qianliyx commited on
Commit
c9ee533
·
verified ·
1 Parent(s): ae2f67c

Upload 7 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/sample1.jpg filter=lfs diff=lfs merge=lfs -text
37
+ zanshan.jpg filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,133 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AnyTable
2
+
3
+ <a href="https://huggingface.co/oriforge/anytable" target="_blank"><img src="https://img.shields.io/badge/%F0%9F%A4%97-HuggingFace-blue"></a>
4
+ <a href="https://www.modelscope.cn/models/oriforge/table" target="_blank"><img alt="Static Badge" src="https://img.shields.io/badge/%E9%AD%94%E6%90%AD-ModelScope-blue"></a>
5
+ <a href=""><img src="https://img.shields.io/badge/Python->=3.6-aff.svg"></a>
6
+ <a href=""><img src="https://img.shields.io/badge/OS-Linux%2C%20Win%2C%20Mac-pink.svg"></a>
7
+ <a href=""><img alt="Static Badge" src="https://img.shields.io/badge/engine-cpu_gpu_onnxruntime-blue"></a>
8
+
9
+ ```
10
+ ___ ______ __ __
11
+ / | ____ __ _/_ __/___ _/ /_ / /__
12
+ / /| | / __ \/ / / // / / __ `/ __ \/ / _ \
13
+ / ___ |/ / / / /_/ // / / /_/ / /_/ / / __/
14
+ /_/ |_/_/ /_/\__, //_/ \__,_/_.___/_/\___/
15
+ /____/
16
+
17
+ ```
18
+
19
+ 简体中文 | [English](./README_en.md)
20
+
21
+ <div align="left">
22
+ <img src="./assets/sample1.jpg">
23
+ </div>
24
+
25
+
26
+ ## 1. 简介
27
+
28
+ AnyTable是一个专注于从文档或者图片中表格解析的模型工具,主要分成两个部分:
29
+ - anytable-det:用于表格区域检测(已开放)
30
+ - anytable-rec:用于表格结构识别(未来开放)
31
+
32
+ 项目地址:
33
+ - github地址:[AnyTable](https://github.com/oriforge/anytable)
34
+ - Hugging Face: [AnyTable](https://huggingface.co/oriforge/anytable)
35
+ - ModelScope: [AnyTable](https://www.modelscope.cn/models/oriforge/anytable)
36
+
37
+ ## 2. 缘起
38
+
39
+ 目前市面上表格数据非常多且混杂,很难有一个干净的完整数据和模型,为此我们收集并整理了很多表格数据,训练了我们的模型。
40
+
41
+ 检测数据集分布:
42
+
43
+ - pubtables: 947642
44
+ - synthtabnet.marketing: 149999
45
+ - tablebank: 278582
46
+ - fintabnet.c: 97475
47
+ - pubtabnet: 519030
48
+ - synthtabnet.sparse: 150000
49
+ - synthtabnet.fintabnet: 149999
50
+ - docbank: 24517
51
+ - synthtabnet.pubtabnet: 150000
52
+ - cTDaRTRACKA: 1639
53
+ - SciTSR: 14971
54
+ - doclaynet.large: 21185
55
+ - IIITAR13K: 9905
56
+ - selfbuilt: 121157
57
+
58
+ 数据集总计:大于`2.6M`(大约2633869张图片)。
59
+
60
+ ### 扩展训练
61
+
62
+ - 训练集:`2.6M(大于10万的部分只抽样了42000, 没办法因为贫穷,卡有限。)`
63
+ - 测试集:`4k`
64
+ - python: 3.12
65
+ - pytorch: 2.6.0
66
+ - cuda: 12.3
67
+ - ultralytics: 8.3.128
68
+
69
+ ### 模型介绍
70
+
71
+ 表格检测模型位于det文件夹下:
72
+ - yolo系列:使用ultralytics训练yolo检测
73
+ - rt-detr:使用ultralytics训练rt-detr检测
74
+
75
+ 注释:您可以直接模型预测,也可以作为预训练模型微调私有数据集
76
+
77
+ ### 评估
78
+
79
+ 自建评估集:`4K`
80
+
81
+ | model | imgsz | epochs | metrics/precision |
82
+ |---|---|---|---|
83
+ |rt-detr-l|960|10|0.97|
84
+ |yolo11s|960|10|-|
85
+ |yolo11m|960|10|0.964|
86
+ |yolo12s|960|10|0.978|
87
+
88
+
89
+ ## 3. 使用方法
90
+
91
+ ### 安装依赖
92
+
93
+ ```bash
94
+ pip install ultralytics pillow
95
+ ```
96
+
97
+ ### 使用方法
98
+
99
+ ```python
100
+ ## simple
101
+ ## 下载模型后直接使用ultralytics即可
102
+
103
+ from ultralytics import YOLO,RTDETR
104
+
105
+ # Load a model
106
+ model = YOLO("/path/to/download_model") # pretrained YOLO11n model
107
+
108
+ # Run batched inference on a list of images
109
+ results = model(["/path/to/your_image"],imgsz = 960) # return a list of Results objects
110
+
111
+ # Process results list
112
+ for result in results:
113
+ boxes = result.boxes # Boxes object for bounding box outputs
114
+ masks = result.masks # Masks object for segmentation masks outputs
115
+ keypoints = result.keypoints # Keypoints object for pose outputs
116
+ probs = result.probs # Probs object for classification outputs
117
+ obb = result.obb # Oriented boxes object for OBB outputs
118
+ result.show() # display to screen
119
+ result.save(filename="result.jpg") # save to disk
120
+
121
+ ```
122
+
123
+ ## Buy me a coffee
124
+
125
+ - 微信(WeChat)
126
+
127
+ <div align="left">
128
+ <img src="./zanshan.jpg" width="30%" height="30%">
129
+ </div>
130
+
131
+ ## 特别鸣谢
132
+ - ultralytics公开的训练模型和文档
133
+ - 各种数据集提供者
README_en.md ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AnyTable
2
+
3
+ <a href="https://huggingface.co/oriforge/anytable" target="_blank"><img src="https://img.shields.io/badge/%F0%9F%A4%97-HuggingFace-blue"></a>
4
+ <a href="https://www.modelscope.cn/models/oriforge/table" target="_blank"><img alt="Static Badge" src="https://img.shields.io/badge/%E9%AD%94%E6%90%AD-ModelScope-blue"></a>
5
+ <a href=""><img src="https://img.shields.io/badge/Python->=3.6-aff.svg"></a>
6
+ <a href=""><img src="https://img.shields.io/badge/OS-Linux%2C%20Win%2C%20Mac-pink.svg"></a>
7
+ <a href=""><img alt="Static Badge" src="https://img.shields.io/badge/engine-cpu_gpu_onnxruntime-blue"></a>
8
+
9
+ ```
10
+ ___ ______ __ __
11
+ / | ____ __ _/_ __/___ _/ /_ / /__
12
+ / /| | / __ \/ / / // / / __ `/ __ \/ / _ \
13
+ / ___ |/ / / / /_/ // / / /_/ / /_/ / / __/
14
+ /_/ |_/_/ /_/\__, //_/ \__,_/_.___/_/\___/
15
+ /____/
16
+
17
+ ```
18
+
19
+ English | [简体中文](./README.md)
20
+
21
+ <div align="left">
22
+ <img src="./assets/sample1.jpg">
23
+ </div>
24
+
25
+ ## 1. Introduction
26
+
27
+ AnyTable is a modeling tool that focuses on parsing tables from documents or images, mainly divided into two parts:
28
+ -Anytable det: used for table region detection (open)
29
+ -Anytable rec: used for table structure recognition (open in the future)
30
+
31
+ Project Address:
32
+ - github地址:[AnyTable](https://github.com/oriforge/anytable)
33
+ - Hugging Face: [AnyTable](https://huggingface.co/oriforge/anytable)
34
+ - ModelScope: [AnyTable](https://www.modelscope.cn/models/oriforge/anytable)
35
+
36
+ ## 2. Origin
37
+
38
+ At present, there are a lot of mixed table data on the market, making it difficult to have a clean and complete data and model. Therefore, we collected and organized a lot of table data and trained our model.
39
+
40
+ Detecting dataset distribution:
41
+
42
+ - pubtables: 947642
43
+ - synthtabnet.marketing: 149999
44
+ - tablebank: 278582
45
+ - fintabnet.c: 97475
46
+ - pubtabnet: 519030
47
+ - synthtabnet.sparse: 150000
48
+ - synthtabnet.fintabnet: 149999
49
+ - docbank: 24517
50
+ - synthtabnet.pubtabnet: 150000
51
+ - cTDaRTRACKA: 1639
52
+ - SciTSR: 14971
53
+ - doclaynet.large: 21185
54
+ - IIITAR13K: 9905
55
+ - selfbuilt: 121157
56
+
57
+ Total dataset: greater than 2.6M (approximately 2633869 images).
58
+
59
+ ### Train
60
+
61
+ - train set:`2.6M(Only 42000 samples were taken for the portion greater than 100000,Due to poverty, the cards are limited.)`
62
+ - eval set:`4k`
63
+ - python: 3.12
64
+ - pytorch: 2.6.0
65
+ - cuda: 12.3
66
+ - ultralytics: 8.3.128
67
+
68
+ ### Model introduction
69
+
70
+ The table detection model is located in the det folder:
71
+
72
+ - YOLO series: Training YOLO detection using ultralytics
73
+ - Rt detr: Training rt detr detection using ultralytics
74
+
75
+ Note: You can directly predict the model or fine tune the private dataset as a pre trained model
76
+
77
+ ### Eval
78
+
79
+ self built evaluation set:`4K`
80
+
81
+ | model | imgsz | epochs | metrics/precision |
82
+ |---|---|---|---|
83
+ |rt-detr-l|960|10|0.97|
84
+ |yolo11s|960|10|-|
85
+ |yolo11m|960|10|0.964|
86
+ |yolo12s|960|10|0.978|
87
+
88
+
89
+ ## 3. Usage
90
+
91
+ ### Install dependencies
92
+
93
+ ```bash
94
+ pip install ultralytics pillow
95
+ ```
96
+
97
+ ### Usage
98
+
99
+ ```python
100
+ ## simple
101
+ ## After downloading the model, simply use ultralytics directly
102
+
103
+ from ultralytics import YOLO,RTDETR
104
+
105
+ # Load a model
106
+ model = YOLO("/path/to/download_model") # pretrained YOLO11n model
107
+
108
+ # Run batched inference on a list of images
109
+ results = model(["/path/to/your_image"],imgsz = 960) # return a list of Results objects
110
+
111
+ # Process results list
112
+ for result in results:
113
+ boxes = result.boxes # Boxes object for bounding box outputs
114
+ masks = result.masks # Masks object for segmentation masks outputs
115
+ keypoints = result.keypoints # Keypoints object for pose outputs
116
+ probs = result.probs # Probs object for classification outputs
117
+ obb = result.obb # Oriented boxes object for OBB outputs
118
+ result.show() # display to screen
119
+ result.save(filename="result.jpg") # save to disk
120
+
121
+ ```
122
+
123
+ ## Buy me a coffee
124
+
125
+ - 微信(WeChat)
126
+
127
+ <div align="left">
128
+ <img src="./zanshan.jpg" width="30%" height="30%">
129
+ </div>
130
+
131
+ ## Special thanks
132
+
133
+ - Ultralytics publicly available training models and documentation
134
+ - Various dataset providers
assets/sample1.jpg ADDED

Git LFS Details

  • SHA256: 91097e8f29a0ed24fd94761b6f101943ef3e2460f0093de7e865fa7170e5c836
  • Pointer size: 131 Bytes
  • Size of remote file: 438 kB
det/anytable-det-rtdetr-l-imgsz960.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3d8bb4b94a4219394c116eba8d5ee59f47e44f7131b0338f91076123a90b831
3
+ size 66131712
det/anytable-det-yolo11m-imgsz960.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74002c6849c3e7eb41e8fa6cfcc053fc3d815b824db9a467db929a22e0c90d98
3
+ size 40527013
det/anytable-det-yolo12s-imgsz960.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e84eb6d911e5cc66d75b7aff522799cd53fa3fc8900b3d67551cec31bfcd5e3a
3
+ size 18931923
zanshan.jpg ADDED

Git LFS Details

  • SHA256: b2ced132c4413fcb940b256084b8eae368f02069f94f2065450af800f8960457
  • Pointer size: 131 Bytes
  • Size of remote file: 106 kB