppose 5*q + 5*n - 15 = -0*q, i*q - 9 = 5*n. Suppose 0*v - 12 = -q*v. Solve 5*f - 21 = -4*u, 2*f = 4*u + v*f - 6 for u.\n-1\nLet f be 1833/117 - 2/(-6). Solve -3*k = -o + 12, -3*o + 3*k + f = -2*k for o.\n-3\nLet p be (27/6)/(3/(16 + 2)). Suppose 0*x - 3*x + 3*d =" -"+ 4*s + q = 0. Is t a multiple of 7?\nTrue\nLet n = 3259 - -10901. Is n a multiple of 20?\nTrue\nLet w(h) = 3*h**3 - 16*h**2 + 12*h - 150. Let n be w(12). Suppose -9*p + n = -1446. Does 24 divide p?\nTrue\nLet n(c) be the second derivative of -c**5/20 - 5*c**4/6 - 7*c**3/3 + 3*c**2/2 + 9*c. Let v be n(-8). Let q = v - -24. Is 11 a factor of q?\nTrue\nLet w = 1 - 1. Let d = 6552 + -5811. Suppose 37*c - 40*c + d = w. Does 19 divide c?\nTrue\nLet r(g) = g**3 + 7*g**2 + 6*g - 6. Let z be r(-6). Let y(h) = -h**2 + 22*h - 6. Let w be y(15). Let v = w + z. Is v a multiple of 13?\nFalse\nLet v(c) = -34*c - 99. Let q be v(-3). Suppose 1575 = 5*w - 6*n + n, 0 = q*w - 4*n - 945. Does 21 divide w?\nTrue\nLet q = 59 + -79. Let y be -4*(-5 - 95/q). Does 16 divide (-4 + 49)*(y - (-9)/3)?\nFalse\nLet" -"-0.28 + -6.72. Let j = 24 - d. Let l = j + -31.0054. Round l to three dps.\n-0.005\nLet o = -0.3852 - -0.388779. What is o rounded to 3 dps?\n0.004\nLet r be (3 - 0)/(21/(-28))*-3. Suppose s + 10 = r. Suppose d - 5*j = -5499995, 11000005 = -s*d - j - 4*j. What is d rounded to the nearest one million?\n-6000000\nLet m = 0.2792 + 4154.3208. Round m to the nearest 1000.\n4000\nLet z = -0.165 + 2.975. Let v = -2.79218 + z. Round v to 3 decimal places.\n0.018\nLet s = 30867 + -30747.711. What is s rounded to the nearest 10?\n120\nSuppose -5*x - 5 - 15 = 0, -t + 2330392 = 3*x. Suppose 6*r - 8*r = -t. Suppose -265202 = q - r. Round q to the nearest 1000000.\n1000000\nLet s = -106268021.16 + 106268035.959999491. Let b = 14.8 - s. Round b to seven decimal places.\n0.0000005\nLet p = 520.778 + -520. Round p to 1 dp.\n0.8\nSuppose 4*y = 4*h - 134588, 72*y = h + 69*y - 33641. What is h rounded to the nearest" -"k.\n5\nSuppose 0 = 5*p + 5 - 45. Solve 5*i - 3*i - p = 0 for i.\n4\nSuppose 0 = -n - 4*u - 1, 0 = n + n + 5*u - 4. Let m = n + -2. Suppose 3*z = -m*b - 2 - 8, 2*b - z - 7 = 0. Solve 3*h - b = 2 for h.\n1\nLet u = 44 - 42. Suppose 0*v - 3*v + 27 = 0. Solve u*g + g = v for g.\n3\nSuppose 0 = 2*s - 18 - 22. Let t(k) = -2*k - 6. Let g be t(-6). Let u = g - 1. Solve -u*v = -v + s for v.\n-5\nLet n be (-4)/(-6) + (-16)/(-12). Let m be (2 - -1 - 3)/n. Solve -3*q - 9 = -m for q.\n-3\nLet o be -1*(3 + -2) + 5. Suppose -y - 20 = r + o*y, r = 5*y + 20. Suppose -u - 2*u = r. Solve l - 5*l - 4 = u for l.\n-1\nLet n = 9 - 6. Suppose n*i = 4*i + l, 5*l = -2*i" -" j + 18*h = 22*h + 17 for j.\n1\nSolve -2*x + 3 = c, 4*c + 8 = 2*x - 5*x for x.\n4\nSolve 2*o - 379 + 362 = 3*d, 22 = 4*o - 2*d for o.\n4\nSolve -10*k + 15*v - 99 = 11, 7 = -2*k + k + v for k.\n1\nSolve s - 11 = 0, 4*y + 62*s = 59*s + 37 for y.\n1\nSolve 25 = -5*q, -2*c + 4*q = 7*q + 19 for c.\n-2\nSolve 0 = -c - 5*l - 17, 38 + 8 = -8*c + 5*l for c.\n-7\nSolve -n = -5*x + 8, 5*x - 35*n + 36*n = 22 for x.\n3\nSolve -26 = 2*a - 4*b, -5*b - 1962 = 4*a - 1897 for a.\n-15\nSolve 0 = -5*s - 4*x + 90, -7*x + 22 = s + 4 for s.\n18\nSolve 4*u = 4*b - 12, 7 = 1778*b - 1773*b - 3*u for b.\n-1\nSolve 25*w = 60*w + 3*g - 82, 3*w = 4*g - 10 for w.\n2\nSolve -578*w + 576*w + b + 12 = 0," -"me factors of s(-6).\n103\nSuppose -5*a - 303 = 2*g - g, -5*a + 3*g - 311 = 0. Let k = 180 + a. What are the prime factors of k?\n7, 17\nLet n = 101 + -57. Let k be (-154)/12 + (-25)/(-30) + -1. Let x = n - k. What are the prime factors of x?\n3, 19\nSuppose 9*l + 3*n = 7*l + 309, -800 = -5*l - 2*n. What are the prime factors of l?\n2, 3\nLet z be -2 - 3/(-1) - -1. Suppose -3*u + 43 = 4*x, -x + 8 = -z*u - 0. What are the prime factors of x?\n2, 5\nLet s = -2486 - -3535. List the prime factors of s.\n1049\nSuppose -4*i = -23 + 3, -100 = -5*o - 5*i. Let n be 162/5 + (-6)/o. List the prime factors of n + (2 - 0) + 1.\n5, 7\nSuppose 4*k = 2*x + 16, 0 = x - 3*x + 5*k - 21. Let l(h) = h**x + 3 + 4*h + h - 3*h - 1. What are the prime factors of l(-5)?\n17\nLet i =" -" p*r**4 and give l.\n1\nRearrange (33*h**2 - 24*h**2 - 15*h**2)*(0 + 2*h + 0) to the form m*h**3 + q*h + x + z*h**2 and give m.\n-12\nExpress 3*b - 10*b + 4 + 1 + 8*b in the form q + s*b and give s.\n1\nExpress 22*u**2 - 6*u**3 - 4 - 21*u**2 + 2*u**4 + 4*u**3 in the form o*u**2 + b*u**3 + g*u + d*u**4 + a and give o.\n1\nRearrange 4*z**3 - 7*z**3 + 2*z**2 + 1 - 1 to the form r*z + y*z**2 + d + m*z**3 and give m.\n-3\nRearrange (-3 + 4 - 4)*(-6 + 0 + 2)*(-4*y**2 + 5*y**2 - 4*y**2) to m + k*y + o*y**2 and give m.\n0\nRearrange (-8*d + d - d)*(3*d**2 + d**2 - d**2) to the form c*d**2 + w + m*d**3 + u*d and give w.\n0\nRearrange (-h**3 - 4*h**3 + 4*h**3)*(118 - 215 + 174) to b*h**3 + r + a*h + v*h**2 and give b.\n-77\nExpress -12*s - 4*s - s - 12*s as m + w*s and give w.\n-29\nRearrange (-a + 4*a - a)*(4*a**2 - 1 + 597*a - 597*a) +" -"+ 28 + 224) in the form s + j*k and give j.\n-2704\nRearrange (-2*t + 2*t - 2*t)*(-5 + 3 + 1)*(5*t + 7*t + 0*t) to q*t + p*t**2 + o and give p.\n24\nRearrange (-4*r**3 + 5*r**3 + 311*r**2 - 239*r**2)*(5*r - 7*r + 5*r) + 0*r**4 - 2*r**4 + 0*r**4 to o*r + a*r**3 + m*r**4 + z + l*r**2 and give a.\n216\nExpress (68*c**3 + 158*c**3 + 69*c**3)*(c - 3 + 3) in the form j + w*c**2 + t*c + a*c**3 + r*c**4 and give r.\n295\nRearrange (-70 - 75 + 12*o + 161)*(3*o**2 - 5*o**2 + 6*o**2) to m*o**3 + n + v*o + j*o**2 and give j.\n64\nExpress -2 + 6*d**2 - 13*d**2 + 111*d**2 in the form n + f*d + j*d**2 and give j.\n104\nRearrange d**4 - 7*d**4 + 4*d**4 + (23*d**3 + 22*d**3 + 3*d**3)*(-3 + d + 3) to the form x*d + b*d**3 + p*d**4 + u + q*d**2 and give p.\n46\nRearrange 43*v - 54*v - 162*v - 89*v to the form k + t*v and give t.\n-262\nExpress -100*j + 197*j - 100*j - 1 - 4" -"6*n**2 - 92*n**2 - 95*n**2 - 83*n**2 - 85*n**2.\nn**2\nCollect the terms in -88*f**3 + 46*f**3 + 45*f**3.\n3*f**3\nCollect the terms in -2*t**2 - 4323412 + 4323412 - t**2.\n-3*t**2\nCollect the terms in 811*u**3 - 1543*u**3 - 2407*u**3.\n-3139*u**3\nCollect the terms in -46*z**2 + 102*z**2 - 55*z**2.\nz**2\nCollect the terms in 16 - 3*v**2 - 38 + 22.\n-3*v**2\nCollect the terms in -569*q - 50*q**2 + 48*q**2 + 569*q.\n-2*q**2\nCollect the terms in l**3 - 6 - 4 + 10.\nl**3\nCollect the terms in 320*n**3 - 623*n**3 + 313*n**3.\n10*n**3\nCollect the terms in 2*p + 2 - 5 + 0 + 1.\n2*p - 2\nCollect the terms in -b**3 - 17*b**2 + 6*b**3 - 12*b**2 + 28*b**2.\n5*b**3 - b**2\nCollect the terms in -v + 59 + 65 - 124.\n-v\nCollect the terms in -1 - 29*x + 1 - 3*x.\n-32*x\nCollect the terms in -36*c + 17*c + 19*c - 30*c**2.\n-30*c**2\nCollect the terms in 2 - 17*u**2 + 52*u**2 - 2 - 36*u**2.\n-u**2\nCollect the terms in -5 - 5*b + 15 + 0*b.\n-5*b + 10\nCollect the terms in -8*d**2 -" -"= 4227 - 2971. What are the prime factors of n?\n2, 157\nLet t = -529 + 362. Let w = -156 - t. List the prime factors of w.\n11\nLet k = 90 + 56. Suppose -k = -18*p + 16*p. What are the prime factors of p?\n73\nSuppose -3*x + 4*g = 2*g + 94, 4*x - 2*g + 122 = 0. Let r = x - -43. What are the prime factors of r?\n3, 5\nLet a be (-4)/((-16)/12) + 6. Let z be a/(-1)*10/(-15). What are the prime factors of 380/z - (-3)/(-9)?\n3, 7\nLet c(p) = 12*p**2 - 26*p + 52. What are the prime factors of c(10)?\n2, 31\nLet k(g) = 17*g + g**2 - 2*g**2 + 12 + 4. What are the prime factors of k(11)?\n2, 41\nLet n(b) = -23*b**3 + b**2 + 3*b - 9. List the prime factors of n(-4).\n3, 163\nSuppose 3*r - 5*j - 14420 = 0, -r - 3*j + 3227 = -1561. What are the prime factors of r?\n2, 3, 5\nLet p(c) = 22*c - 32. Let m be p(8). Suppose 6*o - 3*o = z" -"7\nWhat is the greatest common divisor of 7620 and 120?\n60\nWhat is the greatest common divisor of 1600 and 50?\n50\nWhat is the greatest common factor of 50 and 1450?\n50\nWhat is the highest common factor of 2359 and 77?\n7\nCalculate the greatest common factor of 12 and 6.\n6\nWhat is the greatest common divisor of 140 and 11620?\n140\nWhat is the greatest common divisor of 2595 and 75?\n15\nCalculate the highest common factor of 75 and 135.\n15\nWhat is the greatest common divisor of 23 and 1127?\n23\nWhat is the highest common divisor of 870 and 2378?\n58\nCalculate the greatest common divisor of 66 and 10516.\n22\nCalculate the greatest common factor of 182 and 13.\n13\nWhat is the highest common factor of 41 and 4838?\n41\nCalculate the greatest common divisor of 315 and 207.\n9\nWhat is the highest common factor of 286 and 143?\n143\nWhat is the highest common divisor of 272 and 42296?\n136\nCalculate the highest common factor of 130 and 30.\n10\nCalculate the greatest common factor of 24 and 104.\n8\nWhat is the greatest common divisor of 209" -"e between 1:57 PM and 8:55 PM?\n418\nHow many minutes are there between 8:11 AM and 10:45 AM?\n154\nWhat is 243 minutes after 9:32 AM?\n1:35 PM\nWhat is 166 minutes before 6:30 AM?\n3:44 AM\nWhat is 51 minutes before 12:22 PM?\n11:31 AM\nHow many minutes are there between 10:31 PM and 6:04 AM?\n453\nWhat is 354 minutes after 12:18 PM?\n6:12 PM\nWhat is 419 minutes before 7:23 PM?\n12:24 PM\nWhat is 445 minutes before 1:38 PM?\n6:13 AM\nHow many minutes are there between 5:24 PM and 4:42 AM?\n678\nHow many minutes are there between 6:29 PM and 10:12 PM?\n223\nWhat is 111 minutes before 10:55 PM?\n9:04 PM\nWhat is 40 minutes before 2:24 PM?\n1:44 PM\nHow many minutes are there between 11:25 AM and 3:55 PM?\n270\nHow many minutes are there between 2:41 PM and 1:59 AM?\n678\nHow many minutes are there between 11:33 PM and 9:06 AM?\n573\nHow many minutes are there between 9:36 AM and 12:53 PM?\n197\nHow many minutes are there between 2:26 AM and 11:50 AM?\n564\nHow many minutes are there between 3:12 PM and 10:40 PM?\n448" -"10*f**4 - 136*f**4 + f**3 in the form r*f**2 + z + h*f + g*f**3 + k*f**4 and give k.\n-236\nExpress (79 - 161 - 703)*(-1 - 2 + 1)*(2*w**2 - w**2 - 7*w**2)*(1 - 1 - 3 - w) in the form b + y*w**3 + d*w**2 + h*w and give d.\n28260\nExpress -34*g + 29*g + 12758 - 12700 as a + v*g and give a.\n58\nRearrange -308 + w + 17*w**2 - 344 + 655 + 94*w**3 to the form u*w + s + f*w**2 + p*w**3 and give u.\n1\nRearrange -66*t + 13863 - 13857 - 123*t to b + u*t and give u.\n-189\nRearrange 42*w - 44*w - 23 + 7 + (2*w - 4*w + 6*w)*(4 + 4 - 2) to the form r + l*w and give l.\n22\nRearrange -2*c**2 + 128*c**4 + 5*c + 36*c**4 + 1 - 167*c**4 + 96*c**3 to the form u + x*c**2 + f*c + y*c**4 + j*c**3 and give u.\n1\nRearrange -4*m + 2*m**3 - 1 + 1258*m**2 - 623*m**2 - 633*m**2 + 150 - 3*m**3 to c*m + q + h*m**2 + w*m**3 and give q.\n149\nRearrange" -"thout replacement from {a: 4, b: 8, n: 2, u: 1}. What is prob of picking 1 b, 1 n, and 1 a?\n64/455\nThree letters picked without replacement from {k: 1, b: 3, a: 3}. Give prob of picking 1 a and 2 b.\n9/35\nTwo letters picked without replacement from pphhsxhysxds. What is prob of picking 2 x?\n1/66\nWhat is prob of picking 2 k, 1 p, and 1 v when four letters picked without replacement from vkmvdkdxmdpdpmdddkp?\n3/646\nCalculate prob of picking 1 x and 2 t when three letters picked without replacement from {s: 1, t: 2, x: 1, f: 2, r: 2}.\n1/56\nThree letters picked without replacement from cecgggscceci. Give prob of picking 1 c, 1 s, and 1 e.\n1/22\nCalculate prob of picking 1 a, 1 h, and 1 z when three letters picked without replacement from {h: 2, z: 2, k: 4, a: 6, y: 3}.\n3/85\nTwo letters picked without replacement from {f: 1, i: 6, q: 3, k: 3, v: 5, u: 1}. What is prob of picking 1 i and 1 k?\n2/19\nWhat is prob of picking 2 e when two letters picked without replacement from" -" 0*w**3. Factor m(r).\n2*r**3*(r - 1)*(r + 1)/7\nLet w(y) be the third derivative of y**6/360 + y**5/60 + 10*y**2. Suppose w(c) = 0. Calculate c.\n-3, 0\nLet -1/4*t**4 - 7/4*t**3 - 15/4*t**2 - 9/4*t + 0 = 0. Calculate t.\n-3, -1, 0\nLet j(f) be the first derivative of -3/4*f**2 + f + 4 - 1/3*f**3. Suppose j(t) = 0. Calculate t.\n-2, 1/2\nLet d(s) be the second derivative of s**4/72 + 2*s**3/9 + 14*s. Factor d(q).\nq*(q + 8)/6\nLet p(g) be the first derivative of -2*g**5/25 + g**4/5 - 2*g**3/15 - 2. What is i in p(i) = 0?\n0, 1\nSuppose 1 = -3*a + o + 6, 0 = 3*a + 4*o - 10. Factor 3 - l**a - 2*l + 6*l**2 - 5*l - l**3.\n-(l - 3)*(l - 1)**2\nLet u(x) be the second derivative of -x**6/180 - x**5/60 - x**3/3 - x. Let d(p) be the second derivative of u(p). Suppose d(j) = 0. Calculate j.\n-1, 0\nLet n be (23 - 11)*(3 + 26/(-9)). Factor 0*o**2 + 0 + 2/3*o**5 - n*o**3 + 0*o**4 + 2/3*o.\n2*o*(o - 1)**2*(o + 1)**2/3\nLet d(c) be the first derivative" -"*u + u**3 - 3*u to the form b*u + y*u**3 + l + t*u**2 + v*u**4 and give y.\n1\nRearrange -3*j**2 - 2 + 57*j - 57*j to g + m*j + q*j**2 and give g.\n-2\nRearrange -x**3 - 3*x**2 + 2*x**2 + 0*x - x**4 - x + 3*x to the form f*x**2 + m*x**4 + j + c*x + y*x**3 and give m.\n-1\nExpress (0 + c + 0 + (0 - 2 + 3)*(c + 2*c - 7*c))*(-c**2 - 5*c**2 - 2*c**2) in the form x*c + w*c**2 + o + y*c**3 and give y.\n24\nRearrange 0*i**2 - 4*i**2 + 2*i**2 + 6*i**2 + 4*i**2 + 3*i**2 + (-2*i + 5*i - 2*i)*(i + 3*i - 6*i) to p + v*i**2 + h*i and give v.\n9\nExpress -4 + 4 + 25*y - 9*y as g*y + k and give g.\n16\nExpress -o**2 + 6 - 6 - 3*o in the form m*o**2 + h + v*o and give v.\n-3\nRearrange (3*n**2 - 3*n**2 - 4*n**3)*(-2 + 4 + 0) - 7*n**3 - 3 + 3 to the form f*n**2 + a*n + z + g*n**3 and give g." -" = -2*g**2 - 53*g - 23. Let f be x(-26). Suppose -n + 12 = 4*u, -f*u - n - 2*n = -18. Solve -u*s = 9*s + 44 for s.\n-4\nLet l(x) = -x**2 + 5*x - 2. Let u be l(6). Let y = u - -13. Suppose 32 + 37 = 31*g - 24. Solve d + y - g = 0 for d.\n-2\nLet x(p) = -2*p + 3*p**2 - 4*p**2 + 0*p**2 + 0*p**2 + 9. Let a be x(-4). Let d be a/3 + 98/21. Solve d = 3*h - 7 for h.\n4\nLet a be 0/((-77)/28 - 7/28). Let s = 13 - 2. Suppose -s*t - 1 + 45 = a. Solve -t*c = -0*c for c.\n0\nSuppose w + w - 4*l = 38, 0 = -3*w + 4*l + 49. Suppose 12 + 0 = 3*r + v, 2*v + w = r. Let g be (-4)/(-3) + (-40)/(-6). Solve r*q + g = q for q.\n-2\nLet u be 150/(-4) + 0 + (-6)/(-12). Let j = u - -51. Let r(f) = -f**3 + 14*f**2 + 3*f - 35. Let k be r(j)." -" of 40199908?\n2, 7, 37, 38803\nWhat are the prime factors of 99148440?\n2, 3, 5, 571, 1447\nList the prime factors of 1595324549.\n7, 13, 353, 49663\nList the prime factors of 591557728.\n2, 4157, 4447\nList the prime factors of 771273564.\n2, 3, 64272797\nWhat are the prime factors of 30553164?\n2, 3, 848699\nWhat are the prime factors of 3873235602?\n2, 3, 1187, 543841\nWhat are the prime factors of 717787566?\n2, 3, 17, 137983\nList the prime factors of 42886580.\n2, 5, 11, 17, 11467\nWhat are the prime factors of 185054623?\n13, 19, 749209\nList the prime factors of 1842916470.\n2, 3, 5, 71, 193, 4483\nList the prime factors of 78757728.\n2, 3, 7, 233, 503\nList the prime factors of 94679490.\n2, 3, 5, 29, 108827\nWhat are the prime factors of 962354930?\n2, 5, 96235493\nWhat are the prime factors of 223528388?\n2, 19, 271, 10853\nWhat are the prime factors of 643182282?\n2, 3, 3970261\nWhat are the prime factors of 110221263?\n3, 59, 69191\nList the prime factors of 2034256204.\n2, 19, 317, 84437\nWhat are the prime factors of 1047526?\n2, 523763\nWhat are the prime factors of 598463596?" -")*(-t + 0*t + 0*t))*(-3 - 3 + 2) - t**2 - 3*t**2 - 2*t**2 to the form z*t**2 + r + v*t and give z.\n-34\nExpress 40*f - 468*f + 178*f - 407*f as v + b*f and give b.\n-657\nRearrange 35*b - 2*b**2 - 34*b - 11*b**3 + 2 + 22*b**3 - 27*b**3 + 2*b**4 - 34*b**3 to the form r*b**2 + i*b**3 + u + f*b**4 + n*b and give r.\n-2\nRearrange (-s**2 - 2*s**2 + 2*s**2)*(-109 + 29 + 41)*(2 - 1 - 6) to y*s**2 + f + u*s and give y.\n-195\nRearrange ((-3 + 2 - 1)*(-c + 3*c - c) + 2*c - c - 2*c + 1 - 1 + 2*c)*(17251 + 1243*c - 17251) to the form l + z*c + h*c**2 and give h.\n-1243\nExpress (0 - 2 + 5)*((3*l - l - 3*l)*(0*l - l**2 + 0*l) - 4582 - 29*l**3 + 4582 - 4*l**3 + 3*l**3 + 2*l**3) as y + q*l**3 + r*l + f*l**2 and give f.\n0\nRearrange (2*k + 2*k - 5*k)*(53*k**3 + 401 - 197 - 202) + 2*k**4 + 2*k**4 + 2*k**4 to x*k**4 + w +" -"v and 0 unequal?\nTrue\nLet d = -3.44 + -0.4. Let k = d + 3.3. Let q = 10.46 - k. Is q > -2?\nTrue\nLet s be (-2)/6*(20 + 1). Let d be 542*1*s/28. Are d and -136 equal?\nFalse\nLet a(i) be the third derivative of i**5/10 + i**4/6 + 5*i**3/6 + i**2 - 20*i. Let c be a(-2). Is c less than or equal to 21?\nTrue\nLet h = 257 + -179. Let q = h - 102. Let s = 41 + -64. Which is smaller: q or s?\nq\nLet j be (-9)/(-40)*(-20)/5. Let t be (-404)/(-20) - 4/(-5). Suppose 0 = -2*r - 5*b + t, 4*r - 5*b = r - 31. Is r < j?\nTrue\nLet c be (16/(-24))/((-2)/33). Let w(z) = z**2 - 7*z + 24. Let i be w(c). Suppose -3*r + 2*j - i = 0, 0 = -5*r - 0*j + 2*j - 112. Which is smaller: -20 or r?\nr\nLet x(k) = k**2 + 8*k - 17. Let o be x(-10). Let d(u) = 3*u**3 - 28*u**2 - 9 + o*u + 25*u**2 - 2*u**3. Let y be d(3). Which is" -" highest common divisor of 792117 and 6573807.\n2547\nCalculate the greatest common divisor of 1242927 and 26397.\n63\nWhat is the greatest common factor of 36 and 3603120?\n12\nWhat is the highest common divisor of 1746 and 11012798?\n194\nCalculate the greatest common factor of 831493 and 2171.\n2171\nCalculate the greatest common factor of 580 and 28885160.\n580\nCalculate the greatest common divisor of 42260751 and 27.\n27\nCalculate the greatest common factor of 212896509 and 1498.\n749\nCalculate the highest common factor of 23265800 and 2.\n2\nCalculate the highest common factor of 672 and 3762276.\n84\nWhat is the greatest common divisor of 6340 and 17988799?\n317\nWhat is the greatest common factor of 3036 and 24464847?\n759\nCalculate the greatest common divisor of 31 and 14791619.\n31\nWhat is the highest common divisor of 133 and 6837131?\n133\nCalculate the greatest common factor of 13653 and 10392967.\n1517\nWhat is the highest common factor of 20752 and 118997156?\n5188\nWhat is the greatest common factor of 27036555 and 2262?\n1131\nCalculate the highest common factor of 16125 and 51661125.\n375\nWhat is the greatest common divisor of 65651858 and 34?\n34\nWhat is the highest" -"37/2*(-4 - -6). Find the second derivative of 74*x + 0*x**3 + 121*x - 107*x + j*x**4 - 2*x**3 wrt x.\n444*x**2 - 12*x\nLet p(t) be the second derivative of 0 + 0*t**2 - 211*t + 0*t**5 + 4/21*t**7 + 0*t**3 + 0*t**6 - 173/12*t**4. Find the third derivative of p(l) wrt l.\n480*l**2\nSuppose -4*m = 5*r - 263, 5*m - r - 186 = 179. Find the second derivative of -29 + 61*g**3 + m*g**2 + 27 + 44*g - 70*g**2 wrt g.\n366*g + 4\nLet m = 19 - 15. Suppose 3*q = -v + 34 - 6, 0 = -4*q - m*v + 32. Differentiate 0*f**2 + 8 - q*f**2 - 7*f**2 - 1 with respect to f.\n-34*f\nLet s = 130 - 117. Differentiate -s*n - 31*n - 10 + 16*n with respect to n.\n-28\nLet v(c) be the second derivative of c**5/10 + c**4/4 + c**3/3 + 16*c**2 + 12*c + 10. What is the second derivative of v(f) wrt f?\n12*f + 6\nLet w(k) = -261*k**3 - 4*k**2 - 16*k + 2064. Let s(l) = 521*l**3 + 7*l**2 + 27*l - 4128. Let m(f) = -4*s(f) - 7*w(f)." -"+ 30 + -23 + 23?\n12\nEvaluate (0 - -2 - 9) + 0 + 11 + -10.\n-6\nWhat is the value of 30 + 35 + -27 + -27?\n11\nEvaluate 34 - (-34 - (19 - 66)).\n21\nWhat is the value of 2 - 4 - -1 - (18 + (15 - 42))?\n8\nCalculate -3 + -6 + 2 - (-5 - (-5 - 1)).\n-8\nWhat is the value of 9 - (20 + -11 + -5)?\n5\nCalculate (2 - 9) + (18 - 20).\n-9\nCalculate -7 + -7 + -4 + 5 + 8.\n-5\nEvaluate 3 + (-5 + 5 - (-13 - -10)).\n6\nEvaluate ((-7 - 5) + 2 - -8) + 19.\n17\nEvaluate 0 + 4 + 4 + (9 - -1) + 1.\n19\nWhat is 5 - (4 - -3 - (8 + -9 + 12))?\n9\nEvaluate 6 + -3 - (-67 + 78 + -8 + 1).\n-1\nCalculate -25 + 20 - (-1 + (-10 - -1) + -1).\n6\nCalculate 1 - (-6 - (-1 - (24 - 4))).\n-14\n18 + (-28 + (3 - -30) - (5" -"5\nCalculate 0 - -1435504.\n1435504\nPut together -2.16 and 0.05.\n-2.11\n-127+-2794\n-2921\n0.05 + 192\n192.05\n-0.4 - -1600\n1599.6\nWhat is 0.05 plus -294.756?\n-294.706\n-0.1496 - 0.074\n-0.2236\nWhat is -0.636 less than -2.8?\n-2.164\nTotal of 7.9 and -0.041.\n7.859\nWhat is 0 take away -0.14873?\n0.14873\nAdd together -3248585 and 0.5.\n-3248584.5\nAdd together -137624 and -3.\n-137627\nSubtract 339.681 from -6.\n-345.681\nAdd -1.3 and -1044544.\n-1044545.3\n5349.092 + -0.2\n5348.892\nWhat is the difference between 1.564 and -0.93?\n2.494\nWhat is -0.0527 less than -0.098?\n-0.0453\nWhat is 5 - -395?\n400\nTotal of -5 and -1.136.\n-6.136\nWhat is 1.117 minus -1.5?\n2.617\nCalculate 97 - 3.417.\n93.583\nWork out 4 - -7725.\n7729\nWhat is -254 + 0.4?\n-253.6\nWhat is 222986 plus -0.4?\n222985.6\nTotal of 0.1 and -179.\n-178.9\nWork out -442 + 1865.\n1423\nAdd together -1055 and -7987.\n-9042\nWhat is -1033 - -2?\n-1031\nWhat is the difference between 188431 and 0.2?\n188430.8\nAdd together -0.4 and -796.\n-796.4\nWhat is -2648 + 4?\n-2644\nAdd -0.5 and 0.02282.\n-0.47718\nWhat is -23 plus -0.25?\n-23.25\nWhat is -0.12 take away 686?\n-686.12\nWhat is" -"+ 29 - (3 - -2).\n20\nWhat is the value of -1888 + 1888 - ((3 - 8) + -1 + 2)?\n4\nWhat is the value of -1 - (-7 + (3 - -5)) - 9?\n-11\n-9 + 7 + -11 + 14\n1\nCalculate 8 + -6 + 3 + 4 - 26.\n-17\nWhat is the value of -161 + 163 - (2 + (1 - 1) - 7)?\n7\nWhat is -2 + -15 + 3 + (-42 + 17 - -36)?\n-3\nEvaluate -3 - (-9 - (-8 - 10) - 5).\n-7\n33 + 18 - (-3 + 39)\n15\nWhat is -5 - (2 + (-13 - -6) + 9)?\n-9\nWhat is 11 - (4 - 18 - -15)?\n10\nWhat is -12 + (34 + -1 - (-1 - 15))?\n37\nWhat is 5 - (7 - 5 - 4) - 4?\n3\n-2 + 0 + -14 + -22 + (5 - -20)\n-13\n-7 - (-7 + (4 - (-6 + 9)))\n-1\n13 - ((13 - -12) + -15)\n3\nWhat is the value of (-63 - 13 - -25) + 33?\n-18\nEvaluate 5 -" -" (-2)/z - 48/(-21). What is the third derivative of 11*y**3 + y**3 - y**3 - 8*y**2 + d*y**2 wrt y?\n66\nLet y = 0 - -25. What is the third derivative of 86 + y*b**3 - 86 - 5*b**2 wrt b?\n150\nLet v = 16 - 17. Let b(q) = -2*q + 3. Let n be b(v). What is the second derivative of 3*p**3 + n*p + p + 0*p**3 - p wrt p?\n18*p\nLet y = 64 + -53. Find the second derivative of -25*c - 16*c**3 - y + 9 + 2 wrt c.\n-96*c\nLet c(p) = -3*p**3 - p**2 + p - 1. Let x(y) = 142*y**3 - 4*y**2 + 89*y - 3. Let h(l) = -4*c(l) + x(l). Find the second derivative of h(o) wrt o.\n924*o\nWhat is the second derivative of -6*h - 258*h**4 + 42*h**4 + 4 - 2 - 59*h**4 wrt h?\n-3300*h**2\nLet l(d) be the first derivative of 93*d**5/5 + 104*d - 110. What is the derivative of l(k) wrt k?\n372*k**3\nSuppose -2*h = -0*h - 184. Differentiate -h*w**3 + 71*w**3 + 3 + 18 with respect to w.\n-63*w**2\nSuppose -37*j + 62 =" -"ast common multiple of 5 and 15.\n15\nCalculate the common denominator of -101/276 and -35/24.\n552\nCalculate the common denominator of 31/152 and -99/10.\n760\nWhat is the common denominator of -59/2590 and -127/42?\n7770\nCalculate the lowest common multiple of 2400 and 15.\n2400\nCalculate the common denominator of 10/33 and -23/33.\n33\nFind the common denominator of 73/36 and 25/78.\n468\nFind the common denominator of -22/117 and -19/63.\n819\nWhat is the common denominator of -45/3008 and -45/16?\n3008\nFind the common denominator of -64/315 and -81/10.\n630\nWhat is the least common multiple of 30 and 1065?\n2130\nWhat is the lowest common multiple of 3164 and 14?\n3164\nFind the common denominator of -25/32 and -31/27.\n864\nWhat is the lowest common multiple of 48 and 6?\n48\nCalculate the common denominator of -93/1762 and -117/20.\n17620\nFind the common denominator of -99/8 and 101/174.\n696\nWhat is the common denominator of 29/869 and -35/1738?\n1738\nCalculate the smallest common multiple of 198 and 5500.\n49500\nWhat is the common denominator of 77/75 and -67/4?\n300\nCalculate the lowest common multiple of 2 and 36.\n36\nWhat is the common denominator of 41/21 and" -"= -2*p. Let j = 27 - 21. Calculate the least common multiple of p and j.\n48\nSuppose v - 3*v + 4 = 0, 80 = t - 2*v. Calculate the least common multiple of 98 and t.\n588\nLet q = -455/2 - -2500/11. Find the common denominator of q and 2*1/4*(-1725)/(-4255).\n814\nLet y(i) = i**3 + 24*i**2 + i + 34. Let q = 39 - 63. Calculate the lowest common multiple of 68 and y(q).\n340\nLet t = -128125 + 13837391/108. What is the common denominator of t and -113/132?\n1188\nLet u = 925/2 - 486. What is the common denominator of 35/4 and u?\n4\nLet m = 1605 - 1599. What is the smallest common multiple of 323 and m?\n1938\nLet w = -926763/308 - -21048/7. Calculate the common denominator of w and 49/11.\n44\nLet d = -78857310907/178902660 - -3/5963422. Let t = 7117/12 + d. Let g = -151 + t. Find the common denominator of 3/10 and g.\n10\nSuppose -2 = 2*b - 3*b. Suppose 2*s = -2*m + 5*m - 33, m = -b*s - 29. Let t(v) = -v**3 - 14*v**2 + 14*v" -" biggest value? (a) -0.4 (b) -2/11 (c) n (d) 4\na\nLet k be (-3 - 6*-1)*2/6. What is the second biggest value in -0.1, 3/23, k?\n3/23\nLet t = -8 - -5. Let h = t - -3.2. Suppose 5 - 56 = -17*p. Which is the biggest value? (a) p (b) h (c) 1/4\na\nSuppose 10 = -w + 14. Suppose -3*f + 4*j = -17, 6*j = 8*j + w. Let d = 2.1 - 2. Which is the smallest value? (a) f (b) -2/5 (c) d\nb\nLet s = 10050/7 - 1436. What is the smallest value in s, -18, -2/5?\n-18\nLet j = 302 - 301.9. Let q = 1163/9 + -129. What is the smallest value in j, q, 0.5, -3/10?\n-3/10\nLet q be (81/42 - 2)*2. Let g = 20.9 - 20. Let a = -1.1 + g. What is the third smallest value in q, 5, a?\n5\nLet j = 31.995 - -0.005. Let n = -34 + j. What is the third biggest value in 0, 0.01, n?\nn\nLet g = -0.24 + 0.54. Let a = -11 - -6. Let j = -13/5" -"olve 0 = 17385*h - 16895*h + 18130 for h.\n-37\nSolve -280035 + 263031 = 156*q for q.\n-109\nSolve 141*y = 62*y - 23 - 2268 for y.\n-29\nSolve -3574*m + 74904 = 1182*m - 414964 for m.\n103\nSolve 0 = -63*l - 125*l + 220*l + 1248 for l.\n-39\nSolve -141 = -28*z - 605 - 824 for z.\n-46\nSolve -663*l - 22490 = -2018*l + 49325 for l.\n53\nSolve 4229*g + 65721 = -348*g - 543020 for g.\n-133\nSolve -13582 = -1917*v - 53839 for v.\n-21\nSolve 4158*s - 2834 - 334 - 9551 + 245 = 0 for s.\n3\nSolve 7744 = 62*y - 1030*y for y.\n-8\nSolve 1247*b + 17425 = 1672*b for b.\n41\nSolve -128*w - 758*w - 9746 = 0 for w.\n-11\nSolve 3756*o = -244225 + 45157 for o.\n-53\nSolve 1853*l = 16218 + 37519 for l.\n29\nSolve -3021*j - 1116 = -76641 for j.\n25\nSolve 0 = -240*l + 9742 - 1646 - 2816 for l.\n22\nSolve -313565 = -2759*c - 51460 for c.\n95\nSolve 704 = 57*a - 1234 for a.\n34\nSolve" -" -0.19 and 3?\n-0.57\nWork out -11.855 * -4.\n47.42\nMultiply -0.1 and 7.\n-0.7\nCalculate 5*113.\n565\nCalculate -4*3.6.\n-14.4\n0.2 times 1.24\n0.248\n2.327 * -0.3\n-0.6981\n3 * -5546\n-16638\nMultiply -0.1 and -27.5.\n2.75\nCalculate -4.998*-0.2.\n0.9996\n-0.2*-68\n13.6\n-0.1*73\n-7.3\n-6 times -0.1\n0.6\nMultiply 49 and -6.8.\n-333.2\n4*180\n720\nWhat is the product of 236 and -0.05?\n-11.8\nWhat is 3947 times 0.3?\n1184.1\n267 * -1\n-267\nProduct of 14 and -424.\n-5936\n1549 times 0.08\n123.92\nCalculate -2*0.0629.\n-0.1258\n0.018 times 0.01\n0.00018\n3 times -112\n-336\nProduct of -0.1 and 47.\n-4.7\nWork out 2012 * -5.\n-10060\nCalculate 2*0.411.\n0.822\n3 times 0.187\n0.561\nProduct of -154 and 0.3.\n-46.2\nWhat is the product of 0.6 and 0.1059?\n0.06354\n-713.3*-0.3\n213.99\nWhat is the product of -1 and 233?\n-233\nMultiply -1.964 and 2.\n-3.928\nProduct of -51 and -1.\n51\n0.488 * 2\n0.976\nCalculate 24*2.68.\n64.32\nWhat is -25 times 0.04?\n-1\n62 times -0.13\n-8.06\nWork out 0.15 * 52.\n7.8\nCalculate -3*0.76.\n-2.28\nCalculate -0.5*181.\n-90.5\nProduct of -3 and -1.91.\n5.73\n0.5 * -1.13\n-0.565\nProduct of -1 and -0.0381.\n0.0381\nCalculate -7*2.7.\n-18.9" -"hat is the highest common factor of 20 and 4555?\n5\nCalculate the highest common divisor of 538809 and 9.\n3\nWhat is the highest common factor of 447486 and 78?\n78\nCalculate the greatest common divisor of 114756 and 1332.\n12\nCalculate the greatest common factor of 18370 and 275.\n55\nWhat is the highest common factor of 143 and 27534?\n13\nCalculate the highest common factor of 52 and 117182.\n26\nCalculate the highest common divisor of 18717 and 1051455.\n1101\nWhat is the greatest common divisor of 545 and 32?\n1\nWhat is the highest common divisor of 120 and 42360?\n120\nCalculate the greatest common divisor of 7236 and 9204.\n12\nCalculate the highest common divisor of 180 and 144972.\n36\nWhat is the greatest common factor of 2077 and 62109?\n67\nCalculate the greatest common divisor of 30267 and 472.\n59\nCalculate the highest common factor of 784 and 3311.\n7\nCalculate the greatest common factor of 2797 and 1.\n1\nCalculate the greatest common factor of 167536 and 6068.\n148\nCalculate the highest common factor of 4614560 and 32.\n32\nWhat is the greatest common factor of 3540 and 20826?\n6\nWhat is the" -"0.4, -1/4?\n-1/4\nWhat is the third smallest value in -31, 0.5, -2, 2/15, 4?\n2/15\nWhat is the biggest value in 3, 1, 0.3, -5, 5.35?\n5.35\nWhat is the biggest value in 63, 2/9, -1/17?\n63\nWhat is the biggest value in 0.2, 4/3, -30?\n4/3\nWhat is the biggest value in -17/5, -2/5, 5?\n5\nWhich is the second biggest value? (a) -3 (b) -0.652 (c) -1\nc\nWhat is the third smallest value in -1, 69, 0.1, 4?\n4\nWhat is the smallest value in 0.9, 5, 25?\n0.9\nWhich is the third smallest value? (a) 12 (b) 3/5 (c) -6/11\na\nWhich is the second smallest value? (a) -2/7 (b) -0.1 (c) -6946\na\nWhat is the smallest value in 0, -5/77, -1?\n-1\nWhich is the biggest value? (a) -27 (b) 2 (c) 0.4 (d) 1/6 (e) 4\ne\nWhich is the third smallest value? (a) 2 (b) 3 (c) -6 (d) 17\nb\nWhich is the second biggest value? (a) -515 (b) 3/8 (c) 3/7\nb\nWhich is the fourth biggest value? (a) -2 (b) -2.5 (c) -1 (d) 0.2\nb\nWhat is the fourth smallest value in -2, 34, -4, 0.4?\n34" -"a multiple of 1063?\nFalse\nIs 8 a factor of 434885456?\nTrue\nDoes 2196 divide 1588099569?\nFalse\nDoes 459 divide 19236231?\nTrue\nIs 14210385 a multiple of 255?\nTrue\nIs 137797796 a multiple of 135?\nFalse\nIs 41972081 a multiple of 14?\nFalse\nIs 58140083 a multiple of 677?\nTrue\nDoes 738 divide 48296?\nFalse\nIs 93044832 a multiple of 31?\nFalse\nDoes 597 divide 17512831?\nFalse\nIs 27 a factor of 35551413?\nTrue\nIs 20645820 a multiple of 13?\nTrue\nDoes 312 divide 109571904?\nTrue\nIs 4717107027 a multiple of 25?\nFalse\nDoes 1047 divide 136407381?\nFalse\nIs 150 a factor of 40986530?\nFalse\nIs 239500152 a multiple of 166?\nTrue\nIs 9 a factor of 363424536?\nTrue\nIs 3794072240 a multiple of 3530?\nTrue\nIs 2482370 a multiple of 55?\nTrue\nDoes 7 divide 97540247?\nTrue\nIs 577 a factor of 382053626?\nTrue\nDoes 2119 divide 987511434?\nFalse\nDoes 65 divide 4437517?\nFalse\nDoes 195 divide 4777110?\nTrue\nDoes 732 divide 4206072?\nTrue\nIs 366 a factor of 481797349?\nFalse\nIs 232 a factor of 22235971?\nFalse\nIs 620896661 a multiple of 17?\nTrue\nIs 590 a factor of 4279864130?\nTrue\nIs 426 a factor of 108417000?\nTrue" -" 8*y + 600. Let j = -24 + 50. What is the remainder when y is divided by j?\n22\nLet t(p) = 5*p**2 + 4*p + 1. Let m(c) = 5 + 14*c**2 + 0*c + 4*c - 12*c**2 + 1. Calculate the remainder when m(-7) is divided by t(-2).\n11\nLet d(n) = 502*n + 1407. Calculate the remainder when d(-2) is divided by 11.\n7\nSuppose g - 5*n - 30 = 0, 72 = 3*g + 2*g + n. Let z be (0 + (-10)/(-3))/((-5)/g). Let q(d) = -8*d - 33. What is the remainder when q(z) is divided by 17?\n13\nSuppose -5*z + 38 = 13. Let u(l) = -19*l - 85. Let h(w) = 10*w + 43. Let r(m) = 11*h(m) + 6*u(m). What is the remainder when r(-11) is divided by z?\n2\nLet j = -3687 + 5106. Calculate the remainder when j is divided by 10.\n9\nLet q(c) = 9*c - 3. Suppose -1137*h + 2740*h - 100989 = 0. Calculate the remainder when h is divided by q(2).\n3\nLet x = -547748 - -547884. Suppose 167 = 4*w - 17. What is the remainder when x is" -"*3 - 852*q**2\nSuppose -10*u + u = -9. Let q be u*((0 - -3) + 1). Find the third derivative of -15*m**q + 1351*m - 1351*m - 7*m**2 wrt m.\n-360*m\nLet z(a) = a**2 + 12*a - 37. Let f be z(4). What is the second derivative of -94*h - 88*h + 9*h + 118*h**3 - 4*h + f*h wrt h?\n708*h\nWhat is the third derivative of -1169*b**5 + 649*b**2 + 199*b**5 - 210*b**2 + 267*b**2 wrt b?\n-58200*b**2\nLet o(k) = -1773*k**5 - 3*k**2 + 16. Let j(n) = 5319*n**5 + 10*n**2 - 47. Let q(i) = -4*j(i) - 11*o(i). What is the third derivative of q(t) wrt t?\n-106380*t**2\nLet c be -5*1*((-1020)/25)/12. Find the third derivative of 48*b**6 + 12 + 14 - c - 7*b**2 wrt b.\n5760*b**3\nDifferentiate -12*z**4 + 6*z**4 + 3*z**4 - 82*z**3 + 7*z**4 - 3*z**4 + 232 wrt z.\n4*z**3 - 246*z**2\nLet m(j) be the first derivative of j**7/120 - 7*j**6/45 + 3*j**3 + 3. Let g(x) be the third derivative of m(x). What is the third derivative of g(d) wrt d?\n42\nLet t(v) be the second derivative of 29*v**5/20 - v**3/2 - 2453*v**2/2 - 3588*v." -".1?\n-7/2\nWhat is the second smallest value in -5/3, -1, -5/4?\n-5/4\nWhich is the biggest value? (a) -0.5 (b) -2 (c) 2/17 (d) 2/3\nd\nWhich is the third biggest value? (a) 0 (b) -1/82 (c) 1/5 (d) -1\nb\nWhat is the second biggest value in 2/13, 0.12, -3?\n0.12\nWhich is the smallest value? (a) -7 (b) -11 (c) -2\nb\nWhat is the smallest value in 2, 3/22, 0.4?\n3/22\nWhat is the biggest value in 23, 3, -8, -1/5?\n23\nWhat is the second smallest value in -2/5, -2/13, 2/13?\n-2/13\nWhat is the second biggest value in -3/2, 2583, 2, 0.4?\n2\nWhat is the fourth smallest value in -4, -7/3, 0.2, 3/5?\n3/5\nWhich is the third biggest value? (a) -43/3 (b) 5 (c) -3\na\nWhich is the fourth biggest value? (a) 2 (b) 2/17 (c) -2.3 (d) 2/13 (e) -4/5\ne\nWhat is the third biggest value in -0.5, -2, -0.013, -1?\n-1\nWhat is the third smallest value in 12, -3/4, -2, 1/6?\n1/6\nWhat is the third smallest value in -54/7, 2, -0.2, 2/19?\n2/19\nWhich is the biggest value? (a) -2/9 (b) -0.2 (c) 212 (d) 4" -" greatest common divisor of k and 60?\n20\nLet z be 20 + -13 - 14 - -14. What is the greatest common factor of 49 and z?\n7\nLet v(m) = -m**3 + 47*m**2 + 67*m - 62. Let w be v(48). Calculate the greatest common divisor of 50 and w.\n50\nLet c = -38 + 38. Suppose 3*q - 379 - 1637 = c. Suppose 5*v - 2*v = q. What is the greatest common factor of v and 16?\n16\nLet h(j) = j**3 + 12*j**2 - 17*j - 45. Let y be h(-13). Let a be (407/y - 6) + (-18)/(-21). Calculate the highest common factor of a and 53.\n53\nLet m(b) = 3*b**2 + 17*b + 21. Let h be m(-9). Suppose -3*k + 5*o + 338 = 0, -k + 2*o + h = -0*k. What is the highest common factor of 11 and k?\n11\nLet q be -10 + 6540 - (5 - -6). Calculate the highest common divisor of 82 and q.\n41\nLet k be (8544/(-5))/(36/(-120)). Calculate the greatest common divisor of 89 and k.\n89\nLet f = -2 + -13. Let z(o) = -o - 8." -" Let b be v(2). List the prime factors of (507/b)/(6/16).\n2, 13\nLet t(r) = -r**2 + 0 + 2 + 2 + 9*r + 3. Let b be t(9). What are the prime factors of 18/(-63) - (-156)/b?\n2, 11\nLet z(g) = -131*g - 13. Let r be z(-3). Suppose 3*w + r = 7*w. What are the prime factors of w?\n5, 19\nSuppose 3*u + 4*o = -u, o = 4*u - 10. Suppose 0 = -u*p - 3*p - 615. List the prime factors of p/(-2)*(-12)/(-9).\n2, 41\nLet q = -2 + 10. Let r = -23 + q. Let n = r + 32. What are the prime factors of n?\n17\nLet h(r) be the second derivative of 0 + 1/3*r**3 + 11*r + 9*r**2. List the prime factors of h(12).\n2, 3, 7\nSuppose -2*l + 2*g = -20, g + 4 = 1. Let h = 7 - l. Suppose -s + 57 = 2*s - 5*p, h = 5*s - 5*p - 85. List the prime factors of s.\n2, 7\nLet y(b) = 42*b**2 - 82*b - 6. What are the prime factors of y(5)?\n2, 317\nLet" -"(o) = 28*o - 2. Let s be d(1). What is the highest common factor of 182 and s?\n26\nSuppose -2*i = -5*i. Suppose i = -2*w + 4*k + 10, 5*w = 2*k - 7*k + 55. Let n be (5/(-15))/((-2)/270). Calculate the highest common divisor of n and w.\n9\nSuppose -l = -0*l. Suppose l = 4*a - 7*a + 54. Suppose -3*s = -19 - 8. Calculate the greatest common divisor of s and a.\n9\nLet k be 5 - (-5)/5*16. What is the greatest common factor of k and 14?\n7\nLet b(d) = d**3 + 14*d**2 - d + 6. Let p be b(-14). What is the greatest common divisor of p and 80?\n20\nLet m be (-55)/(-10) + 3/6. Suppose -4*l + m = -v, 3*v = 2*l + l. What is the highest common divisor of 22 and l?\n2\nLet u be (2/(-5))/((-1)/(-5)). Let w be u/(-4)*20/(-1). Let x be (-90)/4*8/w. What is the highest common divisor of 2 and x?\n2\nSuppose 0 = 5*y - 4*y - 119. Calculate the highest common divisor of y and 17.\n17\nLet u(t) = -4*t + 1. Let l" -"= 2*o. Calculate the smallest common multiple of 194 and o.\n2134\nLet c = -122/15 + 377/60. Calculate the common denominator of 93/46 and c.\n460\nLet r be 0/(-4) + 2 + 2. Suppose -3*x + 25 = -4*d, -r*x - 7 = 4*d - x. What is the least common multiple of ((-8)/d)/((-1)/(-8)) and 18?\n144\nSuppose -4*y + o = -163, -12 = y + 4*o - 40. Suppose 0*i + y = 4*i. Calculate the least common multiple of i and 10.\n10\nLet q = -242 - -264. Let o = 8 + -6. Calculate the lowest common multiple of q and ((-6)/15)/(o/(-10)).\n22\nLet a = -14 + 16. Suppose -a*q + 10 = -8. What is the least common multiple of 7 and q?\n63\nLet t = -405296 + 129694823/320. Find the common denominator of -31/96 and t.\n960\nSuppose -4*p + 37458 = 5*p. Let g = p + -66545/16. Calculate the common denominator of g and 3 - 3 - (-35)/2.\n16\nSuppose -63*s + 30 = -60*s. What is the least common multiple of s and 7?\n70\nLet z = -1728/77 - -306343/13860. Calculate the common denominator" -"e -18602 = 37*n - 19712 for n.\n30\nSolve -777*l = -1611*l + 773*l + 793 for l.\n13\nSolve -3*i - 8*i + 1963 = 2271 for i.\n-28\nSolve 86 - 452 = -188*h + 249*h for h.\n-6\nSolve 217 = -34*g + 149 for g.\n-2\nSolve 159*d - 310*d = -122*d - 58 for d.\n2\nSolve -589 = -106*p + 2304 + 1241 for p.\n39\nSolve 93*m + 1596 = -135*m for m.\n-7\nSolve -49*r = 1501 - 2040 for r.\n11\nSolve 140*w + 222 - 46 = -384 for w.\n-4\nSolve 44652*o = 44669*o - 408 for o.\n24\nSolve 27*v - 84*v - 1732 = 149 for v.\n-33\nSolve -355*m = -272*m + 332 for m.\n-4\nSolve 0 = 806*o + 30*o - 10032 for o.\n12\nSolve 68*x + 75*x - 1652 = 25*x for x.\n14\nSolve 464 - 372 = 24*c - c for c.\n4\nSolve 112*i - 135 = -23*i for i.\n1\nSolve 482 + 205 = -53*m - 373 for m.\n-20\nSolve 85*n + 5140 = -429*n for n.\n-10\nSolve 12*s - 28*s = -17*s -" -"when 244 is divided by 24.\n4\nCalculate the remainder when 145 is divided by 9.\n1\nWhat is the remainder when 104 is divided by 104?\n0\nCalculate the remainder when 425 is divided by 43.\n38\nCalculate the remainder when 2154 is divided by 212.\n34\nWhat is the remainder when 9888 is divided by 29?\n28\nWhat is the remainder when 643 is divided by 17?\n14\nCalculate the remainder when 20943 is divided by 11.\n10\nCalculate the remainder when 378 is divided by 183.\n12\nCalculate the remainder when 1581 is divided by 18.\n15\nWhat is the remainder when 1503 is divided by 32?\n31\nWhat is the remainder when 675 is divided by 235?\n205\nCalculate the remainder when 15839 is divided by 120.\n119\nWhat is the remainder when 29 is divided by 22?\n7\nWhat is the remainder when 57 is divided by 24?\n9\nWhat is the remainder when 63 is divided by 8?\n7\nWhat is the remainder when 642 is divided by 76?\n34\nCalculate the remainder when 93 is divided by 54.\n39\nWhat is the remainder when 424 is divided by 120?\n64\nWhat is the" -"0, 44 - 14 = 2*u - 3*j. Let m be 3/(0 + u/6). Suppose -h - m + 23 = 0. Is h a prime number?\nFalse\nSuppose -71 = s + 521. Let u = 36 - s. Suppose -15*p + 19*p = u. Is p a prime number?\nTrue\nIs (31667 - 3 - -6)/(4/2) a prime number?\nFalse\nSuppose -3*o - 3*y = -5*o - 3, 2*o - 2*y = -6. Let p(a) = -3*a + 11. Let w be p(o). Suppose w + 201 = 5*r. Is r prime?\nFalse\nSuppose 4*w + 4*v = 41552, 2*v - 5354 - 5031 = -w. Is w a composite number?\nFalse\nLet u be 48/36 - (-2)/3. Let b be (u - (-33)/(-6))*-2. Let t(a) = 8*a**2 - 2*a - 7. Is t(b) a prime number?\nFalse\nSuppose -3*o - 2 + 11 = 0. Suppose -4*d = -2*y + 1830, o*d = 7*d - 12. Suppose c + 2*c - y = 0. Is c composite?\nFalse\nSuppose 3*b = b + 1272. Suppose 0 = 4*o - 0*o - b. Is o a prime number?\nFalse\nLet u(r) = 5*r**2 + 18*r + 19. Let" -"b) -5 (c) q\nc\nLet s = 0.056 - 0.606. Let p = s - -0.15. Which is the closest to 0.03? (a) -3 (b) 2/7 (c) p\nb\nLet r = 0.36 + -0.26. What is the closest to 1 in r, 5, 0.2, -8/5?\n0.2\nLet l = -0.0148 - -0.1148. Let k = -8/27 - -58/135. Which is the nearest to l? (a) -2 (b) -0.06 (c) k\nc\nLet s = -3712/3 - -1237. Which is the nearest to -0.09? (a) 4 (b) -4/5 (c) 2/7 (d) s\nd\nLet m = 2.91 - 2.81. What is the closest to m in 4, 1, -3?\n1\nLet x = -175.86 - -176. What is the closest to 1 in x, -0.5, -0.1?\nx\nLet k(j) = j - 4. Let p be k(11). Suppose -3*t + 5*d = -p*t + 46, t = d + 7. Let f be 4/(-3)*t/(-8). Which is the nearest to -2/5? (a) 0.4 (b) f (c) 2/13\nc\nLet x = -0.842 + 0.642. Which is the closest to -2/13? (a) -2/9 (b) x (c) -4.1\nb\nLet j = -1 + 8. Let n be (114/(-40) - -3)*4. Which" -"n -0.4, 5, 171?\n5\nWhat is the third biggest value in -4, -2, -5, 0.04?\n-4\nWhat is the fifth biggest value in 5, -5, 4, 0.1, 3?\n-5\nWhich is the third biggest value? (a) -96 (b) -5/14 (c) -5/6\na\nWhat is the second smallest value in -0.4, 5.1, 1.3, -0.1?\n-0.1\nWhat is the smallest value in -42, -20, 0.2, -3?\n-42\nWhat is the second smallest value in 0.5, -0.3, -1/2, 665, -5?\n-1/2\nWhat is the second smallest value in -8, -2/5, -1/6, -4/5, 5/4?\n-4/5\nWhich is the fourth biggest value? (a) -5/6 (b) -2.3 (c) 0 (d) 2 (e) -3/8\na\nWhat is the third smallest value in 3, -2.4, -5?\n3\nWhat is the second smallest value in -0.07, -4, -0.12?\n-0.12\nWhich is the third biggest value? (a) -4 (b) 1 (c) -96/85\na\nWhat is the biggest value in -0.5, -0.3, -0.04, -1, 3?\n3\nWhat is the second smallest value in -10.7, 0.4, -0.21?\n-0.21\nWhat is the second smallest value in 0.02, -4/85, 1/3, 0.1?\n0.02\nWhich is the fourth biggest value? (a) -2 (b) -13 (c) -15 (d) -1/5\nc\nWhat is the second biggest value" -"mallest value? (a) 0.4 (b) 2911 (c) 1\na\nWhich is the second biggest value? (a) -1 (b) -0.07 (c) 2/287 (d) -4\nb\nWhich is the fourth biggest value? (a) -4 (b) -426 (c) 0.1 (d) -17 (e) 40\nd\nWhich is the third smallest value? (a) 13 (b) 5 (c) -8/13 (d) -0.5\nb\nWhat is the third biggest value in 3, -0.3, 2816, 4?\n3\nWhat is the fourth biggest value in -64/5, 0.4, 32, 41.5?\n-64/5\nWhat is the second smallest value in -14, -1, -0.5, -3, -1.1, -18/13?\n-3\nWhat is the smallest value in -440, 0, -0.1, 2, 2/7, -4/5?\n-440\nWhat is the second biggest value in -1/4, 453, -0.1, 0.1?\n0.1\nWhich is the second biggest value? (a) -4 (b) 0.3 (c) 1/2 (d) -851\nb\nWhat is the smallest value in 0.5, 0.035, -3, -2.7, 1/9?\n-3\nWhich is the biggest value? (a) -1 (b) -20784 (c) -3/5\nc\nWhat is the second smallest value in 1, 196, 15, 1/3, 0.3?\n1/3\nWhich is the second biggest value? (a) -0.4 (b) 2/15009 (c) 1\nb\nWhich is the fourth smallest value? (a) -8.3 (b) 1 (c) 0 (d) -0.09\nb\nWhich" -"Suppose i - 3*o = -i + 21, -5*i - o = -10. Let g be (-63)/60 - -1 - i/12. Let y = g + 433/1510. Are y and -1 equal?\nFalse\nLet x = 664 - 388. Let j = 307 - x. Is 2 greater than j?\nFalse\nLet t(g) = 10*g - 93. Let v(a) = 5*a - 47. Suppose -16 - 39 = -11*x. Let o(n) = x*v(n) - 3*t(n). Let m be o(9). Is m greater than or equal to -2/7?\nFalse\nLet d = 82/1827 - 852626/19159749. Which is bigger: -1 or d?\nd\nLet b = -41 + -6. Let d be (b/(-4)*2*4)/(-2). Let k = d + 48. Which is smaller: 2/221 or k?\n2/221\nLet n(m) = -8*m**2 + 2*m - 2. Let k be n(3). Suppose -19*c + 23 = 5*d - 20*c, 4*c - 23 = -3*d. Suppose -27 = d*a + 308. Is a equal to k?\nFalse\nLet o(s) = 127*s**2 - 62*s + 62. Let r be o(1). Is 108 < r?\nTrue\nSuppose 4*o + 5*v - v - 20 = 0, o - 2*v = -1. Suppose -k - 6 = -o*k. Suppose" -" d be n(0). Let c = d + 19. Let u be g(c). Solve -2*w + x - 2 = u, -x - 3 = w for w.\n-3\nLet p(n) = n + 8. Let g be 0/2 - (-7 - -4). Suppose 3*j + g = 2*j. Let w be p(j). Solve -5*x = w*r - 36 - 9, 0 = x - 5 for r.\n4\nLet q be 517/66 + 3/18. Suppose 4*n = k - 19, -4*n + 2*n = k + 5. Solve 2*s + 5 - 12 = 3*t, 0 = -s + k*t + q for s.\n-1\nLet c = 166 - 141. Solve 2*s + 13 = -5*n, s - 5*n + 9 = c for s.\n1\nLet n = -31 + 29. Let x be (-2)/3*n*30/20. Solve 2*s + 5*m - 12 = 0, -3*s = s + x*m - 8 for s.\n1\nSuppose 2*m - 36 = 5*m + 2*g, -5*m - 60 = 3*g. Let r be (2/6*4)/((-8)/m). Solve i + 5*p = -7, -i = r*p - 6*p - 11 for i.\n3\nLet o be 14/(-63) + (-114)/(-27). Suppose -2*d + d =" -"at is prob of picking 1 q, 1 w, and 1 l?\n2/21\nThree letters picked without replacement from {l: 9, n: 9}. Give prob of picking 1 n and 2 l.\n27/68\nTwo letters picked without replacement from {q: 1, g: 9, i: 4, s: 5, w: 1}. Give prob of picking 2 s.\n1/19\nCalculate prob of picking 1 o and 1 p when two letters picked without replacement from qpouscsp.\n1/14\nCalculate prob of picking 1 k, 1 v, and 1 q when three letters picked without replacement from kqvqk.\n2/5\nCalculate prob of picking 1 z and 1 f when two letters picked without replacement from {l: 1, c: 1, u: 2, z: 1, e: 2, f: 1}.\n1/28\nWhat is prob of picking 3 h when three letters picked without replacement from lhllllhhlllhllllhlll?\n1/114\nWhat is prob of picking 2 f and 1 a when three letters picked without replacement from afzzffza?\n3/28\nFour letters picked without replacement from {p: 14, o: 5}. What is prob of picking 3 o and 1 p?\n35/969\nWhat is prob of picking 1 u and 1 e when two letters picked without replacement from bjuupecc?\n1/14\nCalculate prob" -"9\nCalculate prob of picking 1 u and 1 x when two letters picked without replacement from xuxuuuuuxuuxuuuuuuu.\n20/57\nCalculate prob of picking 2 x when two letters picked without replacement from {v: 7, s: 6, x: 2}.\n1/105\nWhat is prob of picking 4 q when four letters picked without replacement from qxqqqqqqqqqqqqq?\n11/15\nTwo letters picked without replacement from blbllbb. What is prob of picking 2 l?\n1/7\nCalculate prob of picking 1 u, 1 y, and 1 b when three letters picked without replacement from uybyuybu.\n9/28\nTwo letters picked without replacement from {n: 2, s: 11}. Give prob of picking 1 n and 1 s.\n11/39\nWhat is prob of picking 3 b when three letters picked without replacement from qiyiiibbibbiyihiy?\n1/170\nWhat is prob of picking 2 n when two letters picked without replacement from {n: 10}?\n1\nTwo letters picked without replacement from {u: 1, b: 1, a: 1, j: 1, e: 1}. What is prob of picking 1 j and 1 e?\n1/10\nCalculate prob of picking 1 n and 1 c when two letters picked without replacement from cfpun.\n1/10\nWhat is prob of picking 1 p and 1 b when two" -"What is the remainder when t is divided by (-18)/36*(-36)/(-10)*-10?\n17\nLet g(b) = -3*b + 12. Let c be g(3). Let m be 0 + 1 - (-6 - (c + -9)). Suppose -41 = -3*q + m. What is the remainder when 41 is divided by q?\n13\nLet w be 136 + 1/(-1) + -5 + 4. Let s = -40 + w. What is the remainder when s is divided by 16?\n14\nCalculate the remainder when 964 is divided by 9/(-3)*((-735)/18 - (-10)/20).\n117\nLet n = 15952 - 15819. What is the remainder when 6649 is divided by n?\n132\nLet s(b) = 388*b + 6. Let k(w) = 583*w + 10. Let v(u) = -5*k(u) + 8*s(u). Calculate the remainder when v(1) is divided by 44.\n11\nLet u = 2119 - 1642. Calculate the remainder when 482 is divided by u.\n5\nLet f(p) be the first derivative of -10 + 19/2*p**2 + 2*p**3 - 1/4*p**4 - 11*p. Calculate the remainder when 23 is divided by f(8).\n10\nCalculate the remainder when (-1)/(1/(-7)) + ((-29520)/(-10))/8 is divided by 45.\n16\nLet c(y) = y**3 - 6*y**2 + 2. Let k be c(6)." -"o 0.2 in 0.5, -6, s, -2/13?\n0.5\nLet o = -6 + 10. Let i be (605/(-10))/(6/(-36)). Let w be ((-44)/i)/(o/6). Which is the closest to 2? (a) w (b) -2 (c) -4\na\nLet y = -3227 - -3228. What is the closest to 1 in -0.1, -5, y, -188?\ny\nLet n = -1274 + 1323. Let o = -0.47 + -53.53. Let d = n + o. What is the nearest to 2 in 0.5, -2/7, d?\n0.5\nLet v = -11614.95 - -11615. What is the nearest to -2 in 2, v, 3, -1?\n-1\nLet k = 7.95 + -7.55. Let m = -0.12 - -0.06. Let n = m + -1.94. Which is the nearest to -0.7? (a) k (b) 1/3 (c) n\nb\nLet f = -89.74 + 91.74. Which is the nearest to -1/3? (a) -4/9 (b) f (c) 4\na\nSuppose 5*c - 26 - 19 = -3*o, o + 2*c = 17. Let k be -2 + (-3 - -3)*-1. What is the closest to -7 in k, o, 2/9?\nk\nLet r = -48712 + 48712.2. Let z = 0 - -0.06. What is the closest to z" -" of 318368894?\n8\nWhat is the hundred thousands digit of 1590704602?\n7\nWhat is the hundred millions digit of 394268945?\n3\nWhat is the ten millions digit of 465185967?\n6\nWhat is the thousands digit of 50060529?\n0\nWhat is the millions digit of 59992777?\n9\nWhat is the millions digit of 24810886?\n4\nWhat is the thousands digit of 280134016?\n4\nWhat is the ten millions digit of 707408084?\n0\nWhat is the tens digit of 72207141?\n4\nWhat is the hundreds digit of 281658798?\n7\nWhat is the hundred thousands digit of 36555724?\n5\nWhat is the thousands digit of 1336588?\n6\nWhat is the ten millions digit of 256362068?\n5\nWhat is the hundreds digit of 2485736109?\n1\nWhat is the hundred thousands digit of 1074933770?\n9\nWhat is the units digit of 208991556?\n6\nWhat is the hundred thousands digit of 675387606?\n3\nWhat is the units digit of 123299905?\n5\nWhat is the hundred millions digit of 144018234?\n1\nWhat is the thousands digit of 57131054?\n1\nWhat is the units digit of 152461351?\n1\nWhat is the hundreds digit of 21852337?\n3\nWhat is the thousands digit of 45733723?\n3\nWhat is the hundred" -"eger?\n127\nWhat is the eighth root of 995 to the nearest integer?\n2\nWhat is 1063 to the power of 1/2, to the nearest integer?\n33\nWhat is the cube root of 6958 to the nearest integer?\n19\nWhat is the square root of 1768 to the nearest integer?\n42\nWhat is the tenth root of 49021 to the nearest integer?\n3\nWhat is the eighth root of 44828 to the nearest integer?\n4\nWhat is the third root of 26249 to the nearest integer?\n30\nWhat is 3084 to the power of 1/10, to the nearest integer?\n2\nWhat is the square root of 10876 to the nearest integer?\n104\nWhat is the ninth root of 10101 to the nearest integer?\n3\nWhat is 45617 to the power of 1/10, to the nearest integer?\n3\nWhat is the third root of 17738 to the nearest integer?\n26\nWhat is the cube root of 1446 to the nearest integer?\n11\nWhat is the fourth root of 863 to the nearest integer?\n5\nWhat is 2863 to the power of 1/3, to the nearest integer?\n14\nWhat is 7807 to the power of 1/8, to the nearest integer?\n3\nWhat" -"ur letters picked without replacement from axaxaccxxa. Give prob of picking 1 x, 1 c, and 2 a.\n8/35\nTwo letters picked without replacement from {t: 5}. Give prob of picking 2 t.\n1\nFour letters picked without replacement from {g: 11, e: 9}. Give prob of picking 3 g and 1 e.\n99/323\nThree letters picked without replacement from {w: 3, n: 4, f: 2, y: 3, r: 2, o: 2}. Give prob of picking 1 y and 2 w.\n9/560\nTwo letters picked without replacement from {j: 6, t: 1, g: 3, u: 3, a: 5, d: 1}. What is prob of picking 1 g and 1 j?\n2/19\nFour letters picked without replacement from huuhhhiuuhhiuiihuhhh. What is prob of picking 1 u, 2 i, and 1 h?\n24/323\nCalculate prob of picking 1 e and 2 v when three letters picked without replacement from ieivv.\n1/10\nThree letters picked without replacement from {n: 3, i: 7}. What is prob of picking 3 i?\n7/24\nWhat is prob of picking 1 o, 1 q, and 1 v when three letters picked without replacement from qqqvqqqqoggqqqq?\n11/455\nWhat is prob of picking 3 o when three letters picked without" -" -2, -3, f, 4 in decreasing order.\n4, f, -2, -3\nLet m = -1 - -1. Let h = -3.26 - -0.26. Let s = 26 + -26.1. Put s, h, m in increasing order.\nh, s, m\nLet l(a) = a + 6. Let x be l(-2). Put -4, x, -25 in descending order.\nx, -4, -25\nSuppose -38 = -29*a + 49. Put a, -3, -2, 19 in decreasing order.\n19, a, -2, -3\nLet y = -386 + 389. Sort -4, y, -0.04, 0.1 in increasing order.\n-4, -0.04, 0.1, y\nSuppose 19*i - 3465 = -26*i. Put 2, i, 4, -1 in decreasing order.\ni, 4, 2, -1\nSuppose 2*p - x - x - 6 = 0, -3*p - 2*x - 11 = 0. Let g be 2*(2/(8/(-6)) + p). Let s = 23 - 39. Sort s, g, 1 in descending order.\n1, g, s\nLet j be ((-16)/(-40))/(1/15). Suppose -7*c = -c - j. Sort 0, 2, c in descending order.\n2, c, 0\nLet z be 0 + ((-39)/(-65))/(1/(-5)). Let d be ((0 - z)*-1)/((-42)/56). Put d, 10, -1 in ascending order.\n-1, d, 10\nLet a be (4/8)/((-1)/2). Suppose 0*s" -"e 0 = 580*r + 2877 - 20857 for r.\n31\nSolve 6234*p - 69316 = -106856 - 18637 - 99673 for p.\n-25\nSolve 25894*f + 452532 - 1382445 + 219122 - 1930397 = 0 for f.\n102\nSolve 307*f = 2434 + 5804 + 358 for f.\n28\nSolve 0 = 13*z - 42*z + 213*z + 50*z + 18252 for z.\n-78\nSolve 4154*n + 108408 + 266474 = -152676 for n.\n-127\nSolve 0 = 502*t + 799*t + 5204 for t.\n-4\nSolve -10579*f + 119676 - 499917 = 783449 for f.\n-110\nSolve 3408*x + 39472 = -2148*x + 167196 + 333424 for x.\n83\nSolve 6653 + 10939 = -212*g + 5720 for g.\n-56\nSolve 767971*w = 767867*w - 4264 for w.\n-41\nSolve -52*o + 1260 + 1929 = -243 for o.\n66\nSolve -100634 = 98561*k - 100063*k for k.\n67\nSolve -62508 = 32*c - 62060 for c.\n-14\nSolve 52*l = 7430792 - 7430740 for l.\n1\nSolve 2041*g = -5711 - 16740 for g.\n-11\nSolve 0 = 75*m - 316*m + 86*m - 16430 for m.\n-106\nSolve -50*f - 186*f + 9512 = 100*f -" -"e of 4*o**4 - 3*o**2 - 30*o**4 - o**2 - 13*o**2 wrt o?\n-624*o\nLet p(i) = 0*i**3 + 2*i**3 - 3*i**2 + 2*i - 5 + 3 + 0. Let d(m) = -m + 1. Let x(j) = 2*d(j) + p(j). Find the third derivative of x(s) wrt s.\n12\nLet h(j) be the second derivative of j**7/42 - j**4/12 + 7*j. Find the third derivative of h(a) wrt a.\n60*a**2\nLet c(t) be the second derivative of -3*t**3 + 15*t**2/2 - 2*t. Find the first derivative of c(m) wrt m.\n-18\nSuppose 5*q - 16 = -z + 8, 2*z - 20 = -3*q. Suppose -q*o + 10 = o. Find the second derivative of -3*c + c**3 + 5*c - o*c**3 wrt c.\n-6*c\nWhat is the third derivative of -2*j**2 - 9*j**4 - j**2 + 11*j**2 wrt j?\n-216*j\nLet x(u) = u**2 + u. Let v be x(1). What is the second derivative of -2*o**v - 18 + 18 + o wrt o?\n-4\nLet g(h) be the third derivative of -19*h**4/24 + 3*h**3/2 - 14*h**2. Find the first derivative of g(l) wrt l.\n-19\nFind the second derivative of -11*y - y**5 + 15*y**2" -", c: 4}. What is prob of picking 1 u and 1 c?\n28/55\nThree letters picked without replacement from ccdccddccddc. What is prob of picking 1 d and 2 c?\n21/44\nCalculate prob of picking 1 n, 1 p, 1 s, and 1 f when four letters picked without replacement from {z: 1, n: 1, p: 1, s: 6, f: 1, h: 3}.\n6/715\nWhat is prob of picking 4 n when four letters picked without replacement from lnlnlnnlnnlnn?\n14/143\nFour letters picked without replacement from {x: 16, a: 4}. Give prob of picking 4 x.\n364/969\nWhat is prob of picking 1 p and 2 r when three letters picked without replacement from ripiirrirpp?\n6/55\nTwo letters picked without replacement from mmgwgwggvgmv. What is prob of picking 2 g?\n5/33\nWhat is prob of picking 1 o, 1 v, 1 x, and 1 n when four letters picked without replacement from ocxxncvo?\n2/35\nTwo letters picked without replacement from {h: 3, m: 9}. What is prob of picking 2 h?\n1/22\nTwo letters picked without replacement from jjjuuu. What is prob of picking 2 u?\n1/5\nTwo letters picked without replacement from {q: 1, k: 4, z: 3," -" 2340?\n2340\nCalculate the highest common divisor of 36420 and 805400985.\n9105\nCalculate the greatest common factor of 724 and 7361988.\n4\nWhat is the greatest common divisor of 116613140 and 20055?\n6685\nCalculate the highest common factor of 42390 and 72360.\n270\nCalculate the highest common divisor of 525 and 30325.\n25\nCalculate the greatest common divisor of 37 and 703434491.\n37\nWhat is the greatest common divisor of 1582 and 67158?\n14\nCalculate the greatest common factor of 2920 and 34332995.\n365\nCalculate the greatest common divisor of 54252 and 11422512.\n4932\nWhat is the highest common divisor of 597 and 22203?\n3\nWhat is the highest common factor of 143505 and 405?\n135\nWhat is the highest common divisor of 391 and 4078107?\n23\nWhat is the greatest common divisor of 16585657 and 814?\n407\nCalculate the greatest common factor of 158207 and 318511.\n233\nCalculate the highest common divisor of 407472677 and 51.\n17\nWhat is the greatest common divisor of 84 and 21001036?\n28\nWhat is the highest common divisor of 66200 and 2152162?\n662\nWhat is the greatest common divisor of 872 and 2387608?\n8\nWhat is the greatest common divisor of 361986150 and" -"e square root of 190 to the nearest integer?\n14\nWhat is the third root of 3695 to the nearest integer?\n15\nWhat is 23847 to the power of 1/5, to the nearest integer?\n8\nWhat is the third root of 117786 to the nearest integer?\n49\nWhat is 3143 to the power of 1/2, to the nearest integer?\n56\nWhat is 19832 to the power of 1/3, to the nearest integer?\n27\nWhat is the fifth root of 48902 to the nearest integer?\n9\nWhat is the square root of 53718 to the nearest integer?\n232\nWhat is the fifth root of 30897 to the nearest integer?\n8\nWhat is 40088 to the power of 1/8, to the nearest integer?\n4\nWhat is the sixth root of 7779 to the nearest integer?\n4\nWhat is the tenth root of 905 to the nearest integer?\n2\nWhat is 14939 to the power of 1/10, to the nearest integer?\n3\nWhat is 4623 to the power of 1/9, to the nearest integer?\n3\nWhat is 26815 to the power of 1/3, to the nearest integer?\n30\nWhat is 45232 to the power of 1/6, to the nearest integer?\n6\nWhat is" -"t is the least common multiple of l and c?\n9\nSuppose -23*f = -129 - 170. Calculate the lowest common multiple of 11 and f.\n143\nLet o = -2568623/12 + 214299. Let y = o + -243. Calculate the common denominator of y and 73/22.\n132\nSuppose 2*p = -4*o - 58, -8 = 3*o + 4*p + 48. Let j(y) = y**2 - 11*y - 43. Let v be j(14). Calculate the common denominator of 43/7 and v - -83*(-2)/o.\n42\nSuppose -2*f + 34 = -5*o - 31, 126 = 3*f + 2*o. Suppose x = m + 2 - 1, x = 4*m + 4. What is the common denominator of (-52)/f + 0 - m and 43/22?\n110\nSuppose 2*d + d = 18. Let f(s) = s**3 + 31*s**2 + 29*s - 17. What is the least common multiple of d and f(-30)?\n78\nLet b be (-30)/(-8)*16/2. Suppose 2*f = -4*t + 22, -2*f - 3*f - 5*t = -b. Let m = 31 - 22. What is the least common multiple of m and f?\n9\nLet m(i) = i**3 + 2. Let c be (6/(-10))/(19/(-95)). Suppose -c*n + 70 =" -" = -202 + 307. Suppose -d = 93 + n. Is d at most -198?\nTrue\nLet v be 53/318*0 + (-9745 - 0). Which is smaller: -9744 or v?\nv\nSuppose 0 = -r - 5*o + 79, -5*r + 561 = o - 50. Which is smaller: r or 164?\nr\nLet k = 4/269 + -3509/807. Is k equal to 13?\nFalse\nLet v = 281 + -59.7. Is 2 greater than or equal to v?\nFalse\nSuppose 0 = -2*p + 2*k - 40, 3*k = 10*p + 1078 - 969. Let r = -175/24 - -5/8. Is r bigger than p?\nTrue\nSuppose -8 = -2*c, 15 = q + 7*c - 3*c. Let w be (((-30)/97)/6)/((-12)/24). Do w and q have different values?\nTrue\nLet p = 2147/212 - 550/53. Is 3222 greater than p?\nTrue\nLet b be ((-11865)/(-25) + 0)*5. Let h = 21329/9 - b. Let o(c) = -4*c**3 - 26*c**2 - 12*c - 4. Let d be o(-6). Which is smaller: d or h?\nd\nLet i = 0.0408 - 20.0408. Which is smaller: i or 27?\ni\nLet c(y) = -16*y + 48. Let f be c(3). Suppose f" -" - 95. Is y a composite number?\nFalse\nSuppose -5*u - 2831 = 5599. Is (-28)/(-49) + u/(-14) prime?\nFalse\nIs 2775/4 + 12/48 a composite number?\nTrue\nLet h be 73 + 6/(-3) - 1. Let p be h/(-3) + (-2)/(-6). Let k = 36 + p. Is k composite?\nFalse\nSuppose -16 = 4*r, -r - 10 - 14 = -4*m. Suppose m*y = 5*s - 66 - 59, 0 = -2*s. Is (-2)/5 - 1985/y a prime number?\nTrue\nLet b = -2 - 0. Let m(c) = -19*c**3 + 2*c**2 - c - 1. Is m(b) a composite number?\nTrue\nLet o(t) = 3*t + 110. Let d(p) = -p - 37. Let z(j) = 17*d(j) + 6*o(j). Let q be z(0). Suppose q = -c + 2*c. Is c a composite number?\nFalse\nLet f(i) = -i**2 - 6*i + 6. Let u be f(-7). Let l be -1 + 191 + u + 1. Suppose 4*n = l + 22. Is n composite?\nFalse\nSuppose 16*t + 449 = 17*t. Is t prime?\nTrue\nLet s(y) = y**3 - 4*y**2 - 6*y + 3. Let q be s(5). Let p(w) be the first derivative" -"70\nWhat is the w'th term of 1849, 1842, 1835, 1828, 1821, 1814?\n-7*w + 1856\nWhat is the n'th term of 73, 147, 221, 295, 369, 443?\n74*n - 1\nWhat is the m'th term of -50, -87, -124, -161?\n-37*m - 13\nWhat is the j'th term of 9, 26, 43, 60, 77, 94?\n17*j - 8\nWhat is the b'th term of 99, 214, 327, 438, 547, 654, 759?\n-b**2 + 118*b - 18\nWhat is the f'th term of -1, 2, 7, 14?\nf**2 - 2\nWhat is the l'th term of -15, -76, -137?\n-61*l + 46\nWhat is the u'th term of -324, -632, -922, -1188, -1424, -1624, -1782?\nu**3 + 3*u**2 - 324*u - 4\nWhat is the z'th term of -45, -34, 3, 78, 203, 390, 651?\n2*z**3 + z**2 - 6*z - 42\nWhat is the w'th term of -142, -298, -470, -664, -886, -1142?\n-w**3 - 2*w**2 - 143*w + 4\nWhat is the i'th term of -27, -42, -87, -180, -339, -582, -927?\n-3*i**3 + 3*i**2 - 3*i - 24\nWhat is the x'th term of 52, 316, 1034, 2434, 4744, 8192, 13006, 19414?\n38*x**3 - x**2 + x" -" -33 - 2*g**3 + 4*g**3 + 9 - 3*g**3 in the form u*g**3 + h*g**2 + o*g + j and give u.\n-1\nExpress -2*f**2 - f - 2 + f**2 - f + (3*f - 3*f + f)*(-f - 1 + 1) - 23*f**2 - 6*f**2 - 12*f**2 as j + b*f**2 + x*f and give b.\n-43\nExpress (-4*p + 5*p - 8*p)*(-5 + 3 - 13) - 3*p + 2*p + 2*p + (-3 + 4 - 2)*(0 + 0 + 2*p) as t*p + n and give t.\n104\nRearrange -3*c - 7*c - c - 7*c to the form q*c + v and give q.\n-18\nExpress 25*n + 47 - 27 - 20 as w + z*n and give z.\n25\nExpress (0*w - 5*w + 4*w)*(10*w - 4*w - 5*w + 3*w**2 + 4) as k + u*w**3 + i*w**2 + b*w and give b.\n-4\nExpress (3 + 0 + 0)*(4*p**2 - 16*p**2 - 20*p**2) as f*p**2 + v*p + c and give f.\n-96\nRearrange (-2 + 0 + 4)*(-3 + 4 - 3)*(39 - 11 + 27)*(2*s**2 - 6*s**2 + 2*s**2) to q*s + y + l*s**2 and give l." -"7?\n52\nWhat is the remainder when 374 is divided by 281?\n93\nWhat is the remainder when 94 is divided by 27?\n13\nWhat is the remainder when 165 is divided by 43?\n36\nCalculate the remainder when 151 is divided by 14.\n11\nWhat is the remainder when 34 is divided by 3?\n1\nWhat is the remainder when 339 is divided by 34?\n33\nCalculate the remainder when 217 is divided by 140.\n77\nWhat is the remainder when 177 is divided by 15?\n12\nCalculate the remainder when 4983 is divided by 56.\n55\nCalculate the remainder when 177 is divided by 90.\n87\nWhat is the remainder when 392 is divided by 128?\n8\nCalculate the remainder when 1048 is divided by 25.\n23\nWhat is the remainder when 833 is divided by 274?\n11\nWhat is the remainder when 1671 is divided by 38?\n37\nWhat is the remainder when 510 is divided by 64?\n62\nWhat is the remainder when 1860 is divided by 9?\n6\nCalculate the remainder when 2068 is divided by 109.\n106\nWhat is the remainder when 201 is divided by 41?\n37\nCalculate the remainder when 430 is" -"m - 16. What are the prime factors of m?\n2\nSuppose -4*c = -c + 3, 0 = 2*d + 5*c - 745. What are the prime factors of d?\n3, 5\nLet k = 1668 + -1608. Let y(v) = -v - 35. Let h be y(0). Let r = h + k. What are the prime factors of r?\n5\nLet x be (21/6)/((-4)/(-8) - 0). Suppose x*l + 540 = 1695. List the prime factors of l.\n3, 5, 11\nSuppose 8*m - 4*m = 684. What are the prime factors of m?\n3, 19\nSuppose 5*f - 1434 = 2*v, 11*f - 5*v = 10*f + 273. What are the prime factors of f?\n2, 3\nLet g = 183 - -2511. List the prime factors of g.\n2, 3, 449\nSuppose -4*t + 7*t + 252 = 0. Let u = -236 + 360. Let r = u + t. List the prime factors of r.\n2, 5\nSuppose -2*l - 4*c + 5*c + 1024 = 0, -1525 = -3*l - 4*c. List the prime factors of l.\n7, 73\nList the prime factors of 80/25*(7 + 15057/14).\n2, 433\nLet l(d) =" -"b be ((-12)/(-18))/((-1 + 2)/(-9)). Let q(j) = -j**3 + 4*j**2 + 2*j - 6. Let d be q(b). Suppose -5*s + r = -d, 0*r + 4*r = 2*s - 144. Does 10 divide s?\nFalse\nLet t(a) = -a**3 - 86*a**2 + 62*a + 30. Is 35 a factor of t(-87)?\nTrue\nLet y = 74 + -74. Suppose n - 5*q = 27, 2*n + y*n = q + 9. Suppose 8*l - 3*t = 10*l - 56, 56 = n*l + 5*t. Is 8 a factor of l?\nFalse\nLet t be 8 + 4*(-36)/48. Let g be 1 - (0 - (2 - 3)). Suppose 0*r - 4*r + t*j = -194, -2*r + j + 94 = g. Is 13 a factor of r?\nFalse\nSuppose -309*k + 332*k - 261850 + 46455 = 0. Is 19 a factor of k?\nFalse\nLet w = -51 + 56. Suppose -4*n = w*h - 7, 4 + 0 = 4*h + 4*n. Suppose 0*t + 2*t - h = -5*l, 4*l = t - 34. Is t a multiple of 4?\nFalse\nSuppose -4*s + r + 740 = -264, 0 = s - 5*r" -"hat is the highest common divisor of 8 and j?\n8\nSuppose -y + 21 = -0. Suppose y = -5*c + 96. What is the greatest common factor of 135 and c?\n15\nLet l be (0 + -1 - -1) + -1. Let b be 2*(-1 - 1)/l. Calculate the greatest common divisor of 28 and b.\n4\nSuppose k + 3*k = -12. Let v = 2 + -2. Let c be k/(v - 1/24). What is the highest common divisor of 9 and c?\n9\nLet q(r) = -9*r - 3. Let w(x) = 8*x + 2. Let d(s) = 4*q(s) + 6*w(s). Let a be d(4). Calculate the greatest common factor of 6 and a.\n6\nLet r be (108/(-48))/(6/(-32)). What is the greatest common factor of r and 108?\n12\nSuppose 0 + 6 = d. Suppose -d*i = -i - 105. Calculate the highest common factor of i and 147.\n21\nLet j = 163 + -112. Let q(y) = y**3 + 9*y**2 + 3*y + 3. Let r be q(-8). Let i = r - 26. Calculate the highest common factor of i and j.\n17\nSuppose -50 + 5 = 5*t." -" the third root of 1484 to the nearest integer?\n11\nWhat is the square root of 147931 to the nearest integer?\n385\nWhat is the third root of 68695 to the nearest integer?\n41\nWhat is 9805 to the power of 1/2, to the nearest integer?\n99\nWhat is 8267 to the power of 1/2, to the nearest integer?\n91\nWhat is 72117 to the power of 1/4, to the nearest integer?\n16\nWhat is the seventh root of 53270 to the nearest integer?\n5\nWhat is the cube root of 10653 to the nearest integer?\n22\nWhat is 11369 to the power of 1/2, to the nearest integer?\n107\nWhat is 1000 to the power of 1/10, to the nearest integer?\n2\nWhat is 553 to the power of 1/2, to the nearest integer?\n24\nWhat is 22924 to the power of 1/2, to the nearest integer?\n151\nWhat is the cube root of 62752 to the nearest integer?\n40\nWhat is 1162 to the power of 1/3, to the nearest integer?\n11\nWhat is 1835 to the power of 1/6, to the nearest integer?\n3\nWhat is 7673 to the power of 1/2, to the nearest integer?\n88" -"\n2/91\nCalculate prob of sequence hh when two letters picked without replacement from ucccjjcjhuuujuh.\n1/105\nCalculate prob of sequence ytl when three letters picked without replacement from slyvvft.\n1/210\nCalculate prob of sequence kka when three letters picked without replacement from eeekkkekkkkkkaeekka.\n110/2907\nWhat is prob of sequence of when two letters picked without replacement from {o: 2, f: 6, s: 10}?\n2/51\nThree letters picked without replacement from roozrrtorrrrbtrrtb. Give prob of sequence rrz.\n1/68\nThree letters picked without replacement from sbsssbss. What is prob of sequence sss?\n5/14\nThree letters picked without replacement from brtktxk. Give prob of sequence rkt.\n2/105\nWhat is prob of sequence dw when two letters picked without replacement from {b: 6, w: 2, z: 1, d: 5, n: 3}?\n5/136\nFour letters picked without replacement from fffffhaaafaha. Give prob of sequence afha.\n2/143\nTwo letters picked without replacement from {v: 8, y: 1, t: 4, g: 1, b: 1}. What is prob of sequence yg?\n1/210\nWhat is prob of sequence iib when three letters picked without replacement from jilkksb?\n0\nCalculate prob of sequence dcd when three letters picked without replacement from {c: 1, d: 3, l: 3}.\n1/35\nWhat is prob" -"es 743 divide 10180586?\nTrue\nIs 270686 a multiple of 13?\nTrue\nDoes 37 divide 2328623?\nFalse\nIs 609130 a multiple of 23?\nFalse\nDoes 32 divide 1063296?\nTrue\nDoes 18 divide 222318?\nTrue\nIs 409344 a multiple of 106?\nFalse\nIs 4 a factor of 376461?\nFalse\nIs 37 a factor of 321547?\nFalse\nDoes 7 divide 1758109?\nFalse\nIs 11361525 a multiple of 57?\nTrue\nIs 4364908 a multiple of 94?\nFalse\nIs 32 a factor of 290336?\nTrue\nDoes 73 divide 10152402?\nTrue\nIs 1967637 a multiple of 244?\nFalse\nDoes 518 divide 2928987?\nFalse\nIs 271 a factor of 281840?\nTrue\nIs 14785100 a multiple of 50?\nTrue\nDoes 38 divide 49226?\nFalse\nIs 293922 a multiple of 2?\nTrue\nDoes 579 divide 8767218?\nTrue\nIs 134912 a multiple of 256?\nTrue\nIs 10 a factor of 66568?\nFalse\nIs 722496 a multiple of 284?\nTrue\nIs 2 a factor of 613043?\nFalse\nIs 25 a factor of 11439?\nFalse\nDoes 237 divide 378071?\nFalse\nIs 5 a factor of 1632989?\nFalse\nDoes 197 divide 254017?\nFalse\nIs 897528 a multiple of 7?\nFalse\nDoes 466 divide 3859258?\nFalse\nIs 537433 a multiple of 8?\nFalse" -"2 - 1\nLet b = 47 - 42. Let c(q) = 4*q - 24. Let s(k) = -k + 5. Calculate b*c(t) + 24*s(t).\n-4*t\nLet p(g) = g**3 + g**2 - g + 1. Let s(l) = l**3 + 2*l - 1. Determine p(a) + s(a).\n2*a**3 + a**2 + a\nLet l(v) = 13*v**3 + 2*v - 1. Let c(o) = 53*o**3 + o**2 + 9*o - 5. Determine 2*c(g) - 9*l(g).\n-11*g**3 + 2*g**2 - 1\nLet u(h) = 5*h**3 - 2*h**2 + 2*h. Let r(y) = y**3 + 8*y**2 - 11*y - 15. Let f be r(-9). Let j(k) = 5*k**3 - 3*k**2 + 3*k. Give f*u(a) - 2*j(a).\n5*a**3\nLet y(w) = -129*w**2 + 33. Let d(z) = -8*z**2 + 2. Determine 99*d(s) - 6*y(s).\n-18*s**2\nLet t(l) be the third derivative of -l**3/6 + 47*l**2. Let q(a) = -2*a + 5. Calculate -q(x) - 4*t(x).\n2*x - 1\nLet x(k) = -13*k - 4. Suppose 0*c + 2 = c. Let l(g) = 0 + c*g - 1 - 5*g. What is -9*l(h) + 2*x(h)?\nh + 1\nSuppose -8 = 2*p - 5*x, 5*p + 15 + 5 = -4*x. Let l(r)" -"160)). Round y to the nearest 1000.\n25000\nLet c(a) = -a**3 + 8*a**2 - a + 7. Let p be c(8). Let u be (770002 - p) + (-6)/2. What is u rounded to the nearest one hundred thousand?\n800000\nLet j = -265 - -580. Suppose -c + 5*l = -71, -c = -6*c + 5*l + j. Round c to the nearest ten.\n60\nLet j(d) be the third derivative of -37*d**4/3 - d**3 - 3*d**2. Let o be j(-6). Round o to the nearest one hundred.\n1800\nLet l = 16 + -12. Suppose 5*j + 985 = -l*r, 5*r + 877 = 5*j - 298. What is r rounded to the nearest 100?\n-200\nSuppose 4*s - 49681 + 660517 = 0. Let m = s + 13709. Round m to the nearest 10000.\n-140000\nLet u = -17.9999792 - -18. Round u to 6 decimal places.\n0.000021\nLet m = 78.072 + -0.072. Let o = m + -27. Let s = -51.0000042 + o. Round s to 6 decimal places.\n-0.000004\nSuppose 6*h - 970 = 848. Round h to the nearest ten.\n300\nLet h = -0.48 - 3.62. Let x =" -"*y + 3*y**2 - 4*y + 1 - 1 as s*y + b + z*y**2 and give z.\n3\nExpress -1 + 30*x + 0 + 1 in the form p*x + m and give p.\n30\nRearrange 9*l**2 - 11*l**2 + 0 + 1 + 6*l**4 + l**2 - l to a*l**2 + t*l**3 + h*l + q + c*l**4 and give h.\n-1\nExpress (6 - 5 + 1)*(-2 - 6*d + 2) in the form b*d + r and give b.\n-12\nExpress -1 - 3*f**4 + 3*f**2 - 3*f + f**4 + 2*f**3 + f**4 - 5*f**3 in the form x*f**4 + c*f + m + l*f**2 + p*f**3 and give c.\n-3\nExpress (-4 - 1 + 6 + 0 + 0 + 1 + (2 - 3 - 1)*(0 - 1 + 3) - 1 - 2 + 2 + 0 + 5 - 4)*(2 + 3*q - 2) in the form i + s*q and give s.\n-6\nExpress (16*c - 2*c + c - 3*c + c + 4*c + (-2*c + 7*c - 3*c)*(3 + 0 - 2))*(5 - 3 + 1) in the form s + y*c and give s." -"**3 - 18*v\nLet a(l) be the second derivative of -2*l**6/15 + 3*l**5/5 + l**4/4 + 189*l**2/2 - 195*l. Find the third derivative of a(r) wrt r.\n-96*r + 72\nLet h be (-12)/(-21) + 31/7. Let k(y) = y - 1. Let b(c) = -21*c - 8. Let t(w) = h*k(w) + b(w). What is the first derivative of t(s) wrt s?\n-16\nLet u(h) be the third derivative of h**7/105 - 23*h**6/120 - 160*h**3/3 - 384*h**2. Find the first derivative of u(n) wrt n.\n8*n**3 - 69*n**2\nSuppose 32 = 2*w - 20. Find the first derivative of -w + 33*v - 59*v + 26*v - 20*v**4 wrt v.\n-80*v**3\nLet g(u) be the third derivative of -2*u**7/105 - u**6/20 - 7*u**5/20 + 7*u**2 - 2*u. What is the third derivative of g(f) wrt f?\n-96*f - 36\nLet q = 0 + 25. Let d(o) = -26 + 2*o - 4*o + q - 16*o. Let s(l) = -4*l. Let n(h) = -4*d(h) + 20*s(h). What is the derivative of n(v) wrt v?\n-8\nLet l = -18 + 8. Let j = 10 + l. What is the third derivative of j*o**2 - 2*o**2 - 4*o**2" -"*m + 164. What is the tens digit of t(n)?\n0\nLet d = 143 + -94. Suppose -d = 6*z - 1. What is the units digit of (19/(-2))/(z/16)?\n9\nLet b(z) = 5*z - 22. Let w be b(-7). Let g = -25 - w. Suppose 2*a = c - 38, 0*c = c - 5*a - g. What is the tens digit of c?\n4\nLet l = 7180 - 1779. Suppose -15*z - l = -26*z. What is the hundreds digit of z?\n4\nLet d be (1/(-1))/1 + 0 + 3. Let h be (-693 - d)/5*2. Let p = -84 - h. What is the units digit of p?\n4\nSuppose 18*d - 2880 = 2*d. What is the tens digit of d?\n8\nLet w(x) = -x**3 - 23*x**2 - 24*x - 40. Let z be w(-22). What is the tens digit of 3/z + (-4468)/(-16) - 1?\n7\nSuppose -2*c - o = 880 - 17808, 2*o = -3*c + 25394. What is the thousands digit of c?\n8\nLet r(d) be the third derivative of d**5/15 - d**4/6 - d**3/6 - 117*d**2. Let g = -4 + 7. What is the" -"*o - 3. Let c(g) = 3*g**3 - 2*g**2 - 4*g - 3. Let b(h) = 5*c(h) - 6*i(h). What is the tens digit of b(q)?\n3\nSuppose y = -p + 2810, 5*y + p = 7057 + 6989. What is the thousands digit of y?\n2\nSuppose -3*i + 1468 = -2*v, 4 = v - 3*v. Suppose i = 4*m + 2*d, 3*m + 607 = 8*m + 4*d. What is the tens digit of m?\n2\nSuppose 0 = -2*v + 2*u + 18, 2*v + 0*u - 3*u - 21 = 0. Let h = 21 + -45. What is the units digit of 2/v + (-280)/h?\n2\nLet d(j) = 3*j**2 + 5*j + 5. Let i(x) = x - 8. Let o be i(4). Let s be d(o). Let r = s - 12. What is the units digit of r?\n1\nSuppose -p + 4*v = -52, -p + 41 = -3*v - 12. Suppose 0 = -q - 0*q + p. What is the tens digit of q?\n5\nLet q(x) = 350*x + 262. What is the units digit of q(4)?\n2\nLet v(g) = -g**3 + 14*g**2 - 13*g" -"rom {l: 8, d: 2}?\n7/15\nTwo letters picked without replacement from vrt. Give prob of sequence rv.\n1/6\nTwo letters picked without replacement from oommmoombbommbbom. What is prob of sequence mm?\n21/136\nFour letters picked without replacement from gggqgggg. What is prob of sequence gggq?\n1/8\nThree letters picked without replacement from bibbbibibvvibbvi. What is prob of sequence vvi?\n1/112\nTwo letters picked without replacement from {h: 2, r: 3, p: 2, f: 5}. What is prob of sequence ff?\n5/33\nTwo letters picked without replacement from qqqqqqqqbqqqbqqqqqbq. Give prob of sequence qb.\n51/380\nFour letters picked without replacement from zzzfzf. What is prob of sequence zfzz?\n2/15\nTwo letters picked without replacement from {y: 2, o: 2, c: 4, w: 1, z: 3}. Give prob of sequence oc.\n2/33\nFour letters picked without replacement from {k: 1, y: 3, n: 1, a: 11, u: 2}. What is prob of sequence nayn?\n0\nWhat is prob of sequence xxct when four letters picked without replacement from {r: 1, y: 2, x: 3, c: 5, s: 3, t: 1}?\n1/1092\nTwo letters picked without replacement from ggkrrrkgkrggkggk. Give prob of sequence rr.\n1/20\nWhat is prob of sequence hhll when" -" + 3. Let g be 7 + -1 - 8/(-8). Let j be q(g). Solve 0 = 5*l + j, -l = 3*r + 7 - 2 for r.\n-1\nLet f be (1 + -4)/(6/(-8)). Let k(h) = 2*h**3 - 3*h - 5 - h**3 - 2*h**2 + 5. Let b be k(f). Solve 23 = 4*y - 3*m, y + 2*y - b = 5*m for y.\n5\nLet n(l) = 0 - l - 2 + 10. Let y be n(6). Solve -t = -2*v - 5, 3*v + 11 - y = 2*t for t.\n3\nSuppose -3*r = 2*y - 5*y, -18 = -5*r - 4*y. Let l = -2 + 2. Suppose -r*x + l*x = -6. Solve -t + 12 = x*v, 3*t + 3 = 4*v - 0 for t.\n3\nLet h = -66 - -101. Solve s = -2*g - 1, -4*s + 5*g = -0*g - h for s.\n5\nLet k = 21 - 17. Solve -3*w - 5 = -4*q, w = -k*q - 4*w + 13 for q.\n2\nLet x = 33 + -30. Solve -6*c = -j - x*c - 10, 0 = 3*j" -"Solve 5*j - j + 20 = d for j.\n-5\nLet n = 4 + -2. Suppose -1 = -m + n*d - 5, 4*m - 2*d = -4. Suppose -3*v + 3 + 3 = m. Solve 0 = -0*i + v*i for i.\n0\nLet l be 22/4 + (-3)/6. Let r be l/(-10) - 1/(-2). Solve -2*c + 3*c = r for c.\n0\nLet d = -12 - -16. Solve -2 = -d*w - 14 for w.\n-3\nLet a be 1*(2 - 0) - -2. Suppose -3*i = -0*x + 5*x - 31, -5*x + 2*i + 21 = 0. Solve a*m + x = -11 for m.\n-4\nLet o = 14 - 10. Solve y - o = -1 for y.\n3\nSuppose 0*s - 5*s + 40 = 0. Suppose -s*j - 4 = -9*j. Solve -5*f + 16 = -j for f.\n4\nLet u be -2 + (1 - 1*-4). Solve 3*j + 0*j - u = 0 for j.\n1\nLet c(m) = -2*m + 4. Let l be c(0). Solve -2 = -l*z - 6 for z.\n-1\nLet i = 17 - 11. Solve -4 =" -"). What is the second derivative of k(o) wrt o?\n3196\nWhat is the first derivative of -3110*c - 3113*c + 6223*c + 9809 + 1075 - 6837*c**2 wrt c?\n-13674*c\nSuppose 2*l - 24 = -12. Suppose 14*c = 11*c + l. What is the second derivative of -23*b**3 - 54*b**2 - 28*b + 108*b**2 - 54*b**c wrt b?\n-138*b\nLet m(u) be the first derivative of -3331*u**3/3 - 1005*u**2/2 - 3082. What is the second derivative of m(a) wrt a?\n-6662\nLet f(u) be the second derivative of 38*u**5 - 641*u**2 + 1049*u. What is the derivative of f(c) wrt c?\n2280*c**2\nSuppose -2*w = 2*w + 4*v - 76, -5*w + 5*v = -55. Find the first derivative of -3*l + 11*l - 3*l + w - 3*l - 2*l**2 wrt l.\n-4*l + 2\nDifferentiate -12295 - 2896*d + 13517 + 711*d with respect to d.\n-2185\nFind the third derivative of 468*v**2 + 8*v**3 + 651*v**2 + 3*v**4 - 5*v**4 + 418*v**3 + v**4 wrt v.\n-24*v + 2556\nLet w(a) be the third derivative of 7*a**2 + 0*a + 0 - 27/2*a**3 + 89/24*a**4. What is the first derivative of w(x) wrt x?\n89" -"-6*v + 6134 + q = 0. Is v composite?\nFalse\nLet d be (-123)/15 - (-10)/50. Let b = d + 16. Let k(w) = 18*w - 10. Is k(b) composite?\nTrue\nLet d be ((-39)/6)/13*-1*4. Suppose 2*q + q = d*v - 5268, 2*v = 5*q + 5272. Is v prime?\nFalse\nLet p = 119405 + 100749. Suppose -23*g + g + p = 0. Is g a composite number?\nFalse\nIs 23146 + ((-1)/(-3) - (5 + 15/(-9))) prime?\nTrue\nLet n be (-12)/(-24)*10/(-1). Let b(z) = 20*z**2 + 11*z + 4. Let l(w) = -21*w**2 - 12*w - 5. Let u(v) = 3*b(v) + 2*l(v). Is u(n) a composite number?\nTrue\nLet r be 50/(-150)*(-7 + 1). Suppose p - g - 1539 = -5*g, -r*g = 2. Is p composite?\nFalse\nLet o(s) be the second derivative of 0 + 13*s + 43/6*s**3 + 1/2*s**2. Is o(2) composite?\nTrue\nLet c be (-1 - 8)/(1/(-3)). Let u be (c/54)/((-2)/(-32)). Suppose 4*n + 1324 = u*n. Is n prime?\nTrue\nLet t(y) = -y**2 - 5*y + 393331. Let h be t(0). Suppose -720459 = 4*f - m, -4*m + 33115 - h = 2*f." -"is 121645801 divided by -5?\n-121645801/5\nDivide 253 by 7039.\n253/7039\nWhat is 161711 divided by -1053?\n-161711/1053\nCalculate -128156880 divided by 4.\n-32039220\nDivide -17175546 by -6.\n2862591\nDivide 3946800 by 1150.\n3432\nWhat is -34099362 divided by 66?\n-516657\nCalculate 1098435 divided by 1965.\n559\nCalculate -8078124 divided by -2019531.\n4\n-13086379 divided by 13086379\n-1\nDivide 296 by 609.\n296/609\nWhat is 10 divided by -505239?\n-10/505239\n-1396007 divided by 1\n-1396007\n177 divided by 1550334\n59/516778\n-6161130 divided by 114095\n-54\nCalculate -176509732 divided by 4.\n-44127433\n-9407775 divided by -25\n376311\n-5766816 divided by 10922\n-528\n18706395 divided by 18706395\n1\nCalculate -255 divided by -139914.\n85/46638\nWhat is 17850960 divided by 16?\n1115685\nCalculate -1 divided by -3260545.\n1/3260545\n-131894584 divided by -1\n131894584\n68665704 divided by -8583213\n-8\nCalculate -495083 divided by 26057.\n-19\nCalculate 12197 divided by 4857.\n12197/4857\nDivide 6 by 3058888.\n3/1529444\nDivide 568372 by -284186.\n-2\n-19105694 divided by 1\n-19105694\nWhat is 0 divided by 30608704?\n0\nCalculate -16 divided by -1732209.\n16/1732209\nDivide 9480602 by -277.\n-34226\n551424720 divided by 22976030\n24\n9957909 divided by -6\n-3319303/2\nDivide -57245830 by -106.\n540055\nDivide 4 by -3847136.\n-1/961784" -"nator of ((-19)/4)/(9/(-14)) and k.\n18\nLet z = 10119/4 - 2553. Calculate the common denominator of 99/2 and z.\n4\nCalculate the common denominator of -97/18 and (-55)/44*12/(-82).\n738\nLet h(t) = -t + 26. Calculate the least common multiple of 18 and h(6).\n180\nLet p = 15591/8 - 1954. Let u = 205/17 - 331/136. Let a = u - p. Calculate the common denominator of a and 47/5.\n20\nLet n = -4009219/194 - -20666. Let p = -2168/1067 - n. What is the common denominator of 31/8 and p?\n88\nLet m = -5807/22 + 264. What is the common denominator of m and (-10)/(-18)*(70/(-4))/7?\n198\nLet b = 2 + -2. Let h be (b - -1 - 0)*26. Let f = h + -14. Calculate the smallest common multiple of 10 and f.\n60\nLet v = -9 + 12. Suppose 2*i - i = v. Suppose -a - 3 = 0, 0 = 4*s - a - 10 + 3. Calculate the lowest common multiple of s and i.\n3\nLet v = -3 + 3. Suppose 3*f + a - 12 = 0, 2*f - 9 = -v*f - a. What" -"-0.3 (b) 23 (c) -1/31 (d) 0 (e) -3.39\nc\nWhat is the second biggest value in 4, 0.1, 88, -0.074, 5/12?\n4\nWhich is the fifth smallest value? (a) 5.4 (b) -1.7 (c) -0.45 (d) 9/8 (e) -0.2\na\nWhat is the fifth smallest value in 287/8, -1/6, 67, -4, 2, -2/9?\n287/8\nWhich is the fourth smallest value? (a) -611 (b) 0.3 (c) 1/4 (d) -0.2 (e) 0.4 (f) -0.4 (g) -0.1\ng\nWhich is the third biggest value? (a) -0.6 (b) -131064 (c) -5\nb\nWhich is the smallest value? (a) -1 (b) -0.4 (c) 3501.7 (d) -86/3\nd\nWhat is the fourth biggest value in 2, 414042, -3, -1/2, -1/7?\n-1/2\nWhat is the third smallest value in 11, -2, 1, -3, 28913?\n1\nWhich is the third smallest value? (a) -1/5 (b) -365.91 (c) -848 (d) 3/7\na\nWhich is the smallest value? (a) -2/63 (b) 0.1 (c) -23194\nc\nWhat is the fourth smallest value in 1, -6838, -78, 0.4, 1/5?\n0.4\nWhat is the fifth smallest value in 16, 0, -41, -1/3, 1, -2.87?\n1\nWhat is the sixth biggest value in -5, -0.2, -16/3, 2/7, -1, -261/8?\n-261/8\nWhat is the fourth" -" 4 and ((-48)/(-4))/((-18)/l)?\n8\nLet t(o) be the second derivative of -o**3/3 + o**2 + o. Suppose -5*z + 20 = -3*z. What is the least common multiple of z and t(-1)?\n20\nLet l = -423 - -477. What is the lowest common multiple of 60 and l?\n540\nLet q(i) be the third derivative of -i**4/4 + i**3/3 + 3*i**2. Let n be q(-1). Let d = 13 - n. What is the smallest common multiple of 8 and d?\n40\nLet b be (-6)/4 + ((-1875)/6)/(-5). Suppose 0 = 2*g - 0*g + 5*z - b, 2*g + 2*z = 46. What is the least common multiple of 62 and g?\n558\nLet r be (-904)/6377 + 9/63. Let t = r - -40979/14576. Find the common denominator of t and 63/16.\n16\nLet y = 913 - 567. What is the common denominator of -34/7 and -2 - 0 - y/(-134)?\n469\nLet v(r) = 7*r**2 - 2*r + 2. Let c be (-2 - -1)*1*(28 + -30). What is the least common multiple of 20 and v(c)?\n260\nSuppose 11*y - 245 = 16*y. What is the common denominator of 1478/84 + 21/y and 35/6?" -"56.5 rounded to the nearest 1000?\n112000\nRound 0.000014026 to 7 decimal places.\n0.000014\nWhat is 2798108 rounded to the nearest one hundred thousand?\n2800000\nRound 10.059282 to one decimal place.\n10.1\nRound 0.1146035 to three dps.\n0.115\nRound -104758.9 to the nearest one hundred.\n-104800\nWhat is 0.42409 rounded to 1 dp?\n0.4\nWhat is -0.00782902 rounded to four dps?\n-0.0078\nRound 0.008224271 to 3 decimal places.\n0.008\nWhat is 0.01808901 rounded to 5 decimal places?\n0.01809\nWhat is 121.30368 rounded to the nearest 10?\n120\nRound -4.265409 to 1 dp.\n-4.3\nRound 0.0000003578673 to seven decimal places.\n0.0000004\nWhat is -0.02309211 rounded to 2 decimal places?\n-0.02\nWhat is 2.23012 rounded to 0 dps?\n2\nRound -1062.52 to the nearest 100.\n-1100\nRound -0.0001295735 to 5 decimal places.\n-0.00013\nWhat is 0.00001583817 rounded to six dps?\n0.000016\nWhat is 621572.6 rounded to the nearest 100000?\n600000\nRound 349964 to the nearest one thousand.\n350000\nWhat is -26618546 rounded to the nearest ten thousand?\n-26620000\nWhat is 14136890 rounded to the nearest 100000?\n14100000\nRound -30709.298 to the nearest ten thousand.\n-30000\nWhat is -0.06600196 rounded to 4 decimal places?\n-0.066\nRound -0.035723353 to five dps.\n-0.03572\nRound -657.5388" -" Which is the closest to 0? (a) 0 (b) s (c) 15\na\nLet g = 0.02 + 0.28. Let k = -1.5 + 2. Let m = g - k. What is the closest to 0.1 in -3/5, -2/5, m?\nm\nLet t = 5.01 + -0.01. Let x = 8 - t. Let a = 0 - 0.4. What is the closest to 1 in 3/7, x, a?\n3/7\nSuppose -o + 3 = -3*h + 9, -2*o = 3*h + 3. What is the nearest to -2 in o, -0.02, 3/2?\no\nLet w = -14/11 - -232/165. Let z = -7.06 - -0.06. Let l = z + 5. What is the closest to -1 in w, 1/5, l?\nl\nLet o = -12 + 17. Let x be (-2)/o + 0/5. Let w = -0.1 + 0.3. Which is the nearest to w? (a) x (b) -5 (c) -1\na\nLet f = -148 - -157. What is the nearest to -2/7 in -3, 4/3, f?\n4/3\nLet m = 0 - 4. Let l = 0.03 - -0.97. Which is the nearest to 1? (a) l (b) -1/11 (c) m\na\nLet z =" -"ate prob of picking 1 o and 1 e when two letters picked without replacement from vovoobblebo.\n4/55\nFour letters picked without replacement from sxesqds. Give prob of picking 1 d, 1 e, 1 s, and 1 q.\n3/35\nTwo letters picked without replacement from yradaravaradyra. What is prob of picking 1 d and 1 y?\n4/105\nFour letters picked without replacement from {o: 17, p: 3}. Give prob of picking 4 o.\n28/57\nCalculate prob of picking 1 m and 1 h when two letters picked without replacement from {m: 1, h: 1, i: 4, e: 1, c: 2}.\n1/36\nThree letters picked without replacement from kkkkkkhhkkhhhk. Give prob of picking 3 h.\n5/182\nThree letters picked without replacement from acpaparccamrjc. Give prob of picking 1 j, 1 p, and 1 r.\n1/91\nTwo letters picked without replacement from hajjhz. Give prob of picking 1 a and 1 h.\n2/15\nCalculate prob of picking 1 i, 1 w, and 1 j when three letters picked without replacement from mgggiwgwgagajgg.\n2/455\nWhat is prob of picking 1 m and 1 c when two letters picked without replacement from {c: 6, w: 4, m: 4}?\n24/91\nCalculate prob of picking 2" -" - 22 = -5*q, -h*y - 3*q + 13 = 0. What is the highest common divisor of y and 14?\n2\nLet g(z) = 7*z + 3. Let x be g(7). Suppose -4 - x = -c. What is the greatest common divisor of 7 and c?\n7\nLet q(m) = -10*m - 12. Let k be q(-6). Let c be -2*(-2)/4 - -11. Calculate the highest common factor of c and k.\n12\nLet k be (-2 - -1)/(2/(-6)). Suppose w + k*w = 128. Suppose -4*z - c + 64 = 0, 3*z - 48 = -0*c + 3*c. Calculate the highest common divisor of z and w.\n16\nSuppose -5*x = -5*f - 165, 10*f = x + 5*f - 53. Calculate the greatest common divisor of 56 and x.\n28\nSuppose 198 = -5*t - 27. Let b be (2 - 1)/((-5)/t). What is the greatest common factor of 72 and b?\n9\nLet n be 1 - (-1 + 6) - -12. What is the highest common factor of n and 1?\n1\nSuppose 3*v - 199 - 233 = 0. Suppose 0*x - 64 = -4*x. Let n be (-2)/8 - (-292)/x. What" -"ase 6?\n-223211\nConvert 104031 (base 5) to base 16.\ne39\n-66 (base 8) to base 5\n-204\nConvert 14010 (base 5) to base 3.\n1112212\nWhat is 10042 (base 8) in base 15?\n1355\n-3666 (base 7) to base 16\n-55b\n-1460 (base 8) to base 6\n-3440\n-253a (base 14) to base 11\n-4998\n-69 (base 10) to base 3\n-2120\nConvert 10111111000100 (base 2) to base 14.\n4656\n-8837 (base 10) to base 4\n-2022011\nWhat is -130300 (base 5) in base 16?\n-13d3\nWhat is -8227 (base 15) in base 10?\n-27487\nConvert -3a9 (base 15) to base 10.\n-834\nConvert 349 (base 10) to base 16.\n15d\n13827 (base 14) to base 7\n260450\nWhat is -6250 (base 9) in base 4?\n-1013211\n13120332 (base 4) to base 15\n8e80\nWhat is 323400 (base 5) in base 6?\n123220\n-46b (base 16) to base 11\n-939\n12118 (base 12) to base 14\n8c3a\nc0 (base 16) to base 15\ncc\n-f97 (base 16) to base 5\n-111431\nWhat is -71740 (base 10) in base 5?\n-4243430\nConvert -133011 (base 4) to base 15.\n-8c9\nWhat is 7a4 (base 13) in base 11?\na98\nWhat is" -". What is the least common multiple of 48 and s(-111)?\n1920\nLet i(j) = j**3 - 2*j**2 + 13*j - 46. Let o be i(3). Let q(w) = 6*w**2 - 9*w + 4. What is the least common multiple of 77 and q(o)?\n770\nLet k = 1996/111 + -52477/2812. What is the common denominator of k and (-388093)/981030 - 4/106?\n1140\nSuppose 3*n - 2 = 2*r, 0 = n - 0*n + 4. Let k(i) = 29*i**2 + i + 9. Let m be k(r). Let g = 27077/19 - m. Calculate the common denominator of -58/7 and g.\n133\nLet m be -4 + -2*1115/(-330). Let a = m + -317/462. Calculate the common denominator of -99/116 and a.\n812\nLet z(g) = 33*g**2 + 312*g + 12. What is the smallest common multiple of 11 and z(-10)?\n2112\nWhat is the common denominator of (64/(-160) - (-16)/90)*642/(-880) and 151/36?\n1980\nLet y be (2/(-3))/((-1)/(-27)). Find the common denominator of (y/(-16))/((-12)/112) and (2354/616)/((-2)/4).\n14\nLet h = -11288089/165 - -68413. Find the common denominator of h and -25/153.\n8415\nLet v = 42574 - 4214743/99. Find the common denominator of v and (-681)/(-1589) - 43/231.\n99" -"*1. Calculate the greatest common divisor of 65 and r.\n13\nLet u = 0 + 2. Suppose 3 = u*m - m. What is the highest common factor of m and 27?\n3\nLet r(y) = -y**2 - 9*y - 9. Let u be r(-8). Let v be u + (-3)/3 + 16. Calculate the greatest common divisor of 2 and v.\n2\nSuppose -3*r = -3, 0 = -0*p + 2*p + r - 81. Let b be (-1)/((-2)/p)*1. Let c = 658 - 438. Calculate the highest common divisor of b and c.\n20\nSuppose 2*c - 5*k = 39, 0 = -5*c + 2*c - 2*k + 30. Let m(x) = -x**3 + 8*x**2 - 2*x - 3. Let o be m(3). What is the greatest common divisor of o and c?\n12\nLet c = -46 - -79. Calculate the greatest common divisor of 132 and c.\n33\nSuppose -4*b = -9*b + 20. Suppose -b*c - 5 + 17 = 0. Let p(n) = n**3 + n**2 - 5*n + 3. Let j be p(c). What is the highest common divisor of j and 36?\n12\nLet k(c) = -c**2 - 5*c - 4." -"r 20?\n20\nAre 3432370 and 3432288 unequal?\nTrue\nWhich is smaller: 208 or 42014?\n208\nDoes 37018146 = 37018146?\nTrue\nWhich is smaller: 123949159 or 123949169?\n123949159\nIs -591298/19 less than -31121?\nFalse\nWhich is smaller: -421710 or -422854?\n-422854\nWhich is bigger: 0 or -125/411441?\n0\nIs 40849553 greater than 40849558?\nFalse\nWhich is smaller: 13590495 or 13590496?\n13590495\nWhich is greater: -1 or 115/125188?\n115/125188\nWhich is smaller: -303564 or -303539?\n-303564\nIs 3661248/5 equal to 732249?\nFalse\nIs 833829 <= 833761?\nFalse\nIs 46/3 bigger than -16/10067?\nTrue\nWhich is smaller: 1 or 60/3649451?\n60/3649451\nIs 817480 greater than or equal to 30246708/37?\nTrue\nWhich is bigger: 235 or 24879?\n24879\nWhich is greater: -14/9107011 or 0?\n0\nIs -1061432 != -1061445?\nTrue\nAre -115395790 and -115395791 nonequal?\nTrue\nWhich is bigger: -1323 or 5/10116?\n5/10116\nWhich is bigger: -9/109196462 or 1?\n1\nAre -29698 and 23412 unequal?\nTrue\nAre -33752 and -2261428/67 equal?\nFalse\nWhich is smaller: -28765842 or -9?\n-28765842\nWhich is bigger: -2/1751 or 162?\n162\nWhich is smaller: -2047089 or 0.17?\n-2047089\nWhich is smaller: -7864288/9 or -873811?\n-873811\nIs -417238 <= -2920665/7?\nTrue\nWhich is bigger: 4/60791841 or 0.1?\n0.1\nWhich" -"62))/(-818 + 821)?\n248\nSuppose 4*j + f = 75, 47 = 3*j - f - 18. What is the least common multiple of 66 and j?\n660\nLet q(u) = -6 - 1 - 6 - 3 + 15*u. Let b be q(10). Let h = 141 - b. What is the lowest common multiple of 7 and h?\n7\nLet m(u) = -2*u**2 - 10*u + 28. Let k be m(-6). Suppose 22*v + k = 24*v. Let d = 28 + -11. What is the lowest common multiple of v and d?\n136\nSuppose -3*v + w - 4*w + 114 = 0, w - 82 = -2*v. Calculate the lowest common multiple of v and 1564.\n17204\nLet h(p) = p**3 + 3*p**2 - 5*p - 1. Let j be h(-5). Let o = j - -26. Suppose o*s - 4*s = -4. Calculate the lowest common multiple of 5 and s.\n5\nLet b = 1972 - 63097/32. Let n = -6323 + 151777/24. Calculate the common denominator of b and n.\n96\nLet d = -2540871/693292 + 1820/491. What is the common denominator of d and 67/6?\n4236\nLet m(q) = -q**2 - 14*q" -"7742*i**3 + 17*i - 87591*i**3. Let y(a) = 4*a - 1. Let r be y(-2). Let m be v(r). Round m to the nearest 1000000.\n0\nLet t = -0.044 + -7.256. Let p = t - -7.300228. Round p to five dps.\n0.00023\nLet l = 28.23 + -28.22978415. What is l rounded to six decimal places?\n0.000216\nLet m = 8115 - 8115.004347. Round m to five dps.\n-0.00435\nLet w = 71715462 + -71715462.414116748. Let r = -0.015883712 + w. Let t = 0.43 + r. What is t rounded to seven decimal places?\n-0.0000005\nLet f = -41299.99981131 + 41300. What is f rounded to 5 dps?\n0.00019\nLet j = -8077.098 - -8075. Round j to 2 decimal places.\n-2.1\nLet w = -975 - -975. Suppose -3*s - 8 = 4*z + s, -4*z + 6 = -3*s. Suppose 2*b + z*b + 942 = w. Round b to the nearest ten.\n-470\nLet g(c) be the first derivative of 295*c**4/2 - 5*c**3/3 + c**2 - 32*c + 103. Let h be g(-14). What is h rounded to the nearest 100000?\n-1600000\nSuppose 0 = -4*w + 2*d + 14581030, 20 = d +" -"er of 1/8, to the nearest integer?\n14\nWhat is 1391106153 to the power of 1/9, to the nearest integer?\n10\nWhat is 91633107 to the power of 1/2, to the nearest integer?\n9573\nWhat is the fourth root of 96396732 to the nearest integer?\n99\nWhat is the square root of 195013626 to the nearest integer?\n13965\nWhat is 43229242 to the power of 1/2, to the nearest integer?\n6575\nWhat is the ninth root of 22109364 to the nearest integer?\n7\nWhat is 69304787 to the power of 1/9, to the nearest integer?\n7\nWhat is 477724302 to the power of 1/2, to the nearest integer?\n21857\nWhat is 3387468651 to the power of 1/2, to the nearest integer?\n58202\nWhat is 73228437 to the power of 1/2, to the nearest integer?\n8557\nWhat is the square root of 7705714772 to the nearest integer?\n87782\nWhat is the fifth root of 690246178 to the nearest integer?\n59\nWhat is the square root of 184073908 to the nearest integer?\n13567\nWhat is 1590764074 to the power of 1/2, to the nearest integer?\n39884\nWhat is 156936455 to the power of 1/2, to the nearest integer?\n12527\nWhat is the" -" the greatest common factor of c and 10?\n5\nLet t be (-40)/(-5 + (-1290)/(-260)). Calculate the highest common divisor of t and 40.\n40\nSuppose 5*j - 4*j = 6. Suppose 72 = j*w - 4*w. Suppose -4*t = 2*t - 72. What is the highest common factor of t and w?\n12\nSuppose -10*z + 299 = 59. What is the greatest common factor of 168 and z?\n24\nLet g = -404 + 422. Calculate the greatest common factor of 45 and g.\n9\nLet m(b) = -b**2 + 7*b - 4. Let c be m(6). Suppose -3*l = c*l + 985. Let a = 302 + l. Calculate the highest common divisor of a and 42.\n21\nLet r be ((-11)/(165/(-190)))/((-2)/(-3)). Let s = 23 - r. Calculate the greatest common divisor of 36 and s.\n4\nSuppose 4*x = 4*a + 384 + 20, x - 2*a = 100. Let p = -22 + x. Suppose 0 = 5*o + z - p, z + 27 + 13 = 3*o. What is the greatest common factor of 75 and o?\n15\nSuppose -5*v = -25, 4*v = 5*j - 37 + 2. What is the" -"= o + -0.3. Which is smaller: h or i?\ni\nLet l = -10.349 + 0.449. Let a = 0 - -1. Which is smaller: a or l?\nl\nLet c = -8/58137 + -167957737/406959. Let x = c + 49365/119. Which is smaller: x or 2?\n2\nLet y be ((-32)/((-2016)/(-147)))/((-2)/6). Is 37/5 less than or equal to y?\nFalse\nSuppose 0*s = 3*z + 2*s + 44, z = -s - 15. Let k be z/(-21) - (-122)/24. Suppose -3*y - 16 = -0*h - 2*h, 5*y = -10. Is h >= k?\nFalse\nLet t = 271081/83128037 - 5/43591. Which is bigger: 0 or t?\nt\nSuppose 2*j - 5*j = -3. Suppose 7566 = 6*q - 1332. Let h = q + -54868/37. Which is bigger: j or h?\nj\nSuppose 0 = 3*t - 3, -6*x + 9*x - t + 46 = 0. Which is smaller: -5 or x?\nx\nLet p be ((-19)/(1995/(-90)))/(1/7) - 5. Let b be (-2)/(1086/1095) - -2. Which is bigger: b or p?\np\nLet r = -117/17 - -10681/1547. Is r less than -0.13?\nFalse\nLet p(z) = z**3 - 53*z**2 + 230*z + 324. Let j" -"f 98447382?\nFalse\nIs 254040248 a multiple of 4157?\nFalse\nIs 410968 a multiple of 92?\nFalse\nIs 135 a factor of 127403354?\nFalse\nIs 501528254 a multiple of 1102?\nFalse\nIs 745 a factor of 1156154134?\nFalse\nDoes 217 divide 2594647?\nFalse\nDoes 24 divide 2605530768?\nTrue\nDoes 197 divide 2430792926?\nFalse\nIs 74976291 a multiple of 113?\nTrue\nDoes 396 divide 113041626?\nFalse\nDoes 13 divide 2084973?\nFalse\nDoes 37 divide 306021154?\nTrue\nDoes 288 divide 4816512?\nTrue\nDoes 770 divide 4768939?\nFalse\nIs 35384843 a multiple of 77?\nFalse\nIs 37 a factor of 108318647?\nTrue\nIs 8 a factor of 80177034?\nFalse\nIs 204 a factor of 943347666?\nFalse\nIs 91 a factor of 10266893?\nTrue\nDoes 37 divide 132803582?\nTrue\nIs 285 a factor of 36744195?\nTrue\nIs 134902512 a multiple of 18?\nTrue\nIs 1986530133 a multiple of 37?\nFalse\nIs 78759072 a multiple of 1008?\nTrue\nDoes 39 divide 787861772?\nFalse\nIs 8 a factor of 115200415?\nFalse\nIs 59 a factor of 161341486?\nFalse\nIs 89 a factor of 31667203?\nFalse\nIs 9355048 a multiple of 8?\nTrue\nIs 18 a factor of 1210608?\nTrue\nIs 262 a factor of 125360974?\nTrue" -"3628, -25/3, -6\nSort 1, 16494, -3, 5 in decreasing order.\n16494, 5, 1, -3\nSort 0, 26164, 7, -2.\n-2, 0, 7, 26164\nSort 5, -385, 27, 113 in decreasing order.\n113, 27, 5, -385\nSort -0.1, -8/3, 140, 1/2.\n-8/3, -0.1, 1/2, 140\nPut -61, -5, 9, 3 in descending order.\n9, 3, -5, -61\nSort -4, 0, -7, -45 in descending order.\n0, -4, -7, -45\nSort -5/4, 5, -15, 566 in descending order.\n566, 5, -5/4, -15\nPut 0, 0.4, 116.2, 3/5 in decreasing order.\n116.2, 3/5, 0.4, 0\nSort -35, 943, 0 in ascending order.\n-35, 0, 943\nPut -2, 88, -3, 5, 3, -805 in ascending order.\n-805, -3, -2, 3, 5, 88\nPut 5, 7, 60, 2, -1, -5 in increasing order.\n-5, -1, 2, 5, 7, 60\nPut 1, 0.226, 3, -2, -0.4 in decreasing order.\n3, 1, 0.226, -0.4, -2\nPut 2/5, -64, 15, 0.5 in decreasing order.\n15, 0.5, 2/5, -64\nPut 4, 2824, 26, 5 in decreasing order.\n2824, 26, 5, 4\nPut 5848, -3, 5, 3 in descending order.\n5848, 5, 3, -3\nSort -1/6, 2/9, -0.12, 129, 0 in ascending order.\n-1/6, -0.12, 0, 2/9, 129\nPut" -"e 16, what is -7 - -10e?\n107\nIn base 4, what is 1001 - 11?\n330\nIn base 10, what is -18 - 6?\n-24\nIn base 8, what is -11 + -6?\n-17\nIn base 3, what is 2 - 120?\n-111\nIn base 10, what is 11831 + 4?\n11835\nIn base 3, what is -11 + -2120?\n-2201\nIn base 5, what is 2 + 11434?\n11441\nIn base 7, what is -44 - 2?\n-46\nIn base 7, what is 3 + 1424?\n1430\nIn base 4, what is 1001 + -303?\n32\nIn base 16, what is 2 - -506?\n508\nIn base 10, what is 10 - -18?\n28\nIn base 12, what is 323 - -1?\n324\nIn base 11, what is 148 - -7?\n154\nIn base 15, what is -12 - 12?\n-24\nIn base 6, what is -250040 - 5?\n-250045\nIn base 4, what is -30 - 21?\n-111\nIn base 3, what is 2 + -2200?\n-2121\nIn base 6, what is 44 - 13?\n31\nIn base 11, what is 4 + -528?\n-524\nIn base 8, what is -420 - 3?\n-423\nIn base 12," -"et a(s) = -s**3 + 4*s**2 + 3*s + 4. Does 11 divide a(3)?\nTrue\nSuppose 145 = 2*b - b. Suppose 0 = -5*a + 3*m + b, 9*a - 135 = 4*a + m. Is 13 a factor of a?\nTrue\nSuppose -3*p = 5*j - 241, 162 + 183 = 5*p - 3*j. Does 8 divide p?\nTrue\nSuppose 5*b = 3*b + 48. Suppose 27*g = b*g + 90. Is 10 a factor of g?\nTrue\nSuppose -2*i - 2*i = 8. Let f(d) = -8*d**2 + 2*d - 2. Let w(t) = 16*t**2 - 4*t + 5. Let y(m) = -5*f(m) - 2*w(m). Is y(i) a multiple of 19?\nFalse\nSuppose 2*g - 3 = 1. Let z be 1 - (-6*g - -2). Suppose -23 = -2*t + z. Is 8 a factor of t?\nFalse\nIs 70 + 1 - (-25 + 24) a multiple of 14?\nFalse\nSuppose 504 + 77 = 7*r. Is r a multiple of 26?\nFalse\nLet k(v) = 4*v**2 + 7*v. Is 15 a factor of k(-5)?\nFalse\nLet h be ((-3)/(-3))/((-3)/18). Let q(v) be the second derivative of -v**3/6 - v**2 + v. Does 3 divide" -"9 for v.\n-3\nLet x be (-64)/11 - (-8)/(-44). Let z be (-85)/(-15) - (-4)/x. Solve z*n - 30 + 10 = 0, -2*q = -2*n + 6 for q.\n1\nLet y = 107 + -102. Solve -j = 3*u + 11, -4*j + 2*u = -31 + y for j.\n4\nLet g = 282 + -279. Solve 0 = 3*m - 5*h, 4*m - 2*m = -g*h + 19 for m.\n5\nSuppose 3*p = 2*a + 4*p - 6, 3*a - 9 = p. Solve a*s = 5*m - 20, -4 = -4*s + 3*m - 27 for s.\n-5\nSuppose -4*s = -0*s - 4. Let h be 3 + ((-207)/(-3))/s. Suppose -b - h = -7*b. Solve -b = 3*v, -3*l - 3*v = 2*l + 37 for l.\n-5\nLet q = 13 + -13. Suppose -l = -3 - 1. Solve -n = -x - q - 1, 6 = 3*n - l*x for n.\n-2\nLet n(h) = -h**3 + 6*h**2 + 7*h + 5. Let p be n(7). Let y(l) = -l + 10. Let k be y(p). Solve 5*s = 3*m + 20, s - k*m + 3*m" -"= f**3 - 4*f**2 - 7*f + 7. Let k be m(5). Put k, 2, -2 in increasing order.\nk, -2, 2\nLet y = 0.61 - 0.11. Let n = y - 0.1. Put 6, n, 1 in increasing order.\nn, 1, 6\nLet f(l) = -l + 7. Let q = 4 - 0. Let n be f(q). Suppose 0 = 4*p - 2*p + 2. Put n, -4, p in descending order.\nn, p, -4\nLet j be 16 + -14 - ((-32)/(-2))/2. Put 0.5, 2, -2/17, j in ascending order.\nj, -2/17, 0.5, 2\nLet k = -5 + 1. Let p = -0.4 + 0.3. Put p, -2/3, k in decreasing order.\np, -2/3, k\nLet r = -18.4 + 24. Let f = 0.4 + -6.4. Let b = r + f. Sort b, 0.5, -3/2 in increasing order.\n-3/2, b, 0.5\nLet t(d) = d**3 + 6*d**2 + 5. Let n be t(-6). Let b = 32 + -32. Sort b, n, -1.\n-1, b, n\nSuppose 2*o - 3*o + 2 = -2*b, -4*b - 12 = -4*o. Sort -3, b, -4.\n-4, -3, b\nSuppose 3*c + 4*g - 34 =" -"(base 14) to base 2\n-1\nWhat is 1 (base 8) in base 10?\n1\nWhat is -2c (base 16) in base 3?\n-1122\nWhat is -5c (base 15) in base 2?\n-1010111\nConvert -3 (base 6) to base 13.\n-3\nWhat is -24 (base 9) in base 2?\n-10110\n-2 (base 6) to base 16\n-2\nConvert -1 (base 10) to base 14.\n-1\nWhat is 221 (base 3) in base 7?\n34\nWhat is -33 (base 6) in base 15?\n-16\nConvert 10 (base 16) to base 9.\n17\n-5 (base 15) to base 14\n-5\nConvert -2 (base 15) to base 5.\n-2\nConvert 31 (base 9) to base 14.\n20\nConvert 0 (base 16) to base 7.\n0\n1234 (base 5) to base 15\nce\n411 (base 5) to base 12\n8a\n-20 (base 12) to base 14\n-1a\n0 (base 2) to base 10\n0\n-21 (base 6) to base 8\n-15\n131 (base 5) to base 12\n35\nConvert 18 (base 16) to base 7.\n33\nWhat is 1 (base 6) in base 11?\n1\nWhat is 102 (base 3) in base 12?\nb\nWhat is 11000 (base 2) in base 9?\n26\nConvert" -"11 - 8)/((-3)/(-2)). Let z(g) = -3*g**m + 5*g + 2*g**2 + 3*g - 6 - 2*g. Give z(6).\n-6\nSuppose 6 = -3*s + 18. Let i be s*1/(-12)*-9. Suppose 2*w + w - i = 0. Let p(b) = -b**3 + 2*b - 1. Give p(w).\n0\nLet z(v) = 2*v**2 - 9*v - 2. Let u be (-24 - -2)/(6 + -4). Let w(s) = -10*s**2 + 46*s + 10. Let f(k) = u*z(k) - 2*w(k). Determine f(5).\n-13\nLet z(a) = -a**3 - a**2 + 4*a + 3. Let o(s) = 3*s - 3. Let v be o(3). Suppose 0 = -v*n + n - 15. Determine z(n).\n9\nLet n(b) = 2*b - 5*b - 3184 + 3190. Give n(4).\n-6\nLet i(v) = -v**2 + 0*v**3 - v**3 + 5*v**2 - 2*v**2. Suppose 2*m - 5 = -s, 15*s - 10*s + 5 = 5*m. What is i(s)?\n1\nLet p(q) = -q**3 + 8. Suppose -2*r + 3*k + 19 - 10 = 0, -4*r - k - 3 = 0. What is p(r)?\n8\nLet l = -8 + 8. Let o(a) = -4*a - 14. Let c(u) = 3*u + 13." -"3, d: 1, u: 5}. Give prob of sequence udud.\n0\nFour letters picked without replacement from {w: 1, z: 3, v: 1, f: 2, p: 3}. Give prob of sequence pfpf.\n1/420\nTwo letters picked without replacement from tuuccg. What is prob of sequence gu?\n1/15\nTwo letters picked without replacement from {e: 3, x: 1, n: 1, m: 1, b: 11, k: 2}. Give prob of sequence xm.\n1/342\nWhat is prob of sequence uk when two letters picked without replacement from qkqqukkkqu?\n4/45\nFour letters picked without replacement from zlotlhthlllllhllzjt. What is prob of sequence zozt?\n1/15504\nWhat is prob of sequence fh when two letters picked without replacement from {h: 1, v: 1, f: 1, c: 4, l: 4}?\n1/110\nCalculate prob of sequence iqnk when four letters picked without replacement from {n: 6, q: 3, e: 1, k: 1, i: 6}.\n9/4760\nTwo letters picked without replacement from vvvyyvvyyvvvvv. What is prob of sequence yv?\n20/91\nThree letters picked without replacement from vuuv. Give prob of sequence vuv.\n1/6\nTwo letters picked without replacement from iwz. What is prob of sequence iz?\n1/6\nWhat is prob of sequence ca when two letters picked without replacement" -"is bigger: 4 or w?\n4\nLet o = -1.5 - -9.5. Let d = o + -7. Which is greater: d or 2/5?\nd\nLet y be 6/(-21)*(-3 + 4). Which is smaller: y or 2?\ny\nLet j be ((8/(-14))/4)/1. Let w = -17 - -18. Do j and w have different values?\nTrue\nLet v(s) = s. Let u(d) = -d**2 + 6*d. Let n(q) = u(q) - 6*v(q). Let r(h) = -h**3 - 6*h**2 - 4*h + 6. Let g be r(-5). Let o be n(g). Is -1/9 at most o?\nFalse\nLet d be 5/((-10)/4)*2. Let z(y) = y + 3. Let o be z(d). Let g be 3/((-99)/(-6))*o. Are -1 and g non-equal?\nTrue\nSuppose -368 + 66 = 2*u. Let m = -2115/14 - u. Is 0 at most as big as m?\nFalse\nLet k(l) = l**2 - 10*l + 5. Let z be k(10). Suppose -3*b + 5 = 2*a, b - 5 = 5*b + z*a. Suppose 2*d + 3 = b. Which is smaller: 3 or d?\nd\nLet m(l) = l**2 + 2. Let t(w) = -w**3 + 5*w**2 + w - 5. Let j be t(5). Let" -" three letters picked without replacement from {v: 6, s: 4, x: 5}.\n4/455\nWhat is prob of picking 3 a when three letters picked without replacement from {c: 1, r: 3, i: 2, m: 1, a: 6}?\n10/143\nFour letters picked without replacement from {b: 2, q: 1, f: 5, i: 2, m: 1, d: 5}. What is prob of picking 2 d and 2 i?\n1/182\nWhat is prob of picking 2 k, 1 y, and 1 v when four letters picked without replacement from {v: 4, k: 2, y: 2}?\n4/35\nWhat is prob of picking 1 x and 1 w when two letters picked without replacement from {v: 3, f: 1, q: 2, w: 4, x: 1}?\n4/55\nFour letters picked without replacement from {s: 7, g: 3, y: 8, c: 2}. What is prob of picking 1 y, 2 s, and 1 c?\n112/1615\nFour letters picked without replacement from {c: 1, e: 2, s: 5, g: 1, w: 1, d: 3}. Give prob of picking 2 d, 1 c, and 1 s.\n3/143\nTwo letters picked without replacement from fbofzofzbofbcaaba. Give prob of picking 1 f and 1 a.\n3/34\nFour letters picked without replacement" -" terms in 1428 + h - 3*h + 48 - 2*h.\n-4*h + 1476\nCollect the terms in 44 - 836*y**3 - 20 - 24.\n-836*y**3\nCollect the terms in 0*w - 8 - 7*w - 6*w - 6*w + 15*w.\n-4*w - 8\nCollect the terms in 85 + 92 - 110 + 131 + 2*g.\n2*g + 198\nCollect the terms in -91*k + 15 + 333*k - 12 + 15.\n242*k + 18\nCollect the terms in 89*z + 89*z + 86*z - 262*z.\n2*z\nCollect the terms in 445*c**2 + 344*c**2 + 10*c**2 - 138*c**2.\n661*c**2\nCollect the terms in -18*d + 179 + 10*d - 182.\n-8*d - 3\nCollect the terms in 467*u**2 - u + 451*u**2 - 893*u**2.\n25*u**2 - u\nCollect the terms in 26*l + 13*l - l + 2*l**3 - 3*l.\n2*l**3 + 35*l\nCollect the terms in -23206 + 23206 + 10*c - 8*c**2 - 10*c.\n-8*c**2\nCollect the terms in 13174*d**3 + 7210*d**3 - 7*d + 7*d.\n20384*d**3\nCollect the terms in 1564*s**3 - 5639*s**3 - 13059*s**3 - 20210*s**3.\n-37344*s**3\nCollect the terms in 771*o - 1255*o + 466*o.\n-18*o\nCollect the terms in 1064*z**3 - 2119*z**3 +" -" 6?\n30\nFind the common denominator of 1393/(-1232) - -6 - 4/22 and 101/132.\n528\nLet f = 5/197083 + -21103281/607015640. Find the common denominator of 93/22 and f.\n3080\nLet y = 2977/63237416 - -3/22682. Let v = -122685/72488 + y. Calculate the common denominator of v and (-15)/(-10)*(-92)/(-42).\n91\nSuppose 0 = 2*p - 3*p + 42. Let k = -38 + p. Calculate the least common multiple of 11 and k.\n44\nLet n be (-711693)/18*1/9. Suppose 0 = -w - 1, 3*j + 4*w - 21836 = -2*j. Let v = n + j. Find the common denominator of -26/3 and v.\n6\nSuppose -684 = 7*l - 992. Calculate the smallest common multiple of l and 16.\n176\nSuppose 4*c + t + 23 - 83 = 0, -3*t = -4*c + 44. Suppose -w = -0*w - c. Let j = 306 - 302. Calculate the lowest common multiple of j and w.\n28\nLet i = -527 - -815. What is the smallest common multiple of 6 and i?\n288\nSuppose 45*d - 306 = 11*d. Calculate the smallest common multiple of 101 and d.\n909\nLet t(v) = v**3 + 19*v**2 -" -" the prime factors of 107130266.\n2, 479, 111827\nList the prime factors of 293863609.\n13, 22604893\nList the prime factors of 17555048.\n2, 7, 131, 2393\nWhat are the prime factors of 9346903570?\n2, 5, 934690357\nWhat are the prime factors of 258474992?\n2, 3229, 5003\nWhat are the prime factors of 1523917475?\n5, 4027, 15137\nList the prime factors of 40811820.\n2, 3, 5, 7, 97171\nList the prime factors of 431629752.\n2, 3, 17984573\nWhat are the prime factors of 361357481?\n361357481\nList the prime factors of 1216655436.\n2, 3, 4877, 20789\nList the prime factors of 895820660.\n2, 5, 7, 83, 77093\nList the prime factors of 57781305.\n3, 5, 193, 6653\nWhat are the prime factors of 39593225?\n5, 7, 32321\nWhat are the prime factors of 160249833?\n3, 1978393\nList the prime factors of 516972120.\n2, 3, 5, 7, 31, 19853\nList the prime factors of 2657010843.\n3, 10934201\nList the prime factors of 19652960.\n2, 5, 113, 1087\nWhat are the prime factors of 46870043?\n11, 43, 197, 503\nWhat are the prime factors of 48995566?\n2, 19, 23, 61, 919\nList the prime factors of 43075520.\n2, 5, 227, 593\nList the prime" -", 20, -12 in ascending order.\n-95, -12, -3, 20\nSort -1, -575, -267 in descending order.\n-1, -267, -575\nSort -0.0368, 1/2, 26 in decreasing order.\n26, 1/2, -0.0368\nSort 46135/4, 2/7, -0.4, 1/3 in decreasing order.\n46135/4, 1/3, 2/7, -0.4\nSort -1/56, -3, -13 in decreasing order.\n-1/56, -3, -13\nSort -8, -1.2, 9, 3, 5 in decreasing order.\n9, 5, 3, -1.2, -8\nSort -55, -2, -106, 2 in descending order.\n2, -2, -55, -106\nSort 3412, -4, 0, 3, -5, 20 in descending order.\n3412, 20, 3, 0, -4, -5\nPut 54, -328, -3, 2 in ascending order.\n-328, -3, 2, 54\nPut -2, 0.35, -1151, 1/2, 0.2 in decreasing order.\n1/2, 0.35, 0.2, -2, -1151\nPut -8, 3, 5, -907 in descending order.\n5, 3, -8, -907\nPut -5, 1, 346, -9 in descending order.\n346, 1, -5, -9\nSort 2447, 4, 0 in decreasing order.\n2447, 4, 0\nPut -3, 3, 1, 61 in ascending order.\n-3, 1, 3, 61\nPut -1, 55, -209, -12 in ascending order.\n-209, -12, -1, 55\nPut -1120, 0, -4180 in increasing order.\n-4180, -1120, 0\nSort 134, -98, -4 in descending order.\n134, -4, -98\nSort 288/5," -" - d**3 in the form q*d**4 + v + s*d + l*d**2 + h*d**3 and give v.\n2\nRearrange 1496 - 1496 - 117*d**2 to y*d**2 + r + v*d and give y.\n-117\nRearrange 4189*v + 13*v**2 - 8373*v + 4201*v to the form k*v**2 + x*v + c and give k.\n13\nRearrange (-n + 0 + 0)*(182*n + 167*n - 131*n + 89*n) to d*n**2 + a + z*n and give d.\n-307\nRearrange -77*a**2 - 4*a + 3 + 78*a**2 - 2*a - 28*a**3 + 20*a**3 to the form b + f*a**3 + u*a**2 + m*a and give u.\n1\nExpress 4*d**2 - d**2 - d**2 + (2*d + 2*d - 5*d)*(-2*d - 2*d + 2*d) - 5*d**2 + 0*d**2 + 2*d**2 - 6*d + 6*d - 9*d**2 in the form v*d + j*d**2 + s and give j.\n-8\nExpress -8*y**3 + 39*y**2 + 53*y**2 - 93*y**2 - 34*y**4 as l*y**2 + j + k*y**4 + p*y + i*y**3 and give k.\n-34\nExpress 9 - 4 + 33*t**4 - 6*t**3 + 3*t**2 - 30*t**4 - 3*t**2 in the form v*t**4 + d*t + i*t**2 + g + a*t**3 and give a.\n-6\nExpress 10*u**2" -" is the fifth biggest value? (a) -1 (b) -5 (c) 0.3 (d) -24228 (e) 0.4 (f) 4/3\nb\nWhich is the smallest value? (a) -7 (b) -0.348 (c) 1/3 (d) -0.9 (e) 2/5 (f) -37/10 (g) -1/8\na\nWhich is the biggest value? (a) -2 (b) 3 (c) 6538 (d) -114 (e) 0.5 (f) -0.2\nc\nWhich is the sixth biggest value? (a) -3.575 (b) -17 (c) -1/3 (d) 0.4 (e) -2/21 (f) -0.2 (g) 4\na\nWhat is the second biggest value in 38, 1.1, 274, -2/15?\n38\nWhat is the second biggest value in 1/11, 584, 3/29, -3, 1/3, -4?\n1/3\nWhat is the third smallest value in -321, 1, 9, -18, -1/3?\n-1/3\nWhich is the biggest value? (a) 0.1 (b) -11/1676 (c) 45\nc\nWhich is the third biggest value? (a) 0.5 (b) -0.05 (c) 22 (d) 53 (e) -1/16 (f) 4 (g) -4\nf\nWhat is the second smallest value in 2512, -0.4, -82, 27, -6/7?\n-6/7\nWhat is the fifth biggest value in 4, 0.3, 2/15, 3, 0.03578?\n0.03578\nWhat is the smallest value in 1, -2/7, 255, -72, 1.8?\n-72\nWhich is the fourth smallest value? (a) 14/9 (b) 0.5 (c) -2/17 (d)" -" -2*m = -3*r + 65. Suppose 0*h + 5*h - 10 = 0. What is the remainder when (-4)/14 - (-111)/r is divided by h?\n1\nLet v(s) = 8*s**3 + 5*s**2 - 1 + s - 4*s**2 + 3*s**3 + 0*s**3. Let h be v(1). Suppose -h - 8 = -4*g. Calculate the remainder when 13 is divided by g.\n3\nLet n = 23 + -12. Calculate the remainder when 42 is divided by n.\n9\nSuppose 5*o + 92 = 9*o. Let v = o - 13. Calculate the remainder when 28 is divided by v.\n8\nLet g be (-3)/18 - (-1300)/24. Let l = 111 - g. Suppose 6 = 3*i - 54. Calculate the remainder when l is divided by i.\n17\nSuppose f + 24 = -f + v, -4*f = 5*v + 20. Let g be (24/30)/((-4)/f). Let a = g + 2. What is the remainder when 7 is divided by a?\n3\nSuppose 4*a - 4 = -5*t, a + a - 2*t = 2. Let d be (2 + a)/(9/(-6)). What is the remainder when d*-2*5/2 is divided by 6?\n4\nSuppose 3*t - 8*t = 5*f - 615," -"when 11 is divided by z?\n2\nLet w = 65 - -22. What is the remainder when w is divided by 22?\n21\nLet a(q) = 3*q**2 + 14*q. What is the remainder when a(-7) is divided by 13?\n10\nSuppose 0 = 2*g + 2, -5*o + 5*g = -8*o + 1. Suppose o*n - 29 - 19 = 0. Calculate the remainder when n is divided by 13.\n11\nSuppose -11 = -2*c + 2*r - 7*r, 0 = -4*r + 4. Suppose 5*z = 2*l - 18, 0 = -z - z + 3*l - 16. Let b = 7 + z. Calculate the remainder when b is divided by c.\n2\nSuppose 0 = 5*q - 4*j - 6 + 20, -5*q = 3*j + 42. Calculate the remainder when ((-26)/q)/(2/12) is divided by 14.\n12\nLet o be (-3)/(0/1 - 1). Let b(x) = x - 1. Let c be b(o). Suppose -10 = -j - 2*p - c*p, 40 = 4*j - 2*p. What is the remainder when 28 is divided by j?\n8\nCalculate the remainder when 32 is divided by (39/9 - 4)/(2/102).\n15\nLet n(x) = -x**3 - 6*x**2 -" -"nd 37.\n37\nWhat is the greatest common factor of 30 and 78?\n6\nWhat is the greatest common factor of 183 and 61?\n61\nCalculate the greatest common factor of 88 and 198.\n22\nWhat is the highest common factor of 1190 and 14042?\n238\nWhat is the greatest common divisor of 276 and 23?\n23\nCalculate the highest common divisor of 90 and 12630.\n30\nCalculate the highest common factor of 6 and 27.\n3\nCalculate the highest common divisor of 1090 and 20.\n10\nCalculate the greatest common divisor of 30 and 3.\n3\nCalculate the highest common factor of 456 and 57.\n57\nCalculate the greatest common factor of 11 and 5027.\n11\nWhat is the highest common divisor of 244 and 10126?\n122\nWhat is the greatest common divisor of 8758 and 58?\n58\nWhat is the greatest common divisor of 24458 and 28?\n14\nCalculate the highest common divisor of 6105 and 66.\n33\nWhat is the highest common divisor of 120 and 72?\n24\nCalculate the highest common divisor of 37 and 1369.\n37\nWhat is the greatest common factor of 112 and 1204?\n28\nCalculate the highest common factor of 96 and" -" equal to j?\nFalse\nSuppose 3*o + 5*z - 10 = -2*o, -z = -2*o + 1. Suppose -2*g + 2 = -4*g. Let y be (g/(-10)*4)/(-1). Is y at least as big as o?\nFalse\nLet u(o) = -o**2 - 12*o + 1. Let q be u(-15). Which is bigger: -43 or q?\n-43\nSuppose 0*w - 5*r = -3*w + 20, 2*r = 5*w - 8. Suppose -2*d + 5*d = w. Is 1 smaller than d?\nFalse\nLet y be ((-57)/15 - -2)/(6/(-60)). Which is smaller: y or 17?\n17\nLet r(z) = z**3 - 7*z**2 + 5*z + 5. Let q be r(6). Let f be q*(-1)/2 - 0. Suppose -3*a = -5 + 2. Which is smaller: a or f?\nf\nSuppose 6 = 5*l - 9, -2*v - 6 = -4*l. Suppose -3 = -v*g + 3. Is g >= 0?\nTrue\nLet w = 64 - 87. Are -28 and w non-equal?\nTrue\nLet t = 1879/20 - 94. Which is bigger: -1 or t?\nt\nSuppose 0 = -p + 5*p + 12. Let j = p + 6. Let c(w) = -w**3 + 8*w**2 - 6*w - 5. Let f be" -" of -108*k**2 + 13*k**5 + 56*k**2 + o*k**2 wrt k.\n780*k**2\nLet c(f) be the first derivative of -6535*f**6/6 + 28*f**3/3 + 6*f + 5306. What is the third derivative of c(o) wrt o?\n-392100*o**2\nLet g(v) be the second derivative of -1060*v**7/21 - 23*v**3/3 - v**2 + 30*v - 2. What is the second derivative of g(c) wrt c?\n-42400*c**3\nSuppose h + 2 = 5*j + 5, 5*h = 4*j + 15. Differentiate v + 3*v - 6*v - h*v**3 + 3 - 114 - 80*v**3 with respect to v.\n-249*v**2 - 2\nLet y(i) be the first derivative of 1718*i**3/3 - 2246*i + 3080. Find the first derivative of y(b) wrt b.\n3436*b\nWhat is the second derivative of -816*r**2 - 1291*r + 2464*r + 7119*r + 362*r**2 - 516*r**2 wrt r?\n-1940\nLet q(a) be the second derivative of -9*a + 0*a**3 + 0 - 21/2*a**2 - 11/20*a**5 + 0*a**4 + 1/15*a**6. What is the derivative of q(r) wrt r?\n8*r**3 - 33*r**2\nLet n(l) = 5 + 7 + 14*l - 9. Let s(k) = 42*k + 9. Let i be 5*-1 - (-4 - -5). Let b(z) = i*s(z) + 17*n(z). Find the first" -"Which is the smallest value? (a) -7540/3 (b) 2 (c) 4/3 (d) -3\na\nWhat is the second biggest value in 1/5, 0.5, 6, 0.014693?\n0.5\nWhich is the biggest value? (a) -793 (b) 1 (c) -18754\nb\nWhat is the fourth smallest value in 6, -15014, 0.7, 2?\n6\nWhat is the second biggest value in -1/5, -429183, -14?\n-14\nWhat is the second smallest value in 81031.73, -0.5, 2/9, 3/7, -3?\n-0.5\nWhat is the second smallest value in 6, -3, 0.6671, 12, -5?\n-3\nWhat is the second biggest value in -2/17, -7, 3/782, -5, 1?\n3/782\nWhich is the third biggest value? (a) 58494 (b) 2/5 (c) 0.41 (d) -3/2\nb\nWhat is the fifth smallest value in 0, 5, -1/2, -5, -393, 0.2, -17/3?\n0\nWhich is the biggest value? (a) 2/27 (b) -0.086 (c) -1 (d) -6 (e) 21 (f) -1/8 (g) 3\ne\nWhich is the fifth biggest value? (a) -2 (b) 3 (c) 28 (d) -0.5 (e) -4 (f) 441/2\na\nWhich is the fourth smallest value? (a) -87/5 (b) -4 (c) -2 (d) 17574 (e) 0.3 (f) -0.2\nf\nWhat is the fourth biggest value in 4/3, -291, -0.2, -24920?\n-24920" -" hundreds digit of 6264316386?\n3\nWhat is the thousands digit of 299208473?\n8\nWhat is the hundred millions digit of 8098831529?\n0\nWhat is the ten thousands digit of 31781769?\n8\nWhat is the tens digit of 633968751?\n5\nWhat is the hundred thousands digit of 30926404?\n9\nWhat is the units digit of 639764102?\n2\nWhat is the millions digit of 167902928?\n7\nWhat is the ten millions digit of 1878265021?\n7\nWhat is the tens digit of 62193604?\n0\nWhat is the ten millions digit of 6969083625?\n6\nWhat is the ten thousands digit of 5286408760?\n0\nWhat is the ten millions digit of 128185148?\n2\nWhat is the thousands digit of 2443878052?\n8\nWhat is the hundreds digit of 2243677039?\n0\nWhat is the millions digit of 575646139?\n5\nWhat is the tens digit of 155309859?\n5\nWhat is the thousands digit of 8947330?\n7\nWhat is the units digit of 153782366?\n6\nWhat is the millions digit of 241080630?\n1\nWhat is the tens digit of 32874105?\n0\nWhat is the units digit of 23386481?\n1\nWhat is the hundreds digit of 569420117?\n1\nWhat is the millions digit of 1442775421?\n2\nWhat is the millions" -") 5\na\nLet b = -148/45 - -26/9. Let k = 11 - 11.11. Let m = k + -0.19. What is the second biggest value in -4, b, m?\nb\nLet r = -1 - -1.2. Let w = -3.2 + r. Which is the third biggest value? (a) 4 (b) w (c) -2/7\nb\nSuppose -h = 3*y - 2*y + 4, -8 = -y + 2*h. Let j = y + 0. Suppose 0 = -4*s - 10 + 30. What is the second biggest value in j, -1, s?\nj\nLet d(v) = -v**3 + 6*v**2 - 6*v + 3. Let g be d(5). Let p be g*(-1)/(1/(-2)). Let q = 71 - 353/5. Which is the second biggest value? (a) p (b) -0.5 (c) q\nb\nLet i(x) = x**2 + x + 1. Let s be i(0). Let k be 2 - 10/14 - s. Let v = -352/5 - -71. What is the second smallest value in v, -2, k?\nk\nLet q = -2 + 2. Let f = -12.9 + 0.9. Let r = f + 8. Which is the second smallest value? (a) r (b) q (c) 1/4\nb" -"t is -3 + -99?\n-a0\nIn base 15, what is -12 + -1?\n-13\nIn base 14, what is 840 - 0?\n840\nIn base 9, what is -17 - 82?\n-110\nIn base 14, what is 6 + a?\n12\nIn base 2, what is 10 + 11000010?\n11000100\nIn base 13, what is -8 + 0?\n-8\nIn base 3, what is 112102 - 0?\n112102\nIn base 9, what is 4 + 545?\n550\nIn base 2, what is -10011 - -10101?\n10\nIn base 15, what is 4 - c5?\n-c1\nIn base 3, what is -102 - -1?\n-101\nIn base 13, what is -7 + -332?\n-339\nIn base 7, what is 5 + 2050?\n2055\nIn base 5, what is 131 - -113?\n244\nIn base 12, what is 2 + 1a?\n20\nIn base 14, what is 4 + 3b4?\n3b8\nIn base 3, what is -1 - 1122?\n-1200\nIn base 10, what is -4 + -103?\n-107\nIn base 7, what is -503 + 1?\n-502\nIn base 9, what is -1 - -84?\n83\nIn base 7, what is -15 + 143?\n125\nIn base 16, what is" -"t is -198305 - 0.4?\n-198305.4\nCalculate -0.801 - -0.06.\n-0.741\nWhat is 0.1055 plus 0.6?\n0.7055\nWhat is 1.91 - 1?\n0.91\n-3 - 11.11\n-14.11\nTotal of 5099.4 and -4.5.\n5094.9\nPut together -451.1083 and 0.4.\n-450.7083\n50103 - -5\n50108\nCalculate -0.59 + -0.236.\n-0.826\nCalculate 112 + 2.3076.\n114.3076\n-6 + -0.090338\n-6.090338\nTotal of -1.6 and -162.\n-163.6\nWhat is 4 take away 0.145?\n3.855\nWork out -923 - -571.\n-352\nWhat is 4077 plus 1.7?\n4078.7\nPut together 3 and -924.\n-921\nWork out -15856 - -0.4.\n-15855.6\nPut together 0.138 and -138.7.\n-138.562\nWhat is -57 - 2931?\n-2988\nWhat is 3 plus 0.27?\n3.27\nSubtract -405494 from -0.1.\n405493.9\n16+84\n100\nAdd -3.08881 and 1.\n-2.08881\nWhat is 0.055239 minus -0.2?\n0.255239\nWhat is 0.07774 less than -2?\n-2.07774\nWhat is the difference between 6 and -8771.09?\n8777.09\nSum -0.0008 and -134.\n-134.0008\nWork out -0.14 + 53.\n52.86\nWhat is -0.1 less than -99882.4?\n-99882.3\nSum 8 and 8.\n16\n4595 - -2\n4597\nWhat is -8.68 - 1.1?\n-9.78\nCalculate 0.028 + 0.402.\n0.43\nSubtract -2 from 35163.7.\n35165.7\nSum -38 and 118.\n80\nAdd 0.78 and 21.2.\n21.98\nWhat" -"nd the third derivative of 9*i**2 - 7*i**3 + 7*i**3 - 13*i**3 wrt i.\n-78\nLet q(r) be the first derivative of -r**6/120 + r**5/120 + r**3 - 3. Let k(l) be the third derivative of q(l). What is the second derivative of k(h) wrt h?\n-6\nSuppose 3*a + 0*h - 3 = -h, a + 2*h + 4 = 0. What is the second derivative of 0*p + a*p**5 - p - 2*p wrt p?\n40*p**3\nDifferentiate 33*l**4 + 17 + 11*l**2 - 11*l**2 + 10 with respect to l.\n132*l**3\nLet r(k) be the second derivative of 0*k**2 + 1/6*k**4 + 0*k**3 + 0 - 1/14*k**7 + 0*k**6 - 3*k + 0*k**5. Find the third derivative of r(i) wrt i.\n-180*i**2\nLet r(g) = -74*g**2 - 3*g - 20. Let h(o) = -25*o**2 - o - 7. Let w(f) = 11*h(f) - 4*r(f). What is the second derivative of w(t) wrt t?\n42\nLet g(y) = y. Let t be g(2). Find the third derivative of -s**5 + 4*s**2 - s**2 + s**t + 2*s**5 wrt s.\n60*s**2\nLet i(l) = 18*l**2 - l. Let c(h) = h**2 - h. Let q(r) = 4*c(r) - i(r). Find" -" the closest to 1/2? (a) 7 (b) 2/9 (c) -2 (d) 0.225202 (e) 2\nd\nWhat is the nearest to 3 in -1/4, 1009, 6?\n6\nWhich is the closest to 0? (a) -0.11 (b) 14 (c) 1/21 (d) -1/375\nd\nWhich is the nearest to 1? (a) 461 (b) -0.82 (c) 5 (d) -3/31\nd\nWhat is the nearest to -26 in -1/8, 21, 3, -71?\n-1/8\nWhich is the closest to 1? (a) -1 (b) -1/3 (c) -228 (d) -293\nb\nWhat is the nearest to -1 in -119, -0.1, -5, -273199?\n-0.1\nWhich is the closest to -2/63? (a) 11 (b) 4 (c) 2 (d) -3/40 (e) -4\nd\nWhat is the closest to -2/7 in -20, -0.2, -5, 0.2, -0.477?\n-0.2\nWhat is the closest to 10 in 0, 28, 2341?\n0\nWhich is the nearest to -1? (a) 1/3 (b) 76 (c) -2/3 (d) -31 (e) -19\nc\nWhat is the nearest to 0 in 7/76, -1/7, 1181, -1/3, -0.3?\n7/76\nWhat is the nearest to -0.173 in -0.1, 1/3, -0.4, 0.2, -0.26?\n-0.1\nWhich is the closest to 5? (a) -0.2 (b) 11/3 (c) 0.5 (d) 1692 (e) 0.3 (f) 2/25\nb\nWhat is" -"uppose -49*t - 16524 = -66*t. Does 18 divide t?\nTrue\nLet r(h) = h**3 + 4*h**2 - h. Suppose -4*b + 3*y + 0 = 1, b + y + 9 = 0. Let j be r(b). Suppose -j*c + 7 = -77. Does 21 divide c?\nTrue\nLet f = -391 - -593. Let n = -140 + f. Is 16 a factor of n?\nFalse\nLet q = 6026 + -4105. Is 113 a factor of q?\nTrue\nLet d(b) = 13*b**2 + 17*b - 61. Is 64 a factor of d(4)?\nFalse\nIs ((-30)/8)/((-3)/12) a multiple of 2?\nFalse\nSuppose 3*b + 3*a - 123 = 0, -3*a - 156 = -4*b - 5*a. Let d = b + 15. Is 13 a factor of d?\nTrue\nLet y(g) = 19 + g + 10*g**2 + 24 + 24*g**2 - 44 + 27*g**2. Let s(x) = x - 2. Let j be s(3). Does 15 divide y(j)?\nFalse\nSuppose -4*p + 3*x + 104 = -59, 5*x + 25 = 0. Let r = p + 17. Is r a multiple of 9?\nTrue\nSuppose 3*l - 40 = 2*z - 108, l - 4*z +" -"et r = 113 - 114. Let k(t) = 1. Let j(y) = -3*y - 3. Calculate r*j(p) - 5*k(p).\n3*p - 2\nLet l(g) = -3*g**3 + 17*g**2 - 23. Let a(b) = b**3 - 6*b**2 + 8. What is 11*a(q) + 4*l(q)?\n-q**3 + 2*q**2 - 4\nLet t(o) = -451*o**2 + 121*o - 121. Let j(x) = -15*x**2 + 4*x - 4. Determine 121*j(z) - 4*t(z).\n-11*z**2\nLet o(x) = -5*x**2 - 2*x - 3. Let d(n) = -4*n**2 - n - 2. What is -6*d(a) + 4*o(a)?\n4*a**2 - 2*a\nLet y(h) = -6*h**2 + 3*h - 2. Let w(f) = 17*f**2 - 8*f + 6. Let x = 14 + -10. Determine x*w(s) + 11*y(s).\n2*s**2 + s + 2\nLet u(j) = 5*j - 12. Let r(p) = -4*p + 13. Calculate 4*r(l) + 3*u(l).\n-l + 16\nLet c(r) = r**3 - 2*r**2 - 3*r - 1. Let t(b) = -4*b**2 + 2*b + 3*b**2 + b**3 - 4*b. Let v = -10 + 31. Let g be ((-4)/7)/((-6)/v). Calculate g*c(x) - 3*t(x).\n-x**3 - x**2 - 2\nSuppose 10 = -2*r - 5*x - 2, r = 2*x + 3. Let g(k)" -"Solve 175*b - 170*b = 3*r + 39, 3*r + 3 = -b for r.\n-3\nSolve 4*v - 5*w + 37 = 0, -40*w = v - 38*w - 7 for v.\n-3\nSolve -5*i + 6 = -30*r + 31*r, 0 = -3*r + i + 18 for r.\n6\nSolve 1331*r - 667*r = v + 660*r + 2, 0 = -4*v - 2*r + 28 for v.\n6\nSolve -4*s - 4*b + 24 = 0, b = -2*s - 7 + 15 for s.\n2\nSolve -4*i - 45 = 5*r, -15 = -2*r - 18*i + 23*i for r.\n-5\nSolve -2 = -3*v + 4, -3*b + 2 = -2*v for b.\n2\nSolve 0 = -3832*c + 3835*c + j + 11, 2*c - 3*j = 22 for c.\n-1\nSolve 4 = 4*v - 4*w, 5*v - 8*w = -11*w + 21 for v.\n3\nSolve 0 = 5*z - 3*j - 17, -716*z + 712*z + j + 8 = 0 for z.\n1\nSolve 5*v - 2*j + 139 = 93, 4*v = 6*j - 5*j - 38 for v.\n-10\nSolve 20*q - 17*q = x - 4," -" be t(8). Let x(o) = -1. Let p(w) = n*x(w) + z*m(w). What is p(-2)?\n-4\nLet u(x) be the first derivative of -x - 20/3*x**3 - x**2 + 18. Determine u(-1).\n-19\nLet o(l) = l**3 + 11*l**2 - 13*l - 3. Suppose -5*t = 4*r + 72, 4*t + 12*r + 63 = 7*r. Give o(t).\n9\nLet u(m) = -m + 16. Suppose 21*n = -5*n + 234. Calculate u(n).\n7\nLet v(i) = i**2 + 11*i + 6. Suppose 6 = 4*j + 2*r + 36, 0 = r - 5. Give v(j).\n-4\nLet j = -81 - -103. Let z(v) = -v**2 - j*v + 22*v. Determine z(4).\n-16\nSuppose -36 = -3*h - 3*y, -3*h + 9 = -2*y - 42. Suppose 5*m - 8*m + h = 0. Let g(x) = x**2 - x - 6. Determine g(m).\n14\nLet d be ((-10)/6)/(27/162). Let c(i) = -i**2 - 12*i - 4. Give c(d).\n16\nLet y(z) be the first derivative of -3*z**2 - 1/3*z**3 + z - 1. What is y(-5)?\n6\nSuppose r - 5 = -2*h + 6, -3*r + 19 = -h. Let s(v) = 4*v - 23. Give" -"62. Is 866 not equal to f?\nFalse\nLet g be 56/(-26) + (-2)/(-13). Let h = 0 - g. Suppose -2*v - h = -b, 2*v - 4*v = -5*b + 18. Which is smaller: 4 or v?\nv\nLet r be (-14 + 7)/(5/20*4). Which is bigger: r or 28?\n28\nLet c = 6 - 2. Suppose 0 = 3*g - g - c. Suppose 5 = 3*l - 4*o, -g*l + 4*o = o - 5. Is l >= -7/2?\nFalse\nSuppose -9*p + 10*p = -5, -5*s + 85 = 2*p. Which is smaller: s or 252/13?\ns\nSuppose 5*k + 197 - 47 = 0. Let q be k/(-7) - 4 - 25/14. Is 2 less than q?\nFalse\nLet f(i) = -i**3 + 6*i**2 - 2*i - 1. Let r be f(3). Suppose -r = -z + 5*c, 3*c + 12 = -z + 2*z. Does 3/11 = z?\nFalse\nLet b = 7040 - 12373. Let d = b - -810619/152. Let l = d - -2/19. Which is smaller: -1 or l?\n-1\nLet h be (-22)/5 + (-3)/(30/(-4)). Let m = -47777/4 - -11882. Let x = m - -62." -"0.21. Let x = 1465.21 - 1457. Let r = x - a. Round r to the nearest integer.\n8\nLet y = 7.2 + -8. Let p = 0.3 - y. Let c = 1.100001 - p. What is c rounded to 7 decimal places?\n0.000001\nLet w = -13.3 - -15.08. Let j = w + -1.7638. What is j rounded to 3 decimal places?\n0.016\nLet y(f) = -13*f - 4. Let d be y(-2). Let z = 122 - d. What is z rounded to the nearest one thousand?\n0\nLet s = -0.495 - -3.5956. Let k = s + -3.1. What is k rounded to three decimal places?\n0.001\nLet t = 69568979413543 + -69568975964393.7899997. Let g = -3449149 + t. Let y = g - 0.21. What is y rounded to 6 decimal places?\n0\nLet v = -203.16 + 2.06. What is v rounded to the nearest ten?\n-200\nLet t(z) = 7*z - 4. Let u(x) = -8*x + 5. Let n(f) = -7*t(f) - 6*u(f). Let d be n(-7). Suppose -26 = o - d. Round o to the nearest ten.\n-20\nLet s = -1175.988465 + 1176. Round s" -"alue? (a) 1 (b) 2 (c) -0.4 (d) -3737\nc\nWhat is the second smallest value in -3426, -1/4, 1, -0.2?\n-1/4\nWhich is the fourth smallest value? (a) 17902 (b) 0 (c) -0.6 (d) -1/2\na\nWhich is the biggest value? (a) -23/5 (b) -0.5 (c) -4 (d) 0.21 (e) 8\ne\nWhat is the biggest value in -2/4659, 0.3, 5?\n5\nWhat is the fourth smallest value in 55, 1, 25, 0.55?\n55\nWhich is the third biggest value? (a) 5 (b) 5/333 (c) -1/3 (d) -1 (e) -0.2 (f) 0.2\nb\nWhat is the third smallest value in 0.3, 3.702, -0.2, -0.4?\n0.3\nWhat is the biggest value in 948/11, 1/25, -0.2, 5?\n948/11\nWhat is the fourth biggest value in -0.7, -1, 35, -276?\n-276\nWhich is the second smallest value? (a) 13 (b) 3 (c) 1696\na\nWhat is the sixth smallest value in -1/36, -5, -10, -2, 0.1, 10?\n10\nWhich is the smallest value? (a) 1/1420 (b) 2/5 (c) 7 (d) -2\nd\nWhich is the sixth biggest value? (a) 950 (b) 1 (c) 3/5 (d) 0.5 (e) -2/5 (f) -0.5\nf\nWhat is the smallest value in -33605, -10, 5?\n-33605\nWhich" -"j - -30. What is the smallest common multiple of 1 and l?\n10\nSuppose -2 = -2*d + 2. Suppose 3 = d*y - 9. What is the lowest common multiple of 20 and y?\n60\nLet t = 291 - 1741/6. Let x = 4/3 - t. Find the common denominator of x and -53/18.\n18\nSuppose 0 = -t - 4, -2*g + 5*t = -48. Calculate the smallest common multiple of 8 and g.\n56\nLet a(h) be the third derivative of h**6/120 + h**5/30 - h**4/8 + h**3/3 + 7*h**2. Calculate the lowest common multiple of a(1) and 61/3 - (-1)/(-3).\n20\nSuppose -2*y + 10 = -8. Calculate the lowest common multiple of 168/27 + 2/(-9) and y.\n18\nSuppose -2 = -2*z + 2. Suppose z = 2*v - 8. Calculate the smallest common multiple of v and 5.\n5\nWhat is the common denominator of -2*(158/(-12) + 2) and ((-2)/16)/(2/(-12))?\n12\nLet x = 3904 - 31169/8. Find the common denominator of -67/10 and x.\n40\nSuppose 0 = -5*x + 175 + 35. Suppose -1 = -l, 4*l = -4*g + x + 2. Calculate the least common multiple of (8/(-10))/(2/(-45))" -"r u.\n2\nSolve 3*i + 3*h = -24, 0 = -5*i - 21*h + 17*h - 35 for i.\n-3\nSolve 2*l = -3*l + 15, 4*j - 4*l = 0 for j.\n3\nSolve -4*v + 1 = -3*n - 7, 0 = -4*n + 3*v + 1 for n.\n4\nSolve -19 = 2*j - 5*t, 12*t = 2*j + 13*t + 1 for j.\n-2\nSolve z = -5*v + 8, 0 = 5*z + 4*v - 15 - 4 for z.\n3\nSolve 169*x + 12 = 166*x + 2*l, 4*l - 4 = -4*x for x.\n-2\nSolve g = -2*k - 3, 3 = k + 34*g - 35*g for k.\n0\nSolve -4*y + 2*q = -0*q + 16, -q - 2 = 0 for y.\n-5\nSolve 168*v - 173*v - 5 = 4*f, 4*v - 2*f = -30 for v.\n-5\nSolve p - 61*v = -59*v - 6, 4*v - 28 = -2*p for p.\n4\nSolve -4*r + 4 = 15*k - 19*k, 0 = 3*r + 4*k - 31 for r.\n5\nSolve -8*m = -7*m - 5*s + 2, -8 = 4*m - 4*s for m." -"o base 8.\n-412603\n1123043 (base 7) to base 8\n422036\nConvert -30221345 (base 8) to base 16.\n-6122e5\nConvert -122121332 (base 4) to base 10.\n-108158\nWhat is 10000110100111111111 (base 2) in base 11?\n347324\n112102102001 (base 3) to base 7\n2261431\nConvert -556244 (base 7) to base 13.\n-35930\n-45200023 (base 6) to base 2\n-101001110001000001111\nWhat is -26029 (base 10) in base 4?\n-12112231\nWhat is -1000110011100110111000 (base 2) in base 15?\n-309026\n-1400505541 (base 6) to base 11\n-955a420\n-3a8953 (base 12) to base 4\n-3230211033\nConvert 14023a (base 12) to base 15.\n6860a\n825810 (base 16) to base 8\n40454020\n-62b990 (base 12) to base 9\n-2828800\nWhat is -447551 (base 9) in base 8?\n-1013332\nConvert 34523053 (base 6) to base 3.\n2000021211020\n4523542 (base 7) to base 4\n2020321201\nWhat is -10111100110000011 (base 2) in base 15?\n-1d97d\nConvert -222cac (base 14) to base 16.\n-11b518\nConvert 88043 (base 11) to base 9.\n214305\n5204331 (base 7) to base 2\n10011000001100101000\nConvert 18422460 (base 9) to base 3.\n122110202112000\nConvert -200100200221 (base 3) to base 9.\n-610627\nWhat is 206001 (base 7) in base 2?\n1000101101011001\nWhat is -213b7 (base 12) in base" -"18247?\n3285*y**2 - 2*y - 1\nWhat is the i'th term of 27472, 27441, 27398, 27337, 27252, 27137?\n-i**3 - 24*i + 27497\nWhat is the p'th term of 12881, 12868, 12841, 12794, 12721?\n-p**3 - p**2 - 3*p + 12886\nWhat is the t'th term of 1840, 1838, 1836, 1834, 1832, 1830?\n-2*t + 1842\nWhat is the p'th term of -178, -199, -224, -253?\n-2*p**2 - 15*p - 161\nWhat is the g'th term of 653, 1230, 1777, 2294, 2781, 3238?\n-15*g**2 + 622*g + 46\nWhat is the h'th term of 85745, 171489, 257233, 342977, 428721?\n85744*h + 1\nWhat is the v'th term of -80, -294, -644, -1130, -1752?\n-68*v**2 - 10*v - 2\nWhat is the b'th term of 1766, 6580, 14440, 25346?\n1523*b**2 + 245*b - 2\nWhat is the u'th term of 1778, 1781, 1776, 1757, 1718, 1653, 1556, 1421?\n-u**3 + 2*u**2 + 4*u + 1773\nWhat is the i'th term of -250, -1244, -2912, -5260, -8294?\n-i**3 - 331*i**2 + 6*i + 76\nWhat is the r'th term of 25867, 26002, 26137, 26272?\n135*r + 25732\nWhat is the c'th term of 9806, 9781, 9756, 9731?\n-25*c + 9831\nWhat is" -"derivative of y**3/3 + y**2 + y + 24. Let b(o) = -o**3 + o - 3. Let k be b(0). Let t be a(k). What is the smallest value in 1/2, t, -0.5?\n-0.5\nSuppose 9*n = -18*n + 27. Which is the third smallest value? (a) -1/9 (b) n (c) 3/22 (d) -0.5\nc\nLet m = 3.88 + -3.38. Suppose -2*n - 16 = -4*r, r - 12 = -2*r + 3*n. Which is the biggest value? (a) m (b) 0.03 (c) r (d) 2\nc\nLet m = 666 - 671. Which is the biggest value? (a) -2 (b) 2/37 (c) m (d) -1/7\nb\nLet h be (3 + (-9)/6)*-2. Let i = -104 + 104. Which is the third biggest value? (a) 2 (b) i (c) h\nc\nLet x = -0.7 - -0.6. What is the second biggest value in x, -2, 2/199?\nx\nLet k = 194 - 194.2. What is the smallest value in 0.04, 1/6, k, 0?\nk\nLet r = -24.54 - -0.54. Let k = -18.5 - r. Let y = 1.5 - k. What is the smallest value in -0.6, -0.2, y?\ny\nLet r = 1636/4917" -"urth biggest value in -1, 7, 2, -4?\n-4\nWhich is the second biggest value? (a) 0.5 (b) 28 (c) -0.2\na\nWhat is the smallest value in 0.08, -1/2, 17, 4, -0.3?\n-1/2\nWhat is the biggest value in 12.4, -0.4, 2/15?\n12.4\nWhich is the biggest value? (a) 14/3 (b) 1 (c) -3\na\nWhat is the biggest value in 4, 0, 2/3, -7?\n4\nWhat is the third smallest value in 8, -4/7, -1/2, 2?\n2\nWhich is the third smallest value? (a) -2/7 (b) -735 (c) -0.2\nc\nWhat is the second smallest value in -24, 4, 2, 5, -0.4?\n-0.4\nWhich is the fifth smallest value? (a) -0.2 (b) 0.2 (c) -0.02 (d) 2 (e) -1/18\nd\nWhat is the fourth smallest value in -4, 2, 4, 33?\n33\nWhat is the biggest value in 0.04, 5, 23?\n23\nWhat is the third biggest value in 3, 10, 1/6, 1/5, -0.17?\n1/5\nWhat is the smallest value in -9.9, 2, -1?\n-9.9\nWhat is the smallest value in 2, -4, 1/658?\n-4\nWhat is the second biggest value in -0.5, -69, 1/2, 4?\n1/2\nWhat is the third smallest value in -4, -98, -2/5?\n-2/5" -"2 + -3. Let h(g) = g + 2. Let o be h(2). What is the closest to -1 in 1/3, q, o?\nq\nLet i be 2/(-8)*(-1 - 3). Let r be i/(-4) - 2/56. What is the closest to r in 0, -4, -2?\n0\nSuppose -787 = 2*w + 191. Let p be w/18 + 1 - -2. Let i = p + 24. Which is the nearest to 2? (a) i (b) 3/5 (c) 2\nc\nLet k = -0.02 + -0.28. Let l = 3 + -3. Let p = l - 0.1. What is the nearest to p in k, -1/2, 0?\n0\nLet z = -35 - -34.47. Let j = 0.03 + z. Which is the closest to 2? (a) j (b) -5 (c) -1\na\nLet w = -17 + 16.6. Let t = 2.1 - 2. Let r = t + -0.2. Which is the nearest to r? (a) -0.3 (b) w (c) -4\na\nSuppose -d + 3*d - 60 = 0. Let u be 2/d*-1*2. What is the nearest to 0 in -4, u, 5?\nu\nLet h = 1.4 + -1.1. Which is the nearest to 0?" -"est value? (a) 2 (b) r (c) -5 (d) -0.2 (e) -28\na\nLet d = 1595 - 1594.97. What is the third smallest value in d, -85, 1?\n1\nLet m = -2762 - -2758. Which is the fifth biggest value? (a) m (b) 2/13 (c) 4 (d) -2/5 (e) 2\na\nLet g = -0.106 - 72.894. Let f = -76 - g. Which is the second smallest value? (a) 4 (b) -0.2 (c) -2/3 (d) f\nc\nSuppose 2*f + 2*y = -2, 110*f + 4*y = 113*f + 17. Which is the fourth smallest value? (a) f (b) 2/7 (c) 26/5 (d) -5\nc\nLet p = 33.65 + -0.65. Let y = p + -28. Which is the second smallest value? (a) 48 (b) -3 (c) y\nc\nLet f = 27220 + -27219.99554. What is the second biggest value in 1, 3, f?\n1\nLet d be -9 - ((-210)/15 + 3). Let u = -352.1 - -369. Let m = u + 0.1. Which is the smallest value? (a) 2/5 (b) m (c) d\na\nLet q = 0.06 - 1.46. Let r = q + 1.9. Let v = 282 - 278." -"et t be x(7). Solve 8*q = t*q - 10 for q.\n-5\nSuppose 3*l - 10 = -s + 1, 5*s + 5 = 5*l. Suppose m - 3*u = 0, 42*u - 24 = 3*m + 45*u. Let y be (0/(-4))/(m/s). Solve -p = -y*p for p.\n0\nSuppose 5*l + 0*l - 10 = 0. Let s(k) = k**2 + 5*k + 20. Let t be s(6). Let o = 87 - t. Solve -l = -x - o for x.\n1\nSuppose 2*d - 10 + 2 = 0. Suppose -d*l + 10 = 6. Solve -3*h - l = -7 for h.\n2\nSuppose -24 = -4*i + i. Solve 2*p - 16 = -i for p.\n4\nSuppose -1 + 3 = 2*b, 2*b - 47 = -3*v. Solve 5*a - 2*a + v = 0 for a.\n-5\nSuppose 4*k - 14 = -2*y, -5*k + 2*k + 6 = 3*y. Let i(d) = d**3 - d**2 - d + 1. Let v be i(2). Let c = y + v. Solve c = -5*g + g for g.\n0\nSuppose 0*a = -3*a + 24. Suppose 2 = a*q - 6*q. Solve" -"w many meters are there in 6/5 of a kilometer?\n1200\nHow many milliseconds are there in 585581.9 weeks?\n354159933120000\nWhat is 641176.9ng in tonnes?\n0.0000000006411769\nHow many months are there in 71/3 of a decade?\n2840\nWhat is 49450.27ug in tonnes?\n0.00000004945027\nWhat is 46/5 of a litre in millilitres?\n9200\nHow many micrograms are there in five eighths of a milligram?\n625\nConvert 2053.773us to milliseconds.\n2.053773\nWhat is 209.991 millilitres in litres?\n0.209991\nWhat is 41/2 of a minute in seconds?\n1230\nHow many litres are there in 847.6227 millilitres?\n0.8476227\nHow many microseconds are there in three tenths of a millisecond?\n300\nHow many centimeters are there in 3/50 of a meter?\n6\nHow many tonnes are there in 3586.065 nanograms?\n0.000000000003586065\nWhat is 73.83455 grams in tonnes?\n0.00007383455\nHow many years are there in 3677.655 centuries?\n367765.5\nHow many hours are there in 250915.5 minutes?\n4181.925\nWhat is five quarters of a millimeter in micrometers?\n1250\nHow many milligrams are there in three tenths of a gram?\n300\nWhat is 4/15 of a week in minutes?\n2688\nHow many years are there in 0.26583 millennia?\n265.83\nHow many millilitres are there in 1/5 of a" -" 0, -3?\n-19072348\nWhat is the third biggest value in 4, -26, -5, 4/5, -1, -15, -2/5?\n-2/5\nWhich is the sixth biggest value? (a) -0.3 (b) 3 (c) 5 (d) -28253 (e) 2/11 (f) 1\nd\nWhat is the second biggest value in 84, -5, -1, -870, -0.1?\n-0.1\nWhich is the fourth biggest value? (a) 1.31 (b) 5 (c) -0.4 (d) 11.1 (e) -0.21\ne\nWhat is the smallest value in 0.101, 2.29, 1, -76, 0.2?\n-76\nWhich is the fifth biggest value? (a) -2.2 (b) 2 (c) 0.1 (d) -4/5 (e) -2/3 (f) -899 (g) -0.3\nd\nWhich is the smallest value? (a) 0.2 (b) -3 (c) -4 (d) -0.04 (e) -0.4 (f) 7097 (g) -5\ng\nWhich is the seventh biggest value? (a) -39052/17 (b) 4 (c) 3 (d) 3/2 (e) 0 (f) 2/15 (g) -0.4\na\nWhat is the fourth biggest value in -0.47, -12, 1.66, 2, 12.53?\n-0.47\nWhich is the fourth smallest value? (a) 1/6 (b) 3.2 (c) 1/289 (d) -3090\nb\nWhich is the fifth biggest value? (a) -16891 (b) 1.9 (c) 3 (d) 6 (e) -1\na\nWhich is the sixth biggest value? (a) -99 (b) -25 (c) -0.4 (d) -0.3" -"- 31/2*c**2 + 0 + 26*c. Differentiate d(w) wrt w.\n-68*w\nDifferentiate 1993 + 3937 + 866*n**2 + 4999 - 6373 + n with respect to n.\n1732*n + 1\nLet m(r) = -421*r**6 - 4*r**3 + r**2 - 2*r + 196. Let s(y) = y**6 - 2*y**3 + y**2 - y. Let k(q) = m(q) - 2*s(q). What is the third derivative of k(o) wrt o?\n-50760*o**3\nDifferentiate -1666 - 526*h - 1061*h + 3747 + 361*h + 5522 with respect to h.\n-1226\nLet l(w) be the third derivative of 549*w**7/70 + 896*w**3/3 + 82*w**2. Find the first derivative of l(k) wrt k.\n6588*k**3\nLet l(o) be the first derivative of 5*o**4/12 - o**3/2 + 2*o**2 + 26*o - 92. Let p(u) be the first derivative of l(u). Find the first derivative of p(d) wrt d.\n10*d - 3\nLet n(o) = -152*o**4 + 12*o**3 - 17*o + 17. Let w(d) = -151*d**4 + 10*d**3 - 18*d + 15. Let b(h) = -5*n(h) + 6*w(h). Find the second derivative of b(a) wrt a.\n-1752*a**2\nLet n(i) be the third derivative of 65*i**6/4 - 97*i**5/4 + 728*i**2 + 2. What is the third derivative of n(t) wrt t?\n11700" -"m = 0.5 + -1. Which is the closest to f? (a) g (b) -1/4 (c) m\nb\nLet i = 161 - 21. Let u be 7*7/((-343)/(-978)). Let x = u - i. Which is the closest to x? (a) -2 (b) 0.1 (c) 0.5\nb\nLet o be (2 + 7 - 8)*(-3)/7. Which is the closest to o? (a) -0.4 (b) 0.3 (c) 0.5\na\nSuppose 5*j = h + 17, -5*h - j + 0*j = -45. Let q = 9 - h. What is the closest to -0.4 in -0.5, -1/3, q?\n-1/3\nSuppose 0*o = 3*o - 3. Let l(u) = u**2 + 14*u + 13. Let h be l(-13). Which is the nearest to o? (a) 1 (b) -3 (c) h\na\nLet y = -6 - -5. Let v = -4.99 - 0.01. What is the closest to 0 in y, v, -1/4?\n-1/4\nLet n = -0.1 + 0. Let k be (-1 + (-8 - 1))/2. Which is the closest to n? (a) 0.4 (b) -0.3 (c) k\nb\nLet g = 0.19 + 0.01. Suppose 0*h = h. What is the nearest to h in 4/3, -4, g?\ng" -"qual to 5?\nTrue\nLet p = 2.733 + -2.83. Let x = -0.097 - p. Which is smaller: -0.2 or x?\n-0.2\nSuppose 3*o = -0*o + 3. Let m be 4534/18 - (-17)/(1836/12). Let y be (o/(-3))/((-7)/m). Which is smaller: y or 13?\ny\nSuppose 5*l - 4404 + 16195 = -3*h, 3*h - 5*l + 11741 = 0. Let r = h + 43094/11. Which is smaller: -3 or r?\nr\nLet u be (88/10)/((-14)/10). Suppose -4*c = -8, -52*g + 54*g - 2*c - 12 = 0. Let n be (g - 1)*(2 + -2 - 1). Are u and n equal?\nFalse\nSuppose 4*y + 4 = -3*b + 8*b, 0 = -5*b + 5*y. Suppose l - 6*l = -o - 2, 2*l - b = 2*o. Which is smaller: l or -2/113?\n-2/113\nSuppose -66 = -18*f - 174. Let c be f*224/(-222) - 6. Which is greater: 1 or c?\n1\nLet k = 46847 + -46851. Let z(a) = -a**3 - 3*a**2 - 3*a - 1. Let l be z(-3). Is l <= k?\nFalse\nLet p(y) = -5*y**2 - y - 1346. Let q be p(0). Let t = -160176/119" -"is 1a (base 13) in base 4?\n113\nWhat is 2122 (base 3) in base 10?\n71\nWhat is -6 (base 9) in base 8?\n-6\n32 (base 11) to base 3\n1022\nConvert -4 (base 14) to base 6.\n-4\nWhat is -1 (base 11) in base 15?\n-1\n-4 (base 9) to base 2\n-100\n-252 (base 7) to base 2\n-10000111\nWhat is 11 (base 2) in base 3?\n10\nWhat is 7b (base 16) in base 8?\n173\nWhat is 62 (base 7) in base 10?\n44\nWhat is a1 (base 13) in base 14?\n95\nConvert 13 (base 14) to base 4.\n101\nConvert -11 (base 2) to base 7.\n-3\nWhat is -1001 (base 2) in base 11?\n-9\nWhat is -1002 (base 4) in base 10?\n-66\nWhat is 11 (base 4) in base 11?\n5\nWhat is -4 (base 9) in base 6?\n-4\n-4 (base 8) to base 7\n-4\nWhat is 233 (base 5) in base 8?\n104\n-1010 (base 2) to base 9\n-11\nConvert 122 (base 6) to base 14.\n38\nConvert 0 (base 10) to base 4.\n0\nConvert 23 (base 5) to base 16.\nd\n-21" -"the prime factors of 6865237?\n1321, 5197\nWhat are the prime factors of 3862198?\n2, 967, 1997\nWhat are the prime factors of 231016?\n2, 67, 431\nWhat are the prime factors of 128509?\n128509\nWhat are the prime factors of 67287?\n3, 11, 2039\nWhat are the prime factors of 1009769?\n23, 43, 1021\nWhat are the prime factors of 413881?\n13, 31, 79\nWhat are the prime factors of 1154867?\n7, 29, 5689\nList the prime factors of 498937.\n498937\nList the prime factors of 1438770.\n2, 3, 5, 199, 241\nWhat are the prime factors of 5523541?\n5523541\nWhat are the prime factors of 1938233?\n11, 23, 47, 163\nList the prime factors of 5565489.\n3, 67, 27689\nWhat are the prime factors of 20671?\n7, 2953\nWhat are the prime factors of 935658?\n2, 3, 17327\nWhat are the prime factors of 43874405?\n5, 43, 204067\nWhat are the prime factors of 11790445?\n5, 443, 5323\nWhat are the prime factors of 13776257?\n11, 79, 83, 191\nWhat are the prime factors of 6188762?\n2, 619, 4999\nList the prime factors of 659494.\n2, 11, 31, 967\nWhat are the prime factors of 418708?\n2, 104677" -"pose 4*u - u = -9. Is 55 + 3/u + -3 a prime number?\nFalse\nLet a(l) = -l**2 + 2. Let t be a(2). Let n be (-2)/2 - -1*2. Is n/((1 + t)/(-55)) composite?\nTrue\nIs (29 + 0/(-2))*(13 + -2) prime?\nFalse\nSuppose 3*f - w - 2211 = -4*w, 4*w = -2*f + 1470. Is f prime?\nTrue\nLet i(p) = -8*p + 1. Let d(m) = m**2 - 3*m - 4. Let n be d(3). Is i(n) composite?\nTrue\nLet h = -102 - -155. Is h a composite number?\nFalse\nSuppose -5*k = -0*k - 5, 0 = -4*r + 5*k + 19. Let x(i) = 12*i + 2. Is x(r) composite?\nTrue\nSuppose 4189 = 2*s + 2*l - 2343, 0 = 5*s - l - 16348. Is s composite?\nTrue\nSuppose -4*b = -b - 393. Is b composite?\nFalse\nLet z(n) = -n**2 - 5*n - 2. Let y be z(-2). Suppose y*w = w + 105. Is w composite?\nTrue\nLet m = -71 - -49. Let p = 57 - m. Is p a composite number?\nFalse\nSuppose 0 = -m + 5*m - 524. Suppose 4*k -" -"by 28.\n0\nWhat is 867 divided by 289?\n3\nCalculate -140 divided by 11.\n-140/11\nCalculate 14075 divided by 5.\n2815\nWhat is 13 divided by -34?\n-13/34\nDivide -70 by -7.\n10\n-16266 divided by -6\n2711\nWhat is 1680 divided by 420?\n4\n-400 divided by 100\n-4\n4928 divided by -704\n-7\nWhat is -397 divided by -11?\n397/11\nDivide 35 by -2.\n-35/2\nCalculate -104 divided by -4.\n26\nDivide 1 by 1.\n1\nCalculate -3 divided by -37.\n3/37\n26 divided by 1\n26\n3 divided by 316\n3/316\nCalculate -690 divided by 5.\n-138\nWhat is -102 divided by -3?\n34\nCalculate -3 divided by -269.\n3/269\nCalculate -23 divided by -186.\n23/186\nWhat is 3 divided by 2353?\n3/2353\nWhat is -5308 divided by 1327?\n-4\nCalculate -6870 divided by -6.\n1145\nCalculate -2 divided by 1176.\n-1/588\nDivide -15552 by -18.\n864\n4345 divided by -11\n-395\nWhat is -576 divided by 6?\n-96\nDivide 3304 by 2.\n1652\n-9820 divided by -2\n4910\n-127 divided by 13\n-127/13\nCalculate -2 divided by 3278.\n-1/1639\nWhat is -54 divided by -25?\n54/25\nCalculate 0 divided by 79.\n0\n460 divided by" -"*s**2 + s. Let l be g(h). Does 13 divide l/(((-1)/5)/(-1))?\nFalse\nLet c be ((-194)/(-8))/((-3)/(-24)). Is 14 a factor of 4/14 - c/(-7)?\nTrue\nLet l(q) = q - 2. Let m be l(4). Suppose -2*a + 100 = m*a. Is a a multiple of 12?\nFalse\nSuppose 831 - 2921 = -10*r. Is r a multiple of 19?\nTrue\nLet x = -10 + 40. Is x a multiple of 9?\nFalse\nSuppose 4*m + 5*g - 7 = 6*g, 4*m + g - 1 = 0. Let k = -7 + 9. Is 2 + -2 + m + k even?\nFalse\nLet q(x) = 2*x - 6. Let w be q(5). Suppose -4*t + 13 = 5*r + w, -4*r + 2 = -2*t. Is ((-35)/4)/(r/(-4)) a multiple of 23?\nFalse\nLet g = -17 - -6. Let r = -8 + g. Let w = 31 + r. Is w a multiple of 6?\nTrue\nLet h be (-40)/(-12)*(16 + 2). Let s = h - 36. Is 12 a factor of s?\nTrue\nLet c(o) = 40*o + 29. Is 27 a factor of c(3)?\nFalse\nSuppose 5*r - 106 = -2*j + 143," -"n multiple of 3 and r(4).\n30\nLet o(x) = x**2 + x + 6. Suppose 6*h - 20 = h. Suppose -p = -h*p + 15. What is the least common multiple of p and o(0)?\n30\nFind the common denominator of 145/(-15)*6/(-20) and 67/10.\n10\nSuppose 10 = 3*k - t, -22 = -2*k + 3*t - 6. Suppose 0 = -5*z + z + 56. What is the smallest common multiple of k and z?\n14\nLet h(r) = -r**2 + 3*r - 2. Let q be h(6). What is the smallest common multiple of 69/21 - (-6)/(-21) and (q/(-15))/((-2)/(-9))?\n6\nLet p(n) = 2*n - 6. Let z(x) = x**3 + 5*x**2 - 6*x + 8. Let g be z(-6). What is the least common multiple of 10 and p(g)?\n10\nSuppose -23*h + 14*h = 18. What is the common denominator of 52/7 and h?\n7\nLet w(n) be the third derivative of -n**4/12 + n**3/3 + 4*n**2. What is the least common multiple of (20/8)/(1/8) and w(-3)?\n40\nLet c be ((-6172)/6)/(3/(-225)). Let q = c + -2237935/29. Let b = 14929/638 + q. What is the common denominator of b and -95/16?\n176" -" + 11. Let h(z) = z**2 + 14*z - 3*z**2 - 2*z**2 + 5*z**2 + 19. Let k be h(-13). Suppose 9 = -5*s + k*s. Calculate f(s).\n2\nLet h(p) = 2*p - 7. Suppose -4*u = z + 8, -3*u + 8*u = -3*z - 17. Let m(l) = -l**2 + l + 4. Let g be m(3). Let y be (z/(-10))/(g/(-30)). What is h(y)?\n5\nLet i(q) = -11*q - 25. Let k(y) = -54*y - 129. Let o(f) = -11*i(f) + 2*k(f). Let w(t) = 24*t + 33. Let d(m) = -11*o(m) + 6*w(m). Calculate d(-15).\n-4\nLet i(b) be the second derivative of -15*b**3/2 - 4*b**2 - b - 1130. Determine i(-2).\n82\nLet q be (-16)/7 - 30/(-105) - 1254. Let j = -892 - q. Let t be 56/j - (-76)/13. Let k(s) = -s**3 + 5*s**2 + 7*s - 9. Give k(t).\n-3\nLet n(q) = q**2 + 14*q + 25. Let f be n(-12). Let j be (f/(-4))/((-6)/(-192)*-4). Let s(v) = 2*v + 4 - 3*v + 3 + j*v. Determine s(-6).\n1\nLet i(x) = -x**2 + 9*x + 4. Suppose 9*l - 357 = 2*l. Suppose 4*u + 5*n" -"/3\n50 divided by 50\n1\nDivide -18802 by 1.\n-18802\nDivide 564 by -6.\n-94\nWhat is 2 divided by -305?\n-2/305\n-14 divided by -303\n14/303\n7612 divided by 1903\n4\nWhat is 5 divided by -1005?\n-1/201\nCalculate -6 divided by -4517.\n6/4517\nWhat is -124 divided by -124?\n1\n4021 divided by 2\n4021/2\nDivide -17992 by 4.\n-4498\nDivide 16 by 131.\n16/131\nCalculate -738 divided by -18.\n41\nCalculate -1118 divided by -1.\n1118\n120 divided by -8\n-15\nCalculate -300 divided by -60.\n5\n-3 divided by 25\n-3/25\nDivide -10 by 172.\n-5/86\nDivide -3 by -142.\n3/142\nWhat is 357 divided by -76?\n-357/76\n7 divided by 325\n7/325\nWhat is -2 divided by 1000?\n-1/500\nDivide -1428 by -51.\n28\nDivide -1 by 3679.\n-1/3679\nWhat is -331 divided by 2?\n-331/2\n-2620 divided by -5\n524\nDivide 1788 by -149.\n-12\n-934 divided by 2\n-467\nWhat is -3 divided by -1015?\n3/1015\nWhat is -12644 divided by 4?\n-3161\nWhat is -368 divided by 4?\n-92\nDivide 340 by 68.\n5\nWhat is 8976 divided by -1122?\n-8\nWhat is -30 divided by 9?\n-10/3\n1816 divided by" -"and 1.2.\n9.2\nAdd together -11699 and 0.1.\n-11698.9\nTotal of -8927 and -2.\n-8929\nSum 2.39 and 5.\n7.39\nWhat is -26 + 0.0121?\n-25.9879\nWhat is the distance between -50102 and -4?\n50098\nCalculate 0.397 + 14.\n14.397\nSubtract 29 from -100934.\n-100963\nWhat is -0.02 less than -63.5?\n-63.48\nWhat is -2673284 + -3?\n-2673287\nCalculate -44 - 0.13.\n-44.13\n-140494 - -1\n-140493\nWhat is the difference between 127 and -0.041?\n127.041\nCalculate -4 - 119100.5.\n-119104.5\nTotal of -9397 and 5.\n-9392\nAdd together 0.26 and -148.\n-147.74\nWhat is 151.24 minus -0.227?\n151.467\nCalculate -0.8 - -35.11.\n34.31\nWhat is -8 + 0.0664?\n-7.9336\nWhat is -0.3 + -707?\n-707.3\nWhat is the distance between -10 and 1.053?\n11.053\nWhat is 0.21346 less than 0.1?\n-0.11346\nPut together 1458.8 and 1.1.\n1459.9\nTotal of 3338 and 577.\n3915\nWhat is -52 - -4.7901?\n-47.2099\nCalculate -16 + -1.05584.\n-17.05584\nTotal of -0.12 and -11.\n-11.12\nTotal of 0.35 and 1.98.\n2.33\nSubtract -6 from -0.7162.\n5.2838\nWhat is 0.1 take away -14.012?\n14.112\nWhat is 4 minus -36.81?\n40.81\n0.5 + -141150\n-141149.5\nWhat is 4.83 minus 0.0011?\n4.8289\nSum -891 and -0.7.\n-891.7" -"61. Find the first derivative of x(d) wrt d.\n1146*d**2 + 1\nLet q(k) be the first derivative of -9*k**5/5 + 36*k**3 - 2*k**2 + 246*k + 167. What is the second derivative of q(t) wrt t?\n-108*t**2 + 216\nLet z(f) be the third derivative of -1 + 0*f + 47*f**2 + 20/3*f**3 - 5/3*f**4. What is the derivative of z(b) wrt b?\n-40\nSuppose 37*u - 20*u - 1190 = 0. What is the second derivative of -9*l + l**3 + 4*l**3 + l + u - 73 - 2*l**4 wrt l?\n-24*l**2 + 30*l\nSuppose 3*t + 39 = -3*k + 3, 5*t + 50 = -4*k. Let p be k/(-8) - 15/60. Differentiate 11*v**3 + 5*v**3 + 0 + p + 3 wrt v.\n48*v**2\nFind the third derivative of 146*i**2 + 316*i**4 - 3*i**3 - 3 + 798*i**2 + i**3 + 0*i**3 + 4 wrt i.\n7584*i - 12\nLet c(z) = -140*z**3 + 231. Let y = 82 - 88. Let x(j) = 140*j**3 - 229. Let b(k) = y*x(k) - 5*c(k). Differentiate b(t) with respect to t.\n-420*t**2\nSuppose -t - 3*t + 68 = 2*c, -2*c + 4 = 0. Suppose 31" -" the second derivative of 19*h**3 - h**2/2 - 6*h. Let k be b(-1). Let o = k - -350/3. Which is greater: o or 2?\n2\nSuppose -37*p + 6 = 43. Which is bigger: p or -332?\np\nSuppose -7 = 5*h - 42. Suppose -5*r = -4*p + 169, p = -3*r - h + 62. Which is smaller: p or 47?\np\nLet m = -4109/10 - -411. Let b be (0 + 18)*6/12. Suppose 7*c - 4*c - b = 0, -5*c + 20 = 5*j. Which is bigger: j or m?\nj\nLet t(y) = 7*y**3 - y. Let a be t(1). Let l = -1 - -6. Suppose o + 19 = -l*q, -q = -4*o - 6*q - 1. Are o and a non-equal?\nFalse\nSuppose 2 = 8*a - 6*a. Let d = -3 - -4. Suppose -2 = 4*b + p + d, -2*b + 4*p - 6 = 0. Is a > b?\nTrue\nLet y = -2679 - -2560. Which is greater: -125 or y?\ny\nLet m be (0 + 2/10)/(-1). Let q be 8 + 1*(-56)/7. Is q equal to m?\nFalse\nLet q = 881 +" -" 38*h + 253. Determine r(-19).\n253\nLet r(f) = 4*f**3 + 50*f**2 + 23*f + 13. Give r(-12).\n25\nLet a(i) = -291*i + 851. Calculate a(3).\n-22\nLet l(u) = u**3 + 35*u**2 - 152*u + 23. Give l(5).\n263\nLet t(n) = 138*n - 791. What is t(6)?\n37\nLet l(t) = -867*t - 9542. Calculate l(-11).\n-5\nLet k(w) = 5270*w - 168665. Give k(32).\n-25\nLet p(s) = s**2 - 9*s + 8. Give p(3).\n-10\nLet u(n) = -666*n - 17329. Give u(-26).\n-13\nLet d(l) = l**3 - 4*l**2 - 1106*l + 2222. What is d(2)?\n2\nLet z(w) = -w**2 - 6*w + 3. Give z(-11).\n-52\nLet l(n) = n**3 - 17*n**2 + 7*n + 13. Determine l(17).\n132\nLet y(c) = 32*c**2 + 1983*c - 58. Give y(-62).\n4\nLet s(d) = d**2 - d - 86. Calculate s(16).\n154\nLet y(v) = -v**2 + 203*v + 2595. Determine y(-12).\n15\nLet j(o) = -2*o**2 - 21*o + 69. Calculate j(-17).\n-152\nLet f(o) = -o**2 - 1292*o + 13021. Calculate f(10).\n1\nLet l(y) = -18*y + 654. Give l(22).\n258\nLet m(k) = -461*k + 41055. What is m(89)?" -".034, d?\n0.034\nLet p be (-10)/125 - 280/250. Let h be 7/(4095/40) + 2/(-9). Let g(k) = k + 8. Let r be g(-9). Which is the third smallest value? (a) h (b) r (c) p\na\nSuppose w + 5*n = 4*w + 3, 5*n = -5*w + 35. Suppose -275*x - 2084 + 434 = 0. Let k = 3.5 - 3. What is the third smallest value in k, x, w, -3/7?\nk\nSuppose 0 = -4*i - i + 760. Let s = 133 - i. What is the second biggest value in 5, s, 4?\n4\nLet f(y) be the first derivative of y**3/3 - 5*y**2 + 11*y - 27. Let z be f(8). Let n be (0 + 2/6)/(-1). Which is the smallest value? (a) z (b) -2/15 (c) n\na\nLet f be (48/4)/(4/(-6)). Let l be (1 - 0)*(-2)/f. Let a be ((4 - 2)*(-3)/2)/((-849)/566). What is the third smallest value in l, a, 0.3?\na\nLet l be (1*(-3)/(-12))/(6/((-288)/40)). Which is the third smallest value? (a) 11/5 (b) l (c) -1\na\nLet r = -3227.3 + 3915. Let h = 630 - r. Let l = -57 - h." -"Four letters picked without replacement from jjndnnggnege. Give prob of sequence ndgg.\n1/495\nCalculate prob of sequence ttls when four letters picked without replacement from ltjtsthhjqhs.\n1/990\nWhat is prob of sequence jo when two letters picked without replacement from {b: 6, j: 1, o: 1, e: 1, r: 3}?\n1/132\nTwo letters picked without replacement from {t: 9, w: 2}. Give prob of sequence wt.\n9/55\nThree letters picked without replacement from hthhhhhhhthhthh. Give prob of sequence hth.\n66/455\nWhat is prob of sequence otog when four letters picked without replacement from {t: 4, o: 3, g: 4}?\n2/165\nCalculate prob of sequence ph when two letters picked without replacement from {n: 2, p: 2, z: 3, h: 5}.\n5/66\nWhat is prob of sequence wr when two letters picked without replacement from {w: 1, a: 1, h: 2, p: 1, c: 2, r: 1}?\n1/56\nWhat is prob of sequence jtjj when four letters picked without replacement from {j: 8, t: 5}?\n14/143\nCalculate prob of sequence zzfz when four letters picked without replacement from fzzzzzfzz.\n5/36\nTwo letters picked without replacement from {z: 3, x: 1, m: 3}. Give prob of sequence zz.\n1/7\nThree letters picked" -"1217*n + 222. Let d(o) = -o**3 - 605*o + 111. Let u(x) = -5*d(x) + 2*t(x). What is the derivative of u(r) wrt r?\n3*r**2 + 591\nLet d(x) be the second derivative of -7003*x**5/10 - 3257*x**4/12 + 10343*x. What is the third derivative of d(y) wrt y?\n-84036\nWhat is the second derivative of 7584*j**5 + 1 + 844*j - 816*j - 86*j wrt j?\n151680*j**3\nLet g be (-6)/(-27) - (-1920)/108. Suppose 8*x = g*x - 60. What is the third derivative of -h**3 + h**3 + 502*h**x - 520*h**6 + 28*h**2 wrt h?\n-2160*h**3\nLet i(m) = 3*m**4 + 3*m**3 + m - 2. Let t(b) = -2453*b**4 + 12*b**3 - 1605*b - 6. Let r(y) = 4*i(y) - t(y). Find the second derivative of r(w) wrt w.\n29580*w**2\nLet r(s) = -3*s - 28. Let u be r(-10). Suppose -16 = -4*x + k, 5 + 3 = u*x - 3*k. What is the second derivative of -9*h**4 + 12*h - 7*h**x + 0*h**4 + h wrt h?\n-192*h**2\nLet c be (-5 - 51/(-12))*8. Let s be (-56)/c*30/7. What is the third derivative of 3*h - s*h**3 + 11*h**2 + 6*h**3 - 3*h wrt" -"r(v) = -37*v + 14. Let q be r(-5). Let y = q + -192. Solve 2*h = 5*c + 7, c + y = 5*h + 24 for h.\n-4\nLet n be (-3458)/(-27) - 148/1998. Suppose 5*t + k - 176 = 0, 4*t + 80*k = 76*k + n. Solve -5*z + 1 = l + 25, 0 = 4*z + 5*l + t for z.\n-4\nSuppose -180 + 165 = -5*r. Let a(y) = y - 3. Let k be 8 + (-3 + 1 - 0). Let o be a(k). Solve r*s = o*u - 6, 3*u - 1 = s + s for s.\n-5\nSuppose -f + 23 = 4*d, -3*d = f - 2*d - 8. Suppose 124 = -70*p + 334. Solve -12 = 4*x, -f*v + p*x = 2*x - 18 for v.\n5\nLet r be 12/(-16)*4*17/(-3). Suppose -r = 12*g - 41. Solve -2*y = -g*x + 3*x - 3, -3*y = 3*x - 9 for y.\n0\nSuppose -5*o + 15 = -14*v + 16*v, 2*o - 4*v = -18. Let z be 2 + -5 + 5/o. Solve -4 = 2*w - 0*i + 4*i," -"eger?\n21\nWhat is 401122 to the power of 1/2, to the nearest integer?\n633\nWhat is the third root of 1155141 to the nearest integer?\n105\nWhat is the third root of 698748 to the nearest integer?\n89\nWhat is 69777 to the power of 1/5, to the nearest integer?\n9\nWhat is the third root of 27459320 to the nearest integer?\n302\nWhat is the third root of 664260 to the nearest integer?\n87\nWhat is the eighth root of 371200 to the nearest integer?\n5\nWhat is the third root of 142532 to the nearest integer?\n52\nWhat is 6350459 to the power of 1/10, to the nearest integer?\n5\nWhat is 12443382 to the power of 1/5, to the nearest integer?\n26\nWhat is the third root of 291830 to the nearest integer?\n66\nWhat is the eighth root of 1346708 to the nearest integer?\n6\nWhat is the cube root of 494131 to the nearest integer?\n79\nWhat is 1598332 to the power of 1/3, to the nearest integer?\n117\nWhat is the square root of 573576 to the nearest integer?\n757\nWhat is the cube root of 190933 to the nearest integer?\n58\nWhat" -" 2*a**2\nCollect the terms in -41*a + 37 - 37.\n-41*a\nCollect the terms in -4 - 2 + 6 + 8*w**2.\n8*w**2\nCollect the terms in -2 + 2687*m + 2.\n2687*m\nCollect the terms in 24*o - o + 0*o.\n23*o\nCollect the terms in 9*v**3 + 2*v**3 - 14*v**3.\n-3*v**3\nCollect the terms in -5 + 31*j + 2 + 3.\n31*j\nCollect the terms in -41*t**3 + 55*t**3 - 19*t**3.\n-5*t**3\nCollect the terms in -1879 + 4*i**2 - 7*i**2 + 1879.\n-3*i**2\nCollect the terms in 27*q**3 - 7*q + 7*q - 28*q**3 - 13*q**2.\n-q**3 - 13*q**2\nCollect the terms in -73*l**2 + 46*l**3 + 73*l**2 - 14*l**3.\n32*l**3\nCollect the terms in 5*p**2 + 2*p - 2*p.\n5*p**2\nCollect the terms in -t - 71 + 71.\n-t\nCollect the terms in 10*s**3 + 9*s**3 + 18 - 15*s**3.\n4*s**3 + 18\nCollect the terms in -30*w**2 + 31*w**2 + w**2.\n2*w**2\nCollect the terms in -2*y**3 + 74 - 33*y**3 - 74.\n-35*y**3\nCollect the terms in -8 + 8 - 17*d + 29*d.\n12*d\nCollect the terms in 5*m**3 + 10*m**3 - 9*m**3.\n6*m**3\nCollect the terms in 757*c - 2300*c" -"tors of 9042690.\n2, 3, 5, 301423\nWhat are the prime factors of 95017654?\n2, 2063, 23029\nList the prime factors of 119289524.\n2, 19, 1569599\nList the prime factors of 140032879.\n7, 1609, 12433\nWhat are the prime factors of 463113307?\n149, 191, 16273\nList the prime factors of 312589016.\n2, 43, 743, 1223\nList the prime factors of 2724981360.\n2, 3, 5, 41, 276929\nList the prime factors of 178289005.\n5, 35657801\nWhat are the prime factors of 464473104?\n2, 3, 1289, 7507\nWhat are the prime factors of 873527189?\n23, 4679, 8117\nWhat are the prime factors of 254874531?\n3, 19, 61, 73303\nWhat are the prime factors of 286211939?\n13, 41, 61, 8803\nWhat are the prime factors of 129302375?\n5, 1034419\nWhat are the prime factors of 3137320507?\n151, 20776957\nList the prime factors of 73748084.\n2, 18437021\nWhat are the prime factors of 48145437?\n3, 47, 113819\nWhat are the prime factors of 59868692?\n2, 13, 41, 28081\nWhat are the prime factors of 3273836274?\n2, 3, 29, 1399, 4483\nList the prime factors of 782182173.\n3, 31, 641, 13121\nList the prime factors of 1225890810.\n2, 3, 5, 13621009\nList the prime factors" -" (b) 0 (c) p (d) 3/8\nb\nLet i(m) = m**3 - 24*m**2 - 14*m - 5. Let w be i(25). Let h be (243/w)/((-6)/(-5)). Which is the smallest value? (a) 3 (b) h (c) 25 (d) -3\nd\nSuppose 13 = 2*o - 3*k, 2*o + o + 5*k = 67. Suppose 3*u - o = -2*f + 19, u - 3*f = 11. Which is the biggest value? (a) 2/5 (b) 2 (c) u\nc\nLet w = -0.0076 + 10.3076. What is the smallest value in 3/7, w, 4?\n3/7\nLet k = -421 - -417. What is the fourth biggest value in -0.7, -1.3, 1/3, k?\nk\nLet k = 188.4 + -188.1. What is the biggest value in -24, k, -4/5, -0.1?\nk\nLet v(w) = -5*w**2 + 1. Let u be v(1). Let k = 983 + -982. What is the third biggest value in k, u, 7?\nu\nLet m = 261.7 - 261. What is the biggest value in m, -1/5, 2/9?\nm\nLet z = -69 + 38. Let h = z + 27. Which is the biggest value? (a) -1 (b) 5/4 (c) h\nb\nLet q = 55 +" -"are the prime factors of c?\n5\nWhat are the prime factors of (-1278)/(-9) + (-1 - -2) + -4?\n139\nLet n(i) = -6*i**2 + 10*i - 9. Let a(g) = 5*g**2 - 9*g + 8. Let s(q) = 7*a(q) + 6*n(q). Let m = -19 - -16. What are the prime factors of s(m)?\n2\nSuppose -u + 96 = 5*v, -3*v - 5*u = -31 - 9. Let a = -14 + 3. Let w = v + a. What are the prime factors of w?\n3\nSuppose -3*k - 23 = -4*j, j - 5*k - 9 = -k. Let v = j - 0. Suppose v*g - 44 = 1. What are the prime factors of g?\n3\nLet z = -13 + 21. List the prime factors of z.\n2\nWhat are the prime factors of (1*(-2 + -1) + -48)*-3?\n3, 17\nLet m be -3*(-2)/(-9)*3. Let p = 9 + -8. List the prime factors of m*p*(-18)/12.\n3\nSuppose -4 + 0 = -o. Let d be 2/7 - o/14. Suppose -y + 13 + 1 = d. What are the prime factors of y?\n2, 7\nLet v = 1 +" -"\n-1\nLet r = 4 - 2. Let m be r + (-1)/1 - -1. Solve 6 = -3*t - 3*k, -2*t + 3*t + 3*k = m for t.\n-4\nLet c(k) = -6*k**3 + k**2 + k + 1. Let t be c(-1). Let y = t - 5. Let a = 5 - y. Solve 3*d + 17 = -l, -a*l + 3*d - 19 = 4*d for l.\n-5\nLet t be (-39)/(-15) - (-4)/10. Let s(k) = 6*k - k**2 + 2*k**2 + 2 + 4*k. Let f be s(-10). Solve -t*b - 2*j - 1 + 3 = 0, -f*j = -8 for b.\n-2\nSuppose 0*m = 2*m - 36. Suppose 2*o - m = -o. Suppose -y = -0 - 4. Solve -4*z + 10 = 3*x, 7*x - o = y*x for z.\n1\nLet j(v) = -v**3 + 11*v**2. Let o be j(11). Let c = 2 + o. Suppose -x = -5*x + 20. Solve d = i + 6, -4*i = c*d - x*i - 8 for d.\n2\nSuppose -3*w = -2*l - 6*w + 18, -w = 5*l - 19. Solve -c + u + 2" -"highest common factor of d and 20?\n20\nSuppose -3*j + 53 = 5*v, 4*v = -0*v + 4. Calculate the greatest common divisor of 144 and j.\n16\nLet y(n) = -15*n + 1. Let d be y(-1). Calculate the highest common divisor of d and 16.\n16\nSuppose 0 = 3*a - 9 - 12. Calculate the greatest common divisor of 35 and a.\n7\nLet y(w) = w**3 + w**2 + w + 14. Let m be y(0). What is the greatest common divisor of 98 and m?\n14\nLet q be (-321)/(-9) - 4/6. Let u = q + -5. Let j(m) = -m**3 + 8*m**2 - 4*m - 1. Let r be j(7). What is the greatest common factor of r and u?\n10\nLet j be (52/3)/((-12)/(-36)). Calculate the highest common factor of j and 13.\n13\nLet u(p) = p**3 + p**2 - 2*p + 1. Let g be u(-2). Let q = 3 + g. Suppose 2*o + 24 = q*o. Calculate the highest common factor of o and 96.\n12\nSuppose 384 = 13*z - 7*z. What is the greatest common divisor of z and 96?\n32\nLet w = -10" -"\nIs -2 less than -0.014175?\nTrue\nWhich is smaller: 2/7 or 14110?\n2/7\nAre 360058/21 and 17147 equal?\nFalse\nWhich is smaller: -10395 or -51977/5?\n-51977/5\nWhich is smaller: 1181/1814 or 2?\n1181/1814\nWhich is smaller: -780336/5 or -156067?\n-780336/5\nWhich is greater: -1 or -6/18289?\n-6/18289\nIs 23337 >= 23341?\nFalse\nIs 0 <= -11276/27?\nFalse\nAre -695 and -693 unequal?\nTrue\nWhich is bigger: -8681 or -8734?\n-8681\nIs 2 smaller than -191?\nFalse\nWhich is smaller: 0 or 13/187736?\n0\nIs 332/463 != 0?\nTrue\nWhich is greater: 16599 or 16597?\n16599\nDo 20209 and 20203 have different values?\nTrue\nWhich is greater: 108654 or 108656?\n108656\nWhich is smaller: 19644 or 19607?\n19607\nIs 92.3 less than 86.1?\nFalse\nDo 58734 and 58753 have different values?\nTrue\nAre 1892 and 1816 equal?\nFalse\nWhich is bigger: 57267 or 57271?\n57271\nWhich is smaller: -85012/11 or -7729?\n-7729\nIs 1 bigger than 71/12249?\nTrue\nWhich is smaller: -437/8 or 7?\n-437/8\nWhich is smaller: 1 or -644/34283?\n-644/34283\nWhich is bigger: -14522 or -14523?\n-14522\nWhich is bigger: 1/448 or 0.19?\n0.19\nIs -62715 >= -1/3?\nFalse\nIs 8621 bigger than 8278?\nTrue\nIs 0 < 172/289?" -"et k(l) = -l**2 + 3*l - 2. Give k(w).\n-2\nLet g be 6*(-1)/1 - 0. Let r(h) = 5*h - 5*h - 23 + 6*h**2 + 22 + h**3. Calculate r(g).\n-1\nLet r(t) = 4 - t**3 + t + t**3 - t**3 - 6*t**2. What is r(-6)?\n-2\nLet w be 1/(-2)*(-12)/6. Let j = 9 + w. Let z be j*(6/4 + -1). Let x(v) = v**2 - 8*v + 5. Calculate x(z).\n-10\nLet p(u) = -u + 6. Let w be p(4). Suppose w*b + 15 = -5*n, -6 + 1 = -4*n - 5*b. Let i(s) = s - 1. Determine i(n).\n-6\nSuppose 9 = 3*r + 3. Let b(u) = -3*u - r*u + 4*u - 2. Let h = 10 - 7. What is b(h)?\n-5\nLet r(w) = 4*w + 4. Suppose -3*l - k + 4*k - 18 = 0, 2*l + 6 = 5*k. Let o(d) = d**2 + 9*d + 3. Let b be o(l). Calculate r(b).\n-16\nLet n(o) = 2*o - 7. Suppose t = 2 - 7. Determine n(t).\n-17\nLet h(k) = 0*k**2 - k**2 - 3*k - 3*k - 4" -": 1, t: 1}.\n7/24\nThree letters picked without replacement from {v: 5, i: 3, x: 2, k: 5}. What is prob of picking 1 i, 1 k, and 1 x?\n6/91\nWhat is prob of picking 3 k when three letters picked without replacement from {v: 11, k: 5, u: 3, r: 1}?\n1/114\nThree letters picked without replacement from {a: 3, i: 3, n: 3, u: 8, k: 1}. What is prob of picking 2 n and 1 k?\n1/272\nWhat is prob of picking 2 r and 2 a when four letters picked without replacement from kraaaarrkzrrrrr?\n8/65\nTwo letters picked without replacement from lelezlc. Give prob of picking 1 c and 1 z.\n1/21\nWhat is prob of picking 2 q when two letters picked without replacement from {o: 11, q: 1}?\n0\nFour letters picked without replacement from {w: 1, g: 14, r: 5}. What is prob of picking 1 w, 1 r, and 2 g?\n91/969\nTwo letters picked without replacement from {s: 1, y: 1, u: 1}. Give prob of picking 1 s and 1 u.\n1/3\nCalculate prob of picking 1 t and 3 m when four letters picked without replacement from" -".\n-4\nLet v(s) = -46*s + 1471. Let o be v(31). Solve -2*u - 33 + o = 0 for u.\n6\nSuppose 2*a - 174 = -4*q, 4*a - 314 = -4*q - 26*a. Solve -y - 33 + q = 0 for y.\n8\nSuppose -103*o = -106*o - 5*r + 1057, -4*o + r + 1440 = 0. Solve -o*x + 6 = -362*x for x.\n-2\nLet l(y) = 54*y - 1364. Let w be l(26). Solve 5*z - w = -3*z for z.\n5\nLet l(c) = 12*c + 4. Suppose 0 = -a - 3*a - 8. Let z be l(a). Let r be (z/(-12))/((-15)/(-54)). Solve -r*b = -b for b.\n0\nLet f be 1 + (-7)/(-3 + 8 + -5 + -1). Solve -40 = f*s - 16*s for s.\n5\nLet g(z) = -2*z - 8. Let a be g(-6). Let l(r) = r**3 - r**2 + r - 2. Let j be l(0). Let y be 7 + (-9 - -9) + j. Solve -y = -a*n - 9 for n.\n-1\nLet v = 35732 + -35571. Solve v*g = 81*g + 720 for g.\n9\nLet g" -"))/((-4)/36). Let o(s) be the third derivative of 0 + 0*s**4 + 0*s**3 - 1/270*s**5 - 1/180*s**a + 0*s - 2*s**2. Factor o(q).\n-2*q**2*(3*q + 1)/9\nSuppose -3*x = 5*p - 93, -x + 2*p + 0 + 31 = 0. Let c = 157/5 - x. Determine j, given that 0 - c*j + 1/5*j**2 = 0.\n0, 2\nLet p(t) be the first derivative of -6/13*t - 2/39*t**3 - 37 + 4/13*t**2. Factor p(y).\n-2*(y - 3)*(y - 1)/13\nLet t(d) be the second derivative of 0 + 11*d + 16*d**2 + 4/3*d**3 - 1/3*d**4. Solve t(b) = 0 for b.\n-2, 4\nLet d = 119 - 57. Let s = d + -247/4. Factor 0 - s*z**2 - 1/4*z**4 + 0*z + 1/2*z**3.\n-z**2*(z - 1)**2/4\nLet k be 70/22 - (-70)/(-385). Let h(y) be the first derivative of 1/5*y**2 - 2/15*y**k + 2/5*y - 1/10*y**4 - 3. What is b in h(b) = 0?\n-1, 1\nLet s(h) be the first derivative of h**2/2 + 6*h - 16. Let p be s(-6). Solve -c - 7/4*c**3 - 4*c**2 + p = 0 for c.\n-2, -2/7, 0\nSuppose -4*o + 9 = 3*c, 2*c -" -"sor of x and l.\n8\nLet i(m) = -m**3 + 9*m**2 - 7*m + 10. Let k be 23/3 - 5/(-15). Let h be i(k). Let b be (-1)/(-2) - (-477)/h. What is the highest common divisor of 9 and b?\n9\nLet i(d) = d - 2. Let p be 87/27 - 2/9. Let h be i(p). Let b be (-9)/3 + 8/h. What is the greatest common divisor of 25 and b?\n5\nLet f(w) = 3*w**3 - 6 + 0*w**3 - 8*w**2 - 11*w - 4*w**3 + 2*w. Let p be f(-7). What is the highest common divisor of p and 88?\n8\nLet h = 1043 - 1039. What is the highest common divisor of h and 8?\n4\nLet s be -4 + 4/1 + 84/14. Let k = 4 + -1. What is the greatest common divisor of s and k?\n3\nLet r(c) = -3*c - 51. Let x be r(-28). Calculate the greatest common divisor of 264 and x.\n33\nLet n be (-7 - 4)*-4 + (-2)/(-2). Calculate the highest common divisor of 20 and n.\n5\nLet d be ((-18)/10)/(-2*5/2950). Calculate the greatest common divisor of 59 and d." -"a composite number?\nFalse\nSuppose 24*n - 20*n = 5524. Is n prime?\nTrue\nLet l(y) = 420*y**2 - 17*y - 5. Is l(6) a composite number?\nFalse\nSuppose -3*d + 134 = 5*z, d - 116 = -d + 2*z. Let k(l) = -l**2 + 3. Let n be k(0). Suppose n*f = 2*a + d, -5*f + 93 = -3*a + 2*a. Is f composite?\nFalse\nLet d be (0 - 1)*(-3)/(-3). Let l be 4*d/12*-15. Suppose 0 = 5*g - l*x - 110, -2*g - 3*x = x - 26. Is g prime?\nTrue\nSuppose -4*t + 4*u = -u - 15, 4*t + 5*u - 65 = 0. Is 2136/t + 9/(225/10) composite?\nTrue\nLet v(z) = z**2 + 12*z + 10. Let y be v(-11). Let r(p) = 22*p**2 + p + 2. Let w(o) = -21*o**2 - o - 3. Let u(x) = 3*r(x) + 2*w(x). Is u(y) composite?\nFalse\nLet m be 5/15*-3 - -4. Suppose p + 4*u = -m*p, -4*p + 2*u = 0. Suppose -5*f + s - 817 = -4710, 4*f + 2*s - 3120 = p. Is f composite?\nTrue\nLet c be ((-1)/(-1))/(8/40). Suppose 0*d + d" -"*a + 13. Calculate k(6).\n-35\nLet r(p) = p**3 - 3*p + 23. Give r(4).\n75\nLet o(r) = -r**3 - 34*r**2 - 35*r - 67. What is o(-33)?\n-1\nLet y(n) = -n**3 + 7*n**2 - 8*n + 1. Give y(7).\n-55\nLet z(s) = 10*s + 103. Calculate z(-10).\n3\nLet u(w) = -w**2 + 16*w + 31. Determine u(18).\n-5\nLet r(d) = -d**3 - 25*d**2 + 20. What is r(-25)?\n20\nLet p(q) = q**2 - 6*q - 3. Calculate p(8).\n13\nLet f(j) = j**2 + 25*j + 50. What is f(-23)?\n4\nLet h(w) = -w**2 + 14*w - 3. Determine h(14).\n-3\nLet s(u) = -3*u + 22. Give s(2).\n16\nLet x(v) = -v**3 + 4*v**2 - 7*v + 2. Determine x(1).\n-2\nLet u(s) = -s - 4. Give u(6).\n-10\nLet g(j) = 4*j - 28. Determine g(8).\n4\nLet n(q) = -3*q - 26. Determine n(-10).\n4\nLet g(q) = -2*q**2 - 17*q - 28. Give g(-2).\n-2\nLet o(u) = -5*u - 3. Determine o(9).\n-48\nLet n(i) = i**2 - 35*i + 33. Determine n(35).\n33\nLet j(m) = -2*m**2 - 8*m - 5. Determine j(-6)." -"alculate the highest common divisor of 15011130 and 490.\n10\nCalculate the greatest common divisor of 216646722 and 36.\n18\nCalculate the greatest common factor of 22793859 and 26136.\n3267\nCalculate the highest common divisor of 150903662 and 13923.\n1547\nCalculate the highest common factor of 5864586 and 35025.\n1401\nWhat is the highest common divisor of 107 and 2003597?\n1\nWhat is the greatest common factor of 68 and 7860248?\n4\nWhat is the greatest common divisor of 834826 and 9287?\n251\nWhat is the greatest common divisor of 3004 and 1854219?\n751\nCalculate the greatest common divisor of 35 and 202321.\n7\nWhat is the highest common factor of 88227 and 220329?\n9\nCalculate the greatest common divisor of 739620 and 103362.\n42\nCalculate the greatest common divisor of 14643811 and 11284.\n2821\nCalculate the greatest common divisor of 45000 and 45940000.\n5000\nCalculate the greatest common divisor of 163 and 33526981.\n163\nWhat is the highest common factor of 2007 and 70166727?\n2007\nWhat is the greatest common divisor of 328 and 2344756?\n4\nWhat is the highest common factor of 1119 and 16014?\n3\nWhat is the highest common divisor of 5944 and 37793438?\n1486\nWhat" -"3765\nWhat is 505.0434kg in tonnes?\n0.5050434\nWhat is 1/15 of a century in months?\n80\nWhat is 8597.274l in millilitres?\n8597274\nHow many days are there in eight sevenths of a week?\n8\nHow many millilitres are there in 11/4 of a litre?\n2750\nHow many nanograms are there in one fifth of a microgram?\n200\nWhat is 17/9 of a week in minutes?\n19040\nWhat is twenty-three sixths of a century in months?\n4600\nHow many meters are there in 7/25 of a kilometer?\n280\nWhat is 1455876.261us in weeks?\n0.0000024072028125\nWhat is 65.98639cm in nanometers?\n659863900\nConvert 624940.3 centimeters to kilometers.\n6.249403\nConvert 963561.8 decades to years.\n9635618\nWhat is three fifths of a kilometer in centimeters?\n60000\nHow many minutes are there in thirty-eight sevenths of a week?\n54720\nConvert 1028.347l to millilitres.\n1028347\nConvert 2.112301 millilitres to litres.\n0.002112301\nWhat is 22.82237 millennia in months?\n273868.44\nWhat is fourty-nine quarters of a kilogram in grams?\n12250\nHow many millilitres are there in thirty-one halves of a litre?\n15500\nHow many hours are there in 2332045.8ms?\n0.6477905\nConvert 63213.81 centimeters to kilometers.\n0.6321381\nWhat is three tenths of a meter in millimeters?\n300\nHow many microseconds" -"digit of 279783?\n2\nWhat is the hundreds digit of 128433?\n4\nWhat is the hundreds digit of 1181663?\n6\nWhat is the thousands digit of 20235380?\n5\nWhat is the ten thousands digit of 4494722?\n9\nWhat is the units digit of 250327?\n7\nWhat is the hundred thousands digit of 1213664?\n2\nWhat is the hundred thousands digit of 6500058?\n5\nWhat is the tens digit of 8468442?\n4\nWhat is the thousands digit of 310992?\n0\nWhat is the tens digit of 879577?\n7\nWhat is the thousands digit of 1462798?\n2\nWhat is the ten thousands digit of 8815967?\n1\nWhat is the thousands digit of 1032766?\n2\nWhat is the tens digit of 148344?\n4\nWhat is the ten thousands digit of 11191275?\n9\nWhat is the tens digit of 44934?\n3\nWhat is the thousands digit of 326020?\n6\nWhat is the units digit of 490679?\n9\nWhat is the hundred thousands digit of 2511215?\n5\nWhat is the units digit of 1121923?\n3\nWhat is the units digit of 75891?\n1\nWhat is the hundred thousands digit of 7090792?\n0\nWhat is the ten thousands digit of 146860?\n4\nWhat is the units" -"= 85*c**3 - 17*c. Let q(d) = -5*d**2 + 2*d + 22. Let g be q(3). Calculate g*u(m) + 3*y(m).\n17*m**3\nLet o(n) = -n. Let h(z) = 3*z - 6. Let r be h(-6). Let u(f) = 20*f. Let d be (-144)/(-30) - 5 - 16/20. What is d*u(p) + r*o(p)?\n4*p\nLet h(i) be the second derivative of i**3/6 - 116*i. Let r(q) = 7*q + 1. Calculate -3*h(t) + r(t).\n4*t + 1\nLet x(g) = -9*g**3 + 5*g**2 - 4*g - 7. Let f(b) = 4*b**3 - 2*b**2 + 2*b + 3. Let r(l) = -l**2 + 5*l + 19. Let j be r(-3). Determine j*f(n) - 2*x(n).\n-2*n**3 - 2*n - 1\nLet t(z) = -31*z - 52. Let o(s) = -11*s - 17. What is 17*o(u) - 6*t(u)?\n-u + 23\nLet y(u) be the second derivative of -u**3/2 - 2*u**2 - 15*u. Let g(i) = -3*i - 5. Give 2*g(l) - 3*y(l).\n3*l + 2\nLet m(u) = -2*u + 2. Let y(b) = -b - 1. Let g be 18/99 + (-126)/(-33). Suppose 4*w + 5*f = -8, -2*w - g*f + 0 = 4. Determine w*y(s) - m(s).\n4*s\nSuppose -5*v" -"= 5*r - 11. Suppose -4*s = r*w - 12, 7*s - 5*w = 2*s + 45. List the prime factors of (s - 4)/(2/13).\n13\nLet z(v) = 543*v**2 + 9*v + 19. What are the prime factors of z(-2)?\n41, 53\nLet m(z) = -z - 4. Let y be m(-7). Suppose -i - y*o + 10 = i, 3*o - 25 = -5*i. Suppose -2*n + 4*n - 119 = i*s, s = 5*n - 240. List the prime factors of n.\n47\nLet u(g) = -9*g + 1. Let t be u(1). Suppose 19 = 4*o - 5*b, -13 = -o + 3*b - 3. Let w = o - t. What are the prime factors of w?\n3\nSuppose 6 = 5*v - x - 76, 2*v = -x + 30. Suppose 2 = 3*q - v. What are the prime factors of (9/1)/(q/8)?\n2, 3\nLet y(q) = -2*q. Let c(o) = -o**3 - o**2 + 6*o - 1. Let z(m) = -3*c(m) - 8*y(m). Let g be -2 + 8 + -1 + -3. What are the prime factors of z(g)?\n5, 7\nLet a(z) be the first derivative of z**3/3 + 4*z" -"3, 386\nPut 3/5, 8, -3, 18.7, 6 in decreasing order.\n18.7, 8, 6, 3/5, -3\nSort 31, 1, -8, 6, -5 in descending order.\n31, 6, 1, -5, -8\nPut 12, -6, 0, -3, 1 in ascending order.\n-6, -3, 0, 1, 12\nSort 0, 196917, -0.4 in decreasing order.\n196917, 0, -0.4\nSort 0.8, 51.5, -243 in descending order.\n51.5, 0.8, -243\nSort -1, -2, -8, 153.\n-8, -2, -1, 153\nSort 37, 217, -3/4, -4, -0.4.\n-4, -3/4, -0.4, 37, 217\nSort 0.06, -1559, 3 in decreasing order.\n3, 0.06, -1559\nPut -39971, 1, -0.07 in increasing order.\n-39971, -0.07, 1\nPut -32.2, -0.4, 0.2, 2/11 in decreasing order.\n0.2, 2/11, -0.4, -32.2\nSort 1/20, -1/2, 85, 4/9 in increasing order.\n-1/2, 1/20, 4/9, 85\nPut -47, -86, 1/9, 1 in decreasing order.\n1, 1/9, -47, -86\nPut 0, -3094, 295 in descending order.\n295, 0, -3094\nPut 172, -37, 60, -5 in descending order.\n172, 60, -5, -37\nSort -3/20, 2/9, -14, -23.\n-23, -14, -3/20, 2/9\nSort 0.112653, 2, -5 in decreasing order.\n2, 0.112653, -5\nPut -2, 2, 1223, 8 in increasing order.\n-2, 2, 8, 1223\nSort -82159, -3, -1 in increasing order." -" - 12. What is the tens digit of l(a)?\n1\nLet j be (3 - 15/6)*4. Suppose -k + j*k = 1. What is the units digit of k?\n1\nSuppose 18 = -5*y - 2*r - 0*r, r = -y - 6. Let i be (y + -34)*(2 + 0). What is the units digit of (-2)/(-5) - i/45?\n2\nLet y(q) = -5*q**3 + 4*q**2 + 4*q - 6. What is the tens digit of y(-3)?\n5\nWhat is the units digit of 3 - -344 - (12/2 + -2)?\n3\nLet i(z) = z**2 + 2*z - 2. Let c = 7 - 10. What is the units digit of i(c)?\n1\nLet x(k) = -6*k**3 + k**2 + 2*k + 3. Let u be x(-2). Let f = 88 - u. What is the units digit of 4/(-10) + f/5?\n7\nLet h(o) = -o**3 + 8*o**2 - 5*o - 1. What is the tens digit of h(7)?\n1\nLet g = -308 - -485. What is the tens digit of g?\n7\nLet z = 5 + 1. What is the units digit of z?\n6\nSuppose -2*n + 2*l = 5*l - 69, 3*l" -". Let n = 705 + l. Is n composite?\nFalse\nLet p = 29940 - -10661. Is p a prime number?\nFalse\nLet s = -27 - -31. Suppose -3*k - 15 = s*g + 34, 0 = 2*k + 4*g + 26. Let j = k - -54. Is j a prime number?\nTrue\nSuppose -28*q = -141366 - 173326. Is q composite?\nFalse\nLet h(b) = 12*b**2 + 16*b + 35. Is h(9) prime?\nTrue\nLet p(d) = -1183*d + 32. Is p(-11) a composite number?\nTrue\nSuppose -12 = 16*m - 20*m. Suppose -2*p + 3*s = -0*s - 1586, 0 = -m*s - 12. Is p a composite number?\nFalse\nSuppose -2*x + 3*x + 12 = -k, 3*k + 5*x = -36. Let u(g) = -42*g - 15. Let q be u(k). Let n = q + -340. Is n composite?\nFalse\nSuppose -t - 5*u - 13 = -2*t, 0 = 5*u + 5. Let v(i) = 114*i + 1. Is v(t) a prime number?\nFalse\nLet g = -37 + 32. Let u be (2/g)/((-2)/10). Suppose -3*c + 1252 = -u*c - 5*n, 4*c = -5*n + 5033. Is c composite?\nTrue" -"is the remainder when 312027 is divided by 30?\n27\nWhat is the remainder when 235825 is divided by 1604?\n37\nCalculate the remainder when 19044 is divided by 4761.\n0\nWhat is the remainder when 21816 is divided by 204?\n192\nWhat is the remainder when 280637 is divided by 23?\n14\nCalculate the remainder when 153856 is divided by 53.\n50\nCalculate the remainder when 1295 is divided by 420.\n35\nCalculate the remainder when 28886 is divided by 233.\n227\nCalculate the remainder when 11764 is divided by 818.\n312\nCalculate the remainder when 1627 is divided by 77.\n10\nWhat is the remainder when 7522 is divided by 146?\n76\nWhat is the remainder when 321701 is divided by 12868?\n1\nCalculate the remainder when 13743 is divided by 2969.\n1867\nCalculate the remainder when 76718 is divided by 28.\n26\nWhat is the remainder when 9013 is divided by 2252?\n5\nCalculate the remainder when 5405 is divided by 17.\n16\nWhat is the remainder when 3998 is divided by 996?\n14\nCalculate the remainder when 59023 is divided by 47.\n38\nWhat is the remainder when 447848 is divided by 325?\n323\nWhat is" -"8144789223 prime?\nTrue\nIs 11894094193 a prime number?\nFalse\nIs 1260165437 prime?\nFalse\nIs 3231934177 composite?\nTrue\nIs 5084670187 prime?\nFalse\nIs 1540381757 prime?\nFalse\nIs 8916444749 prime?\nTrue\nIs 406184617 prime?\nTrue\nIs 202315630331 prime?\nTrue\nIs 555563703 a composite number?\nTrue\nIs 64903091 prime?\nFalse\nIs 181647559 a composite number?\nTrue\nIs 1488555311 a composite number?\nFalse\nIs 35813920721 prime?\nFalse\nIs 64120523 prime?\nFalse\nIs 1877454071 composite?\nFalse\nIs 794606837 a prime number?\nTrue\nIs 64363459579 a prime number?\nTrue\nIs 1186563911 composite?\nTrue\nIs 8928224797 prime?\nTrue\nIs 1431617441 composite?\nFalse\nIs 167930947 a composite number?\nTrue\nIs 15009436438 prime?\nFalse\nIs 7983194279 composite?\nFalse\nIs 928742959 composite?\nFalse\nIs 2523629321 a composite number?\nFalse\nIs 21887999879 composite?\nTrue\nIs 54035070241 a prime number?\nTrue\nIs 6759391831 a composite number?\nTrue\nIs 38961813587 composite?\nFalse\nIs 478221721 composite?\nTrue\nIs 42580553 prime?\nTrue\nIs 39704572795 prime?\nFalse\nIs 1548772223 a composite number?\nTrue\nIs 4800762673 a composite number?\nTrue\nIs 83138366981 composite?\nFalse\nIs 1962973853 a prime number?\nTrue\nIs 540829027 a prime number?\nTrue\nIs 51037607989 prime?\nTrue\nIs 1794205177 a prime number?\nFalse\nIs 4966604077 a composite number?\nTrue\nIs 4496405637 composite?\nTrue\nIs" -" = 70 - 44. Suppose 44 = 24*n - g*n. Is 6/(-4)*(n - 400) prime?\nFalse\nSuppose 4*a = -o + 259203, -a = a - 5*o - 129563. Is a a composite number?\nTrue\nLet r(o) = -o**2 - 16*o - 7. Let x be 308/9 - (-2)/(-9). Let n = -44 + x. Is r(n) a composite number?\nFalse\nIs ((-138)/(-230))/((-3)/(-263210)) a prime number?\nFalse\nSuppose 25633 = -2*s + 84053. Suppose 2*l = -3*t - 3166 + s, l - 13015 = 2*t. Is l a prime number?\nFalse\nSuppose 130280 = -23*x - 135025. Let v = -7544 - x. Is v composite?\nTrue\nLet j(v) = -18504*v + 29. Is j(-1) composite?\nTrue\nLet y = 27332 + -75686. Is (y/6)/(1 + -1 + -1) composite?\nFalse\nSuppose 171*f - 276*f - 9183854 = -191*f. Is f prime?\nFalse\nLet p(q) be the first derivative of 733*q**2 - 18*q - 16. Let f be p(-12). Is ((-2)/(-4))/((-15)/f) a composite number?\nFalse\nLet y = -18 - 74. Let m be ((-489)/12)/(-2 - y/48). Let d = m - -44. Is d prime?\nFalse\nLet i = -63 - 16. Let w = i + 82." -"tes before 1:25 AM?\n2:44 PM\nHow many minutes are there between 3:05 AM and 11:16 AM?\n491\nHow many minutes are there between 5:06 AM and 9:20 AM?\n254\nWhat is 556 minutes before 11:44 AM?\n2:28 AM\nHow many minutes are there between 6:06 AM and 7:23 AM?\n77\nHow many minutes are there between 5:33 AM and 8:11 AM?\n158\nHow many minutes are there between 2:35 PM and 9:45 PM?\n430\nWhat is 90 minutes after 11:21 AM?\n12:51 PM\nWhat is 217 minutes before 5:33 AM?\n1:56 AM\nWhat is 406 minutes before 1:16 AM?\n6:30 PM\nWhat is 48 minutes after 11:50 AM?\n12:38 PM\nHow many minutes are there between 2:12 AM and 3:53 AM?\n101\nHow many minutes are there between 10:25 AM and 5:48 PM?\n443\nWhat is 240 minutes before 7:27 AM?\n3:27 AM\nHow many minutes are there between 1:26 PM and 12:26 AM?\n660\nHow many minutes are there between 12:27 PM and 5:59 PM?\n332\nWhat is 662 minutes before 8:44 PM?\n9:42 AM\nWhat is 344 minutes after 2:57 AM?\n8:41 AM\nHow many minutes are there between 8:12 PM and 9:06 PM?\n54\nHow many" -"t l be z(-3). Let j = 0.1 - -1.9. Let v = -2 + j. Which is the second biggest value? (a) l (b) v (c) 3/7\nc\nLet l = -0.15 - -2.15. What is the biggest value in 3, l, -1/9, -2/7?\n3\nSuppose -4 = j - 2*n, -n + 0 - 7 = -5*j. Let r = 0.4 - 0.7. Which is the biggest value? (a) r (b) j (c) 1\nb\nLet n(z) = -z**3 + 3*z**2 - 2*z. Let s be n(2). Let m = -53 + 56. Which is the smallest value? (a) s (b) m (c) 2/9\na\nLet v = 63/5 + -12. Let o = -3.9 + 1.2. Let w = o - -3. Which is the third biggest value? (a) -2 (b) v (c) w\na\nSuppose 2*k - 1 = -h, -5*h - 4*k - 3 = -14. Let f be (1/3)/((-7)/6). What is the third smallest value in f, h, -3?\nh\nLet l = -95 - -663/7. Let o = 0.18 + -0.27. Let w = o + -2.91. Which is the second biggest value? (a) w (b) l (c) -0.4\nc\nSuppose -5*n +" -"Suppose 2*o = -3*w - 4, 4*w - 2 = -0*o + o. Suppose w = -4*k + 4, -2*t - 4*k - 55 = -3*k. Let u = 39 + t. What are the prime factors of u?\n11\nSuppose 0*b = -2*m + 2*b + 78, 4*m - 2*b - 150 = 0. What are the prime factors of m?\n2, 3\nSuppose 0*t + 2*d = t - 4, 0 = 5*t - 2*d - 4. Let j be t + (2 + 0)*2. Suppose -5*q - j*y = -50, -4*q - y - 14 + 43 = 0. What are the prime factors of q?\n2, 3\nSuppose 2*k - k + 9 = -2*l, 3*l - 2*k = -10. Let j = 16 - l. List the prime factors of j.\n2, 5\nLet n = 100 - 60. What are the prime factors of n?\n2, 5\nLet x be (-2 + 23)*4/(-4). Let n = -5 - x. List the prime factors of n.\n2\nLet c be (-45)/(-6)*(-6)/(-9). Suppose c*z + 4*m = -25, -2*z + 0 = -4*m - 18. Let w = 11 + z. List the prime factors of" -"e? (a) -3 (b) -0.12 (c) y (d) -10\na\nSuppose -2*z = 2*z. Let l = -29.9 + 31.9. Let c = 0.37 + -0.4. What is the second smallest value in c, z, l?\nz\nLet m = -38591/19 + 2031. What is the second smallest value in m, 210, 0.3?\n0.3\nLet f = 18931 + -18936. Which is the smallest value? (a) 47/11 (b) -1 (c) -2 (d) f\nd\nLet x = 703 + -707.836. Let k = -0.036 - x. Let f = k + -5.1. Which is the third smallest value? (a) f (b) 0.3 (c) -1\nb\nLet n = 27.00636 - 0.03636. Let v = -28 + n. Let y = 1.23 + v. What is the biggest value in 0.3, y, 2/77?\n0.3\nLet x(g) = g**2 + 23*g + 123. Let t be x(-14). What is the second smallest value in t, -4, -101?\n-4\nLet h be (156/(-18) - -9) + 3/(-36)*-4. Which is the smallest value? (a) 2/5 (b) 0.37 (c) h (d) 13\nb\nLet r be (-5)/(-6) - 6/9. Let d = -68 + 156. Let n = -351/4 + d. Which is the third" -" p = 1367 + 733. Suppose -42*o + p = -7*o. Is o a multiple of 10?\nTrue\nLet h(n) = -n**2 + n + 3. Let g be h(-3). Let s be (-205)/g + 10/45. Is 4 a factor of (6 - 7)*2 + -1 + s?\nTrue\nLet a(j) = -10*j + 10. Let u = 21 + -23. Let v be a(u). Let w = -20 + v. Is w a multiple of 9?\nFalse\nLet o be (-134)/268*10*1. Let a be 3*(1 + (17 - 0)). Let y = a - o. Is 13 a factor of y?\nFalse\nLet o(h) = -19*h**3 - 31*h**2 - 49*h + 11. Is o(-7) a multiple of 8?\nTrue\nLet t be ((-1026)/95)/((-1)/5). Let a = 56 - t. Is 3192/27 - a/9 a multiple of 28?\nFalse\nIs 256/(-768)*771/(-1) a multiple of 18?\nFalse\nSuppose -4*d + 26 + 70 = 0. Suppose -d = -4*m - i, -3*i = 5*m - 10 - 27. Suppose -2*u - 295 = -m*w, -4*w - 4*u + 0*u = -236. Is w a multiple of 49?\nFalse\nSuppose -q - 6 = -3*q - 4*l, 0 = -2*q - l" -" 10 - 7. Let o(r) = -3*r**2 + 3*r. Let f be o(u). What are the prime factors of (-4)/f - (-86)/18?\n5\nSuppose 5*y = -287 + 857. What are the prime factors of y?\n2, 3, 19\nLet a(z) be the third derivative of -z**6/120 - z**5/15 - z**4/8 - 3*z**3/2 - 5*z**2. What are the prime factors of a(-4)?\n3\nLet z = -8 - -11. Suppose 0 = -2*m + 4*l + 28, 40 = z*m - 4*l - 4. What are the prime factors of m?\n2\nLet k = 12 - 9. Suppose -149 = -k*a - 4*n - 59, -3*a + 81 = n. List the prime factors of a.\n2, 13\nSuppose 2*y = 6*y. Suppose -3*k + 2*k = y. Suppose k = 4*i - 4, -3 = l + 4*i - 12. List the prime factors of l.\n5\nSuppose 2*g = -3*g + 165. What are the prime factors of g?\n3, 11\nSuppose 11*q - 9*q - 84 = 0. What are the prime factors of q?\n2, 3, 7\nLet t be (0*(-4 - -3))/1. Suppose -4 = -2*q - t. Suppose -4*o + 69 = s," -" 1/2, to the nearest integer?\n574\nWhat is 1190413 to the power of 1/4, to the nearest integer?\n33\nWhat is the square root of 771282 to the nearest integer?\n878\nWhat is 12907535 to the power of 1/2, to the nearest integer?\n3593\nWhat is the tenth root of 216101 to the nearest integer?\n3\nWhat is 61183 to the power of 1/3, to the nearest integer?\n39\nWhat is 17024394 to the power of 1/8, to the nearest integer?\n8\nWhat is 134815 to the power of 1/2, to the nearest integer?\n367\nWhat is 232575 to the power of 1/2, to the nearest integer?\n482\nWhat is 735224 to the power of 1/2, to the nearest integer?\n857\nWhat is 14230908 to the power of 1/3, to the nearest integer?\n242\nWhat is the cube root of 881455 to the nearest integer?\n96\nWhat is the sixth root of 1269869 to the nearest integer?\n10\nWhat is the cube root of 295552 to the nearest integer?\n67\nWhat is 1623069 to the power of 1/8, to the nearest integer?\n6\nWhat is 138247 to the power of 1/5, to the nearest integer?\n11\nWhat is the third" -"ilitres to litres.\n80.13104\nWhat is 11/2 of a micrometer in nanometers?\n5500\nHow many micrograms are there in 147.9801mg?\n147980.1\nHow many minutes are there in 10/9 of a day?\n1600\nWhat is 25975051.2 minutes in weeks?\n2576.89\nHow many millimeters are there in 850386.9 nanometers?\n0.8503869\nHow many millilitres are there in seventeen quarters of a litre?\n4250\nWhat is 4.927517l in millilitres?\n4927.517\nWhat is three fifths of a litre in millilitres?\n600\nWhat is 1/4 of a meter in millimeters?\n250\nHow many weeks are there in 164.8693116us?\n0.000000000272601375\nWhat is 3/40 of a day in seconds?\n6480\nConvert 79.72298ml to litres.\n0.07972298\nConvert 4409.692mm to centimeters.\n440.9692\nWhat is 0.3904181 tonnes in grams?\n390418.1\nConvert 0.8088746 centuries to millennia.\n0.08088746\nWhat is 41.46521 years in centuries?\n0.4146521\nWhat is 483261.4 millilitres in litres?\n483.2614\nHow many months are there in 0.3752608 years?\n4.5031296\nWhat is 1214.211 years in millennia?\n1.214211\nHow many micrograms are there in 64698.36ng?\n64.69836\nHow many grams are there in 277.6592kg?\n277659.2\nHow many hours are there in fourty-three sixths of a week?\n1204\nWhat is 1/10 of a century in years?\n10\nWhat is 26/5 of a gram in milligrams?" -"(u) = u. Calculate a*w(z) - 2*k(z).\n3*z - 2\nLet g(f) = -13*f**2 + 4*f + 4. Let p(w) = 27*w**2 - 6*w - 9. What is 9*g(q) + 4*p(q)?\n-9*q**2 + 12*q\nLet c(u) = -u**2 + u. Let h(b) = -b**2 - 3*b - 2. Let x(q) = 15*q**2 + 137*q + 16. Let y be x(-9). Give y*c(w) + h(w).\nw**2 - 5*w - 2\nLet f(h) = -63*h - 518. Let p(d) = 40*d + 344. What is -5*f(o) - 8*p(o)?\n-5*o - 162\nLet t(l) = -l + 1. Let f(k) be the second derivative of 5*k**3/3 - 4*k**2 - 149*k. Suppose -14 = 12*h + 2*h. What is h*f(u) - 6*t(u)?\n-4*u + 2\nLet o(w) = -3*w + 2. Let y(i) = 1. Let t(h) = h + 9. Let c be t(-8). Let s be 3*-1 + (-29 - -6). Let d = s - -22. What is c*o(g) + d*y(g)?\n-3*g - 2\nLet w(c) = -4*c - 15. Let n(h) = 9*h + 30. Let j = -3070 - -3068. What is j*n(r) - 5*w(r)?\n2*r + 15\nLet t(x) = -29*x**2 + 5*x - 5. Let b(a) =" -"*s - 2*s.\n-6*s - 1\nExpand (4*u**2 - 3*u**2 - 3*u**2)*(4*u**2 + 2*u**2 - 5*u**2) - u**3 - 3*u**4 + u**3 - u - u**4 + u - 1 + 1 + 2*u**4 - u**4 + u**4 + u**4.\n-3*u**4\nExpand (-4*i + 0*i + i)*(-7 - i + 11 + 7*i**2 - 2).\n-21*i**3 + 3*i**2 - 6*i\nExpand (-3*k**2 - k**2 + 3*k**2)*(2 - 2 - 2) + (-k - k - 7*k)*(2*k + 2*k - 2*k).\n-16*k**2\nExpand (3*s - 6*s + s)*(s + s + 2*s) - 4*s**2 - 2*s**2 + 5*s**2 + (s**2 + 1 - 1)*(3 - 1 + 2).\n-5*s**2\nExpand (4 - 1 - 4)*(-1 + 1 - 2*m) + (3*m - m - 3*m)*(0 + 14 + 1).\n-13*m\nExpand -f - 2*f + 4*f + 2*f + 16*f + 10*f + 5*f + 0*f - 4*f + (0 + 2 - 4)*(f + 2*f - 5*f).\n34*f\nExpand (-p - 1 + 1)*(p + 0*p + 0*p) - p**2 + 0 + 0 + (2*p + 1 - 1)*(5*p + 0*p - 3*p).\n2*p**2\nExpand -1 + 1 - 2*h**5 - h**5 + 10*h**5 + 4*h**5 - h**5 +" -"tive of -8/3*v**3 - 2*v + 1/4*v**4 + 7/2*v**2 - 82. What is q(7)?\n-2\nLet d(m) = 61*m**3 - 2*m**2 - m + 2. Let v be d(1). Let o = 40 - v. Let x be 172/(-22) - o/(-110). Let a(l) = l**2 + 10*l + 1. Calculate a(x).\n-15\nLet w = -22363 + 22357. Let u(z) = z**3 + 3*z**2 - 18*z - 1. Give u(w).\n-1\nLet s(i) = -i**2 + 5*i + 17. Let w be s(6). Let t(h) = -10*h + w - h - h**2 - 2*h**3 - 8*h**2 + 3*h**3. Give t(10).\n1\nLet d(n) = 10*n**2 + n - 15. Let f(w) = -3*w**2 + 4. Let z(v) = -2*d(v) - 7*f(v). Suppose -4*j + 3 = g - j, -15 = -5*g - 3*j. What is z(g)?\n5\nSuppose -j = -8*j + 203. Let o be -7*8/(-5 - -1). Let d(r) = 2*r - o - 18 + j. Determine d(7).\n11\nLet i(a) = -2*a**2 - 7*a + 17. Let y(p) = -3*p**2 - 13*p + 2. Let f be y(0). Calculate i(f).\n-5\nSuppose 4*i = 3*a - 16, 2*a + 3*i + 2*i - 3" -"a + 13. List the prime factors of p(l).\n13\nSuppose -4*s - 3 = -2*w + 13, -5*s = -2*w + 19. Suppose -2*d + w = -14. List the prime factors of d.\n2\nSuppose 5*j - 317 = -2*n, 0*j - 2*j - 4*n + 130 = 0. Suppose 8*r - j = 5*r. What are the prime factors of r?\n3, 7\nSuppose 5*x + 4301 = 22*x. List the prime factors of x.\n11, 23\nLet y = -43 - -80. Suppose -5*b + 3 + 26 = -4*n, -5*b = -2*n - y. What are the prime factors of b?\n3\nLet p = 34 - 17. List the prime factors of p.\n17\nLet q = 0 - -4. Suppose -3*c - 2*c + 60 = -5*k, 0 = -q*c - k + 28. List the prime factors of c.\n2\nSuppose 2*c = 2*x + 4, 4*x - 1 + 15 = 2*c. Let p(v) = 2*v - 1. Let u be p(1). Let j = u - c. What are the prime factors of j?\n2\nLet b be (0*(-2)/(-6))/(-1). Let q be -3*(b - -2)/(-2). Let j(p) = 3*p**2 -" -"= 3*d, 0 = -9*r + 11*r + d - 18. Calculate the remainder when 46 is divided by (525/r)/5 - (-32)/(-48).\n2\nCalculate the remainder when 8089 is divided by ((-3)/(-3))/((-29857)/(-4964) + (-1 - 5)).\n65\nLet n(t) = -2*t**3 - 10*t**2 + 24*t - 7. What is the remainder when (-5528)/(-56) - (-4)/14 is divided by n(-7)?\n15\nSuppose 5*w = -4*p + 283, 0*p = 2*w + p - 115. Let s = 80 - w. Calculate the remainder when 89 is divided by s.\n5\nSuppose 0 = 69*i - 75*i - 4752. Let m = i - -1021. What is the remainder when m is divided by 39?\n34\nLet q = -17336 - -17582. What is the remainder when 260 is divided by q?\n14\nLet c be (-16)/(-6)*(16 - 40). Let x = c - -89. Calculate the remainder when 92 is divided by x.\n17\nSuppose -31 + 78 = 3*l + 5*u, -29 = -l - 5*u. Calculate the remainder when -1 + 52 - (l - 15) is divided by -6*(3 + 11/(-2)).\n12\nLet c = 42 - 42. Suppose -4*p + d + 280 = -c*p, -70 =" -" seven quarters of a litre in millilitres?\n1750\nWhat is 3/16 of a week in minutes?\n1890\nWhat is 6164.499 nanometers in meters?\n0.000006164499\nHow many months are there in eight thirds of a year?\n32\nWhat is 7.629706ml in litres?\n0.007629706\nHow many micrometers are there in 322.7011cm?\n3227011\nHow many decades are there in 746.6968 millennia?\n74669.68\nWhat is 26/5 of a century in decades?\n52\nWhat is fifty-seven fifths of a kilometer in meters?\n11400\nHow many nanograms are there in 13/8 of a microgram?\n1625\nHow many years are there in 5/4 of a millennium?\n1250\nWhat is 13/5 of a litre in millilitres?\n2600\nWhat is 28579.46us in seconds?\n0.02857946\nConvert 72145.49 minutes to milliseconds.\n4328729400\nWhat is twenty-five quarters of a century in months?\n7500\nHow many microseconds are there in 10.96331 days?\n947229984000\nConvert 98993.32 minutes to microseconds.\n5939599200000\nWhat is 21/5 of a meter in millimeters?\n4200\nWhat is 26.626806s in minutes?\n0.4437801\nHow many milliseconds are there in 0.8103617 weeks?\n490106756.16\nWhat is seven quarters of a millennium in months?\n21000\nConvert 643.5553m to kilometers.\n0.6435553\nWhat is 0.842422 milligrams in nanograms?\n842422\nWhat is seven quarters of a centimeter in" -" Let l = w + x. What is l rounded to the nearest 1000000?\n4000000\nLet h = 794164 + -794146.999825. Let d = -17 + h. What is d rounded to 5 dps?\n0.00018\nLet h = 126 + -126.162. Let n = h + -98.838. Let m = n - -99.0000073. What is m rounded to 6 decimal places?\n0.000007\nLet u = 796.0383 + -796. What is u rounded to three dps?\n0.038\nLet j = -81.104 + -261730.896. Let b = j - -261802.99954. Let q = -9 - b. Round q to four dps.\n0.0005\nLet q be ((-1485)/(-2) + 2)*2. Suppose 5689 = -v + q. Round v to the nearest one thousand.\n-4000\nLet l = -2883026907098201 + 2883026882708410.49000089. Let h = -24389791 - l. Let s = -0.49 - h. Round s to 7 decimal places.\n0.0000009\nLet t = -1.52 + 1.52000087. What is t rounded to 7 dps?\n0.0000009\nLet a = -11.13 + 11. Let q = -0.06 - a. Round q to 1 dp.\n0.1\nSuppose u + k - 292 = -4*k, -902 = -3*u - 2*k. What is u rounded to the nearest one hundred?\n300" -"\nWhat is 1401033 (base 6) in base 10?\n77997\nWhat is -165096 (base 11) in base 8?\n-763251\nWhat is -1a4934 (base 13) in base 16?\n-a2e77\n110101000110011100 (base 2) to base 4\n311012130\n9a1a4 (base 11) to base 15\n2d0c9\nWhat is -347236 (base 9) in base 12?\n-a0929\n-1065262 (base 7) to base 16\n-20b18\nWhat is 115403 (base 9) in base 12?\n34326\nWhat is -11002010211 (base 3) in base 12?\n-3a571\n-20300030232 (base 4) to base 7\n-25334502\nConvert -8296598 (base 10) to base 11.\n-47573a2\nWhat is 12253100 (base 6) in base 12?\n171190\nConvert 3408418 (base 9) to base 16.\n1c0694\nWhat is 242522 (base 10) in base 6?\n5110442\nWhat is 123240256 (base 7) in base 12?\n2746767\nWhat is 1330350 (base 8) in base 10?\n372968\nConvert 51652 (base 11) to base 5.\n4402234\n155a3 (base 12) to base 6\n351523\nWhat is 10100212201200 (base 3) in base 6?\n102201200\n66581 (base 9) to base 6\n540414\n-80271 (base 12) to base 6\n-3321421\n7528164 (base 11) to base 15\n1269c6d\nConvert -13640257 (base 8) to base 2.\n-1011110100000010101111\nWhat is 1077121 (base 9) in base 4?\n2032032223\nWhat is 20102200022 (base" -"ium?\n480\nWhat is five quarters of a litre in millilitres?\n1250\nWhat is 19978.56 nanograms in grams?\n0.00001997856\nHow many nanometers are there in three eighths of a micrometer?\n375\nHow many millilitres are there in 8/25 of a litre?\n320\nWhat is five sixths of a millennium in months?\n10000\nHow many months are there in thirty-seven halves of a century?\n22200\nHow many millilitres are there in 1/4 of a litre?\n250\nWhat is 1/5 of a hour in minutes?\n12\nHow many millilitres are there in thirteen fifths of a litre?\n2600\nWhat is twenty-one quarters of a litre in millilitres?\n5250\nConvert 395.4329um to kilometers.\n0.0000003954329\nHow many millilitres are there in 85097.04 litres?\n85097040\nHow many minutes are there in 10/9 of a week?\n11200\nWhat is 0.5476038km in micrometers?\n547603800\nWhat is fourty-three halves of a minute in seconds?\n1290\nHow many millennia are there in 0.5544853 decades?\n0.005544853\nHow many millilitres are there in 5.96077 litres?\n5960.77\nHow many centuries are there in 329.8377 millennia?\n3298.377\nWhat is 840.5842t in milligrams?\n840584200000\nWhat is fourty-three halves of a millimeter in micrometers?\n21500\nHow many millimeters are there in 8/25 of a meter?" -"ommon divisor of 31 and b.\n31\nLet h = -278 + -108. Let r = h - -573. Calculate the greatest common factor of r and 17.\n17\nLet v(q) = 94*q + 312. Let n be v(4). Calculate the greatest common factor of n and 43.\n43\nSuppose 0 = 54*h + 372 - 3072. Calculate the highest common factor of h and 2.\n2\nLet u be (-28)/(-6) - 7/(-21). Suppose -3*j = 4*i + 4 - 18, -u*j = -4*i + 30. Suppose -r + i + 18 = 0. What is the highest common factor of 92 and r?\n23\nSuppose a = 5*g - 22, 0 - 9 = -3*g + 2*a. Suppose 2*k = -4*s + 70, g*s - 2*k + 29 = 121. Calculate the greatest common divisor of 9 and s.\n9\nLet v = -1458 + 1461. Calculate the greatest common factor of v and 51.\n3\nLet z(u) = u**2 - 12*u - 42. Let f be z(15). Suppose 0*v - 20 = 5*v, 0 = -3*n - f*v + 60. What is the greatest common divisor of 168 and n?\n24\nSuppose -5 = u, 3*u = 4*p" -"rs picked without replacement from {q: 2, t: 1, p: 4, j: 1, w: 2}. Give prob of sequence jt.\n1/90\nWhat is prob of sequence ekxy when four letters picked without replacement from {x: 1, k: 1, z: 1, b: 1, e: 1, y: 11}?\n11/43680\nTwo letters picked without replacement from dddtddpuundduudh. What is prob of sequence dd?\n7/30\nFour letters picked without replacement from bbabbabbbbabba. What is prob of sequence baab?\n45/1001\nFour letters picked without replacement from {i: 1, k: 1, v: 8, t: 1, y: 9}. What is prob of sequence tkvy?\n1/1615\nCalculate prob of sequence bps when three letters picked without replacement from bbsbdbbkkskddkkkkpb.\n2/969\nCalculate prob of sequence psi when three letters picked without replacement from {i: 3, u: 5, s: 7, p: 4}.\n14/969\nThree letters picked without replacement from vnigyiyyvyvg. What is prob of sequence igi?\n1/330\nThree letters picked without replacement from {y: 7, r: 2}. What is prob of sequence ryr?\n1/36\nWhat is prob of sequence un when two letters picked without replacement from {u: 3, b: 1, n: 1, d: 3, h: 2}?\n1/30\nThree letters picked without replacement from {d: 4, g: 8, e: 1}." -" + r. Does 15 divide v?\nTrue\nSuppose -3*q - 5*b = -58 + 9, -q - 7 = -3*b. Let w be (-4 - (-3 - -2)) + 1 + 9. Is 3 a factor of 4/(q/w)*2?\nFalse\nLet b = -7 - -10. Suppose -5*i + 4*c - 5 = 0, -4*c = -0*i + 4*i - 32. Suppose u = b + i. Does 6 divide u?\nTrue\nIs 16 a factor of (-228)/(-15) + 4/5?\nTrue\nLet v be ((-336)/(-9))/((-6)/18). Let j = v - -175. Does 21 divide j?\nTrue\nLet j(h) = -4*h + 6. Is 11 a factor of j(-4)?\nTrue\nSuppose -4*f + 20 = 0, 5*r + 2*f + f = 60. Let z = 24 - r. Is z a multiple of 5?\nTrue\nLet l(c) = -2*c + 2 + 8*c**2 - 4 + 3 - 2. Suppose 2*t - 2 = t. Does 13 divide l(t)?\nFalse\nIs 4 a factor of (24/16)/(1/6)?\nFalse\nSuppose n + n = 46. Is 12 a factor of n?\nFalse\nSuppose -3*v - 3*p + 93 = 0, -4*p = v - 45 + 8. Does 4 divide v?\nFalse\nLet" -"2112111\nConvert -459 (base 16) to base 14.\n-597\n10110000001 (base 2) to base 14\n729\nConvert 9412 (base 13) to base 10.\n20464\n23012 (base 4) to base 7\n2033\nConvert 18 (base 12) to base 14.\n16\nWhat is 1280b (base 12) in base 4?\n12030023\nConvert 10320 (base 6) to base 13.\n84c\nConvert 545 (base 6) to base 3.\n21202\nWhat is -3715 (base 16) in base 14?\n-51d3\n-20012 (base 7) to base 13\n-2261\nConvert 2653 (base 8) to base 3.\n1222202\nWhat is -1023 (base 8) in base 10?\n-531\nConvert 8c12 (base 16) to base 14.\nd0d4\nWhat is -1074 (base 15) in base 2?\n-110110011100\n2212 (base 5) to base 3\n102101\nConvert -36993 (base 10) to base 13.\n-13ab8\n174 (base 14) to base 2\n100101010\nWhat is 991 (base 14) in base 8?\n3543\nConvert 439 (base 14) to base 13.\n4c3\nConvert -433 (base 13) to base 7.\n-2044\n11000101 (base 2) to base 5\n1242\nConvert 166 (base 7) to base 14.\n6d\nWhat is 1302210 (base 5) in base 6?\n313053\nConvert e9a (base 15) to base 10.\n3295\nWhat is 101110000110 (base 2) in base" -"cond derivative of -61*l + 30*l - 4 - 9 + 2*l**2 + 30*l - 10*l**3 wrt l?\n-60*l + 4\nLet o(z) = -2*z**2 - 8*z - 3. Let f be o(-3). What is the first derivative of -22 - f + 8*x**4 - 21*x**4 wrt x?\n-52*x**3\nFind the first derivative of -28 + 17 + 7*j**2 - 4 - 63 wrt j.\n14*j\nSuppose 2*m - 12 = -0*s - 3*s, -2*s + 6 = 2*m. Differentiate 6*d**2 - 2*d**2 - 6*d**2 - s with respect to d.\n-4*d\nLet m(f) = -f**2 + 5*f - 2. Suppose 4*h = -5*w - 12 + 33, 5*h = 3*w + 17. Let v be m(h). Find the second derivative of -v*c**2 + 2*c + 3*c - 3*c wrt c.\n-4\nWhat is the third derivative of 10*x**3 - 38*x**2 - 26*x**2 - 2*x**3 - 27*x**5 - 41*x**2 + 9 + 86*x**2 wrt x?\n-1620*x**2 + 48\nFind the second derivative of -87*y + 28*y**4 + 176*y + 193*y + 56*y**4 wrt y.\n1008*y**2\nWhat is the second derivative of 61*y**2 - 2*y - 23 - 23*y**4 - 61*y**2 wrt y?\n-276*y**2\nSuppose -67 = -12*k - 19. Find" -"*g + 2*b = -40, 0*g = 3*g - b + 24. Let s(t) = t**3 + 8*t**2 - t - 3. Let k be s(g). Calculate the greatest common divisor of 1 and k.\n1\nSuppose -167*s + 32 = -163*s. Let f(q) = -q**3 + 11*q**2 + q - 9. Let c be f(11). What is the highest common factor of c and s?\n2\nLet j be (-4)/18*8 - (-38)/(-171). Let b be (-16)/(((-1)/(-1))/(1/j)). Calculate the highest common divisor of b and 16.\n8\nLet o(n) = -n**2 + 11*n - 7. Let j be o(11). Let g(r) = 2*r**2 + 3*r - 5. Let p be g(j). Let m = 1701 - 1692. What is the greatest common factor of m and p?\n9\nLet j(w) = w**2 - 5*w + 5. Let c be j(5). Suppose -4*m - 2 = -3*m, b + 6 = -c*m. What is the highest common factor of 1 and b?\n1\nLet j be (7/4)/(2/32). Let y(f) = 31*f - 110. Let h be y(4). What is the greatest common factor of h and j?\n14\nSuppose -4 = -p + 1. Let x be 15/(-27)*-9*7. What is the" -"00\nRound -0.4663 to 3 decimal places.\n-0.466\nWhat is 2076 rounded to the nearest one hundred?\n2100\nWhat is -0.17279 rounded to 2 decimal places?\n-0.17\nWhat is -1131.26 rounded to the nearest 10?\n-1130\nRound 0.000052721 to six decimal places.\n0.000053\nWhat is 0.0000019567 rounded to 6 dps?\n0.000002\nWhat is -0.2583 rounded to 1 decimal place?\n-0.3\nRound 0.041411 to 3 dps.\n0.041\nRound 9209 to the nearest 100.\n9200\nWhat is 0.00000024829 rounded to 7 decimal places?\n0.0000002\nWhat is -0.0031 rounded to 1 decimal place?\n0\nRound -3158 to the nearest one hundred.\n-3200\nRound -0.783 to one dp.\n-0.8\nWhat is -1.388 rounded to zero decimal places?\n-1\nRound 96.25 to the nearest 10.\n100\nRound 108062 to the nearest one thousand.\n108000\nWhat is -11.706 rounded to 1 dp?\n-11.7\nRound -7615 to the nearest 100.\n-7600\nRound -1924000 to the nearest 1000000.\n-2000000\nRound -15.43 to 0 decimal places.\n-15\nWhat is 25.4994 rounded to the nearest integer?\n25\nRound 0.001795 to four dps.\n0.0018\nWhat is -2532.1 rounded to the nearest 1000?\n-3000\nWhat is -395.1 rounded to the nearest 100?\n-400\nRound 47.11 to the nearest 10.\n50\nRound -0.000008033" -"). Let p(t) = -t. What is u(p(r))?\n-23*r**2\nLet s(x) be the second derivative of x**3/3 + 21*x + 3. Let l(b) = 32*b**2. Give s(l(k)).\n64*k**2\nLet s(i) = 124*i**2 - 2. Let o(n) = n - 36. Give o(s(l)).\n124*l**2 - 38\nLet a(f) = 21*f. Let h(d) = 1478*d**2 - 2*d - 2. What is h(a(n))?\n651798*n**2 - 42*n - 2\nLet l(m) be the third derivative of -m**5/60 - 76*m**2. Let o(v) = 12*v - 1. What is l(o(u))?\n-144*u**2 + 24*u - 1\nLet t(u) = -140*u - 119. Let k(v) = 7*v + 6. Suppose -13 - 5 = f. Let l = f + 24. Let s(j) = l*t(j) + 119*k(j). Let a(q) = -q. Calculate a(s(x)).\n7*x\nLet p(f) = -8*f. Let t(j) be the first derivative of -3*j**2/2 - 28. Give t(p(i)).\n24*i\nSuppose 0 = 2*d - 2*s + 4, 4*d - 6 = 5*d - 3*s. Let w(v) = -v**3 + v**2 + 2. Let c be w(d). Let l(z) = -z - 2 + 0*z + c. Let g(u) = -5*u. Give g(l(k)).\n5*k\nLet c(n) = 36*n + 6. Let d(o) = 37*o + 8. Let" -")). What is the tens digit of q(i)?\n1\nLet z(k) = -1 + 0*k**2 + 6*k**2 + 0*k**2. Suppose 5*x - 6 = -p, 3*p - x - 1 = p. What is the units digit of z(p)?\n5\nLet g(r) = -13*r + 12. What is the tens digit of g(-6)?\n9\nWhat is the tens digit of (-1)/4 - 1332/(-16)?\n8\nLet t(o) = -3*o**3 - o - 1. What is the units digit of t(-2)?\n5\nLet x(i) = i**2 - 3*i - 1. Let d be x(4). Suppose 2*t + d*r = 26, -4*r = -10*t + 5*t + 42. What is the tens digit of t?\n1\nLet m = 286 + -150. What is the hundreds digit of m?\n1\nLet l(m) = -30*m + 14. What is the hundreds digit of l(-7)?\n2\nLet v(l) = l**2 + 6*l - 8. Let b(q) = q**2 + 6*q - 7. Let h(p) = 3*b(p) - 2*v(p). Let r be h(-8). Let t = -5 + r. What is the units digit of t?\n6\nLet m = 5 - 1. Let r = m - -5. What is the units digit of r?" -"*f + 4*y = 31, 7*y - 2*y = -2*f + 30. Suppose 3*q + a - 63 = 0, -2*q - f*a = q - 75. Does 10 divide q?\nTrue\nSuppose 0 = 4*x - 9*x - 1380. Is 34/85 + x/(-10) a multiple of 7?\nTrue\nLet r(u) = -7*u**3 + 15*u**2 + 57*u + 6. Is r(-4) a multiple of 2?\nTrue\nSuppose 0 = -12*y - 24*y + 60696. Is 27 a factor of y?\nFalse\nLet s(x) = x**2 - 10*x + 5. Let z(b) = -b**2 + 9*b - 7. Let o(q) = -q**3 - 8*q**2 - 7*q + 6. Let j be o(-7). Let r be z(j). Is s(r) a multiple of 5?\nFalse\nSuppose 2863 = 6*i + 211. Let f = -314 + i. Does 14 divide f?\nFalse\nSuppose 106 = 5*g - 14. Is 1282/16 - 3/g a multiple of 40?\nTrue\nSuppose 9*y - 4410 = -5*y. Does 21 divide y?\nTrue\nSuppose s - 3*y = 1358 - 23, -2*s = 5*y - 2637. Is 35 a factor of s?\nFalse\nSuppose 46 = -3*g + 4*m, 4*m = -5*g + 2*m - 68. Suppose 26" -" the nearest 1000000?\n54000000\nLet k = 51.08 - 1.08. Let f = 50.036 - k. Round f to 2 dps.\n0.04\nLet s = -0.116 + 0.1159706. Round s to 5 dps.\n-0.00003\nLet p = 3463324.00046 + -3463273. Let z = 51 - p. What is z rounded to four dps?\n-0.0005\nLet d be 2/6 + 0 + (-34)/102. Suppose d = 5*n - 9*n - 588000. Round n to the nearest 10000.\n-150000\nLet u = 135555475 + -135555494.0000114. Let l = u + 19. What is l rounded to 6 decimal places?\n-0.000011\nLet d = -12 + 0. Let p = d - -12. Let i = 7 - p. Round i to zero decimal places.\n7\nLet x = 15.306 + -85.996. Let f = x - -71. Let a = -0.3100017 + f. Round a to 6 dps.\n-0.000002\nLet d = 0.365 + -0.37505. What is d rounded to three decimal places?\n-0.01\nLet g = -3.4031348 + 2.93914257. Let f = 0.464 + g. Round f to seven decimal places.\n0.0000078\nLet b = 1.5 + -6.9. Let w = b - -5.657. Round w to two decimal places.\n0.26" -"nteger?\n78\nWhat is the cube root of 1473 to the nearest integer?\n11\nWhat is the square root of 81754 to the nearest integer?\n286\nWhat is the third root of 6482 to the nearest integer?\n19\nWhat is the third root of 1577 to the nearest integer?\n12\nWhat is 3827 to the power of 1/2, to the nearest integer?\n62\nWhat is 22136 to the power of 1/2, to the nearest integer?\n149\nWhat is the square root of 8438 to the nearest integer?\n92\nWhat is the third root of 207 to the nearest integer?\n6\nWhat is 1340 to the power of 1/3, to the nearest integer?\n11\nWhat is the square root of 1493 to the nearest integer?\n39\nWhat is the square root of 810 to the nearest integer?\n28\nWhat is the square root of 370 to the nearest integer?\n19\nWhat is the square root of 1754 to the nearest integer?\n42\nWhat is 151040 to the power of 1/2, to the nearest integer?\n389\nWhat is the fourth root of 1392 to the nearest integer?\n6\nWhat is 5380 to the power of 1/10, to the nearest integer?\n2\nWhat" -" - 4*o - 3. Let k(t) = t**2 - 4*t - 2. Let p(u) = 6*k(u) - 5*l(u). Let x be p(4). Is 2 less than or equal to x?\nTrue\nSuppose -2*r = j + 5, 0 = -3*j - 0*r + r + 20. Suppose 5*s - 5*v + j = s, 4*s - 2 = -2*v. Let n = 26/3 + -9. Is n at most s?\nTrue\nLet v be 2 - 90/22 - -2. Let c = 4/57 + -14/19. Is c at least as big as v?\nFalse\nLet p = -69085/19 - -3635. Do p and -2 have the same value?\nFalse\nLet s be (-14)/10 + 4/10. Suppose -3*p + 16 = 5*v, -2*v - 3 = -1. Let i = p - 10. Which is smaller: s or i?\ni\nSuppose -5*m = -4*m + 5. Let y be (8 + m)/(6/(-4)). Suppose 0 = -0*s + 2*s + 6. Is s at least y?\nFalse\nLet j be (-1)/((-3)/12*2). Suppose -9 = -3*w - 0*n - n, -3*n = -3*w - 3. Let q(o) = o**3 - 3*o**2 + 3*o - 1. Let f be q(w). Which is smaller: f" -"m + 5*i + 20, 9*i + 4 = 8*i for m.\n0\nSolve -4*m - 2574*j + 2571*j = 25, 13 = -4*m + j for m.\n-4\nSolve 18*n - 14*n = 3*l - 35, -23*l + 55 = -4*n for l.\n1\nSolve 5*w + 24 = 4*c, 0 = -2086*c + 2090*c - 2*w - 12 for c.\n1\nSolve 2*a = -1031*j + 1035*j - 42, 3*a + 45 = 4*j for j.\n9\nSolve 5*a - 17701*l = -17703*l - 47, -l + 59 = -5*a for a.\n-11\nSolve 77*z = 82*z + 6*q + 50, -16 = -z + 4*q for z.\n-4\nSolve -55*j + 60*j - r - 27 = 0, 1 = -j - 3*r for j.\n5\nSolve 178*p = -4*u + 183*p - 90, 24 = -2*u + p for u.\n-5\nSolve -146 + 147 = 3*i + 2*r, 3*r = 3*i + 9 for i.\n-1\nSolve -38*t + 18 = -95*t + 54*t + 4*j, -12 = 2*t - 4*j for t.\n-6\nSolve -2*r = 47 - 57, -6*n - 3*r = -n - 5 for n.\n-2\nSolve 0 = -a -" -"ment from {s: 4, x: 6, q: 4, d: 4}. What is prob of picking 1 q and 1 s?\n16/153\nThree letters picked without replacement from ydyyyiid. What is prob of picking 2 i and 1 d?\n1/28\nCalculate prob of picking 1 g and 1 p when two letters picked without replacement from {g: 2, p: 1, e: 1, o: 1}.\n1/5\nCalculate prob of picking 2 a and 1 l when three letters picked without replacement from {a: 9, l: 7}.\n9/20\nWhat is prob of picking 1 m and 1 x when two letters picked without replacement from qhhrrxmhmhqhhqhqqh?\n2/153\nTwo letters picked without replacement from {q: 1, l: 4, b: 5, d: 2, x: 2}. What is prob of picking 2 l?\n6/91\nWhat is prob of picking 2 m when two letters picked without replacement from {v: 3, m: 7}?\n7/15\nWhat is prob of picking 3 x and 1 y when four letters picked without replacement from xyyyyxxxyxyxxxyyyxx?\n90/323\nFour letters picked without replacement from {p: 8, l: 3}. What is prob of picking 2 p and 2 l?\n14/55\nCalculate prob of picking 2 e and 1 b when three letters picked" -" 0 for t.\n6\nSolve -c = -3*c - 2*l + 66, 30*l + 14*l = 11*c - 16*c - 30 for c.\n38\nSolve -5*x + 3*g - 19 = 21, -4*g + 48393 = -5*x + 48348 for x.\n-5\nSolve -29 = 9*k + 6*h + 163, 186*h - 71*h + 56 = 5*k + 123*h + 186 for k.\n-18\nSolve -7*z - 44 = i, i - 801169*z + 801173*z + 29 = 0 for i.\n-9\nSolve -3*u - 4*d = -4*u + 33, -13*d - 130 = -83*u + 78*u for u.\n13\nSolve -2*f - 3*h = 15, 4*f - 6 = -594*h + 599*h - 47 for f.\n-9\nSolve -5*n = 2*x - 9, 2*x = 32*n - 119720 + 119692 for x.\n2\nSolve -46*s - z + 189 = 0, -187*s + 9*z = -186*s + 14*z - 29 for s.\n4\nSolve 2*b + 9*r + 278 = 9*r + 6*r, 0 = -18*r + 864 for b.\n5\nSolve -5*q - 4*j + 1186 - 1166 = 0, 3*q - 57*j + 62*j + 1 = 0 for q.\n8\nSolve v - 50 = 8*f" -". What is the closest to u in 0.2, y, 1?\n0.2\nLet d be -16 + 19 + 13/(-4). Which is the nearest to 0? (a) d (b) 4 (c) 0.1\nc\nLet z = 3.9 - -1.1. Let k = 470 + -1384/3. Let q = k - 8. Which is the closest to 2/5? (a) -5 (b) q (c) z\nb\nLet z = 16/105 - -1/21. Which is the closest to z? (a) 5/4 (b) -3 (c) -0.3\nc\nLet y = 62/177 + -1/59. Let p = 44 - 43. Which is the closest to p? (a) y (b) -0.2 (c) 1/4\na\nLet t = 47 + -140/3. Let r = -147 - -221. Let x = 366/5 - r. Which is the closest to 1? (a) -0.4 (b) t (c) x\nb\nLet g = 13 - 12.9. What is the nearest to 0.3 in -8, 0.4, g?\n0.4\nSuppose 10 = l + l. Which is the nearest to -2? (a) 1/9 (b) -2/11 (c) l\nb\nLet p = -5.3 - -5. Let l = 0.05 + 0.95. Which is the nearest to l? (a) 0.2 (b) p (c) 2\na" -"ers picked without replacement from {t: 3, q: 13}. Give prob of sequence qttt.\n1/560\nThree letters picked without replacement from ryaryryfryyyfyy. Give prob of sequence fyr.\n32/1365\nFour letters picked without replacement from kabnnabkbbkkbkkbakk. What is prob of sequence kkkk?\n35/1938\nWhat is prob of sequence bcla when four letters picked without replacement from {c: 6, a: 1, e: 1, b: 1, l: 1, t: 1}?\n1/1320\nWhat is prob of sequence ur when two letters picked without replacement from trtutrrttuttttt?\n1/35\nThree letters picked without replacement from {q: 1, f: 6, j: 1, p: 5, s: 2, o: 1}. Give prob of sequence ffo.\n1/112\nWhat is prob of sequence ttt when three letters picked without replacement from tiitttiiit?\n1/12\nCalculate prob of sequence gddg when four letters picked without replacement from {b: 2, g: 9, t: 1, d: 4, o: 1}.\n9/595\nTwo letters picked without replacement from {t: 1, m: 3}. What is prob of sequence mt?\n1/4\nWhat is prob of sequence msw when three letters picked without replacement from mmvwwvbassmw?\n3/220\nThree letters picked without replacement from {a: 1, n: 1, x: 1, l: 3, f: 1}. What is prob of sequence nlx?\n1/70" -" -q**3/6 + 7*q - 1. Let a(n) = -i(n) - 3*o(n). Suppose -t - 14 = t. Determine a(t).\n-1\nLet q = 13 + -2. Let b(s) = -14 + 2*s + q*s - 2*s + 13. Let t be (-9)/18 - (-6)/4. What is b(t)?\n10\nLet j(o) be the second derivative of -o**3/6 - 25*o**2/2 - 20*o. Suppose 0 = 17*i + 51 + 289. What is j(i)?\n-5\nLet a(f) = -3*f - 12. Let t be a(-5). Let l(v) = v + 1. Let n be l(0). Let w(q) = 5*q - n + q - 7*q - 2*q**2 + q**3. Give w(t).\n5\nLet m(w) be the third derivative of w**5/60 - 5*w**4/12 + 5*w**3/2 - 7*w**2 - 3*w. Determine m(12).\n39\nLet k be (6 + -9)/(0 - -1) - -5. Suppose -21 = k*v - 5. Let j(a) = -3*a - 13. Give j(v).\n11\nLet u be 5 - (-174)/30 - (-2)/10. Let y(j) = -2 + j + 6 + 4 + u. Give y(-17).\n2\nLet n = 5776 - 5771. Let k(z) = -2*z**2 + 8*z - 19. What is k(n)?\n-29\nLet c(m) = -m - 7." -" l, -124*y + 4*i - 33 = -121*y for y.\n-3\nSuppose o - 6 = -3. Suppose -t + 4 + 2 = 0. Let m = 12366 + -12363. Solve 3*a + 6 = -o*r - 2*r, 4*r = -m*a - t for r.\n0\nSuppose 5*d + 4*k = 1044, -d - 5*k = -143 - 70. Let l = 212 - d. Solve 0 = j + 2, -l*j = -x + 2 + 6 for x.\n0\nLet m = 13 + -55. Let u be (126/15)/(10/(-50)). Let v = u - m. Solve y - z + 5 = v, -3*z + 2 = 3*y - 1 for y.\n-2\nSuppose -5*g + 16 = 4*z, 5*z + 3*g - 6*g - 20 = 0. Suppose -490 = 4*c - 18*c. Let d = -32 + c. Solve 0 = 2*h + d*a + 9, z*a + 0*a = 2*h - 12 for h.\n0\nSuppose r = -s + 5, -s = -3*s - 4*r + 14. Solve 4*l - v = 9*l + 7, s = v for l.\n-2\nLet n = 234 - 230. Suppose -n*q + 13 = 5." -"2 + c + (-9)/4. Which is bigger: b or r?\nb\nLet q = -28.92 + 28. Let p = -0.08 + q. Is p <= 2/11?\nTrue\nLet g be (-56)/20*1*5. Let l = 16 + g. Is l bigger than 3/5?\nTrue\nLet i = 2/485 + -493/1940. Let s = 0.1 + 0. Let a = -0.9 - s. Which is smaller: i or a?\na\nLet j = 103 + -722/7. Let h be (-4)/3*(-3)/2. Suppose -h*c = -3*f + 2 - 12, 3*c + 4*f + 19 = 0. Which is smaller: c or j?\nc\nLet z be ((-16)/(-10))/((-2)/(-5)). Let o = -13/3 + z. Suppose -f + 0 = -x + 1, 0 = -3*x - 5*f - 5. Do o and x have different values?\nTrue\nLet u = 0.5 - 0.5. Which is greater: u or -15?\nu\nLet n be ((-3)/(-9) - 0)*9. Suppose -5*f - 3*y + 1 = -0*y, -n*f = 2*y. Which is bigger: 4/5 or f?\nf\nSuppose 2*z + 0*p = -2*p + 10, -2*p = -2*z + 30. Let k be (-158)/(-14) + (-4)/14. Which is greater: z or k?\nk\nSuppose -12" -" + 89.42. Let w be 74/(-4) - (-2)/4. Let j be 76/w - (-2)/9. What is the nearest to y in -4/5, j, -3?\n-4/5\nLet n = -11 + 10.85. Let k = n - -0.06. Let i = k + -0.01. Which is the closest to 1? (a) i (b) -0.4 (c) -2\na\nLet w = 0.07 + -2.07. Which is the nearest to 2/7? (a) w (b) 0.2 (c) 49 (d) 4\nb\nLet x = -166.2 + 162.2. Which is the closest to -0.7? (a) x (b) -1 (c) 0.1\nb\nLet m = -0.424 + -0.576. What is the nearest to -1 in -4, m, -5, -2/17?\nm\nLet v = -181 - -1451/8. Let t = 0.4 - 6.4. Let l = -5 - t. What is the closest to l in 2/3, 1, v?\n1\nLet z = 0.0445 + -0.1445. Let k = 16 + -49/3. Let v be (-8)/12 - (-1)/6. Which is the closest to z? (a) v (b) 5 (c) k\nc\nLet v = -291.5 + 292. Which is the nearest to v? (a) -3/7 (b) -3 (c) -1/4\nc\nLet m = 33 + 0. Let" -"+ 17*t(d). Let n be h(3). Let g = 0 - n. What are the prime factors of g?\n19\nLet t(n) = -n - 1. Let c(j) = -22*j - 9. Let h(f) = 2*c(f) - 14*t(f). List the prime factors of h(-2).\n2, 7\nLet t = -4 + 9. Let b = t - 1. Suppose -b*h + 41 = -3*h. What are the prime factors of h?\n41\nLet n be -4 - -1 - (42/6 - 1). List the prime factors of (-15)/9*n*1.\n3, 5\nList the prime factors of 11/(-2)*13*-20.\n2, 5, 11, 13\nLet m = 1722 + -816. What are the prime factors of m?\n2, 3, 151\nLet m(x) = -x**3 - 9*x**2 + x + 100. List the prime factors of m(-13).\n7, 109\nSuppose -28*u = -31*u + 129. Let q = 2 - -1. Suppose -2*w - u - 43 = -4*i, q*w + 9 = i. What are the prime factors of i?\n2, 3\nSuppose 0 = -2*r + 4*r + 2. Suppose -5*h - 5*b + 45 = 0, 5*h - 5*b - 53 = -2*b. Let t = h + r. What are the" -"2*q + 24*q).\n25*q**2\nExpand (1 - 2*r - 1)*(9 + 5 + 30)*(5 + 4*r - 5).\n-352*r**2\nExpand (2*u + 0*u + u)*(-u - 3*u + 2*u) - 2*u**2 + u**2 + 2*u**2 + 2 + 5*u**2 - 3*u**2 - 6.\n-3*u**2 - 4\nExpand (13 - 77*s**2 + s**3 + 77*s**2)*(-4*s**2 - 4*s**2 + 4*s**2 + 1).\n-4*s**5 + s**3 - 52*s**2 + 13\nExpand (-1 + 1 - 2*l)*(-2*l**3 + 4*l**3 - l**3) + (1 + 2*l**2 - 1)*(3*l + l**2 - 3*l) - 151*l**4 + 1985*l**2 - 1985*l**2.\n-151*l**4\nExpand (-4*x + 4 - 4 - 2*x + 0*x + 0*x + (3 + 1 - 2)*(-1 + 1 + 2*x) + 1 - 1 - x)*(-19 - 7 - 11).\n111*x\nExpand 2*l - 8*l - 2*l - 2*l + (4*l - 2*l - l)*(-3 + 4 + 1) + 3*l + 0*l - l - 8*l - 11*l + 7*l.\n-18*l\nExpand (1 + 2*z - 1 + (-2*z - z + 5*z)*(0 - 2 + 3) + 0*z + 3*z - z + 2*z + z - z - 15*z + 8*z - 12*z)*(-2*z + 3 - 3)*(-z + z - 2*z)." -"s greater: 1/12 or r?\nr\nLet a(z) = -z + 24. Let d be a(0). Let p be 102/d - (-2)/(-8). Which is greater: p or -0.2?\np\nLet i = -185/2 + 4259/46. Is i bigger than 0?\nTrue\nLet m = -409/12 - -34. Suppose x = -0*x. Which is bigger: x or m?\nx\nSuppose g + 0*g = -19. Let c = -8 - g. Do 10 and c have different values?\nTrue\nLet p(o) = -8*o. Let x be p(1). Is x at most as big as -8?\nTrue\nLet j be (-4 - -3) + -1 + 4. Suppose 2*v + 1 + 2 = 3*d, -j*v = d + 7. Suppose -3*p + 5*l = -7, 5*p - 1 + 4 = l. Which is smaller: p or v?\nv\nLet a be ((-9)/12)/3 - 87/4. Are -23 and a nonequal?\nTrue\nLet a = 200/309 + 2/103. Are a and 1 non-equal?\nTrue\nLet j = 171 - 1199/7. Which is smaller: j or 0?\nj\nLet t be -1*(-2)/6*1. Is t not equal to 19?\nTrue\nLet u = 4 + -4. Let k be u - (-2)/((-4)/(-2)). Which is" -"5*q + 12, 0 = -2*q + 4*q - 2*k. Put 5, -1, q in increasing order.\nq, -1, 5\nLet d = -0.03 - 0.07. Let l = -0.18 - 0.12. Let w(a) = a**3 - 2*a**2 - 4*a + 3. Let r be w(2). Put l, d, r in ascending order.\nr, l, d\nLet v(u) = -u**2 - 4*u - 2. Let i be v(-3). Let j = 13 + -9. Let a = 9 - j. Put a, -2/5, i in decreasing order.\na, i, -2/5\nLet p be (-2)/(-4) - 14/(-4). Suppose -4 = 3*t - 4*i, 4*t = -0*i + 4*i - p. Let b = 146 + -151. Sort -2, t, b in ascending order.\nb, -2, t\nLet h = 0.33 + -1.33. Sort 2, 5, h.\nh, 2, 5\nLet p = -70/3 - -24. Let o = -1.824 + -0.176. Sort 4, p, o in descending order.\n4, p, o\nLet d(o) = o**2 - 7*o - 3. Let a be d(8). Let i(p) = 0*p + p**2 - 4 - 2*p - 1. Let l be i(4). Put a, l, -3 in decreasing order.\na, l, -3\nLet i" -"8 a factor of w(13)?\nTrue\nLet h = 4325 - 2998. Is 23 a factor of h?\nFalse\nLet f = 29659 - -4452. Does 20 divide f?\nFalse\nLet p be 3/2*7320/45. Let k = 412 - p. Is k a multiple of 14?\nTrue\nSuppose 4*s = 3*s - 2, -214 = -4*w - 5*s. Does 35 divide (-6)/(-21) + 22888/w?\nFalse\nIs (-9)/(12 + 6) + 18519/2 a multiple of 47?\nTrue\nSuppose -4*s - 2508 = 2*v, -s = -30*v + 33*v + 617. Let u = 756 - s. Does 61 divide u?\nFalse\nLet a(z) be the first derivative of -z**4/4 - 25*z**3/3 + 47*z**2/2 - 105*z + 309. Does 21 divide a(-27)?\nTrue\nLet m be -5 + (-231)/(-49) - (-46)/14. Suppose m = -p, -8*j - 3*p = -7*j - 7. Does 14 divide j?\nFalse\nSuppose q - 2*m = 11, 12 = 4*q - 4*m - 12. Is 15 a factor of q + 5/(-7) + 71251/301?\nFalse\nLet f = 540 - -3555. Does 57 divide f?\nFalse\nLet u = 29 - 73. Let v = u + 43. Is 14 + 144 + 0 + v" -"- 11*v**2 - 6630*v - 36*v**2 - v**2 + 6633*v in the form m*v + a + x*v**3 + c*v**2 and give m.\n3\nRearrange (-4*m**2 - 2*m**2 + m**2)*(-9 + 9 + 13*m) + (-1 + 5 - 3)*(-3 + 3 - 1)*(4 - 2*m**3 - 4) to the form x*m + n*m**2 + z*m**3 + u and give z.\n-63\nRearrange -j**2 - 10*j + j + 2*j + 5*j + 2 - 1 to the form x*j + k + i*j**2 and give x.\n-2\nRearrange 15 + q**2 + q**4 - 17*q**3 - 14 - 3*q**4 + 1 + 2*q to z*q**3 + i + w*q + l*q**2 + t*q**4 and give i.\n2\nRearrange -51*i - 41*i - 20*i + 26*i to the form q + a*i and give a.\n-86\nExpress -151*f - 152*f + 22*f - 68*f + 79*f as k + v*f and give v.\n-270\nRearrange (3 - 1 - 3)*(-1147*d + 144 - 80 - 64) to the form j*d + o and give j.\n1147\nRearrange 23*x**2 + 2*x**2 - 8*x**2 to s*x**2 + k*x + h and give s.\n17\nExpress -102*y - 32*y + 41*y - 57*y" -"th respect to n.\n-44*n\nSuppose -3 - 3 = -3*z. What is the second derivative of 2*k**5 - 3*k - z*k - k wrt k?\n40*k**3\nSuppose n = 3*n - 3*f - 19, f + 33 = 4*n. Suppose -3*o + n*o - 10 = 0. Find the first derivative of 0*g**o + g**2 + 0*g**2 + 2 wrt g.\n2*g\nLet c(t) = 22*t**4 - 2*t**2 + 23. Let p(g) = 66*g**4 - g**3 - 6*g**2 + 69. Let y(i) = -7*c(i) + 2*p(i). What is the third derivative of y(k) wrt k?\n-528*k - 12\nLet l(m) be the first derivative of -m**4/4 - m**3/2 + m + 3. Let s(f) be the first derivative of l(f). Find the second derivative of s(v) wrt v.\n-6\nLet x(c) = -c + 9. Let m be x(7). Differentiate 4*b**2 - 2 - 6*b**2 + 4*b**m - 4*b**2 wrt b.\n-4*b\nLet a(x) be the first derivative of 3/2*x**2 + 0*x**3 - 1/2*x**6 - 3 + 0*x**4 + 0*x + 0*x**5. What is the second derivative of a(u) wrt u?\n-60*u**3\nLet j be ((-12)/(-21))/(2/7). What is the second derivative of 0*b - j*b**3 + 3*b - b**3" -"factors of 1104053?\n523, 2111\nList the prime factors of 3681910.\n2, 5, 53, 6947\nList the prime factors of 4398275.\n5, 7, 41, 613\nList the prime factors of 8325062.\n2, 163, 25537\nList the prime factors of 599502.\n2, 3, 41, 2437\nWhat are the prime factors of 1392490?\n2, 5, 11, 12659\nWhat are the prime factors of 2114849?\n11, 192259\nList the prime factors of 569488.\n2, 35593\nList the prime factors of 20232982.\n2, 7, 11, 137\nList the prime factors of 710730.\n2, 3, 5, 53, 149\nWhat are the prime factors of 8969271?\n3, 2989757\nWhat are the prime factors of 13837?\n101, 137\nList the prime factors of 3324212.\n2, 29, 28657\nWhat are the prime factors of 4266393?\n3, 19, 29, 89\nWhat are the prime factors of 812964?\n2, 3, 37, 1831\nWhat are the prime factors of 271839?\n3, 31, 37, 79\nList the prime factors of 678596.\n2, 169649\nWhat are the prime factors of 4255132?\n2, 7, 151969\nList the prime factors of 1005810.\n2, 3, 5, 13, 2579\nList the prime factors of 791779.\n353, 2243\nWhat are the prime factors of 107103?\n3, 19, 1879" -").\n13\nLet d(u) = -4*u**2 - 22*u - 9. Let q(g) = -g**2 - 5*g - 2. Let l(t) = 2*d(t) - 9*q(t). Calculate l(-2).\n2\nLet i(h) be the second derivative of h**5/20 + 5*h**4/12 - h**3/2 - 3*h**2/2 - 10*h. Give i(-6).\n-21\nSuppose 120*u - 3 = 123*u. Let w(x) = 9*x**3 - x**2 + 1. Determine w(u).\n-9\nSuppose -5 - 1 = -2*s - 4*a, -5*s = a - 6. Let x(n) = 91 + 8*n - 48 - 44. Calculate x(s).\n7\nLet k be 0/1*11/22. Suppose -3*v + k*v - 12 = 0. Let p be (-112)/18 - v/18. Let m(u) = u**2 + 8*u + 4. Determine m(p).\n-8\nSuppose -5*w + 18 = -2*v - 13, 0 = 2*v + 6. Let l(a) be the third derivative of a**6/120 - a**5/10 + a**4/4 + 2*a**3/3 - 10*a**2. Calculate l(w).\n9\nLet u(o) = 10*o + 5. Let m(s) be the second derivative of s**4/12 - s**3/6 + 3*s. Let v(c) = m(c) + u(c). Calculate v(-6).\n-13\nSuppose -25 + 5 = 4*c. Let n(d) = -d**3 - 5*d**2 - d + 6. Determine n(c).\n11\nLet m be (-4" -"Which is the nearest to -1/4? (a) g (b) -11 (c) -2/11\nc\nLet d = 1 + -1. Which is the nearest to 1? (a) -0.1 (b) -3 (c) d\nc\nLet c = -3 - -2.6. Let z = 0.5 + c. Let x = -12 - -11.8. What is the nearest to z in -3/7, x, -0.5?\nx\nSuppose h - 2*x = -5, -1 - 4 = -3*h - 4*x. Let w be (-1 - h)*(-6)/(-12). Which is the closest to 0? (a) 5 (b) 0.4 (c) w\nc\nLet f(o) = -o**2 - 13*o - 27. Let k be f(-11). Suppose -3*w = -4*l + 3 - 15, -3*w + 3 = -l. What is the nearest to 0 in k, l, 0.5?\n0.5\nLet o = -0.23 - -0.33. Let m = 1 - 0. Let n = 2 + -2.1. Which is the nearest to o? (a) -4/7 (b) m (c) n\nc\nLet i = -3/19 - 13/38. Which is the nearest to 0.1? (a) 0.3 (b) 3 (c) i\na\nLet g be ((-2)/(-4) + 0)*0. What is the closest to g in -0.5, 3, 1?\n-0.5\nLet o = 22" -"2ec1 (base 15) in base 4?\n123131201233\n1111021222 (base 4) to base 10\n348778\nConvert -204388 (base 10) to base 9.\n-341327\n2c87d (base 16) to base 11\n115046\nConvert 1634641 (base 9) to base 4.\n3131320321\nWhat is 102233302323 (base 4) in base 14?\n91cd3d\n256738 (base 9) to base 12\n7625b\nWhat is 100110011001011010 (base 2) in base 16?\n2665a\ncd246 (base 15) to base 10\n651891\na5182 (base 11) to base 3\n21210020220\nConvert -66771 (base 8) to base 2.\n-110110111111001\nWhat is -1653221 (base 9) in base 6?\n-31423244\nWhat is 14536 (base 9) in base 12?\n58a3\n-11708222 (base 9) to base 8\n-25676607\n-5caab1 (base 15) to base 10\n-4440541\nConvert 20522531 (base 6) to base 9.\n1116671\nConvert 544312 (base 7) to base 4.\n113032333\nConvert 101303 (base 11) to base 15.\n3334d\nConvert 27a07 (base 12) to base 15.\n1147a\nWhat is -9eca9 (base 16) in base 6?\n-21535053\nWhat is -3321231231 (base 4) in base 15?\n-1530d9\nWhat is 10022002011012 (base 3) in base 14?\n338d9c\nWhat is -f244 (base 16) in base 2?\n-1111001001000100\n-10101100010111111101 (base 2) to base 16\n-ac5fd\n332020121 (base 4) to base 9\n427075\n4ccb0 (base" -"th of a litre?\n200\nWhat is 0.4181608 litres in millilitres?\n418.1608\nConvert 86.496192us to hours.\n0.00000002402672\nWhat is 0.2008914l in millilitres?\n200.8914\nWhat is 12925.26 litres in millilitres?\n12925260\nWhat is 3/8 of a litre in millilitres?\n375\nHow many milliseconds are there in 2/125 of a minute?\n960\nWhat is nineteen quarters of a microgram in nanograms?\n4750\nHow many years are there in 54/5 of a century?\n1080\nWhat is 278899.7 grams in tonnes?\n0.2788997\nHow many millilitres are there in 8/25 of a litre?\n320\nHow many micrometers are there in 3/50 of a meter?\n60000\nHow many minutes are there in 21/8 of a day?\n3780\nWhat is 97.5721l in millilitres?\n97572.1\nWhat is four thirds of a week in hours?\n224\nHow many millilitres are there in 6/25 of a litre?\n240\nConvert 8.15389 milligrams to nanograms.\n8153890\nWhat is 9/16 of a centimeter in micrometers?\n5625\nWhat is one quarter of a milligram in micrograms?\n250\nWhat is 1/20 of a litre in millilitres?\n50\nConvert 372.051 kilograms to tonnes.\n0.372051\nWhat is five sixths of a decade in months?\n100\nWhat is 3/50 of a tonne in kilograms?\n60\nWhat is one" -"7\n-7 - (30 - 22) - (-3 + 0 + -3)\n-9\nWhat is -62 + (-23 - (32 - (-21 + 73)))?\n-65\nWhat is the value of -15 + (-81 - (31 + -1 - (334 + -319)))?\n-111\nWhat is (-713 - -648) + 46 + -4?\n-23\nCalculate (2 - 43) + (-429 - -514).\n44\nWhat is the value of 11 - (80 + (-6 + -5 + 15 - -2))?\n-75\n(19 - ((19 - 54) + 54)) + (-1 - -119)\n118\n(15 - (-1 + -1)) + (143 - (-97 + 298))\n-41\nCalculate 9 - (73 - (83 - -76)).\n95\nWhat is -7 + (3 - (6 + -44)) + -4?\n30\nWhat is (-1 - ((-1 - 3) + 9)) + 2 - (431 + -404)?\n-31\nEvaluate 1837 + -1779 - (0 - -85).\n-27\nCalculate -2 + (5 + -1 - 3 - 3) - (-9425 - -9361).\n60\nCalculate 3 + 15 + (10 - (5 - 14) - 9).\n28\nWhat is 38 + 2 + (-37 - -34 - -6) + 4?\n47\nWhat is -4025 + 4023 + (0 - -2 -" -"grams are there in 1/10 of a gram?\n100000\nWhat is 1/4 of a gram in milligrams?\n250\nHow many millilitres are there in 18/5 of a litre?\n3600\nHow many seconds are there in 3/10 of a day?\n25920\nHow many grams are there in 27/5 of a kilogram?\n5400\nConvert 747141.6 litres to millilitres.\n747141600\nWhat is 1965392.1 months in years?\n163782.675\nHow many milligrams are there in 440.2645 kilograms?\n440264500\nConvert 2.9162 days to seconds.\n251959.68\nWhat is 7/25 of a centimeter in micrometers?\n2800\nHow many millilitres are there in 683.8172 litres?\n683817.2\nHow many millilitres are there in 3/40 of a litre?\n75\nHow many microseconds are there in 322426.2ns?\n322.4262\nWhat is 8983.3 hours in milliseconds?\n32339880000\nWhat is 2307.524 decades in months?\n276902.88\nWhat is fourty-two fifths of a litre in millilitres?\n8400\nWhat is 33/5 of a microsecond in nanoseconds?\n6600\nHow many millilitres are there in sixty-one quarters of a litre?\n15250\nHow many years are there in one twentieth of a century?\n5\nWhat is 0.5582227km in meters?\n558.2227\nWhat is 230.6732 millimeters in meters?\n0.2306732\nWhat is 16155.89 millennia in years?\n16155890\nHow many micrometers are there in 1.213917km?" -"-6*x - 4 = 2 for x.\n-1\nSolve 0 = -11*n + 76 - 21 for n.\n5\nSolve -172 = 7*y - 158 for y.\n-2\nSolve 52*n = 3*n + 196 for n.\n4\nSolve 3 = 13*l - 10 for l.\n1\nSolve -31*j - 16*j = -141 for j.\n3\nSolve 12*q + 36 - 84 = 0 for q.\n4\nSolve -3*k - 5 + 14 = 0 for k.\n3\nSolve -3*k - 197 = -185 for k.\n-4\nSolve -16*i + 6*i = -10 for i.\n1\nSolve 5*n + 0 + 5 = 0 for n.\n-1\nSolve -341*i - 32 = -337*i for i.\n-8\nSolve -29*p + 1 = -30*p for p.\n-1\nSolve 85*z - 27 = 76*z for z.\n3\nSolve -8*v = 10 - 18 for v.\n1\nSolve 732*x = 728*x + 4 for x.\n1\nSolve d = -72*d - 146 for d.\n-2\nSolve 26*q - 24*q + 12 = 0 for q.\n-6\nSolve 6*b - 52 = -22 for b.\n5\nSolve -30 = 3*u - 9*u for u.\n5\nSolve 146*s + 78 = 133*s for s.\n-6\nSolve -25*x" -"- z - 32 + 9 + 24.\n-42850*z**2 - z + 1\nCollect the terms in -6778*f + 16763209 - 16763209.\n-6778*f\nCollect the terms in 109*x**2 + 71*x**2 + 72*x**2 - 38*x**2.\n214*x**2\nCollect the terms in 3350533*t**2 + 6 - 6 - 439850*t**2.\n2910683*t**2\nCollect the terms in 14476 + 14572 + 28*t**2 - 29048.\n28*t**2\nCollect the terms in 1464947*o - 5 + 4 - 582*o**2 - 1464947*o.\n-582*o**2 - 1\nCollect the terms in -1048*h - 776*h + 234*h + 3 - 3.\n-1590*h\nCollect the terms in -31835 + 73*y**3 + 15992 + 34*y**3 + 15843.\n107*y**3\nCollect the terms in -21045*h**3 + 951*h**2 + 4744*h**3 - 951*h**2.\n-16301*h**3\nCollect the terms in 1 - 3199*g**2 - 24 + 30 + 1 - 8.\n-3199*g**2\nCollect the terms in 29*m**2 + 149 + m**3 - 21*m**2 + m**3 - 25*m**2 - 149.\n2*m**3 - 17*m**2\nCollect the terms in -35538*h + 17968*h + 18729*h.\n1159*h\nCollect the terms in 17 + 9*a**3 - 93 + 39 + 12 + 21 + 4.\n9*a**3\nCollect the terms in 3592 - 38*f + 2276 - 1864 + 41*f.\n3*f + 4004\nCollect the terms in 334*k" -"1/9? (a) 4 (b) -1/16 (c) -0.2 (d) 2/7\nb\nWhat is the closest to -1 in -2.7, 33/5, -7?\n-2.7\nWhich is the closest to -1/329? (a) -6 (b) -3 (c) -2\nc\nWhich is the closest to -1? (a) 0.1 (b) 2 (c) -10 (d) -0.36\nd\nWhich is the closest to -0.2? (a) 0.18 (b) -0.1 (c) 245\nb\nWhich is the closest to 1/777? (a) 0.1 (b) 7 (c) -114\na\nWhat is the closest to -3.5 in 4, 0.005, -1/3, 3?\n-1/3\nWhich is the closest to 1? (a) 5.279 (b) 0.2 (c) -38\nb\nWhich is the closest to 0.3? (a) -16/13 (b) -2 (c) -3/7 (d) 0.17 (e) 2/9\ne\nWhat is the nearest to -1 in 0.4, 6, -1, -4/5, 2/217?\n-1\nWhat is the closest to 0.5 in -83/6, 1/5, -16?\n1/5\nWhich is the nearest to -1? (a) 7/5 (b) -1/9 (c) -3/14 (d) 10 (e) 1/6\nc\nWhat is the nearest to -2445 in 7, 0.2, -13, -2/7?\n-13\nWhich is the closest to 243? (a) 1 (b) -2 (c) -1/3 (d) -0.02\na\nWhich is the nearest to -7? (a) -1/2 (b) -133 (c) -3 (d) -2/9\nc" -"o letters picked without replacement from xxqqqexxxxqsxqqqsxxq. Give prob of picking 2 x.\n18/95\nCalculate prob of picking 4 s when four letters picked without replacement from sssss.\n1\nTwo letters picked without replacement from {c: 5}. What is prob of picking 2 c?\n1\nThree letters picked without replacement from {m: 3, e: 2, t: 1, c: 5, o: 1, p: 1}. What is prob of picking 1 c, 1 p, and 1 e?\n5/143\nThree letters picked without replacement from wwzyzzyswzzwywzzw. Give prob of picking 1 z, 1 s, and 1 y.\n21/680\nFour letters picked without replacement from tlllyllllltllb. Give prob of picking 3 l and 1 y.\n120/1001\nWhat is prob of picking 3 g when three letters picked without replacement from {r: 8, k: 2, g: 4}?\n1/91\nCalculate prob of picking 2 b when two letters picked without replacement from bbzzbzsb.\n3/14\nTwo letters picked without replacement from {e: 1, i: 14}. What is prob of picking 2 i?\n13/15\nTwo letters picked without replacement from {z: 3, g: 2}. What is prob of picking 2 z?\n3/10\nThree letters picked without replacement from {j: 3, c: 2, s: 1, h: 2, m: 6," -"Calculate d(u).\n9\nSuppose -7*l + 80 = -5*l. Suppose -2*x - l = 2*x. Let i(g) = g + 10. Let m be i(x). Let u(k) = -k - 5. Give u(m).\n-5\nLet v(g) = -3*g + 2. Suppose -7 = -4*l + 5. Give v(l).\n-7\nLet m(g) = 2*g**2 + g. Let b = 1 - 2. Let z be m(b). Let l = z - -1. Let y(j) = -j**3 + 2*j**2 - j. Calculate y(l).\n-2\nLet o(d) = d - 5 + 35*d**2 - 5*d - 34*d**2. Determine o(4).\n-5\nLet f(h) = -h**2 + 10*h + 5. Let z be f(10). Suppose -z*l - a = 11, 2*a = 5 + 3. Let c(q) = -5*q - 2*q - 2 + 6*q. Calculate c(l).\n1\nLet n(g) = g**2 + 6*g - 2. Let x be n(-6). Let d(v) = -2*v - 2. Give d(x).\n2\nLet p(d) = d - 1. Let h(j) = j + 3. Let u(b) = -h(b) + 2*p(b). Let n = 13 + -4. Let k = 13 - n. Give u(k).\n-1\nLet k(x) = x**2 + x - 1. Let b(h) = 0*h**2 +" -"**2/2 + 6*r. What is q*f(u) - 4*l(u)?\nu + 2\nLet c(l) = -1. Let r(i) = 2. Let u(p) = c(p) + r(p). Let z(w) be the first derivative of -w**3/3 + w**2/2 - 5*w + 14. Calculate 5*u(d) + z(d).\n-d**2 + d\nLet x(d) = -11*d + 15. Suppose 4 = 2*s + j - 2, -2*s = -2*j - 12. Let h(q) = 5*q - 7. What is s*x(i) + 9*h(i)?\ni - 3\nLet p(o) be the third derivative of -o**6/120 + o**5/60 - o**3/6 - 42*o**2. Let g(m) = 7*m**3 - 6*m**2 + m + 5. Calculate g(a) + 6*p(a).\na**3 + a - 1\nSuppose 0 = k - 3*k + 50. Suppose -2*s - k = 3*s, -4*s = m + 17. Let d(v) = 7*v + m - v + 1 - 1. Let i(l) = 7*l + 4. Give 6*d(b) - 5*i(b).\nb - 2\nLet p(o) = 18*o + 5. Suppose 0 = b - 5*i - 92, 3*b - 204 = -31*i + 28*i. Let w(h) = -261*h - 72. Determine b*p(u) + 5*w(u).\n-9*u\nSuppose -10*k = -3*u - 11*k + 17, -5*u + 4*k =" -"order.\n-0.5, 5, 799\nSort 2, 2/7, -0.0299 in descending order.\n2, 2/7, -0.0299\nPut 286, -2, 1 in descending order.\n286, 1, -2\nSort -4, 12, -3 in descending order.\n12, -3, -4\nPut 2, -14, 31 in ascending order.\n-14, 2, 31\nSort 33, -4, -3, 1 in descending order.\n33, 1, -3, -4\nSort 4.2, 32, 1/2, 4 in descending order.\n32, 4.2, 4, 1/2\nPut 4, 12, 1, -7 in decreasing order.\n12, 4, 1, -7\nSort -1, 4, 183, -9.\n-9, -1, 4, 183\nPut -3, 0.3, -291 in descending order.\n0.3, -3, -291\nPut -2, 23, -3, -1/5 in descending order.\n23, -1/5, -2, -3\nPut 0.0424, -2/3, 2/11, 0.1 in increasing order.\n-2/3, 0.0424, 0.1, 2/11\nSort 1, -5, 0.1, -3.3 in descending order.\n1, 0.1, -3.3, -5\nSort 1, -2/9, -25/121, 2 in descending order.\n2, 1, -25/121, -2/9\nPut -4, -2, -86, -3 in descending order.\n-2, -3, -4, -86\nSort -4, -12, -65.\n-65, -12, -4\nPut 3, -1, 2, 5 in decreasing order.\n5, 3, 2, -1\nSort -138, 1, -10 in decreasing order.\n1, -10, -138\nPut 3, -7, 7 in increasing order.\n-7, 3, 7\nSort -17," -"inator of 11/20 and z?\n20\nLet j(t) = 12*t - 291. What is the lowest common multiple of 24 and j(44)?\n1896\nSuppose 0 = 4*u - 9*u + 35. Let j be ((-5004)/(-16))/(u/4). Let c = j + -359/2. What is the common denominator of 83/12 and c?\n84\nLet x = -1/1677 - -63169/3354. Let j = 5156 - 51621/10. Find the common denominator of j and x.\n30\nLet f(s) = -776843552*s**3 + s**2 - 2*s + 1. Let p be f(1). Let j = p - -2502989901895/3222. Let h = 124/179 - j. What is the common denominator of -7/16 and h?\n144\nSuppose 17*x - 39 = 14*x. Suppose x*i - 16*i + 12 = 0. Calculate the least common multiple of 10 and i.\n20\nSuppose 0 = -3*r - 4*c + 6, 2*r - 45 + 18 = 5*c. Calculate the least common multiple of r and 6.\n6\nLet r be (3 - 1) + 0 + 3. Suppose 3*y - r*y + 4 = 0. Suppose 36 = y*m + 5*u, 3*m + m - 28 = u. What is the least common multiple of 10 and m?\n40\nSuppose" -" -1, 0.5 in ascending order.\n-1, 0.5, 174\nPut 0, 2, 5, 1 in descending order.\n5, 2, 1, 0\nPut -2, 4, -80, 1/8 in descending order.\n4, 1/8, -2, -80\nSort -5, -27, -1 in increasing order.\n-27, -5, -1\nPut -11, 1, 3, 4, -1 in decreasing order.\n4, 3, 1, -1, -11\nPut -34, -3, 43, -4/7 in descending order.\n43, -4/7, -3, -34\nPut 0, -32006, 2 in decreasing order.\n2, 0, -32006\nSort -1/4, -0.1, -2, -2/9 in decreasing order.\n-0.1, -2/9, -1/4, -2\nPut -0.055, -0.4, 2, 17 in decreasing order.\n17, 2, -0.055, -0.4\nPut -3, 21, -4, 86, 2 in ascending order.\n-4, -3, 2, 21, 86\nPut 8, -23, -1 in ascending order.\n-23, -1, 8\nPut -15, 1, 19 in increasing order.\n-15, 1, 19\nPut -4/3, -373, 1, 0.3 in decreasing order.\n1, 0.3, -4/3, -373\nSort 3, 5, 15, 0, 4 in descending order.\n15, 5, 4, 3, 0\nSort 0, 6, -38, 1, -4 in descending order.\n6, 1, 0, -4, -38\nPut 17, 1, -2/11, -4/5 in ascending order.\n-4/5, -2/11, 1, 17\nSort -2/3, 7, 0.019, -2 in decreasing order.\n7, 0.019, -2/3, -2" -"Round u to six decimal places.\n-0.000009\nLet f = -31 - -31.07. Let g = f + 0.01. Let p = g + -2.01. What is p rounded to one dp?\n-1.9\nSuppose -9*x = 2*x + 33. Let z be (-660)/1*2/x. Round z to the nearest 100.\n400\nSuppose 7*b + 2000 = -3*b. Let y = -367 + b. Round y to the nearest 100.\n-600\nSuppose 5 = -5*m - 3*q, -4*m + 6 + 22 = -4*q. Suppose 3*g - 16335 - 76080 = -m*v, -4*g - 138580 = -3*v. What is v rounded to the nearest 1000?\n46000\nLet s = -18.3 - -18.0403. What is s rounded to two decimal places?\n-0.26\nLet m = 17.33 + -0.33. Let t = 183.369 - 200.3777. Let y = m + t. What is y rounded to 3 decimal places?\n-0.009\nLet h = 4.057 - 4.1. Let i = h - -0.04368. Round i to four decimal places.\n0.0007\nLet s be -225*(-80)/(-3)*(0 - -165). Round s to the nearest 100000.\n-1000000\nLet c = 0.08288 + -0.0836347. Round c to four decimal places.\n-0.0008\nLet m(i) = 4548*i - 11. Let k be" -"bigger: b or n?\nn\nLet i = -843 + 561. Let h = -71941 - -71940.9. Is h < i?\nFalse\nLet c be (12/20)/(27/(-90)*-9). Is c bigger than 0.588?\nFalse\nLet s(q) = -8*q**2 + 2*q + 4. Let m be s(-4). Let a = -50645 - -50513. Is m at most a?\nTrue\nLet o = -18087 - -53420/3. Let t be 46624/(-165) + (-9)/(-15). Let z = t - o. Which is smaller: z or 1/3?\nz\nLet w(g) = -3*g - 9. Let b be w(-3). Suppose 3*o = 4*t + 6 + 2, b = -5*o - 4*t - 8. Let x(h) = -2*h**2 - 4*h - 2. Let j be x(-2). Is j >= o?\nFalse\nSuppose 26*o + 34747 = -33058 + 2753. Which is greater: -2501 or o?\n-2501\nLet a = -6688 - -8365. Is a at most 1677?\nTrue\nLet y(x) = -x**3 - x**2 + 3*x + 2. Let q be y(-1). Let z be 140/48 + -3 - q. Is z > 1?\nFalse\nLet b = -805 - -23339/29. Let h = -99.5 + 99.5. Is b greater than h?\nFalse\nLet j = 1834 +" -"ainder when 94 is divided by 16.\n14\nCalculate the remainder when 2111 is divided by 141.\n137\nCalculate the remainder when 246 is divided by 21.\n15\nWhat is the remainder when 3061 is divided by 78?\n19\nCalculate the remainder when 104 is divided by 51.\n2\nWhat is the remainder when 195 is divided by 66?\n63\nWhat is the remainder when 756 is divided by 446?\n310\nWhat is the remainder when 484 is divided by 157?\n13\nCalculate the remainder when 833 is divided by 70.\n63\nWhat is the remainder when 35718 is divided by 94?\n92\nWhat is the remainder when 580 is divided by 198?\n184\nCalculate the remainder when 496 is divided by 5.\n1\nCalculate the remainder when 21251 is divided by 46.\n45\nCalculate the remainder when 282 is divided by 137.\n8\nWhat is the remainder when 667 is divided by 168?\n163\nWhat is the remainder when 1314 is divided by 14?\n12\nCalculate the remainder when 146 is divided by 75.\n71\nCalculate the remainder when 1006 is divided by 41.\n22\nCalculate the remainder when 313 is divided by 146.\n21\nCalculate the remainder when" -"4*i = j - 12079, 7*j = -3*i + 3*j + 9069. List the prime factors of i.\n3019\nLet i(s) = -s**3 + 9*s**2 - 9*s + 3. Let l be i(8). Let h(o) = o**3 + 4*o**2 - 7*o + 6. List the prime factors of h(l).\n2\nSuppose -3*a + 2*j = -351, -3*j = -0*j - 9. Suppose 4*s - 67 - a = -y, 0 = -3*s - y + 140. What are the prime factors of s?\n2, 23\nWhat are the prime factors of 1454*-3*100/(-200)?\n3, 727\nSuppose 7*t - 4*t = 4*w + 119, -3*w + 102 = 2*t. Let s = 32 - t. Let i = -8 - s. List the prime factors of i.\n5\nLet y(n) = 5*n - 3. Let t = 31 + -26. What are the prime factors of y(t)?\n2, 11\nLet i(d) = -29*d + 22. List the prime factors of i(-2).\n2, 5\nLet a = -55 - 136. Suppose 0 = -2*x - 2 + 10. List the prime factors of a/(-9) - x/18.\n3, 7\nLet a = -7 - -11. Suppose 0 = -a*k - 2*k + 324. List" -"False\nIs 327 a factor of 729236?\nFalse\nDoes 14 divide 270025?\nFalse\nIs 813763 a multiple of 246?\nFalse\nDoes 89 divide 24161542?\nTrue\nDoes 14 divide 4857888?\nTrue\nDoes 384 divide 6329399?\nFalse\nIs 8 a factor of 76720?\nTrue\nDoes 95 divide 2067098?\nFalse\nDoes 53 divide 3696951?\nFalse\nDoes 4 divide 543788?\nTrue\nDoes 221 divide 2924356?\nFalse\nDoes 13 divide 651534?\nTrue\nIs 2560895 a multiple of 16?\nFalse\nDoes 621 divide 1020932?\nFalse\nIs 163350 a multiple of 22?\nTrue\nDoes 20 divide 39440?\nTrue\nIs 2648154 a multiple of 42?\nFalse\nIs 154 a factor of 2294270?\nFalse\nDoes 29 divide 38570?\nTrue\nIs 211130 a multiple of 25?\nFalse\nIs 473082 a multiple of 190?\nFalse\nIs 51 a factor of 106455?\nFalse\nIs 202741 a multiple of 10?\nFalse\nDoes 135 divide 302562?\nFalse\nIs 5391592 a multiple of 449?\nTrue\nIs 2571702 a multiple of 497?\nFalse\nDoes 16 divide 470080?\nTrue\nDoes 22 divide 131890?\nTrue\nIs 112172 a multiple of 29?\nTrue\nIs 9570378 a multiple of 1113?\nFalse\nDoes 492 divide 2008836?\nTrue\nDoes 41 divide 70725?\nTrue\nDoes 115 divide 5920625?\nFalse\nIs 5 a factor" -"h) = 7*h + 7. Let y(w) = -6*f(w) - 5*q(w). Let n be y(-7). What is the first derivative of 0*m**3 - 2 + n - 2*m**3 wrt m?\n-6*m**2\nLet m(v) = -v**2 + 10*v - 11. Let d be m(8). Find the third derivative of -4*y**2 + 8*y - 8*y - 4*y**d wrt y.\n-240*y**2\nLet f(x) be the third derivative of 3*x**7/35 + x**5/60 + 15*x**2. What is the third derivative of f(u) wrt u?\n432*u\nDifferentiate 32 + 5*b**2 + 23*b**2 + 2*b - 2*b with respect to b.\n56*b\nSuppose -l - 3*l = 28. Let x(t) = -t - 7. Let k be x(l). Find the third derivative of b**5 + b**2 + 0*b**5 + k*b**2 wrt b.\n60*b**2\nSuppose 0 = -3*z + 15 - 6. What is the second derivative of 4*g + 17*g**2 - 17*g**2 - z*g**5 wrt g?\n-60*g**3\nLet j(q) = -q**3 + 5*q**2 + q - 2. Let w be j(5). What is the third derivative of -h**4 + 0*h**4 + 3*h**2 - w*h**3 + 3*h**3 wrt h?\n-24*h\nLet o(v) = 1. Let k(i) = 18*i - 6. Let r(h) = -k(h) - 8*o(h). Differentiate r(c)" -"ve 0 = 2*k - u + 7, j = -5*k - 2*u - 14 - 8 for k.\n-4\nSuppose 0 = q - 2*q. Suppose -7*h = -3*h - 2*f - 14, 0 = 2*h - 3*f - 9. Solve h*i + 13 = -k, q*k - k + 3*i = -5 for k.\n-4\nLet t = 371 + -366. Solve v - 4*v - 9 = -4*n, -5*n - 15 = t*v for n.\n0\nLet b(n) = -23*n + 106. Let u be b(4). Solve 0 = i - 5*s - 4, -u*s + 15*s - 2 = 3*i for i.\n-1\nSuppose -17*q = -13*q + 80. Let v = q + 22. Solve -1 = -v*h - 5*m, -2*h + 4*m - 7 = m for h.\n-2\nLet c = 46 - 46. Suppose 2*i - y - 6 = c, -28 = -4*i - y - 10. Solve 2*v = 4*g, -i*v - 26 = 8*g - 3*g for g.\n-2\nLet a be 4/(8/(-34))*-1. Suppose -4*q - x = 9, -2*q - 4*x = -x + a. Let n be ((-3)/6)/(q/6). Solve 4*f = -k + 4*k + n, 2*f" -"of 4849?\n8\nWhat is the thousands digit of 6065?\n6\nWhat is the units digit of 76180?\n0\nWhat is the units digit of 45?\n5\nWhat is the hundreds digit of 51470?\n4\nWhat is the hundreds digit of 1819?\n8\nWhat is the units digit of 58104?\n4\nWhat is the thousands digit of 16752?\n6\nWhat is the units digit of 4697?\n7\nWhat is the tens digit of 17434?\n3\nWhat is the tens digit of 632?\n3\nWhat is the hundreds digit of 42035?\n0\nWhat is the units digit of 64953?\n3\nWhat is the tens digit of 18239?\n3\nWhat is the tens digit of 29592?\n9\nWhat is the units digit of 41630?\n0\nWhat is the thousands digit of 54411?\n4\nWhat is the hundreds digit of 21035?\n0\nWhat is the tens digit of 81375?\n7\nWhat is the hundreds digit of 70537?\n5\nWhat is the tens digit of 34932?\n3\nWhat is the tens digit of 14143?\n4\nWhat is the thousands digit of 9162?\n9\nWhat is the hundreds digit of 1377?\n3\nWhat is the units digit of 27959?\n9\nWhat is the hundreds digit" -"e 10, what is -250 - -1?\n-249\nIn base 6, what is -1303 - -20?\n-1243\nIn base 7, what is -33 - -2033?\n2000\nIn base 12, what is 267 - 2b?\n238\nIn base 5, what is 10 - 212040?\n-212030\nIn base 10, what is -1022 + 3?\n-1019\nIn base 5, what is -13 + 30?\n12\nIn base 8, what is -757 - -1?\n-756\nIn base 12, what is -b6 + 1?\n-b5\nIn base 14, what is 30 - c?\n22\nIn base 14, what is 1 + 42b?\n42c\nIn base 14, what is ad3 + 1?\nad4\nIn base 9, what is 6 + -3?\n3\nIn base 16, what is -2ef - -2?\n-2ed\nIn base 12, what is 2 + -45?\n-43\nIn base 7, what is -5 - -2101?\n2063\nIn base 5, what is 1204 + 10?\n1214\nIn base 5, what is 10 + -10?\n0\nIn base 12, what is -2 + 42?\n40\nIn base 7, what is -2 - 13202?\n-13204\nIn base 6, what is 40 + -1?\n35\nIn base 4, what is 33 - -210?\n303\nIn base 12," -"or u.\n2\nLet n(s) = -s**2 - 25*s + 58. Let v be n(-27). Solve -3*z - 3*j - 12 = 6, -2*j = v for z.\n-4\nSuppose -2*u + 32 = -3*h, 5*u = 2*h - 0*u + 36. Let d = -5 - h. Solve -q = 2*q + d*m - 21, -3*m - 11 = -5*q for q.\n4\nLet c(i) = -i**3 - 22*i**2 + i + 28. Let k be c(-22). Solve 2 = 3*z + s, -5*z + 3*s = k*s - 6 for z.\n0\nSuppose 4*k - 4*z - 16 = 0, -2*k + z - 11 = -6*k. Let t = -14 + 24. Suppose -3*h = -2*h - 3*s, 0 = k*h + s - t. Solve -4*m = -h*x, -20 = -3*x - 2*x for m.\n3\nLet h be 3/((-45)/(-24))*5. Let g = h + -3. Suppose -g*l + 2*l = -c - 19, 6 = -2*l - 4*c. Solve -4*n = 3*u - 9, 3*u - l*n - 11 = -2 for u.\n3\nSuppose -2*h + 8 = 2*h. Let a(m) = -3*m - m**3 - h*m + 2 + 6*m - 2*m. Let" -"ve of z**7/840 - z**6/180 + z**5/30 - z**4/8 - 22*z**3/3 + 5. Let n(m) be the third derivative of i(m). Determine n(3).\n18\nLet l = 9 - 9. Suppose l*b = b - 4. Let v(r) = 3*r**2 - 7*r - 6. Let n(a) = -8*a**2 + 18*a + 18. Let o(j) = 4*n(j) + 11*v(j). Calculate o(b).\n2\nLet z = 9952 - 9950. Let m(a) be the third derivative of 5*a**z + 1/120*a**6 + 1/24*a**4 + 5/3*a**3 + 0*a + 1/60*a**5 + 0. Give m(0).\n10\nLet c(v) = -2*v**2 - 1. Let q(b) = 7*b**2 + 2*b + 10. Let r(p) = -3*c(p) - q(p). Let o(m) be the first derivative of r(m). Determine o(8).\n-18\nLet s(k) = 24*k - 194. Let q be s(8). Let h(c) = 44*c - 18*c - 2 - 5*c**2 - 16*c - 9*c. Determine h(q).\n-24\nLet w(g) = 42*g**2 + 293*g + 108. Let l(r) = -55*r**2 - 391*r - 143. Let j(p) = -10*l(p) - 13*w(p). Calculate j(-25).\n1\nLet j(s) = s**2 + 11*s - 12. Let b(x) = 3*x**2 + 20*x - 30. Let c(g) = 2*b(g) - 5*j(g). What is c(16)?\n16\nSuppose" -"7055 microseconds to hours.\n0.000000228297375\nConvert 6582.24t to nanograms.\n6582240000000000000\nWhat is 7.615229 millimeters in micrometers?\n7615.229\nWhat is six fifths of a gram in milligrams?\n1200\nHow many litres are there in 6.614346ml?\n0.006614346\nHow many milligrams are there in 8.302455ng?\n0.000008302455\nWhat is 23/3 of a day in minutes?\n11040\nWhat is 7751.274km in nanometers?\n7751274000000000\nHow many micrograms are there in 59/4 of a milligram?\n14750\nHow many grams are there in 6/25 of a kilogram?\n240\nWhat is 871.7905 centimeters in kilometers?\n0.008717905\nWhat is 779638.1ml in litres?\n779.6381\nWhat is fifty-one eighths of a litre in millilitres?\n6375\nHow many millilitres are there in 3/40 of a litre?\n75\nConvert 31.5615 months to decades.\n0.2630125\nConvert 771455.5 millilitres to litres.\n771.4555\nHow many nanoseconds are there in 0.9068376us?\n906.8376\nWhat is 130839.2 millilitres in litres?\n130.8392\nWhat is 965372.5 millennia in months?\n11584470000\nWhat is 43560.81m in kilometers?\n43.56081\nWhat is 63222.55 centuries in millennia?\n6322.255\nConvert 870973.9 meters to nanometers.\n870973900000000\nWhat is 0.0378669 days in nanoseconds?\n3271700160000\nHow many kilograms are there in twenty-seven quarters of a tonne?\n6750\nConvert 2.834203 centuries to years.\n283.4203\nHow many nanograms are there in 3/50 of" -"?\nFalse\nLet b be (-106)/10 - 10/25. Let i be (-2)/(-11) + (-75)/b. Is 12 a factor of (26/7 + -2)*i?\nTrue\nLet p = 100 + -45. Does 35 divide p?\nFalse\nSuppose -12*q + 11*q = -2. Suppose g - 67 = -3*z, -3*g - q*g + z = -255. Is 13 a factor of g?\nTrue\nLet c = 40 - 21. Let k = c + -14. Is k a multiple of 3?\nFalse\nLet g = 20 - -12. Let j be 2/(-8) - (-205)/4. Let r = j - g. Is r a multiple of 16?\nFalse\nLet k(t) = -t + 7. Let o be k(3). Let l(x) = -3*x - o*x + 2*x + 1. Does 13 divide l(-5)?\nTrue\nLet v = 12 - -4. Is v/6*54/8 a multiple of 9?\nTrue\nLet a(d) = -d**3 + 13*d**2 - 8*d + 2. Is a(12) a multiple of 10?\nTrue\nLet o = -133 + 284. Is o a multiple of 13?\nFalse\nLet t(b) = b**3 + 5*b**2 + 2. Let x be t(-5). Let q = x - -2. Suppose 2*i + 45 = 3*s, -3*i = -q*s -" -"e v(7).\n2\nLet h(v) = -3639*v + 25514. Give h(7).\n41\nLet u(r) = -r**2 - 25*r + 10. Calculate u(-26).\n-16\nLet n(f) = -f + 30. Calculate n(29).\n1\nLet b(v) = v**2 - 41*v - 567. What is b(53)?\n69\nLet c(q) = -2*q**2 + 206*q + 1802. Calculate c(112).\n-214\nLet b(h) = -356*h - 2171. Calculate b(-6).\n-35\nLet j(d) = -33*d + 39. What is j(3)?\n-60\nLet k(d) = d**3 + 85*d**2 + 1674*d + 2. Calculate k(-54).\n2\nLet v(y) = -y**3 + 5*y**2 - 35*y + 79. Give v(3).\n-8\nLet b(n) = n**3 + 39*n**2 - 56*n - 650. Calculate b(-40).\n-10\nLet v(k) = 478*k - 2778. Determine v(6).\n90\nLet o(p) = p**3 - 9*p**2 - 23*p - 4. Give o(11).\n-15\nLet u(o) = -49*o - 275. What is u(-6)?\n19\nLet p(w) = w**3 - 72*w**2 - 150*w - 4. Calculate p(74).\n-152\nLet m(g) = -19*g**3 - 4*g. Determine m(-2).\n160\nLet g(o) = -2*o**2 - 15*o - 57. Give g(-12).\n-165\nLet a(l) = -l**3 - 27*l**2 + 140*l + 17. Determine a(5).\n-83\nLet h(j) = -2*j**3 - 25*j**2 - 38*j -" -" 3491 - 7877 for u.\n29\nSolve 884 + 439 - 2470 = -61*a - 720 for a.\n7\nSolve -1226*c + 38681 - 82612 = 95833 for c.\n-114\nSolve 1538*k + 59007 = 563 for k.\n-38\nSolve -489*n - 778*n = 17738 for n.\n-14\nSolve 337735*r + 5130 = 337621*r for r.\n-45\nSolve 3940*v - 1199*v = -183647 for v.\n-67\nSolve 10744 = 1522*o + 2717*o + 17*o + 1116*o for o.\n2\nSolve 1357 = 175*r + 144*r - 2790 for r.\n13\nSolve -2460*m - 19202 = 59337 - 120186 - 118253 for m.\n65\nSolve 220*m + 891*m - 49995 = 0 for m.\n45\nSolve 0 = 629*u + 7327 - 32487 for u.\n40\nSolve -33*c - 55459 = -57010 for c.\n47\nSolve -4908 + 69688 + 40312 - 21740 = 906*q for q.\n92\nSolve 44793 + 8722 = 31*a + 316*a + 348*a for a.\n77\nSolve 192*w - 1008*w = -105*w + 994*w + 80135 for w.\n-47\nSolve 341*a = -146*a - 134*a - 1863 for a.\n-3\nSolve 16089 + 135309 = 664*z + 1277*z for z.\n78\nSolve 0 = -22986*k +" -"m = 7*m - x - 20 for m.\n4\nSolve 3*v + 3 = -0*v, 489 = 2*l + 38*v + 469 for l.\n29\nSolve -3*p + 62028 = 3*s + 61941, 0*s = -23*p - s - 15 for p.\n-2\nSolve -7*n + 3*n = 11*m - 12, -5*m - 9 = 4340*n - 4343*n for m.\n0\nSolve 0 = -459*u + 463*u - 4*a - 8, 2*a = 5*a - 3 for u.\n3\nSolve -3*n = -2*m - 6*n - 39, n + 134 - 123 = 0 for m.\n-3\nSolve -3*s - 145*p - 195 = -2*s + 4*s - 142*p, 0 = -4*p - 13*p for s.\n-39\nSolve -3*t + w - 8 = 14, -2*t - 248 = 2*t - 3*t - 13*w for t.\n-1\nSolve 0 = 2*c + 3*a - 17, 943*a + 7 = 4*c + 940*a for c.\n4\nSolve -h = 9061*l - 9048*l + 205, -4*h + 3*l = -60 for h.\n3\nSolve -q + 2*q - 44 = 2*s, 2*s + 70*q - 19 = -63 for s.\n-22\nSolve -3*p - 48 = 5*n, 0 = -3*p -" -"\nWhich is the third smallest value? (a) 2/15 (b) 1 (c) 2/201\nb\nWhich is the fourth biggest value? (a) 0.3 (b) 4 (c) -0.3 (d) 14 (e) -1\nc\nWhat is the fourth smallest value in -23, -2/9, 2/3, 0.053?\n2/3\nWhich is the second biggest value? (a) 1/3 (b) 2/3 (c) 0.11 (d) -0.5 (e) -0.1\na\nWhich is the second smallest value? (a) 5/2 (b) 0.2 (c) -59 (d) 0.5\nb\nWhich is the second smallest value? (a) 60/13 (b) -3 (c) -0.3\nc\nWhat is the second biggest value in 3, 1, -22, -3?\n1\nWhat is the third biggest value in 0.1, 2, 0, -0.1, -55?\n0\nWhat is the second smallest value in 370, -2, -2/5?\n-2/5\nWhat is the fourth smallest value in 0.4, -24, 4/3, 1/26?\n4/3\nWhich is the second biggest value? (a) 12 (b) 0.1 (c) 3/5\nc\nWhat is the third biggest value in -0.1, -5, -2/17, -10?\n-5\nWhat is the fourth smallest value in -0.5, 2/3, 5, 6?\n6\nWhich is the second smallest value? (a) -3 (b) 5 (c) 0.5 (d) -14/17\nd\nWhat is the third smallest value in -1, -82, -0.4, -3?\n-1\nWhich" -" - 3/5*a**5 + 48*a**2. Factor y(h).\n-3*(h - 2)*(h + 2)**2*(h + 6)\nLet v(j) be the third derivative of -j**5/210 + 3*j**4/7 - 260*j**3/21 + 9*j**2 + 223. Let v(m) = 0. Calculate m.\n10, 26\nLet v be (-308)/(-48) + 75 + -81. Let w(l) be the third derivative of -5/6*l**3 - 1/12*l**5 - v*l**4 + 0 + 0*l - 3*l**2. Find k, given that w(k) = 0.\n-1\nLet k(r) be the third derivative of -r**5/150 - 59*r**4/2 - 52215*r**3 - 124*r**2 - 6. Suppose k(n) = 0. Calculate n.\n-885\nSuppose 1140*x - 162 + 470 = 1294*x. Find a such that -5/2*a + 0 - 1/2*a**3 + 3*a**x = 0.\n0, 1, 5\nLet d(k) be the second derivative of -49*k**6/72 + 7*k**5/4 - 15*k**4/8 + 10*k**3 - 8*k. Let v(n) be the second derivative of d(n). Solve v(c) = 0 for c.\n3/7\nFind s such that 103*s + 1/6*s**2 - 620/3 = 0.\n-620, 2\nWhat is r in -32/5*r - 2/15*r**3 - 128/15 - 8/5*r**2 = 0?\n-4\nLet r(g) be the first derivative of -g**3/3 + 16*g**2 - 153*g - 28. Let q be r(6). Factor 0*i + 0 - 4/7*i**q" -"t t be g(-6). Let k = -24 + 22. Let b(m) = -m**3 - m**2 + m - 2. Let z be b(k). Solve z*o = -2*o - t for o.\n-4\nSuppose 0 = -86*a + 85*a + 49. Suppose -o = -a + 21. Solve -3*m + o = 28 for m.\n0\nLet r(t) = -5*t - 67. Suppose -14*l + 20*l = -18. Let z(f) = f**3 + f + 15. Let k be z(l). Let u be r(k). Solve 3 = -i + u for i.\n5\nLet c(u) = -u**3 - 12*u**2 - 14*u - 40. Let w be c(-13). Let t = 313 - w. Solve -4 = t*i - 3*i for i.\n4\nLet g be (-1 - -2)*(-17 + -5 + 3). Let x be (g - -17)*(-7 - -3). Solve -x*b = -18*b + 40 for b.\n4\nSuppose -11*t = 3*t - 490. Let d(c) = 32 + c + 35 + t - 116. Let k be d(14). Solve k = l - 3*l for l.\n0\nLet l(d) = d - d + d**3 + 34*d**2 - 29*d**2 + 20 + 3*d. Let x be l(-5)." -"12347 - -0.12347. Which is the nearest to w? (a) 0.1 (b) -5 (c) 26/29\na\nLet y = 0.79 - 0.49. Let x(q) = q**3 + 28*q**2 + 76*q + 28. Let w be x(-25). Which is the nearest to 0? (a) -0.4 (b) y (c) -4 (d) w\nb\nLet t = -0.6095 - -0.7095. Which is the nearest to t? (a) -9/4 (b) -6/13 (c) -2\nb\nLet b = -0.1 - -0.1. Let y = 1/18797 - -75185/56391. What is the nearest to 0.2 in -0.04, b, y?\nb\nLet o = 12182 + -24385/2. Let u(s) = -3*s**2 + 0*s + 7*s - 5*s**2 + 5 + s**3. Let h be u(7). What is the closest to o in 2/7, h, 0.2?\n0.2\nLet t = 57/154 + -1/154. Let o = 4019 + -4022. What is the nearest to t in 3/4, 1, o?\n3/4\nLet i = -7/141 + 491/7050. Which is the nearest to -2? (a) -5 (b) 3 (c) i (d) -0.4\nd\nLet x = 2773.037 - 2775. Let o = -0.037 + x. Let l = o - -2.2. Which is the closest to 3? (a) l (b) 4" -"as u*d**2 + q*d + w + z*d**3 and give u.\n-7692\nExpress 13*n**2 + 8011679 - 8011679 as i + g*n**2 + r*n and give g.\n13\nExpress (162*b**2 + 236 - 236)*(42*b + 18*b**2 - 42*b) in the form q*b**2 + c*b**4 + f*b**3 + x + m*b and give c.\n2916\nExpress 318 + 319 - 1272 + 318 + 319 - 12*l**2 in the form q*l**2 + g*l + d and give q.\n-12\nExpress (0 + 0 - 1)*(416*x + 654*x - 2 + 3 - 46*x) in the form g*x + z and give z.\n-1\nRearrange -3*k**3 + 39 + 3*k**2 - 86*k - 85*k + 167*k - 33 to the form o + h*k + d*k**3 + s*k**2 and give h.\n-4\nRearrange (3254*u**3 + 721*u**2 - 3248*u**3 + 759*u**2)*(0 + u + 0) to v*u + j + r*u**3 + g*u**4 + n*u**2 and give r.\n1480\nRearrange 29*k - 357*k**2 - 44*k + 14*k - 31*k**2 + 33*k**2 to g*k**2 + o*k + d and give g.\n-355\nRearrange -513 + 18643*b - 1042 + 146 - 18641*b to the form m*b + q and give m.\n2\nRearrange -7*t**3" -"(t) = -2*t**3 + 26*t**2 + 6*t - 514. Calculate m(6).\n26\nLet u(a) = 7*a + 86. Give u(-19).\n-47\nLet r(k) = 297*k - 355. Give r(3).\n536\nLet b(n) = 2128*n - 38311. Give b(18).\n-7\nLet k(o) = -77*o**2 - 327*o - 5. Give k(-5).\n-295\nLet m(d) = d**3 - 100*d**2 - 142*d - 6322. Determine m(102).\n2\nLet o(t) = 151*t - 2134. Determine o(15).\n131\nLet r(h) = h**2 + 4*h - 63. Determine r(7).\n14\nLet t(u) = 7*u + 196. Determine t(-26).\n14\nLet c(g) = -g**3 - 19*g**2 - 105*g - 99. Calculate c(-6).\n63\nLet x(m) = m**3 - 77*m**2 - 1831*m - 135. Give x(-19).\n-2\nLet j(z) = -13*z + 40. Give j(6).\n-38\nLet b(r) = -r**2 + 189*r + 1545. Give b(-8).\n-31\nLet v(a) = -97*a - 60. Determine v(1).\n-157\nLet r(d) = 17*d**3 - 80*d**2 - 23*d - 6. Determine r(5).\n4\nLet m(c) = 22*c**2 + 481*c + 2615. What is m(-12)?\n11\nLet z(x) = -2*x**2 - 30*x - 33. Determine z(-14).\n-5\nLet d(b) = b**2 + 10*b - 18. Calculate d(-5).\n-43\nLet z(k) = 882*k + 16794." -" r*i = 17*i + 34. Let v = i + -23. Is v prime?\nTrue\nIs (-13894 - -4)/(-6) - -6 a prime number?\nFalse\nSuppose -4*h - 4*h = -32. Suppose h*d + 563 = 5*m, d = -0*m + m - 112. Is m prime?\nFalse\nLet g(c) = 116*c - 51. Is g(8) composite?\nFalse\nLet a(n) = 0 + 1 + 6 - 36*n. Suppose 2*i = 10*i + 48. Is a(i) a prime number?\nTrue\nLet n be 6/27*3*9507. Let r = n - 4353. Is r a prime number?\nFalse\nLet o = -8 - -10. Let q be (3/o)/(6/12). Suppose 0 = -2*p + q*p - 211. Is p composite?\nFalse\nIs 123*19 - (-27 + 25) composite?\nFalse\nLet t(p) = 2671*p - 221. Is t(10) a prime number?\nTrue\nSuppose -2*f + 225 = -p - 66, -5*p - 2*f - 1491 = 0. Let o = p - -631. Is o composite?\nTrue\nLet v(a) be the first derivative of a**4/4 - 8*a**3/3 + 3*a**2/2 + 10*a - 6. Let s be v(7). Is (-12)/s - 151/(-3) a composite number?\nTrue\nLet w be 18/(-3) - -3 - -1. Let" -"et k = -38 + 33. Let f(i) = i + 4. Let m(c) = -1. Let r(s) = k*m(s) - f(s). Calculate -3*p(t) - r(t).\n-2*t - 1\nLet y(c) = -10*c**3 - 3. Let a(b) = 5*b**3 + 1. Determine -5*a(i) - 2*y(i).\n-5*i**3 + 1\nLet i(g) = 8*g - 7. Let v = -290 - -291. Let w(q) = q - 1. Determine v*i(y) - 5*w(y).\n3*y - 2\nLet d(i) = i + 1. Let a(m) = -m - 4. Suppose 0 = 3*s - 51 - 51. Let g = s + -22. Suppose -g = -6*y + 6. What is y*d(w) + a(w)?\n2*w - 1\nLet f(c) be the third derivative of c**5/60 + 5*c**4/24 - c**3/6 + 2*c**2 - 89*c. Let y(k) = -k**2 - 6*k + 1. What is 3*f(u) + 4*y(u)?\n-u**2 - 9*u + 1\nLet a(q) = -q**3 + 4*q**2 - 5*q. Let v(i) = -3*i**3 + 9*i**2 - 11*i. Suppose 6*f - 15 = 9*f + 2*c, -10 = f - c. Determine f*a(o) + 3*v(o).\n-2*o**3 - o**2 + 2*o\nLet w(h) = 3*h + 5. Let t(k) be the second derivative of k**5/20 +" -"l) be the first derivative of -32/5*l**5 + 0*l + 0*l**3 + 78 + 53*l**2 - 1/4*l**4. What is the second derivative of g(z) wrt z?\n-384*z**2 - 6*z\nLet w(s) be the second derivative of s**5/10 - s**4/4 - 409*s**3/3 + 225*s**2 - 3*s - 4116. Find the first derivative of w(j) wrt j.\n6*j**2 - 6*j - 818\nLet v(m) be the second derivative of 0*m**2 + 5/21*m**7 + 0*m**5 + 0 + 1/6*m**6 - 103/12*m**4 + 110*m + 0*m**3. What is the third derivative of v(z) wrt z?\n600*z**2 + 120*z\nLet p(u) be the second derivative of u**8/28 - 163*u**7/42 + u**6/30 + u**4/12 - 299*u**3 + 7854*u. What is the third derivative of p(y) wrt y?\n240*y**3 - 9780*y**2 + 24*y\nSuppose -2*n = -3*n - 4*n. Let z be n/(-18) + (-2 - (-1 + -2)). Find the first derivative of -17*p**2 + 17 - 2 + 0 - z wrt p.\n-34*p\nLet y(b) be the third derivative of -4907*b**5/20 - 3077*b**4/12 - 2*b**2 - 156*b + 13. Find the second derivative of y(j) wrt j.\n-29442\nLet m(o) = -763*o**3 - 1320*o**2 + 6*o. Let h(r) = 760*r**3 + 1321*r**2 - 9*r." -"39 - 228. Is z a prime number?\nTrue\nLet q be 1/2*0/4. Suppose 4*w - 212 = -q*w. Is w prime?\nTrue\nSuppose 3*z - 3*m - 147 = 0, -9 = -0*m + 3*m. Let o = z - 23. Is o a prime number?\nTrue\nLet j(g) = g**2 - 4*g + 1. Let w be j(5). Suppose -2*b - 2 = -w. Suppose 588 = b*x + h, 3*x - 2*h - 1168 = -x. Is x composite?\nFalse\nLet v(a) = a**3 + 5*a**2 + 5. Let z(o) = -o**2 + o - 1. Let g(h) = v(h) - 2*z(h). Let i(f) = -2*f**3 + f**2 + 4*f - 3. Let k be i(2). Is g(k) composite?\nTrue\nLet o be (8/(-6))/((-1)/(-3)). Let t = o + 2. Is (t/(-4))/((-3)/(-474)) composite?\nFalse\nLet j(m) = -92*m + 5. Is j(-6) prime?\nTrue\nSuppose 5*u = 15, -2*p - 2*u + 1199 = u. Suppose -2*l - 13 = -p. Is l prime?\nFalse\nIs (96 + (0 - 2))*1 a prime number?\nFalse\nLet q(k) = k**2 - 4*k + 4. Let z be q(3). Suppose u - z = -2*y + 3, -4*u =" -" 1 o and 1 r.\n8/105\nTwo letters picked without replacement from {b: 3, h: 1, o: 5}. What is prob of picking 1 b and 1 h?\n1/12\nCalculate prob of picking 3 p when three letters picked without replacement from ppip.\n1/4\nWhat is prob of picking 1 o and 2 m when three letters picked without replacement from {o: 5, m: 3, x: 4}?\n3/44\nCalculate prob of picking 1 r and 1 h when two letters picked without replacement from {c: 1, r: 2, h: 1, z: 2, x: 2, u: 1}.\n1/18\nWhat is prob of picking 1 b and 1 g when two letters picked without replacement from wsrgrsggwguwbsrgsw?\n5/153\nTwo letters picked without replacement from {h: 2, y: 4, d: 1, i: 3}. What is prob of picking 1 d and 1 h?\n2/45\nTwo letters picked without replacement from {g: 5, a: 5}. What is prob of picking 1 g and 1 a?\n5/9\nTwo letters picked without replacement from msmss. What is prob of picking 1 m and 1 s?\n3/5\nTwo letters picked without replacement from {a: 5, f: 9}. What is prob of picking 2 a?\n10/91\nFour letters" -"l in descending order.\n14, l, -0.1, -2/19\nLet n = 40 - 35. Suppose 8*c - n*c = -12. Sort -2, 1, c.\nc, -2, 1\nLet o = -5.2 - -3.2. Sort -6, 1/18, o in decreasing order.\n1/18, o, -6\nLet t = -267 - -266.7. Sort 6, -8, 3, t.\n-8, t, 3, 6\nSuppose 404 - 416 = 3*x. Put -1, x, 1 in descending order.\n1, -1, x\nSuppose 0*k + 40 = 5*k. Let j(l) = -l**3 + 5*l**2 - 2. Let w be j(5). Let m(b) = b**2 + 5*b. Let d be m(-4). Sort d, w, k in decreasing order.\nk, w, d\nLet i be 0*4/24*1. Let n be -6*(i - (-1)/(-3)). Suppose -3*j = -r + 2 - 8, 2*j = 2. Put -2, r, n in descending order.\nn, -2, r\nLet p = 252 + -252.2. Let a(t) = -t**2 + 4*t - 3. Let h be a(4). Put 2/15, p, h in ascending order.\nh, p, 2/15\nLet s = -75 - 2. Let w = 56 + s. Sort 4, w, 0.1.\nw, 0.1, 4\nLet y = -0.1 + -4.9. Let p(x) = -x" -" (c) -4\na\nLet g = 136 + -110. Let q = 52 - g. Which is the nearest to -1/4? (a) q (b) 0.5 (c) 2\nb\nLet t = 0.4 - 0. Let w(j) = -1121*j - 15692. Let r be w(-14). What is the closest to -1 in t, 1/2, 4, r?\nt\nLet t = -194 - -194. Suppose 3*q - 3*d + 72 = 0, -q + 32 = -2*q - d. Let w be 6/q*4/(-3). Which is the nearest to t? (a) -6 (b) -2 (c) w\nc\nLet f = -208 + 203.8. Which is the nearest to -2/9? (a) 4 (b) f (c) -2 (d) -1\nd\nLet u be (-47)/705 - (-9)/(-15). What is the closest to 0.3 in u, 10, -0.2, 1/3?\n1/3\nLet z = 1.93 + 0.07. Let t = -4.542 - 0.458. Let s = -0.1 + -0.9. Which is the closest to 0? (a) z (b) s (c) t\nb\nLet q = -2.79 + -10.53. Let r = 18 + q. Let c = 0.32 + r. What is the nearest to -3 in 4, c, -4?\n-4\nLet r = 6205.982 - 6206. Which" -"246 and -26/15?\n1230\nCalculate the lowest common multiple of 146 and 4.\n292\nWhat is the lowest common multiple of 252 and 56?\n504\nCalculate the smallest common multiple of 5 and 2.\n10\nCalculate the least common multiple of 1460 and 6.\n4380\nWhat is the common denominator of 5/171 and 5/152?\n1368\nWhat is the common denominator of -82/15 and 61/108?\n540\nWhat is the least common multiple of 11696 and 119?\n81872\nWhat is the common denominator of -71/57 and -95/1212?\n23028\nFind the common denominator of 33/4 and -22/6205.\n24820\nWhat is the common denominator of -61/9 and 1/921?\n2763\nWhat is the common denominator of -173/210 and 143/90?\n630\nCalculate the least common multiple of 5 and 3102.\n15510\nFind the common denominator of 9/314 and 59/21.\n6594\nFind the common denominator of -79/1452 and -74/231.\n10164\nCalculate the common denominator of 12/6181 and 49/2.\n12362\nCalculate the lowest common multiple of 77 and 49.\n539\nWhat is the common denominator of -5/24 and -101/6636?\n13272\nFind the common denominator of 37/12 and -37/59.\n708\nWhat is the common denominator of 109/2852 and -107/14?\n19964\nFind the common denominator of 29/48 and 51/1634.\n39216" -" 111?\n111\nCalculate the highest common divisor of 113 and 1.\n1\nWhat is the greatest common factor of 292 and 1606?\n146\nCalculate the highest common factor of 3972 and 12.\n12\nWhat is the highest common divisor of 300 and 140?\n20\nWhat is the highest common divisor of 11 and 77?\n11\nWhat is the highest common divisor of 6 and 6438?\n6\nWhat is the highest common divisor of 13 and 71318?\n13\nWhat is the greatest common divisor of 688 and 10148?\n172\nWhat is the highest common factor of 37231 and 31?\n31\nWhat is the greatest common factor of 13843 and 508?\n127\nWhat is the greatest common factor of 840 and 1995?\n105\nCalculate the greatest common divisor of 806 and 260.\n26\nWhat is the greatest common divisor of 2030 and 280?\n70\nCalculate the greatest common divisor of 8115 and 15.\n15\nWhat is the highest common divisor of 29 and 377?\n29\nWhat is the highest common factor of 3552 and 192?\n96\nWhat is the greatest common factor of 1672 and 5928?\n152\nCalculate the highest common divisor of 77 and 31108.\n77\nCalculate the highest common factor" -"16.02 - 16.01998325. Round u to six dps.\n0.000017\nLet s = 530.6 - 391. What is s rounded to the nearest ten?\n140\nLet w = -2 + -0.3. Let y = 2.055 + w. Round y to 2 decimal places.\n-0.25\nLet x = 2.536 + 0.004. Round x to the nearest integer.\n3\nLet t = 240 - 237.71. Let c = t + -2.2899843. What is c rounded to 6 decimal places?\n0.000016\nLet d = -188.2 - -174. Let g = -3.8 + d. Let n = g + 18.15. What is n rounded to 1 decimal place?\n0.2\nSuppose 0 = 6*a + 6*a - 2174940. Let m = -321245 + a. What is m rounded to the nearest one hundred thousand?\n-100000\nSuppose -4944 = 9*j + 2517. Round j to the nearest one hundred.\n-800\nLet j = 30.7 - 31.0109. Let y = j - -0.31. What is y rounded to four dps?\n-0.0009\nLet c = 8.68000551 + -8.68. Round c to 7 dps.\n0.0000055\nLet o = 1.3 + -2. Let g = -0.3 - o. Let t = g - -3.2. Round t to the nearest integer.\n4" -"ween 9:25 PM and 7:22 AM?\n597\nHow many minutes are there between 1:09 AM and 9:22 AM?\n493\nWhat is 592 minutes before 11:38 PM?\n1:46 PM\nHow many minutes are there between 8:09 AM and 2:16 PM?\n367\nHow many minutes are there between 6:40 PM and 1:50 AM?\n430\nWhat is 121 minutes after 7:35 AM?\n9:36 AM\nHow many minutes are there between 12:35 AM and 12:08 PM?\n693\nHow many minutes are there between 6:50 PM and 9:18 PM?\n148\nWhat is 564 minutes before 3:56 AM?\n6:32 PM\nWhat is 710 minutes after 4:34 PM?\n4:24 AM\nHow many minutes are there between 3:26 PM and 5:50 PM?\n144\nHow many minutes are there between 3:10 PM and 10:11 PM?\n421\nWhat is 473 minutes after 1:09 AM?\n9:02 AM\nWhat is 681 minutes after 11:02 PM?\n10:23 AM\nHow many minutes are there between 3:55 PM and 4:20 PM?\n25\nHow many minutes are there between 12:38 PM and 7:19 PM?\n401\nHow many minutes are there between 11:29 PM and 4:15 AM?\n286\nWhat is 304 minutes before 4:51 AM?\n11:47 PM\nHow many minutes are there between 2:20 PM and 4:56" -"ose -d*u = -u + 1320. What is u rounded to the nearest 100?\n-300\nLet f be 33 + 2/(-2)*-3. Let r = 70 + f. Suppose r = 3*o + 2026. What is o rounded to the nearest 100?\n-600\nLet s = 19.04 + -19.039999609. What is s rounded to six decimal places?\n0\nLet a = -0.0355 - -111.5355. What is a rounded to the nearest ten?\n110\nLet w = 1.296000893 + -1.296. Round w to 7 dps.\n0.0000009\nLet x = 24.24 - 27.1. Let p = x - -3. Let u = -0.078 + p. What is u rounded to two dps?\n0.06\nLet j = -9194 + -28796. What is j rounded to the nearest 1000?\n-38000\nLet o = -852.8458351 + 959.84584. Let v = o + -107. Round v to 6 dps.\n0.000005\nSuppose o - 28909995 = -5*l, 28910015 = 5*l - 8*o + 5*o. What is l rounded to the nearest one hundred thousand?\n5800000\nLet g = 979189 - -663717. Let f = g - 1642834.9829. Let i = f + -71. Round i to 3 decimal places.\n0.017\nLet a(r) = -8699999*r**3 - 2*r**2 + 2*r" -"r dps?\n-0.0006\nWhat is 0.001441 rounded to four dps?\n0.0014\nWhat is -0.0000004869 rounded to seven dps?\n-0.0000005\nRound -78600 to the nearest ten thousand.\n-80000\nRound 32.294 to 0 decimal places.\n32\nWhat is 150000 rounded to the nearest one hundred thousand?\n200000\nRound 0.000000213 to 7 decimal places.\n0.0000002\nWhat is 1.31548 rounded to three decimal places?\n1.315\nRound -1.24297 to one dp.\n-1.2\nRound -1138 to the nearest 100.\n-1100\nRound -217.36 to the nearest ten.\n-220\nWhat is -1692 rounded to the nearest 1000?\n-2000\nRound 42058 to the nearest one hundred.\n42100\nRound -287000 to the nearest one hundred thousand.\n-300000\nWhat is -23600 rounded to the nearest one hundred thousand?\n0\nRound -33.092 to the nearest integer.\n-33\nRound -356 to the nearest one hundred.\n-400\nWhat is -0.08364 rounded to 3 decimal places?\n-0.084\nWhat is -4334000 rounded to the nearest one hundred thousand?\n-4300000\nWhat is 6312.3 rounded to the nearest 10?\n6310\nWhat is 301.6 rounded to the nearest integer?\n302\nWhat is -161200 rounded to the nearest 10000?\n-160000\nRound -0.00216832 to 5 decimal places.\n-0.00217\nWhat is 0.00005366 rounded to five decimal places?\n0.00005\nRound 19193000 to the" -"t i be (-3)/3 + (10 - 1). Suppose 3*u - 87 = 2*q, -2*u + 3*q - i*q + 39 = 0. Calculate the greatest common divisor of u and 297.\n27\nSuppose 6*h = r + h - 4, 5*r = 4*h + 20. Suppose r*s = 20 + 92. Calculate the highest common factor of s and 4.\n4\nSuppose 3*k + 221 = -4*h, -278 = 7*h - 2*h + 2*k. Let u be 2/(2/(-5) + h/(-90)). What is the highest common divisor of u and 9?\n9\nLet b(d) = -120*d + 1. Let z(w) = -119*w + 1. Let x(c) = 6*b(c) - 5*z(c). Let r be x(-1). Calculate the greatest common factor of 18 and r.\n18\nLet s(m) be the second derivative of m**3/6 - 6*m**2 + 6*m. Let h be s(14). Suppose 5*k = h*k + 9. Calculate the highest common factor of 33 and k.\n3\nLet i(d) = 3*d + 9*d - 1 - d - 3*d. Let v be i(3). Calculate the highest common factor of v and 46.\n23\nLet a(n) = -n**3 + 18*n**2 + 173*n + 42. Let d be a(24). What is the greatest" -"+ -2 + (-1)/1. Let q = j - 70. List the prime factors of q.\n101\nSuppose 0*k - 16 = -4*k. Suppose 5*x + 4*d = 619, -2*x - d - 245 = -k*x. What are the prime factors of x?\n3, 41\nSuppose 21*m - 6492 = -1305. List the prime factors of m.\n13, 19\nSuppose -74*k = -77*k + 1260. What are the prime factors of k?\n2, 3, 5, 7\nLet x = 19 + -14. Suppose 4*g = -5*o + 137, -4*o = -4*g - x*o + 149. Suppose h - 7 = -0*h - 5*v, 2*h - g = -2*v. List the prime factors of h.\n2, 11\nLet d(b) = b**3 - 4*b**2 - 5*b - 4. Let t be d(5). Let l be 2*(t/(-1) + -3). Let h(v) = 9*v**2 + 4*v - 4. List the prime factors of h(l).\n2, 5\nLet x = 225 - 89. List the prime factors of x.\n2, 17\nSuppose 3*y + 2*y - 155 = 0. Let j = 42 - y. List the prime factors of j.\n11\nLet d(r) = 34*r**3 - 2*r**2 + 3*r - 2. Let h be"