--- license: mit base_model: - Cran-May/CohenQu-DeepSeek-R1-Distill-Qwen-1.5B-GRPO-duplicate-fixed-6140715 - agentica-org/DeepScaleR-1.5B-Preview - deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B --- ## Example Test ```python import onnxruntime as ort import numpy as np from transformers import AutoTokenizer # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("CohenQu/DeepSeek-R1-Distill-Qwen-7B-GRPO") # Load the ONNX model onnx_model_path = "model.onnx" # Path to your ONNX model session = ort.InferenceSession(onnx_model_path) question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" inputs = tokenizer(question, return_tensors="np", padding=True) output = session.run( None, # Output names can be None to get all outputs {'input_ids': inputs['input_ids'],'attention_mask': inputs['attention_mask']} )[0] generated_text = tokenizer.decode(np.argmax(output, axis=-1)[0], skip_special_tokens=True) print("Generated Text:", generated_text) ```