File size: 4,630 Bytes
4c3c1d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import copy

import torch
from torch import nn
from torch.optim import Adam
from tqdm import tqdm

from data import get_loaders_n_gram
from methods import MLP


def train(loader_train, loader_dev, model, device, optimizer, n_epochs):
    acc_best = 0
    model_best = None
    criterion = nn.CrossEntropyLoss()

    bar_epochs = tqdm(range(n_epochs), leave=False)
    for epoch in bar_epochs:
        # train
        bar_epoch = tqdm(loader_train, disable=True, leave=False)
        model.train()
        for x, y in bar_epoch:
            x = x.to(device)
            y = y.to(device)
            y_out = model(x)
            loss = criterion(y_out, y.type(torch.LongTensor))
            loss.backward()
            optimizer.step()
            loss_iter = loss.item()
            bar_epoch.set_postfix({"loss": loss_iter})
        bar_epoch.close()

        bar_dev = tqdm(loader_dev, disable=True, leave=False)
        model.eval()

        # val
        ys_pred, ys_true = [], []
        with torch.no_grad():
            for x, y in bar_dev:
                x = x.to(device)
                y = y.to(device)
                y_out = model(x)
                y_pred = torch.argmax(y_out, axis=1)
                ys_pred.append(y_pred.cpu())
                ys_true.append(y.cpu())
        bar_dev.close()
        ys_pred = torch.cat(ys_pred)
        ys_true = torch.cat(ys_true)
        acc = (ys_pred == ys_true).float().mean()
        acc = acc.item() * 100
        if acc > acc_best:
            acc_best = acc
            model_best = copy.deepcopy(model)
        bar_epochs.set_postfix({"acc_best": acc_best})

    return model_best


def test(loader_test, model, device):
    model.eval()
    ys_pred, ys_true = [], []
    bar_test = tqdm(loader_test, leave=False)
    with torch.no_grad():
        for x, y in bar_test:
            x = x.to(device)
            y = y.to(device)
            y_pred = model(x)
            y_pred = torch.argmax(y_pred, axis=1)
            ys_pred.append(y_pred.cpu())
            ys_true.append(y.cpu())

    bar_test.close()

    ys_pred = torch.cat(ys_pred)
    ys_true = torch.cat(ys_true)

    return ys_pred, ys_true


def run(
    csv_file,
    seed,
    n=5,
    topk=1000,
    ratio_dev=0.1,
    ratio_test=0.1,
    batch_size=32,
    size_hidden=None,
    dropout=0.1,
    n_epochs=50,
    lr=3e-4,
    weight_decay=0,
):
    # data settings
    ratio_dev = ratio_dev
    ratio_test = ratio_test
    batch_size = batch_size
    n = n
    data = get_loaders_n_gram(
        csv_file,
        n=n,
        topk=topk,
        ratio_dev=ratio_dev,
        ratio_test=ratio_test,
        seed=seed,
        batch_size=batch_size,
    )
    size_x = data["sizes"]["x"]
    size_y = data["sizes"]["y"]
    loader_train = data["loaders"]["train"]
    loader_dev = data["loaders"]["dev"]
    loader_test = data["loaders"]["test"]
    # device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # model settings
    if size_hidden is None:
        size_hidden = [size_x // 2, size_x // 4]
    size_hidden = [size_x] + size_hidden
    dropout = dropout
    model = MLP(
        size_in=size_x,
        size_out=size_y,
        size_hidden=size_hidden,
        dropout=dropout,
    )
    model = model.to(device)

    # training settings
    n_epochs = n_epochs
    lr = lr
    weight_decay = weight_decay
    optimizer = Adam(
        model.parameters(),
        lr=lr,
        weight_decay=weight_decay,
    )

    # train
    model_best = train(loader_train, loader_dev, model, device, optimizer, n_epochs)
    return test(loader_test, model_best, device)


if __name__ == "__main__":
    # data dir
    csv_file = "./_DATA/all_chem_df.csv"
    # number of trials
    n_trials = 5
    seeds = list(range(n_trials))
    # data settings
    topk = 1000
    ratio_dev = 0.1
    ratio_test = 0.2
    batch_size = 32
    # model settings
    n = 5
    dropout = 0.1
    size_hidden = [512, 256, 128, 32]
    # training settings
    n_epochs = 200
    lr = 3e-5
    weight_decay = 0

    

    for seed in seeds:
        y_pred, y_true = run(
            csv_file,
            seed,
            n,
            topk,
            ratio_dev,
            ratio_test,
            batch_size,
            size_hidden,
            dropout,
            n_epochs,
            lr,
        )
        log_file = f"./scores/MLP/{seed}-seed--{n}-gram--topk-{topk}--lr-{lr}.csv"
        with open(log_file, "a") as f:
            f.write("pred,true\n")
            for p, t in zip(y_pred, y_true):
                f.write(f"{p},{t}\n")