File size: 7,245 Bytes
4c3c1d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#!/usr/bin/env python
# -*- coding: utf-8 -*-

from collections import Counter
from itertools import product

import numpy as np
import pandas as pd
import torch
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset


def read_csv(
    csv_file,
    x_col="smiles",
    y_col="tags",
):
    df = pd.read_csv(csv_file)

    all_y = set()
    all_x = set()

    # drop multi columns
    df = df[~df[y_col].str.contains(" ")]

    x = df[x_col]
    y = df[y_col]

    # find all y
    for item_y in y:
        all_y.update(item_y.split(" "))

    # make y mapping
    mapping_y = {val: index for index, val in enumerate(sorted(list(all_y)))}

    # find all x
    for item_x in x:
        all_x.update(set(item_x))

    # make x mapping
    mapping_x = {val: index + 1 for index, val in enumerate(sorted(list(all_x)))}
    mapping_x["<pad>"] = 0

    # encode y
    ys = [mapping_y[i] for i in y]
    ys = np.array(ys)

    # encode x
    xs = []
    for item_x in x:
        encoded_item = [mapping_x[c] for c in item_x]
        xs.append(encoded_item)
    xs = [np.array(item) for item in xs]

    to_return = {
        "x": {"raw": x.values, "data": xs},
        "y": {"data": ys},
        "mapping": {"x": mapping_x, "y": mapping_y},
    }
    return to_return


def split_data(data, ratio_dev=0.1, ratio_test=0.1, seed=None):
    # random number generator
    rng = np.random.default_rng(seed=seed)

    # dataset sizes
    size_total = len(data["y"]["data"])
    ratios = {"dev": ratio_dev, "test": ratio_test}
    sizes = {}
    for split, ratio in ratios.items():
        sizes[split] = int(ratio * size_total)
    sizes["train"] = size_total - sum(sizes.values())

    # split
    index = np.arange(size_total)
    rng.shuffle(index)

    indices = {}
    start = 0
    for split, size in sizes.items():
        indices[split] = index[start : start + size]
        start += size

    splits = {}
    for split, index in indices.items():
        x_data = data["x"]
        x_data = {k: [v[i] for i in index] for k, v in x_data.items()}

        y_data = data["y"]
        y_data = {k: v[index] for k, v in y_data.items()}

        splits[split] = {"x": x_data, "y": y_data}

    return splits


def make_n_gram_mapping(mapping, n):
    values = mapping.keys()
    combos = product(values, repeat=n)
    mapping = {"".join(v): i for i, v in enumerate(sorted(combos))}
    return mapping


def count_n_grams(text, n):
    len_gram = len(text) + 1 - n
    n_grams = [text[i : i + n] for i in range(len_gram)]
    return Counter(n_grams)


def get_topk_n_grams(data, n, topk=1000):
    counters = [count_n_grams(text, n) for text in data]
    counter = Counter()
    for c in counters:
        counter += c
    results = [w for w, _ in counter.most_common(topk)]
    return results


def sequence_collate(batch):
    x, y = zip(*batch)
    x = [torch.LongTensor(item) for item in x]
    lens = torch.LongTensor([len(i) for i in x])
    x_padded = pad_sequence(x, batch_first=True, padding_value=0)
    y = torch.LongTensor(np.array(y))
    _, perm_idx = lens.sort(0, descending=True)
    return x_padded[perm_idx], y[perm_idx], lens[perm_idx]


class NgramDataset(Dataset):
    """
    Encoder based on n grams
    """

    def __init__(self, x, y, top_grams=None, n=1, topk=1000):
        data_x = x["raw"]
        data_y = y["data"]
        if top_grams is None:
            top_grams = get_topk_n_grams(data_x, n, topk=topk)

        all_grams = []
        for item_x in data_x:
            unk = 0  # other tokens
            grams = count_n_grams(item_x, n)
            item = [grams[g] for g in top_grams]
            unk = [v for k, v in grams.items() if k not in top_grams]  # unk
            unk = sum(unk)
            item.append(unk)
            all_grams.append(item)

        self.top_grams = top_grams
        self.x = np.array(all_grams, dtype="float32")
        self.x_raw = data_x
        self.y = np.array(data_y, dtype="long")

    def __getitem__(self, index):
        item_x = self.x[index]
        item_y = self.y[index]

        return item_x, item_y

    def __len__(self):
        return len(self.x)


class SequenceDataset(Dataset):
    """
    Encode each character in sequence.
    0: padding
    """

    def __init__(self, x, y, mapping_x, mapping_y, n=1):
        data_x = x["data"]
        data_y = y["data"]

        self.x = data_x

        self.x_raw = x["raw"]
        self.y = np.array(data_y, dtype="int64")

        self.mapping_x = mapping_x
        self.mapping_x_inverse = {v: k for k, v in self.mapping_x.items()}
        self.mapping_y = mapping_y
        self.mapping_y_inverse = {v: k for k, v in self.mapping_y.items()}

    def __getitem__(self, index):
        item_x = np.array(self.x[index], dtype="int64")
        item_y = self.y[index]

        return item_x, item_y

    def __len__(self):
        return len(self.x)


def get_loaders_n_gram(
    csv_file, n=1, topk=20, ratio_dev=0.1, ratio_test=0.1, batch_size=32, seed=None
):
    data = read_csv(csv_file)
    mapping_x = data["mapping"]["x"]
    mapping_y = data["mapping"]["y"]
    splits = split_data(
        data,
        ratio_dev=ratio_dev,
        ratio_test=ratio_test,
        seed=seed,
    )

    # make train sets
    split_train = splits.pop("train")
    dataset_train = NgramDataset(split_train["x"], split_train["y"], n=n, topk=topk)
    top_grams = dataset_train.top_grams

    datasets = {
        k: NgramDataset(v["x"], v["y"], n=n, top_grams=top_grams)
        for k, v in splits.items()
    }
    datasets["train"] = dataset_train
    # batch size * 2 for train
    batch_sizes = {
        k: batch_size if k == "train" else batch_size * 2 for k in datasets.keys()
    }
    # shuffle only the train set
    shuffle = {k: True if k == "train" else False for k in datasets.keys()}
    # make loaders
    loaders = {
        k: DataLoader(v, batch_size=batch_sizes[k], shuffle=shuffle[k])
        for k, v in datasets.items()
    }
    # find sizes
    size_x = len(top_grams) + 1
    size_y = len(mapping_y)
    return {"loaders": loaders, "sizes": {"x": size_x, "y": size_y}}


def get_loaders_sequence(
    csv_file,
    ratio_dev=0.1,
    ratio_test=0.1,
    batch_size=32,
    seed=None,
):
    data = read_csv(csv_file)
    mapping_x = data["mapping"]["x"]
    mapping_y = data["mapping"]["y"]
    splits = split_data(
        data,
        ratio_dev=ratio_dev,
        ratio_test=ratio_test,
        seed=seed,
    )

    datasets = {
        k: SequenceDataset(v["x"], v["y"], mapping_x, mapping_y)
        for k, v in splits.items()
    }
    # batch size * 2 for train
    batch_sizes = {
        k: batch_size if k == "train" else batch_size * 2 for k in datasets.keys()
    }
    # shuffle only the train set
    shuffle = {k: True if k == "train" else False for k in datasets.keys()}
    # make loaders
    loaders = {
        k: DataLoader(
            v,
            batch_size=batch_sizes[k],
            shuffle=shuffle[k],
            collate_fn=sequence_collate,
        )
        for k, v in datasets.items()
    }
    # find sizes
    size_x = len(mapping_x)
    size_y = len(mapping_y)
    return {"loaders": loaders, "sizes": {"x": size_x, "y": size_y}}