File size: 4,859 Bytes
f281415
 
 
 
 
 
4fb2afa
f281415
 
 
 
 
 
 
 
 
 
 
4fb2afa
f281415
4fb2afa
f281415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
library_name: peft
license: llama3
base_model: aaditya/Llama3-OpenBioLLM-8B
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: Llama3-OpenBioLLM-8B-PsyCourse-fold2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama3-OpenBioLLM-8B-PsyCourse-fold2

This model is a fine-tuned version of [aaditya/Llama3-OpenBioLLM-8B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B) on the course-train-fold2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0346

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.4179        | 0.0775 | 50   | 0.3434          |
| 0.0933        | 0.1550 | 100  | 0.0820          |
| 0.0662        | 0.2326 | 150  | 0.0668          |
| 0.0584        | 0.3101 | 200  | 0.0589          |
| 0.0666        | 0.3876 | 250  | 0.0527          |
| 0.0448        | 0.4651 | 300  | 0.0521          |
| 0.0474        | 0.5426 | 350  | 0.0490          |
| 0.0546        | 0.6202 | 400  | 0.0431          |
| 0.0432        | 0.6977 | 450  | 0.0393          |
| 0.0526        | 0.7752 | 500  | 0.0401          |
| 0.0506        | 0.8527 | 550  | 0.0400          |
| 0.0622        | 0.9302 | 600  | 0.0419          |
| 0.0363        | 1.0078 | 650  | 0.0380          |
| 0.032         | 1.0853 | 700  | 0.0377          |
| 0.0361        | 1.1628 | 750  | 0.0435          |
| 0.0256        | 1.2403 | 800  | 0.0365          |
| 0.0361        | 1.3178 | 850  | 0.0357          |
| 0.0428        | 1.3953 | 900  | 0.0369          |
| 0.0423        | 1.4729 | 950  | 0.0367          |
| 0.0298        | 1.5504 | 1000 | 0.0382          |
| 0.0357        | 1.6279 | 1050 | 0.0366          |
| 0.0271        | 1.7054 | 1100 | 0.0375          |
| 0.0325        | 1.7829 | 1150 | 0.0370          |
| 0.0328        | 1.8605 | 1200 | 0.0346          |
| 0.0373        | 1.9380 | 1250 | 0.0346          |
| 0.0219        | 2.0155 | 1300 | 0.0351          |
| 0.0179        | 2.0930 | 1350 | 0.0380          |
| 0.018         | 2.1705 | 1400 | 0.0398          |
| 0.0203        | 2.2481 | 1450 | 0.0382          |
| 0.0257        | 2.3256 | 1500 | 0.0405          |
| 0.0165        | 2.4031 | 1550 | 0.0382          |
| 0.0212        | 2.4806 | 1600 | 0.0375          |
| 0.0315        | 2.5581 | 1650 | 0.0373          |
| 0.0155        | 2.6357 | 1700 | 0.0379          |
| 0.0188        | 2.7132 | 1750 | 0.0379          |
| 0.0195        | 2.7907 | 1800 | 0.0397          |
| 0.0213        | 2.8682 | 1850 | 0.0373          |
| 0.0171        | 2.9457 | 1900 | 0.0374          |
| 0.0108        | 3.0233 | 1950 | 0.0390          |
| 0.0125        | 3.1008 | 2000 | 0.0437          |
| 0.0046        | 3.1783 | 2050 | 0.0459          |
| 0.0059        | 3.2558 | 2100 | 0.0479          |
| 0.0088        | 3.3333 | 2150 | 0.0432          |
| 0.0074        | 3.4109 | 2200 | 0.0455          |
| 0.0105        | 3.4884 | 2250 | 0.0493          |
| 0.0116        | 3.5659 | 2300 | 0.0510          |
| 0.01          | 3.6434 | 2350 | 0.0481          |
| 0.0126        | 3.7209 | 2400 | 0.0474          |
| 0.0061        | 3.7984 | 2450 | 0.0477          |
| 0.0088        | 3.8760 | 2500 | 0.0487          |
| 0.0074        | 3.9535 | 2550 | 0.0488          |
| 0.0076        | 4.0310 | 2600 | 0.0499          |
| 0.0051        | 4.1085 | 2650 | 0.0524          |
| 0.0038        | 4.1860 | 2700 | 0.0556          |
| 0.0031        | 4.2636 | 2750 | 0.0584          |
| 0.0028        | 4.3411 | 2800 | 0.0602          |
| 0.0037        | 4.4186 | 2850 | 0.0612          |
| 0.0037        | 4.4961 | 2900 | 0.0620          |
| 0.0013        | 4.5736 | 2950 | 0.0626          |
| 0.0013        | 4.6512 | 3000 | 0.0631          |
| 0.0023        | 4.7287 | 3050 | 0.0634          |
| 0.0042        | 4.8062 | 3100 | 0.0635          |
| 0.0053        | 4.8837 | 3150 | 0.0635          |
| 0.0041        | 4.9612 | 3200 | 0.0634          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3