StyleTTS2-lite / inference.py
dangtr0408's picture
Update inference.py and meldataset,py
2b1b519
import re
import yaml
from munch import Munch
import numpy as np
import librosa
import noisereduce as nr
from meldataset import TextCleaner
import torch
import torchaudio
from nltk.tokenize import word_tokenize
import nltk
nltk.download('punkt_tab')
from models import ProsodyPredictor, TextEncoder, StyleEncoder
from Modules.hifigan import Decoder
class Preprocess:
def __text_normalize(self, text):
punctuation = [",", "、", "،", ";", "(", ".", "。", "…", "!", "–", ":", "?"]
map_to = "."
punctuation_pattern = re.compile(f"[{''.join(re.escape(p) for p in punctuation)}]")
#replace punctuation that acts like a comma or period
text = punctuation_pattern.sub(map_to, text)
#replace consecutive whitespace chars with a single space and strip leading/trailing spaces
text = re.sub(r'\s+', ' ', text).strip()
return text
def __merge_fragments(self, texts, n):
merged = []
i = 0
while i < len(texts):
fragment = texts[i]
j = i + 1
while len(fragment.split()) < n and j < len(texts):
fragment += ", " + texts[j]
j += 1
merged.append(fragment)
i = j
if len(merged[-1].split()) < n and len(merged) > 1: #handle last sentence
merged[-2] = merged[-2] + ", " + merged[-1]
del merged[-1]
else:
merged[-1] = merged[-1]
return merged
def wave_preprocess(self, wave):
to_mel = torchaudio.transforms.MelSpectrogram(n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def text_preprocess(self, text, n_merge=12):
text_norm = self.__text_normalize(text).split(".")#split by sentences.
text_norm = [s.strip() for s in text_norm]
text_norm = list(filter(lambda x: x != '', text_norm)) #filter empty index
text_norm = self.__merge_fragments(text_norm, n=n_merge) #merge if a sentence has less that n
return text_norm
def length_to_mask(self, lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
#For inference only
class StyleTTS2(torch.nn.Module):
def __init__(self, config_path, models_path):
super().__init__()
self.register_buffer("get_device", torch.empty(0))
self.preprocess = Preprocess()
self.ref_s = None
config = yaml.safe_load(open(config_path, "r", encoding="utf-8"))
try:
symbols = (
list(config['symbol']['pad']) +
list(config['symbol']['punctuation']) +
list(config['symbol']['letters']) +
list(config['symbol']['letters_ipa']) +
list(config['symbol']['extend'])
)
symbol_dict = {}
for i in range(len((symbols))):
symbol_dict[symbols[i]] = i
n_token = len(symbol_dict) + 1
print("\nFound:", n_token, "symbols")
except Exception as e:
print(f"\nERROR: Cannot find {e} in config file!\nYour config file is likely outdated, please download updated version from the repository.")
raise SystemExit(1)
args = self.__recursive_munch(config['model_params'])
args['n_token'] = n_token
self.cleaner = TextCleaner(symbol_dict, debug=False)
assert args.decoder.type in ['hifigan'], 'Decoder type unknown'
self.decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
upsample_rates = args.decoder.upsample_rates,
upsample_initial_channel=args.decoder.upsample_initial_channel,
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes)
self.predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
self.text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
self.style_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim)# acoustic style encoder
self.__load_models(models_path)
def __recursive_munch(self, d):
if isinstance(d, dict):
return Munch((k, self.__recursive_munch(v)) for k, v in d.items())
elif isinstance(d, list):
return [self.__recursive_munch(v) for v in d]
else:
return d
def __replace_outliers_zscore(self, tensor, threshold=3.0, factor=0.95):
mean = tensor.mean()
std = tensor.std()
z = (tensor - mean) / std
# Identify outliers
outlier_mask = torch.abs(z) > threshold
# Compute replacement value, respecting sign
sign = torch.sign(tensor - mean)
replacement = mean + sign * (threshold * std * factor)
result = tensor.clone()
result[outlier_mask] = replacement[outlier_mask]
return result
def __load_models(self, models_path):
module_params = []
model = {'decoder':self.decoder, 'predictor':self.predictor, 'text_encoder':self.text_encoder, 'style_encoder':self.style_encoder}
params_whole = torch.load(models_path, map_location='cpu')
params = params_whole['net']
params = {key: value for key, value in params.items() if key in model.keys()}
for key in model:
try:
model[key].load_state_dict(params[key])
except:
from collections import OrderedDict
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model[key].load_state_dict(new_state_dict, strict=False)
total_params = sum(p.numel() for p in model[key].parameters())
print(key,":",total_params)
module_params.append(total_params)
print('\nTotal',":",sum(module_params))
def __compute_style(self, path, denoise, split_dur):
device = self.get_device.device
denoise = min(denoise, 1)
if split_dur != 0: split_dur = max(int(split_dur), 1)
max_samples = 24000*20 #max 20 seconds ref audio
print("Computing the style for:", path)
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
if len(audio) > max_samples:
audio = audio[:max_samples]
if denoise > 0.0:
audio_denoise = nr.reduce_noise(y=audio, sr=sr, n_fft=2048, win_length=1200, hop_length=300)
audio = audio*(1-denoise) + audio_denoise*denoise
with torch.no_grad():
if split_dur>0 and len(audio)/sr>=4: #Only effective if audio length is >= 4s
#This option will split the ref audio to multiple parts, calculate styles and average them
count = 0
ref_s = None
jump = sr*split_dur
total_len = len(audio)
#Need to init before the loop
mel_tensor = self.preprocess.wave_preprocess(audio[0:jump]).to(device)
ref_s = self.style_encoder(mel_tensor.unsqueeze(1))
count += 1
for i in range(jump, total_len, jump):
if i+jump >= total_len:
left_dur = (total_len-i)/sr
if left_dur >= 1: #Still count if left over dur is >= 1s
mel_tensor = self.preprocess.wave_preprocess(audio[i:total_len]).to(device)
ref_s += self.style_encoder(mel_tensor.unsqueeze(1))
count += 1
continue
mel_tensor = self.preprocess.wave_preprocess(audio[i:i+jump]).to(device)
ref_s += self.style_encoder(mel_tensor.unsqueeze(1))
count += 1
ref_s /= count
else:
mel_tensor = self.preprocess.wave_preprocess(audio).to(device)
ref_s = self.style_encoder(mel_tensor.unsqueeze(1))
return ref_s
def __inference(self, phonem, ref_s, speed=1, prev_d_mean=0, t=0.1):
device = self.get_device.device
speed = min(max(speed, 0.0001), 2) #speed range [0, 2]
phonem = ' '.join(word_tokenize(phonem))
tokens = self.cleaner(phonem)
tokens.insert(0, 0)
tokens.append(0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = self.preprocess.length_to_mask(input_lengths).to(device)
# encode
t_en = self.text_encoder(tokens, input_lengths, text_mask)
s = ref_s.to(device)
# cal alignment
d = self.predictor.text_encoder(t_en, s, input_lengths, text_mask)
x, _ = self.predictor.lstm(d)
duration = self.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
if prev_d_mean != 0:#Stabilize speaking speed between splits
dur_stats = torch.empty(duration.shape).normal_(mean=prev_d_mean, std=duration.std()).to(device)
else:
dur_stats = torch.empty(duration.shape).normal_(mean=duration.mean(), std=duration.std()).to(device)
duration = duration*(1-t) + dur_stats*t
duration[:,1:-2] = self.__replace_outliers_zscore(duration[:,1:-2]) #Normalize outlier
duration /= speed
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
alignment = pred_aln_trg.unsqueeze(0).to(device)
# encode prosody
en = (d.transpose(-1, -2) @ alignment)
F0_pred, N_pred = self.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
out = self.decoder(asr, F0_pred, N_pred, s)
return out.squeeze().cpu().numpy(), duration.mean()
def get_styles(self, speaker, denoise=0.3, avg_style=True, load_styles=False):
if not load_styles:
if avg_style: split_dur = 3
else: split_dur = 0
self.ref_s = self.__compute_style(speaker['path'], denoise=denoise, split_dur=split_dur)
else:
if self.ref_s is None:
raise Exception("Have to compute or load the styles first!")
style = {
'style': self.ref_s,
'path': speaker['path'],
'speed': speaker['speed'],
}
return style
def save_styles(self, save_dir):
if self.ref_s is not None:
torch.save(self.ref_s, save_dir)
print("Saved styles!")
else:
raise Exception("Have to compute the styles before saving it.")
def load_styles(self, save_dir):
try:
self.ref_s = torch.load(save_dir)
print("Loaded styles!")
except Exception as e:
print(e)
def generate(self, phonem, style, stabilize=True, n_merge=16):
if stabilize: smooth_value=0.2
else: smooth_value=0
list_wav = []
prev_d_mean = 0
print("Generating Audio...")
text_norm = self.preprocess.text_preprocess(phonem, n_merge=n_merge)
for sentence in text_norm:
wav, prev_d_mean = self.__inference(sentence, style['style'], speed=style['speed'], prev_d_mean=prev_d_mean, t=smooth_value)
wav = wav[4000:-4000] #Remove weird pulse and silent tokens
list_wav.append(wav)
final_wav = np.concatenate(list_wav)
final_wav = np.concatenate([np.zeros([4000]), final_wav, np.zeros([4000])], axis=0) # add padding
return final_wav