Improve metadata, link to project page (#1)
Browse files- Improve metadata, link to project page (549acf97e8a79cd0f36c28a4391fa8c55f30f5a6)
Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>
README.md
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
---
|
2 |
-
library_name: peft
|
3 |
-
license: other
|
4 |
base_model: meta-llama/Llama-3.1-8B-Instruct
|
|
|
|
|
|
|
|
|
|
|
5 |
tags:
|
6 |
- llama-factory
|
7 |
- lora
|
@@ -9,12 +12,12 @@ tags:
|
|
9 |
model-index:
|
10 |
- name: llama_factory_output_dir
|
11 |
results: []
|
12 |
-
datasets:
|
13 |
-
- codezakh/EFAGen-Llama-3.1-8B-Instruct-Training-Data
|
14 |
---
|
15 |
|
16 |
[📃 Paper](arxiv.org/abs/2504.09763)
|
17 |
|
|
|
|
|
18 |
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) trained to generate Executable Functional Abstractions (EFAs) for math problems.
|
19 |
The training data for this model can be found [here](https://huggingface.co/datasets/codezakh/EFAGen-Llama-3.1-8B-Instruct-Training-Data).
|
20 |
The model was trained using Llama-Factory and the data is already in Alpaca instruction-tuning format.
|
|
|
1 |
---
|
|
|
|
|
2 |
base_model: meta-llama/Llama-3.1-8B-Instruct
|
3 |
+
datasets:
|
4 |
+
- codezakh/EFAGen-Llama-3.1-8B-Instruct-Training-Data
|
5 |
+
library_name: transformers
|
6 |
+
license: other
|
7 |
+
pipeline_tag: text-generation
|
8 |
tags:
|
9 |
- llama-factory
|
10 |
- lora
|
|
|
12 |
model-index:
|
13 |
- name: llama_factory_output_dir
|
14 |
results: []
|
|
|
|
|
15 |
---
|
16 |
|
17 |
[📃 Paper](arxiv.org/abs/2504.09763)
|
18 |
|
19 |
+
Project Page: https://zaidkhan.me/EFAGen
|
20 |
+
|
21 |
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) trained to generate Executable Functional Abstractions (EFAs) for math problems.
|
22 |
The training data for this model can be found [here](https://huggingface.co/datasets/codezakh/EFAGen-Llama-3.1-8B-Instruct-Training-Data).
|
23 |
The model was trained using Llama-Factory and the data is already in Alpaca instruction-tuning format.
|