# -*- coding: utf-8 -*- """mohanism.195 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1AvIdAQmhCWUUe6rT9sck2gBGkecNCjEc """ !pip install dotenv from dotenv import load_dotenv,find_dotenv load_dotenv(find_dotenv()) from langchain.llns import OpenAI llm = OpenAI(model_name="text-davinci-003") llm("explain large language models in one sentence") from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) from langchain.chat_models import ChatOpenAI chat = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.3) messages = ( SystemMessage(content="You are an expert data scientist"), HumanMessage(content="Write a Python script that trains a neural network on simulated data ") ) response=chat(messages) print(response.content,ends="\n") from langchain import PromptTemplate template = """You are an expert data scientist with an expertise in building deep learning models, Explain the concept of {concept} in a couple of lines """ prompt = PromptTemplate( input_variable=["concept"], template=template, ) prompt llm(prompt.format(concept="autoencoder")) from langchain.chains import LLMChain chain = LLMchain(llm=lln, prompt=prompt) second_prompt = PromptTemplate( input_variables=["ml_concept"], template="Turn the concept description of {ml_concept} and explain it to me like I'm five in 500 words", ) chain_two = LLMChain(llm=llm, prompt=second_prompt) from langchain.chains import SimpleSequenttialChain overall_chain = SimpleSequenttialChain(chains=[chain, chain_two], verbose=True) explanation = overall_chain.run("autoencoder") print(explanation) from langchain.text_splitter importRecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter( chunk_size = 100, chunk_overlap = 0, ) text = text_splitter.create_documents([explanation]) text[0].page_content from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings(model_name="ada") query_result = embeddings.embed_query(texts[0].page_content) query_result import os import pinecome from langchain.vectors import Pinecone # initialize pinecome pinecome.init( api_key=os.getenv["PINECONE_API_KEY"], environment(=os.getenv("PINECONE_ENV") ) index_name = "langchain-quickstart" search = Pinecone.form_documents(texts, embeddings, index_name=index_name) query = "What is magical about an autoencoder?" result = search.similarity_search(query) result from langhain.agent.agent_toolkets import create_python_agent from langchain.tools.python.tool import PythonREPLTool from langchain.python import PythonREPL from langchain.llms.openai import OpenAI agent_executor = create_python_agent( llm=OpenAI(temperature=0), max_tokens=1000), verbose=True ) agent_executor.run("Find the roots (zeros) if the quadratic function 3 * x==2 + 2** - 1")