File size: 7,245 Bytes
4c3c1d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from collections import Counter
from itertools import product
import numpy as np
import pandas as pd
import torch
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset
def read_csv(
csv_file,
x_col="smiles",
y_col="tags",
):
df = pd.read_csv(csv_file)
all_y = set()
all_x = set()
# drop multi columns
df = df[~df[y_col].str.contains(" ")]
x = df[x_col]
y = df[y_col]
# find all y
for item_y in y:
all_y.update(item_y.split(" "))
# make y mapping
mapping_y = {val: index for index, val in enumerate(sorted(list(all_y)))}
# find all x
for item_x in x:
all_x.update(set(item_x))
# make x mapping
mapping_x = {val: index + 1 for index, val in enumerate(sorted(list(all_x)))}
mapping_x["<pad>"] = 0
# encode y
ys = [mapping_y[i] for i in y]
ys = np.array(ys)
# encode x
xs = []
for item_x in x:
encoded_item = [mapping_x[c] for c in item_x]
xs.append(encoded_item)
xs = [np.array(item) for item in xs]
to_return = {
"x": {"raw": x.values, "data": xs},
"y": {"data": ys},
"mapping": {"x": mapping_x, "y": mapping_y},
}
return to_return
def split_data(data, ratio_dev=0.1, ratio_test=0.1, seed=None):
# random number generator
rng = np.random.default_rng(seed=seed)
# dataset sizes
size_total = len(data["y"]["data"])
ratios = {"dev": ratio_dev, "test": ratio_test}
sizes = {}
for split, ratio in ratios.items():
sizes[split] = int(ratio * size_total)
sizes["train"] = size_total - sum(sizes.values())
# split
index = np.arange(size_total)
rng.shuffle(index)
indices = {}
start = 0
for split, size in sizes.items():
indices[split] = index[start : start + size]
start += size
splits = {}
for split, index in indices.items():
x_data = data["x"]
x_data = {k: [v[i] for i in index] for k, v in x_data.items()}
y_data = data["y"]
y_data = {k: v[index] for k, v in y_data.items()}
splits[split] = {"x": x_data, "y": y_data}
return splits
def make_n_gram_mapping(mapping, n):
values = mapping.keys()
combos = product(values, repeat=n)
mapping = {"".join(v): i for i, v in enumerate(sorted(combos))}
return mapping
def count_n_grams(text, n):
len_gram = len(text) + 1 - n
n_grams = [text[i : i + n] for i in range(len_gram)]
return Counter(n_grams)
def get_topk_n_grams(data, n, topk=1000):
counters = [count_n_grams(text, n) for text in data]
counter = Counter()
for c in counters:
counter += c
results = [w for w, _ in counter.most_common(topk)]
return results
def sequence_collate(batch):
x, y = zip(*batch)
x = [torch.LongTensor(item) for item in x]
lens = torch.LongTensor([len(i) for i in x])
x_padded = pad_sequence(x, batch_first=True, padding_value=0)
y = torch.LongTensor(np.array(y))
_, perm_idx = lens.sort(0, descending=True)
return x_padded[perm_idx], y[perm_idx], lens[perm_idx]
class NgramDataset(Dataset):
"""
Encoder based on n grams
"""
def __init__(self, x, y, top_grams=None, n=1, topk=1000):
data_x = x["raw"]
data_y = y["data"]
if top_grams is None:
top_grams = get_topk_n_grams(data_x, n, topk=topk)
all_grams = []
for item_x in data_x:
unk = 0 # other tokens
grams = count_n_grams(item_x, n)
item = [grams[g] for g in top_grams]
unk = [v for k, v in grams.items() if k not in top_grams] # unk
unk = sum(unk)
item.append(unk)
all_grams.append(item)
self.top_grams = top_grams
self.x = np.array(all_grams, dtype="float32")
self.x_raw = data_x
self.y = np.array(data_y, dtype="long")
def __getitem__(self, index):
item_x = self.x[index]
item_y = self.y[index]
return item_x, item_y
def __len__(self):
return len(self.x)
class SequenceDataset(Dataset):
"""
Encode each character in sequence.
0: padding
"""
def __init__(self, x, y, mapping_x, mapping_y, n=1):
data_x = x["data"]
data_y = y["data"]
self.x = data_x
self.x_raw = x["raw"]
self.y = np.array(data_y, dtype="int64")
self.mapping_x = mapping_x
self.mapping_x_inverse = {v: k for k, v in self.mapping_x.items()}
self.mapping_y = mapping_y
self.mapping_y_inverse = {v: k for k, v in self.mapping_y.items()}
def __getitem__(self, index):
item_x = np.array(self.x[index], dtype="int64")
item_y = self.y[index]
return item_x, item_y
def __len__(self):
return len(self.x)
def get_loaders_n_gram(
csv_file, n=1, topk=20, ratio_dev=0.1, ratio_test=0.1, batch_size=32, seed=None
):
data = read_csv(csv_file)
mapping_x = data["mapping"]["x"]
mapping_y = data["mapping"]["y"]
splits = split_data(
data,
ratio_dev=ratio_dev,
ratio_test=ratio_test,
seed=seed,
)
# make train sets
split_train = splits.pop("train")
dataset_train = NgramDataset(split_train["x"], split_train["y"], n=n, topk=topk)
top_grams = dataset_train.top_grams
datasets = {
k: NgramDataset(v["x"], v["y"], n=n, top_grams=top_grams)
for k, v in splits.items()
}
datasets["train"] = dataset_train
# batch size * 2 for train
batch_sizes = {
k: batch_size if k == "train" else batch_size * 2 for k in datasets.keys()
}
# shuffle only the train set
shuffle = {k: True if k == "train" else False for k in datasets.keys()}
# make loaders
loaders = {
k: DataLoader(v, batch_size=batch_sizes[k], shuffle=shuffle[k])
for k, v in datasets.items()
}
# find sizes
size_x = len(top_grams) + 1
size_y = len(mapping_y)
return {"loaders": loaders, "sizes": {"x": size_x, "y": size_y}}
def get_loaders_sequence(
csv_file,
ratio_dev=0.1,
ratio_test=0.1,
batch_size=32,
seed=None,
):
data = read_csv(csv_file)
mapping_x = data["mapping"]["x"]
mapping_y = data["mapping"]["y"]
splits = split_data(
data,
ratio_dev=ratio_dev,
ratio_test=ratio_test,
seed=seed,
)
datasets = {
k: SequenceDataset(v["x"], v["y"], mapping_x, mapping_y)
for k, v in splits.items()
}
# batch size * 2 for train
batch_sizes = {
k: batch_size if k == "train" else batch_size * 2 for k in datasets.keys()
}
# shuffle only the train set
shuffle = {k: True if k == "train" else False for k in datasets.keys()}
# make loaders
loaders = {
k: DataLoader(
v,
batch_size=batch_sizes[k],
shuffle=shuffle[k],
collate_fn=sequence_collate,
)
for k, v in datasets.items()
}
# find sizes
size_x = len(mapping_x)
size_y = len(mapping_y)
return {"loaders": loaders, "sizes": {"x": size_x, "y": size_y}}
|