--- language: - en base_model: - distilbert/distilroberta-base pipeline_tag: text-classification library_name: transformers --- DistilRoBERTa finetuned for Emotion Recognition Task. 🗨️ Base Model: [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) 🎯 Accuracy: 0.9006 \ ✔️ F1 Score: 0.8991 \ 📉 Loss: 0.3183 ### Training Hyperparameters train_epochs: 20 \ Batch train_batch_size: 32 \ warmup_steps: 50 \ weight_decay: 0.02 ### Datasets: 1️⃣ [Emotion Dataset](https://www.kaggle.com/datasets/abdallahwagih/emotion-dataset), \ 2️⃣ [Emotion Dataset](https://www.kaggle.com/datasets/parulpandey/emotion-dataset), \ 3️⃣ [Emotion Dataset](https://www.kaggle.com/datasets/chanakyar/emotion-dataset-link), ### Emotions (0) anger (1) disgust (2) fear (3) joy (4) love (5) neutral (6) sadness (7) surprise ### Classification Report ``` precision recall f1-score support anger 0.8970 0.8714 0.8840 3679 disgust 0.9777 1.0000 0.9887 3680 fear 0.9035 0.8647 0.8836 3680 joy 0.8348 0.7399 0.7845 3680 love 0.9756 1.0000 0.9877 3680 neutral 0.9351 0.9984 0.9657 3680 sadness 0.8649 0.7916 0.8266 3680 surprise 0.8133 0.9389 0.8716 3680 accuracy 0.9006 29439 macro avg 0.9002 0.9006 0.8991 29439 weighted avg 0.9002 0.9006 0.8991 29439 ``` *Sneak Peak*: To be used as a part of a larger multimodal emotion recognition framework. (Late Fusion, Early Fusion and RL based approach 😱)