File size: 35,403 Bytes
c4b099e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
"""Flax TPU Gemma2 model."""

from typing import Optional, Tuple

import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.linen import partitioning as nn_partitioning
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from jax.sharding import PartitionSpec as P

from transformers.modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
from transformers.modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_tpu_gemma2 import TPUGemma2Config


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "TPUGemma2Config"
_CHECKPOINT_FOR_DOC = "google/gemma-2-2b"
_REAL_CHECKPOINT_FOR_DOC = "openlm-research/open_llama_3b_v2"

TPU_GEMMA2_START_DOCSTRING = r"""

    This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a Flax Linen
    [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
    regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.

    Finally, this model supports inherent JAX features such as:

    - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
    - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
    - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
    - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)

    Parameters:
        config ([`GemmaConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
        dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
            The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16`, or
            `jax.numpy.bfloat16`.

            This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
            specified all the computation will be performed with the given `dtype`.

            **Note that this only specifies the dtype of the computation and does not influence the dtype of model
            parameters.**

            If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
            [`~FlaxPreTrainedModel.to_bf16`].
"""

TPU_GEMMA2_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
        past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
            Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
            auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""

remat = nn_partitioning.remat

def create_sinusoidal_positions(num_pos, dim):
    inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2)[: (dim // 2)] / dim))
    freqs = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32")

    emb = np.concatenate((freqs, freqs), axis=-1)
    out = np.concatenate((np.sin(emb)[:, None, :], np.cos(emb)[:, None, :]), axis=-1)
    return jnp.array(out[:, :, :num_pos])


# Copied from transformers.models.llama.modeling_flax_llama.rotate_half
def rotate_half(tensor):
    """Rotates half the hidden dims of the input."""
    rotate_half_tensor = jnp.concatenate(
        (-tensor[..., tensor.shape[-1] // 2 :], tensor[..., : tensor.shape[-1] // 2]), axis=-1
    )
    return rotate_half_tensor


# Copied from transformers.models.llama.modeling_flax_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(tensor, sin_pos, cos_pos):
    return (tensor * cos_pos) + (rotate_half(tensor) * sin_pos)


class FlaxTPUGemma2RMSNorm(nn.Module):
    config: TPUGemma2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.epsilon = self.config.rms_norm_eps
        self.weight = self.param("weight", lambda _, shape: jnp.ones(shape), self.config.hidden_size)

    def __call__(self, hidden_states):
        variance = jnp.asarray(hidden_states, dtype=jnp.float32)
        variance = jnp.power(variance, 2)
        variance = variance.mean(-1, keepdims=True)
        # use `jax.numpy.sqrt` as `jax.lax.rsqrt` does not match `torch.rsqrt`
        hidden_states = hidden_states / jnp.sqrt(variance + self.epsilon)

        return (1 + self.weight) * jnp.asarray(hidden_states, dtype=self.dtype)


# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaRotaryEmbedding with Llama->Gemma2
class FlaxTPUGemma2RotaryEmbedding(nn.Module):
    config: TPUGemma2Config
    dtype: jnp.dtype = jnp.float32

    # Ignore copy
    def setup(self):
        head_dim = self.config.head_dim
        self.sincos = create_sinusoidal_positions(self.config.max_position_embeddings, head_dim)

    def __call__(self, key, query, position_ids):
        sincos = self.sincos[position_ids]
        sin_pos, cos_pos = jnp.split(sincos, 2, axis=-1)

        key = apply_rotary_pos_emb(key, sin_pos, cos_pos)
        query = apply_rotary_pos_emb(query, sin_pos, cos_pos)

        key = jnp.asarray(key, dtype=self.dtype)
        query = jnp.asarray(query, dtype=self.dtype)

        return key, query


class FlaxTPUGemma2Attention(nn.Module):
    config: TPUGemma2Config
    layer_idx: int
    dtype: jnp.dtype = jnp.float32
    causal: bool = True
    is_cross_attention: bool = False

    def setup(self):
        config = self.config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = config.head_dim

        # otherwise we would manually have to scale attn weights
        assert config.query_pre_attn_scalar == config.head_dim

        self.attention_softmax_in_fp32 = self.dtype is not jnp.float32

        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads

        kernel = jax.nn.initializers.normal(self.config.initializer_range)
        self.q_proj = nn.Dense(
            self.num_heads * self.head_dim, use_bias=config.attention_bias, dtype=self.dtype, kernel_init=kernel
        )
        self.k_proj = nn.Dense(
            self.num_key_value_heads * self.head_dim,
            use_bias=config.attention_bias,
            dtype=self.dtype,
            kernel_init=kernel,
        )
        self.v_proj = nn.Dense(
            self.num_key_value_heads * self.head_dim,
            use_bias=config.attention_bias,
            dtype=self.dtype,
            kernel_init=kernel,
        )
        self.o_proj = nn.Dense(self.embed_dim, use_bias=config.attention_bias, dtype=self.dtype, kernel_init=kernel)
        self.sliding_window = config.sliding_window if not bool(self.layer_idx % 2) else None

        self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool")
        self.rotary_emb = FlaxTPUGemma2RotaryEmbedding(config, dtype=self.dtype)

    def _split_heads(self, hidden_states, num_heads):
        return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))

    def _merge_heads(self, hidden_states):
        return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads * self.head_dim,))

    @nn.compact
    # Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoSelfAttention._concatenate_to_cache
    def _concatenate_to_cache(self, key, value, query, attention_mask):
        """
        This function takes projected key, value states from a single input token and concatenates the states to cached
        states from previous steps. This function is slighly adapted from the official Flax repository:
        https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
        """
        # detect if we're initializing by absence of existing cache data.
        is_initialized = self.has_variable("cache", "cached_key")
        cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
        cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
        cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))

        if is_initialized:
            *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
            # update key, value caches with our new 1d spatial slices
            cur_index = cache_index.value
            indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
            key = lax.dynamic_update_slice(cached_key.value, key, indices)
            value = lax.dynamic_update_slice(cached_value.value, value, indices)
            cached_key.value = key
            cached_value.value = value
            num_updated_cache_vectors = query.shape[1]
            cache_index.value = cache_index.value + num_updated_cache_vectors
            # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
            pad_mask = jnp.broadcast_to(
                jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
                tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
            )
            attention_mask = combine_masks(pad_mask, attention_mask)
        return key, value, attention_mask

    def __call__(
        self,
        hidden_states,
        attention_mask,
        position_ids,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
    ):
        raw_query = self.q_proj(hidden_states)
        raw_key = self.k_proj(hidden_states)
        raw_value = self.v_proj(hidden_states)

        query = self._split_heads(raw_query, self.num_heads)
        key = self._split_heads(raw_key, self.num_key_value_heads)
        value = self._split_heads(raw_value, self.num_key_value_heads)

        key, query = self.rotary_emb(key, query, position_ids)

        query_length, key_length = query.shape[1], key.shape[1]

        if self.has_variable("cache", "cached_key"):
            mask_shift = self.variables["cache"]["cache_index"]
            max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
            causal_mask = lax.dynamic_slice(
                self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
            )
        else:
            causal_mask = self.causal_mask[:, :, :query_length, :key_length]

        batch_size = hidden_states.shape[0]
        causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])

        attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
        attention_mask = combine_masks(attention_mask, causal_mask)

        if self.sliding_window is not None:
            min_dtype = jnp.finfo(hidden_states.dtype).min
            sliding_window_mask = jnp.tril(
                jnp.ones_like(attention_mask, dtype=bool), k=-self.sliding_window
            )
            attention_mask = jnp.where(sliding_window_mask, min_dtype, attention_mask)
            if attention_mask.shape[-1] <= 1:  # when decoding
                attention_mask = attention_mask[:, :, :, -self.sliding_window :]

        dropout_rng = None
        if not deterministic and self.config.attention_dropout > 0.0:
            dropout_rng = self.make_rng("dropout")

        # During fast autoregressive decoding, we feed one position at a time,
        # and cache the keys and values step by step.
        if self.has_variable("cache", "cached_key") or init_cache:
            key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)

        # transform boolean mask into float mask
        attention_bias = lax.select(
            attention_mask > 0,
            jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
            jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
        )

        key = jnp.repeat(key, repeats=self.num_key_value_groups, axis=2)
        value = jnp.repeat(value, repeats=self.num_key_value_groups, axis=2)

        # usual dot product attention
        attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype
        attn_weights = dot_product_attention_weights(
            query,
            key,
            bias=attention_bias,
            dropout_rng=dropout_rng,
            dropout_rate=self.config.attention_dropout,
            deterministic=deterministic,
            dtype=attention_dtype,
        )

        if self.config.attn_logit_softcapping is not None:
            attn_weights = attn_weights / self.config.attn_logit_softcapping
            attn_weights = jnp.tanh(attn_weights)
            attn_weights = attn_weights * self.config.attn_logit_softcapping

        if self.attention_softmax_in_fp32:
            attn_weights = attn_weights.astype(self.dtype)

        attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
        attn_output = self._merge_heads(attn_output)
        attn_output = self.o_proj(attn_output)

        outputs = (attn_output, (raw_query, raw_key, raw_value)) if output_attentions else (attn_output,)
        return outputs


class FlaxTPUGemma2MLP(nn.Module):
    config: TPUGemma2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        embed_dim = self.config.hidden_size
        inner_dim = self.config.intermediate_size if self.config.intermediate_size is not None else 4 * embed_dim

        kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
        if self.config.hidden_activation is None:
            logger.warning_once(
                "Gemma2's activation function should be approximate GeLU and not exact GeLU. "
                "Changing the activation function to `gelu_pytorch_tanh`."
                f"if you want to use the legacy `{self.config.hidden_act}`, "
                f"edit the `model.config` to set `hidden_activation={self.config.hidden_act}` "
                "  instead of `hidden_act`. See https://github.com/huggingface/transformers/pull/29402 for more details."
            )
            hidden_activation = "gelu_pytorch_tanh"
        else:
            hidden_activation = self.config.hidden_activation
        self.act = ACT2FN[hidden_activation]

        self.gate_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
        self.down_proj = nn.Dense(embed_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
        self.up_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)

    def __call__(self, hidden_states):
        up_proj_states = self.up_proj(hidden_states)
        gate_states = self.act(self.gate_proj(hidden_states))

        hidden_states = self.down_proj(up_proj_states * gate_states)
        return hidden_states


# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaDecoderLayer with Llama->Gemma2
class FlaxTPUGemma2DecoderLayer(nn.Module):
    config: TPUGemma2Config
    layer_idx: int
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.input_layernorm = FlaxTPUGemma2RMSNorm(self.config, dtype=self.dtype)
        self.self_attn = FlaxTPUGemma2Attention(self.config, self.layer_idx, dtype=self.dtype)
        self.pre_feedforward_layernorm = FlaxTPUGemma2RMSNorm(self.config, dtype=self.dtype)
        self.post_feedforward_layernorm = FlaxTPUGemma2RMSNorm(self.config, dtype=self.dtype)
        self.post_attention_layernorm = FlaxTPUGemma2RMSNorm(self.config, dtype=self.dtype)
        self.mlp = FlaxTPUGemma2MLP(self.config, dtype=self.dtype)

    def __call__(
        self,
        hidden_states,
        attention_mask=None,
        position_ids=None,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
    ):
        mesh = getattr(self.config, "mesh", None)
        if mesh is not None:
            hidden_states = jax.lax.with_sharding_constraint(
                hidden_states, jax.sharding.NamedSharding(mesh, P("data", None, "model"))
            )
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        outputs = self.self_attn(
            hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            deterministic=deterministic,
            init_cache=init_cache,
            output_attentions=output_attentions,
        )
        # residual connection
        attn_output = self.post_attention_layernorm(outputs[0])
        hidden_states = residual + attn_output

        residual = hidden_states
        hidden_states = self.pre_feedforward_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = self.post_feedforward_layernorm(hidden_states)
        # residual connection
        hidden_states = residual + hidden_states

        return (hidden_states,) + outputs[1:]


# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoPreTrainedModel with GPTNeo->Gemma2, GPT_NEO->Gemma2, transformer->model
class FlaxTPUGemma2PreTrainedModel(FlaxPreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = TPUGemma2Config
    base_model_prefix = "model"
    module_class: nn.Module = None

    def __init__(
        self,
        config: TPUGemma2Config,
        input_shape: Tuple = (1, 1),
        seed: int = 0,
        dtype: jnp.dtype = jnp.float32,
        _do_init: bool = True,
        gradient_checkpointing: bool = False,
        **kwargs,
    ):
        module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs)
        super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)

    def enable_gradient_checkpointing(self):
        self._module = self.module_class(
            config=self.config,
            dtype=self.dtype,
            gradient_checkpointing=True,
        )

    @classmethod
    def can_generate(cls) -> bool:
        # disable generation, handled separately
        # this is convenient since GenerationConfig.from_model_config(config) needs a pickleable config
        return False

    def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
        # init input tensors
        input_ids = jnp.zeros(input_shape, dtype="i4")
        attention_mask = jnp.ones_like(input_ids)
        position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
        params_rng, dropout_rng = jax.random.split(rng)
        rngs = {"params": params_rng, "dropout": dropout_rng}

        random_params = self.module.init(rngs, input_ids, None, attention_mask, position_ids, return_dict=False)["params"]

        if params is not None:
            random_params = flatten_dict(unfreeze(random_params))
            params = flatten_dict(unfreeze(params))
            for missing_key in self._missing_keys:
                params[missing_key] = random_params[missing_key]
            self._missing_keys = set()
            return freeze(unflatten_dict(params))
        else:
            return random_params

    def init_cache(self, batch_size, max_length):
        r"""
        Args:
            batch_size (`int`):
                batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
            max_length (`int`):
                maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
                cache.
        """
        # init input variables to retrieve cache
        input_ids = jnp.ones((batch_size, max_length))
        attention_mask = jnp.ones_like(input_ids)
        position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)

        init_variables = self.module.init(
            jax.random.PRNGKey(0), input_ids, None, attention_mask, position_ids, return_dict=False, init_cache=True
        )
        return unfreeze(init_variables["cache"])

    @add_start_docstrings_to_model_forward(TPU_GEMMA2_INPUTS_DOCSTRING)
    def __call__(
        self,
        input_ids,
        inputs_embeds=None,
        attention_mask=None,
        position_ids=None,
        params: dict = None,
        past_key_values: dict = None,
        dropout_rng: jax.random.PRNGKey = None,
        train: bool = False,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.return_dict

        if input_ids is not None:
            batch_size, sequence_length = input_ids.shape
        else:
            batch_size, sequence_length, _ = inputs_embeds.shape

        if position_ids is None:
            if past_key_values is not None:
                raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")

            position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))

        if attention_mask is None:
            attention_mask = jnp.ones((batch_size, sequence_length))

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        inputs = {"params": params or self.params}

        # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGemma2Attention module
        if past_key_values:
            inputs["cache"] = past_key_values
            mutable = ["cache"]
        else:
            mutable = False

        outputs = self.module.apply(
            inputs,
            jnp.array(input_ids, dtype="i4") if input_ids is not None else None,
            inputs_embeds if inputs_embeds is not None else None,
            jnp.array(attention_mask, dtype="i4"),
            jnp.array(position_ids, dtype="i4"),
            not train,
            False,
            output_attentions,
            output_hidden_states,
            return_dict,
            rngs=rngs,
            mutable=mutable,
        )

        # add updated cache to model output
        if past_key_values is not None and return_dict:
            outputs, past_key_values = outputs
            outputs["past_key_values"] = unfreeze(past_key_values["cache"])
            return outputs
        elif past_key_values is not None and not return_dict:
            outputs, past_key_values = outputs
            outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]

        return outputs


# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaLayerCollection with Llama->Gemma2
class FlaxTPUGemma2LayerCollection(nn.Module):
    config: TPUGemma2Config
    dtype: jnp.dtype = jnp.float32
    gradient_checkpointing: bool = False

    def setup(self):
        if self.gradient_checkpointing:
            FlaxTPUGemma2DecoderCheckpointLayer = remat(FlaxTPUGemma2DecoderLayer, static_argnums=(3, 4, 5))
            self.blocks = [
                FlaxTPUGemma2DecoderCheckpointLayer(self.config, layer_idx, dtype=self.dtype, name=str(layer_idx))
                for layer_idx in range(self.config.num_hidden_layers)
            ]
        else:
            self.blocks = [
                FlaxTPUGemma2DecoderLayer(self.config, layer_idx, dtype=self.dtype, name=str(layer_idx))
                for layer_idx in range(self.config.num_hidden_layers)
            ]

    def __call__(
        self,
        hidden_states,
        attention_mask=None,
        position_ids=None,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = False,
    ):
        all_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None

        for block in self.blocks:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            layer_outputs = block(
                hidden_states,
                attention_mask,
                position_ids,
                deterministic,
                init_cache,
                output_attentions,
            )
            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions += (layer_outputs[1],)

        # this contains possible `None` values - `FlaxGemma2Module` will filter them out
        outputs = (hidden_states, all_hidden_states, all_attentions)

        return outputs


# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaModule with Llama->Gemma2
class FlaxTPUGemma2Module(nn.Module):
    config: TPUGemma2Config
    dtype: jnp.dtype = jnp.float32
    gradient_checkpointing: bool = False

    def setup(self):
        self.hidden_size = self.config.hidden_size
        embedding_init = jax.nn.initializers.normal(stddev=self.config.initializer_range)
        self.embed_tokens = nn.Embed(
            self.config.vocab_size,
            self.hidden_size,
            embedding_init=embedding_init,
            dtype=self.dtype,
        )
        self.layers = FlaxTPUGemma2LayerCollection(self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing)
        self.norm = FlaxTPUGemma2RMSNorm(self.config, dtype=self.dtype)

    # Ignore copy
    def __call__(
        self,
        input_ids,
        inputs_embeds=None,
        attention_mask=None,
        position_ids=None,
        deterministic=True,
        init_cache: bool = False,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids.astype("i4"))

        inputs_embeds = inputs_embeds * (self.config.hidden_size**0.5)

        outputs = self.layers(
            inputs_embeds,
            position_ids=position_ids,
            attention_mask=attention_mask,
            deterministic=deterministic,
            init_cache=init_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        hidden_states = self.norm(hidden_states)

        if output_hidden_states:
            all_hidden_states = outputs[1] + (hidden_states,)
            outputs = (hidden_states, all_hidden_states) + outputs[2:]
        else:
            outputs = (hidden_states,) + outputs[1:]

        if not return_dict:
            return tuple(v for v in outputs if v is not None)

        return FlaxBaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=outputs[1],
            attentions=outputs[-1],
        )


@add_start_docstrings(
    "The bare Gemma2 Model transformer outputting raw hidden-states without any specific head on top.",
    TPU_GEMMA2_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaModel with Llama->Gemma2
class FlaxTPUGemma2Model(FlaxTPUGemma2PreTrainedModel):
    module_class = FlaxTPUGemma2Module


append_call_sample_docstring(
    FlaxTPUGemma2Model,
    _CHECKPOINT_FOR_DOC,
    FlaxBaseModelOutput,
    _CONFIG_FOR_DOC,
    real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)


# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaForCausalLMModule with Llama->Gemma2
class FlaxTPUGemma2ForCausalLMModule(nn.Module):
    config: TPUGemma2Config
    dtype: jnp.dtype = jnp.float32
    gradient_checkpointing: bool = False

    def setup(self):
        self.model = FlaxTPUGemma2Module(self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing)
        self.lm_head = nn.Dense(
            self.config.vocab_size,
            use_bias=False,
            dtype=self.dtype,
            kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
        )

    # Ignore copy
    def __call__(
        self,
        input_ids,
        inputs_embeds=None,
        attention_mask=None,
        position_ids=None,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        outputs = self.model(
            input_ids,
            inputs_embeds=inputs_embeds,
            position_ids=position_ids,
            attention_mask=attention_mask,
            deterministic=deterministic,
            init_cache=init_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        if self.config.tie_word_embeddings:
            shared_kernel = self.model.variables["params"]["embed_tokens"]["embedding"].T
            lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
        else:
            lm_logits = self.lm_head(hidden_states)

        if self.config.final_logit_softcapping is not None:
            lm_logits = lm_logits / self.config.final_logit_softcapping
            lm_logits = jnp.tanh(lm_logits)
            lm_logits = lm_logits * self.config.final_logit_softcapping

        if not return_dict:
            return (lm_logits,) + outputs[1:]

        return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)


@add_start_docstrings(
    """
    The Gemma2 Model transformer with a language modeling head (linear layer) on top.
    """,
    TPU_GEMMA2_START_DOCSTRING,
)
# Copied from transformers.models.gptj.modeling_flax_gptj.FlaxGPTJForCausalLM with GPTJ->Gemma2
class FlaxTPUGemma2ForCausalLM(FlaxTPUGemma2PreTrainedModel):
    module_class = FlaxTPUGemma2ForCausalLMModule

    def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
        # initializing the cache
        batch_size, seq_length = input_ids.shape

        past_key_values = self.init_cache(batch_size, max_length)
        # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
        # But since Gemma2 uses a causal mask, those positions are masked anyways.
        # Thus we can create a single static attention_mask here, which is more efficient for compilation
        extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
        if attention_mask is not None:
            position_ids = attention_mask.cumsum(axis=-1) - 1
            extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
        else:
            position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))

        return {
            "past_key_values": past_key_values,
            "attention_mask": extended_attention_mask,
            "position_ids": position_ids,
        }

    def update_inputs_for_generation(self, model_outputs, model_kwargs):
        model_kwargs["past_key_values"] = model_outputs.past_key_values
        model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
        return model_kwargs


append_call_sample_docstring(
    FlaxTPUGemma2ForCausalLM,
    _CHECKPOINT_FOR_DOC,
    FlaxCausalLMOutput,
    _CONFIG_FOR_DOC,
    real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)