Upload magnet_2_0.py
Browse files- magnet_2_0.py +947 -0
magnet_2_0.py
ADDED
@@ -0,0 +1,947 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""MagNet 2.0
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1n4ADxn-u0nAkYm6mKMzzhiH1vl97qImr
|
8 |
+
"""
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.optim as optim
|
13 |
+
|
14 |
+
# Simulate wealth distribution (e.g., 100 individuals with a certain wealth amount)
|
15 |
+
wealth_distribution = torch.randn(100, 1) # (100 people, 1 wealth feature)
|
16 |
+
|
17 |
+
# Define the target direction (randomly initialized, or learned)
|
18 |
+
target_direction = torch.randn(100, 1)
|
19 |
+
|
20 |
+
# Define a simple model to transfer wealth in the target direction
|
21 |
+
class WealthTransferModel(nn.Module):
|
22 |
+
def __init__(self, input_size, hidden_size, output_size):
|
23 |
+
super(WealthTransferModel, self).__init__()
|
24 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
25 |
+
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
26 |
+
self.fc3 = nn.Linear(hidden_size, output_size)
|
27 |
+
self.relu = nn.ReLU()
|
28 |
+
|
29 |
+
def forward(self, x, target):
|
30 |
+
# Combine wealth signal with target information (concatenate or element-wise)
|
31 |
+
x = torch.cat((x, target), dim=1)
|
32 |
+
# Process wealth signal with dense layers
|
33 |
+
x = self.relu(self.fc1(x))
|
34 |
+
x = self.relu(self.fc2(x))
|
35 |
+
x = self.fc3(x)
|
36 |
+
return x
|
37 |
+
|
38 |
+
# Initialize model, loss function, and optimizer
|
39 |
+
input_size = wealth_distribution.shape[1] + target_direction.shape[1] # Input wealth + target direction
|
40 |
+
hidden_size = 64 # Hidden layer size (can be adjusted)
|
41 |
+
output_size = wealth_distribution.shape[1] # Output size matches wealth distribution
|
42 |
+
|
43 |
+
model = WealthTransferModel(input_size, hidden_size, output_size)
|
44 |
+
loss_fn = nn.MSELoss() # Mean Squared Error loss for simplicity
|
45 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
46 |
+
|
47 |
+
# Dummy target wealth state (after transfer)
|
48 |
+
target_wealth_state = torch.randn(100, 1) # Random for now; this would be based on business logic
|
49 |
+
|
50 |
+
# Training loop (just for illustration; you can adjust the number of epochs)
|
51 |
+
num_epochs = 100
|
52 |
+
for epoch in range(num_epochs):
|
53 |
+
# Zero gradients
|
54 |
+
optimizer.zero_grad()
|
55 |
+
|
56 |
+
# Forward pass: Compute the wealth transfer
|
57 |
+
output = model(wealth_distribution, target_direction)
|
58 |
+
|
59 |
+
# Compute loss (compare output to the target wealth state)
|
60 |
+
loss = loss_fn(output, target_wealth_state)
|
61 |
+
|
62 |
+
# Backpropagation and optimization step
|
63 |
+
loss.backward()
|
64 |
+
optimizer.step()
|
65 |
+
|
66 |
+
if (epoch + 1) % 10 == 0:
|
67 |
+
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
|
68 |
+
|
69 |
+
# After training, model should learn how to adjust wealth distribution towards the target direction
|
70 |
+
|
71 |
+
import torch
|
72 |
+
import torch.nn as nn
|
73 |
+
import torch.optim as optim
|
74 |
+
|
75 |
+
# Simulate wealth distribution (e.g., 100 individuals with a certain wealth amount)
|
76 |
+
wealth_distribution = torch.randn(100, 1) # (100 people, 1 wealth feature)
|
77 |
+
|
78 |
+
# Define the target direction (randomly initialized, or learned)
|
79 |
+
target_direction = torch.randn(100, 1)
|
80 |
+
|
81 |
+
# Define a model that includes an LSTM layer for "nerve-like" behavior to store wealth information
|
82 |
+
class WealthTransferModelWithNerve(nn.Module):
|
83 |
+
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size):
|
84 |
+
super(WealthTransferModelWithNerve, self).__init__()
|
85 |
+
# First dense layer to process wealth and target information
|
86 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
87 |
+
self.relu = nn.ReLU()
|
88 |
+
|
89 |
+
# LSTM layer that acts as a "nerve" to store wealth information
|
90 |
+
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
|
91 |
+
|
92 |
+
# Final dense layer to transfer wealth in the target direction
|
93 |
+
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
|
94 |
+
|
95 |
+
def forward(self, x, target):
|
96 |
+
# Combine wealth signal with target information (concatenate or element-wise)
|
97 |
+
x = torch.cat((x, target), dim=1)
|
98 |
+
|
99 |
+
# Process through the first dense layer
|
100 |
+
x = self.relu(self.fc1(x))
|
101 |
+
|
102 |
+
# Prepare for LSTM (LSTM requires input of shape (batch_size, seq_length, feature_size))
|
103 |
+
x = x.unsqueeze(1) # Add a sequence dimension for LSTM (batch_size, 1, hidden_size)
|
104 |
+
|
105 |
+
# Pass through LSTM layer (storing wealth information in "nerves")
|
106 |
+
x, (hn, cn) = self.lstm(x) # hn: hidden state, cn: cell state
|
107 |
+
|
108 |
+
# Remove sequence dimension for the final dense layer
|
109 |
+
x = x.squeeze(1)
|
110 |
+
|
111 |
+
# Output layer to compute the final wealth transfer
|
112 |
+
x = self.fc2(x)
|
113 |
+
return x
|
114 |
+
|
115 |
+
# Initialize model, loss function, and optimizer
|
116 |
+
input_size = wealth_distribution.shape[1] + target_direction.shape[1] # Input wealth + target direction
|
117 |
+
hidden_size = 64 # Size for first dense layer
|
118 |
+
lstm_hidden_size = 32 # Hidden size of the LSTM layer
|
119 |
+
output_size = wealth_distribution.shape[1] # Output size matches wealth distribution
|
120 |
+
|
121 |
+
model = WealthTransferModelWithNerve(input_size, hidden_size, lstm_hidden_size, output_size)
|
122 |
+
loss_fn = nn.MSELoss() # Mean Squared Error loss for simplicity
|
123 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
124 |
+
|
125 |
+
# Dummy target wealth state (after transfer)
|
126 |
+
target_wealth_state = torch.randn(100, 1) # Random for now; this would be based on business logic
|
127 |
+
|
128 |
+
# Training loop (just for illustration; you can adjust the number of epochs)
|
129 |
+
num_epochs = 100
|
130 |
+
for epoch in range(num_epochs):
|
131 |
+
# Zero gradients
|
132 |
+
optimizer.zero_grad()
|
133 |
+
|
134 |
+
# Forward pass: Compute the wealth transfer with the "nerve" layer
|
135 |
+
output = model(wealth_distribution, target_direction)
|
136 |
+
|
137 |
+
# Compute loss (compare output to the target wealth state)
|
138 |
+
loss = loss_fn(output, target_wealth_state)
|
139 |
+
|
140 |
+
# Backpropagation and optimization step
|
141 |
+
loss.backward()
|
142 |
+
optimizer.step()
|
143 |
+
|
144 |
+
if (epoch + 1) % 10 == 0:
|
145 |
+
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
|
146 |
+
|
147 |
+
# After training, the model will learn to store and process wealth information in the "nerves" and transfer it towards the target.
|
148 |
+
|
149 |
+
import torch
|
150 |
+
import torch.nn as nn
|
151 |
+
import torch.optim as optim
|
152 |
+
|
153 |
+
# Define parameters
|
154 |
+
batch_size = 32 # Number of samples in a batch
|
155 |
+
seq_length = 10 # Number of timesteps (e.g., 10 timesteps)
|
156 |
+
feature_size = 1 # Wealth feature per individual
|
157 |
+
|
158 |
+
# Simulate wealth distribution over multiple timesteps for 100 people
|
159 |
+
wealth_distribution = torch.randn(batch_size, seq_length, 100, feature_size)
|
160 |
+
|
161 |
+
# Define the target direction over multiple timesteps
|
162 |
+
target_direction = torch.randn(batch_size, seq_length, 100, feature_size)
|
163 |
+
|
164 |
+
# Define the model with LSTM layer for "nerve-like" processing across timesteps
|
165 |
+
class WealthTransferModelWithTimesteps(nn.Module):
|
166 |
+
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size):
|
167 |
+
super(WealthTransferModelWithTimesteps, self).__init__()
|
168 |
+
# First dense layer to process wealth and target information
|
169 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
170 |
+
self.relu = nn.ReLU()
|
171 |
+
|
172 |
+
# LSTM layer that acts as a "nerve" to store wealth information over timesteps
|
173 |
+
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
|
174 |
+
|
175 |
+
# Final dense layer to transfer wealth in the target direction
|
176 |
+
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
|
177 |
+
|
178 |
+
def forward(self, x, target):
|
179 |
+
# Combine wealth signal with target information (concatenate along feature dimension)
|
180 |
+
x = torch.cat((x, target), dim=-1) # Concatenate along the feature axis
|
181 |
+
|
182 |
+
# Process through the first dense layer for each timestep (use .view to flatten)
|
183 |
+
batch_size, seq_length, num_people, _ = x.shape
|
184 |
+
x = x.view(batch_size * seq_length * num_people, -1) # Flatten for FC layer
|
185 |
+
x = self.relu(self.fc1(x))
|
186 |
+
x = x.view(batch_size, seq_length, num_people, -1) # Reshape back after FC
|
187 |
+
|
188 |
+
# LSTM expects input of shape (batch_size, seq_length, feature_size)
|
189 |
+
x = x.view(batch_size, seq_length, -1) # Combine people and features for LSTM
|
190 |
+
|
191 |
+
# Pass through LSTM layer (storing wealth information over timesteps)
|
192 |
+
x, (hn, cn) = self.lstm(x) # hn: hidden state, cn: cell state
|
193 |
+
|
194 |
+
# Output layer to compute the final wealth transfer for each timestep
|
195 |
+
x = self.fc2(x)
|
196 |
+
x = x.view(batch_size, seq_length, num_people, -1) # Reshape back to original format
|
197 |
+
return x
|
198 |
+
|
199 |
+
# Initialize model, loss function, and optimizer
|
200 |
+
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1] # Wealth + target info per timestep
|
201 |
+
hidden_size = 64 # Hidden size for first dense layer
|
202 |
+
lstm_hidden_size = 32 # Hidden size of the LSTM layer
|
203 |
+
output_size = wealth_distribution.shape[-1] # Output size should match wealth feature per person
|
204 |
+
|
205 |
+
model = WealthTransferModelWithTimesteps(input_size, hidden_size, lstm_hidden_size, output_size)
|
206 |
+
loss_fn = nn.MSELoss() # Mean Squared Error loss for simplicity
|
207 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
208 |
+
|
209 |
+
# Dummy target wealth state over multiple timesteps
|
210 |
+
target_wealth_state = torch.randn(batch_size, seq_length, 100, feature_size)
|
211 |
+
|
212 |
+
# Training loop (just for illustration)
|
213 |
+
num_epochs = 100
|
214 |
+
for epoch in range(num_epochs):
|
215 |
+
# Zero gradients
|
216 |
+
optimizer.zero_grad()
|
217 |
+
|
218 |
+
# Forward pass: Compute the wealth transfer over multiple timesteps
|
219 |
+
output = model(wealth_distribution, target_direction)
|
220 |
+
|
221 |
+
# Compute loss (compare output to the target wealth state)
|
222 |
+
loss = loss_fn(output, target_wealth_state)
|
223 |
+
|
224 |
+
# Backpropagation and optimization step
|
225 |
+
loss.backward()
|
226 |
+
optimizer.step()
|
227 |
+
|
228 |
+
if (epoch + 1) % 10 == 0:
|
229 |
+
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
|
230 |
+
|
231 |
+
# After training, the model will learn to store and direct wealth information across multiple timesteps.
|
232 |
+
|
233 |
+
import torch
|
234 |
+
import torch.nn as nn
|
235 |
+
import torch.optim as optim
|
236 |
+
|
237 |
+
# Define parameters
|
238 |
+
batch_size = 32 # Number of samples in a batch
|
239 |
+
seq_length = 10 # Number of timesteps (e.g., 10 timesteps)
|
240 |
+
feature_size = 1 # Wealth feature per individual
|
241 |
+
|
242 |
+
# Simulate wealth distribution over multiple timesteps for 100 people
|
243 |
+
wealth_distribution = torch.randn(batch_size, seq_length, 100, feature_size)
|
244 |
+
|
245 |
+
# Define the target direction over multiple timesteps
|
246 |
+
target_direction = torch.randn(batch_size, seq_length, 100, feature_size)
|
247 |
+
|
248 |
+
# Define the model with LSTM layer for "nerve-like" processing across timesteps
|
249 |
+
class WealthTransferModelWithTimesteps(nn.Module):
|
250 |
+
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size):
|
251 |
+
super(WealthTransferModelWithTimesteps, self).__init__()
|
252 |
+
# First dense layer to process wealth and target information
|
253 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
254 |
+
self.relu = nn.ReLU()
|
255 |
+
|
256 |
+
# LSTM layer that acts as a "nerve" to store wealth information over timesteps
|
257 |
+
# Changed input_size to hidden_size * 100 to match the output of fc1
|
258 |
+
self.lstm = nn.LSTM(hidden_size * 100, lstm_hidden_size, batch_first=True)
|
259 |
+
|
260 |
+
# Final dense layer to transfer wealth in the target direction
|
261 |
+
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
|
262 |
+
|
263 |
+
def forward(self, x, target):
|
264 |
+
# Combine wealth signal with target information (concatenate along feature dimension)
|
265 |
+
x = torch.cat((x, target), dim=-1) # Concatenate along the feature axis
|
266 |
+
|
267 |
+
# Process through the first dense layer for each timestep (use .view to flatten)
|
268 |
+
batch_size, seq_length, num_people, _ = x.shape
|
269 |
+
x = x.view(batch_size * seq_length * num_people, -1) # Flatten for FC layer
|
270 |
+
x = self.relu(self.fc1(x))
|
271 |
+
|
272 |
+
# Reshape to (batch_size, seq_length, num_people * hidden_size) for LSTM
|
273 |
+
x = x.view(batch_size, seq_length, num_people * hidden_size) # Reshape for LSTM
|
274 |
+
|
275 |
+
# Pass through LSTM layer (storing wealth information over timesteps)
|
276 |
+
x, (hn, cn) = self.lstm(x) # hn: hidden state, cn: cell state
|
277 |
+
|
278 |
+
# Output layer to compute the final wealth transfer for each timestep
|
279 |
+
x = self.fc2(x)
|
280 |
+
x = x.view()
|
281 |
+
|
282 |
+
import torch
|
283 |
+
import torch.nn as nn
|
284 |
+
import torch.optim as optim
|
285 |
+
|
286 |
+
# Define parameters
|
287 |
+
batch_size = 32 # Number of samples in a batch
|
288 |
+
seq_length = 10 # Number of timesteps
|
289 |
+
feature_size = 1 # Wealth feature per individual
|
290 |
+
|
291 |
+
# Simulate wealth distribution over multiple timesteps for 100 people
|
292 |
+
wealth_distribution = torch.randn(batch_size, seq_length, 100, feature_size)
|
293 |
+
|
294 |
+
# Define the target direction over multiple timesteps
|
295 |
+
target_direction = torch.randn(batch_size, seq_length, 100, feature_size)
|
296 |
+
|
297 |
+
# Define the model with LSTM layer and a "VPN" protection layer
|
298 |
+
class WealthTransferModelWithVPN(nn.Module):
|
299 |
+
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
|
300 |
+
super(WealthTransferModelWithVPN, self).__init__()
|
301 |
+
# First dense layer to process wealth and target information
|
302 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
303 |
+
self.relu = nn.ReLU()
|
304 |
+
|
305 |
+
# LSTM layer that acts as a "nerve" to store wealth information over timesteps
|
306 |
+
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
|
307 |
+
|
308 |
+
# Final dense layer to transfer wealth in the target direction
|
309 |
+
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
|
310 |
+
|
311 |
+
# VPN-like encryption layer (simulated with a non-linear transformation)
|
312 |
+
self.vpn_layer = nn.Linear(output_size, vpn_size) # A layer to "encrypt" the output
|
313 |
+
self.decrypt_layer = nn.Linear(vpn_size, output_size) # To recover the original output
|
314 |
+
|
315 |
+
def forward(self, x, target):
|
316 |
+
# Combine wealth signal with target information (concatenate along feature dimension)
|
317 |
+
x = torch.cat((x, target), dim=-1) # Concatenate along the feature axis
|
318 |
+
|
319 |
+
# Process through the first dense layer for each timestep (use .view to flatten)
|
320 |
+
batch_size, seq_length, num_people, _ = x.shape
|
321 |
+
x = x.view(batch_size * seq_length * num_people, -1) # Flatten for FC layer
|
322 |
+
x = self.relu(self.fc1(x))
|
323 |
+
x = x.view(batch_size, seq_length, num_people, -1) # Reshape back after FC
|
324 |
+
|
325 |
+
# LSTM expects input of shape (batch_size, seq_length, feature_size)
|
326 |
+
x = x.view(batch_size, seq_length, num_people * hidden_size) # Combine people and features for LSTM
|
327 |
+
|
328 |
+
# Pass through LSTM layer (storing wealth information over timesteps)
|
329 |
+
x, (hn, cn) = self.lstm(x) # hn: hidden state, cn: cell state
|
330 |
+
|
331 |
+
# Output layer to compute the final wealth transfer for each timestep
|
332 |
+
x = self.fc2(x)
|
333 |
+
x = x.view(batch_size, seq_length, num_people, -1) # Reshape back to original format
|
334 |
+
|
335 |
+
# Pass through the VPN encryption layer
|
336 |
+
encrypted_output = torch.sigmoid(self.vpn_layer(x)) # Apply transformation (like encryption)
|
337 |
+
|
338 |
+
# Simulate decryption by passing through another layer
|
339 |
+
decrypted_output = self.decrypt_layer(encrypted_output)
|
340 |
+
|
341 |
+
return decrypted_output # Return the "secure" output
|
342 |
+
|
343 |
+
# Initialize model, loss function, and optimizer
|
344 |
+
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1] # Wealth + target info per timestep
|
345 |
+
hidden_size = 64 # Hidden size for first dense layer
|
346 |
+
lstm_hidden_size = 32 # Hidden size of the LSTM layer
|
347 |
+
output_size = wealth_distribution.shape[-1] # Output size should match wealth feature per person
|
348 |
+
vpn_size = 128 # Size of the "VPN" layer
|
349 |
+
|
350 |
+
model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)
|
351 |
+
loss_fn = nn.MSELoss() # Mean Squared Error loss for simplicity
|
352 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
353 |
+
|
354 |
+
# Dummy target wealth state over multiple timesteps
|
355 |
+
target_wealth_state = torch.randn(batch_size, seq_length, 100, feature_size)
|
356 |
+
|
357 |
+
# Training loop (just for illustration)
|
358 |
+
num_epochs = 100
|
359 |
+
for epoch in range(num_epochs):
|
360 |
+
# Zero gradients
|
361 |
+
optimizer.zero_grad()
|
362 |
+
|
363 |
+
# Forward pass: Compute the wealth transfer with VPN-like protection
|
364 |
+
output = model(wealth_distribution, target_direction)
|
365 |
+
|
366 |
+
# Compute loss (compare output to the target wealth state)
|
367 |
+
loss = loss_fn(output, target_wealth_state)
|
368 |
+
|
369 |
+
# Backpropagation and optimization step
|
370 |
+
loss.backward()
|
371 |
+
optimizer.step()
|
372 |
+
|
373 |
+
if (epoch + 1) % 10 == 0:
|
374 |
+
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
|
375 |
+
|
376 |
+
# After training, the model will learn to store and protect wealth information securely while transferring it.
|
377 |
+
|
378 |
+
import torch
|
379 |
+
import torch.nn as nn
|
380 |
+
import torch.optim as optim
|
381 |
+
|
382 |
+
# Simulate wealth distribution for 100 people
|
383 |
+
wealth_distribution = torch.randn(100, 1) # (100 people, 1 wealth feature)
|
384 |
+
|
385 |
+
# Define the target direction (randomly initialized or learned)
|
386 |
+
target_direction = torch.randn(100, 1)
|
387 |
+
|
388 |
+
# Define a simple dense model to process wealth and target direction
|
389 |
+
class WealthTransferModel(nn.Module):
|
390 |
+
def __init__(self, input_size, hidden_size, output_size):
|
391 |
+
super(WealthTransferModel, self).__init__()
|
392 |
+
# First dense layer
|
393 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
394 |
+
self.relu = nn.ReLU()
|
395 |
+
|
396 |
+
# Second dense layer
|
397 |
+
self.fc2 = nn.Linear(hidden_size, output_size)
|
398 |
+
|
399 |
+
def forward(self, x, target):
|
400 |
+
# Combine wealth signal with target information (concatenate or element-wise)
|
401 |
+
x = torch.cat((x, target), dim=1)
|
402 |
+
|
403 |
+
# Process through the first dense layer
|
404 |
+
x = self.relu(self.fc1(x))
|
405 |
+
|
406 |
+
# Output layer to compute the final wealth transfer signal
|
407 |
+
x = self.fc2(x)
|
408 |
+
return x
|
409 |
+
|
410 |
+
# Initialize the model
|
411 |
+
input_size = wealth_distribution.shape[1] + target_direction.shape[1] # Input wealth + target direction
|
412 |
+
hidden_size = 64 # Hidden layer size
|
413 |
+
output_size = wealth_distribution.shape[1] # Output size matches wealth distribution
|
414 |
+
|
415 |
+
model = WealthTransferModel(input_size, hidden_size, output_size)
|
416 |
+
|
417 |
+
# Define loss function and optimizer
|
418 |
+
loss_fn = nn.MSELoss()
|
419 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
420 |
+
|
421 |
+
# Dummy target wealth state (after transfer)
|
422 |
+
target_wealth_state = torch.randn(100, 1) # Random for now; this would be based on business logic
|
423 |
+
|
424 |
+
# Training loop (just for illustration)
|
425 |
+
num_epochs = 100
|
426 |
+
for epoch in range(num_epochs):
|
427 |
+
# Zero gradients
|
428 |
+
optimizer.zero_grad()
|
429 |
+
|
430 |
+
# Forward pass: compute the wealth transfer
|
431 |
+
output = model(wealth_distribution, target_direction)
|
432 |
+
|
433 |
+
# Compute loss (compare output to the target wealth state)
|
434 |
+
loss = loss_fn(output, target_wealth_state)
|
435 |
+
|
436 |
+
# Backpropagation and optimization step
|
437 |
+
loss.backward()
|
438 |
+
optimizer.step()
|
439 |
+
|
440 |
+
if (epoch + 1) % 10 == 0:
|
441 |
+
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
|
442 |
+
|
443 |
+
import torch
|
444 |
+
import torch.nn as nn
|
445 |
+
import torch.optim as optim
|
446 |
+
|
447 |
+
# Simulate wealth distribution for 100 people
|
448 |
+
wealth_distribution = torch.randn(32, 100, 1) # (batch_size, 100 people, 1 wealth feature)
|
449 |
+
|
450 |
+
# Define the target direction (randomly initialized or learned)
|
451 |
+
target_direction = torch.randn(32, 100, 1) # (batch_size, 100 people, 1 feature for direction)
|
452 |
+
|
453 |
+
# Define a model with LSTM to store wealth signal in the "nerves"
|
454 |
+
class WealthTransferModelWithNerves(nn.Module):
|
455 |
+
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size):
|
456 |
+
super(WealthTransferModelWithNerves, self).__init__()
|
457 |
+
# First dense layer
|
458 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
459 |
+
self.relu = nn.ReLU()
|
460 |
+
|
461 |
+
# LSTM layer to store wealth signal in the "nerves"
|
462 |
+
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
|
463 |
+
|
464 |
+
# Final dense layer to transfer wealth in the target direction
|
465 |
+
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
|
466 |
+
|
467 |
+
def forward(self, x, target):
|
468 |
+
# Combine wealth signal with target information (concatenate along the feature dimension)
|
469 |
+
x = torch.cat((x, target), dim=-1)
|
470 |
+
|
471 |
+
# Process through the first dense layer
|
472 |
+
x = self.relu(self.fc1(x))
|
473 |
+
|
474 |
+
# Pass through the LSTM layer (to store the wealth signal in the nerves)
|
475 |
+
x, _ = self.lstm(x)
|
476 |
+
|
477 |
+
# Output layer to compute the final wealth transfer signal
|
478 |
+
x = self.fc2(x)
|
479 |
+
return x
|
480 |
+
|
481 |
+
# Initialize the model
|
482 |
+
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1] # Input: wealth + target direction
|
483 |
+
hidden_size = 64 # Hidden layer size
|
484 |
+
lstm_hidden_size = 32 # LSTM hidden size (for storing wealth signal in the nerves)
|
485 |
+
output_size = wealth_distribution.shape[-1] # Output size matches wealth distribution
|
486 |
+
|
487 |
+
model = WealthTransferModelWithNerves(input_size, hidden_size, lstm_hidden_size, output_size)
|
488 |
+
|
489 |
+
# Define loss function and optimizer
|
490 |
+
loss_fn = nn.MSELoss()
|
491 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
492 |
+
|
493 |
+
# Dummy target wealth state (after transfer)
|
494 |
+
target_wealth_state = torch.randn(32, 100, 1) # Random for now
|
495 |
+
|
496 |
+
# Training loop (just for illustration)
|
497 |
+
num_epochs = 100
|
498 |
+
for epoch in range(num_epochs):
|
499 |
+
# Zero gradients
|
500 |
+
optimizer.zero_grad()
|
501 |
+
|
502 |
+
# Forward pass: compute the wealth transfer
|
503 |
+
output = model(wealth_distribution, target_direction)
|
504 |
+
|
505 |
+
# Compute loss (compare output to the target wealth state)
|
506 |
+
loss = loss_fn(output, target_wealth_state)
|
507 |
+
|
508 |
+
# Backpropagation and optimization step
|
509 |
+
loss.backward()
|
510 |
+
optimizer.step()
|
511 |
+
|
512 |
+
if (epoch + 1) % 10 == 0:
|
513 |
+
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
|
514 |
+
|
515 |
+
import torch
|
516 |
+
import torch.nn as nn
|
517 |
+
import torch.optim as optim
|
518 |
+
|
519 |
+
# Simulate wealth distribution for 100 people
|
520 |
+
wealth_distribution = torch.randn(32, 100, 1) # (batch_size, 100 people, 1 wealth feature)
|
521 |
+
|
522 |
+
# Define the target direction (randomly initialized or learned)
|
523 |
+
target_direction = torch.randn(32, 100, 1) # (batch_size, 100 people, 1 feature for direction)
|
524 |
+
|
525 |
+
# Define the model with LSTM and VPN-like layer for protection
|
526 |
+
class WealthTransferModelWithVPN(nn.Module):
|
527 |
+
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
|
528 |
+
super(WealthTransferModelWithVPN, self).__init__()
|
529 |
+
# First dense layer
|
530 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
531 |
+
self.relu = nn.ReLU()
|
532 |
+
|
533 |
+
# LSTM layer to store wealth signal in the "nerves"
|
534 |
+
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
|
535 |
+
|
536 |
+
# Final dense layer to transfer wealth in the target direction
|
537 |
+
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
|
538 |
+
|
539 |
+
# VPN-like encryption layer (simulated with a non-linear transformation)
|
540 |
+
self.vpn_layer = nn.Linear(output_size, vpn_size) # A layer to "encrypt" the output
|
541 |
+
self.decrypt_layer = nn.Linear(vpn_size, output_size) # To recover the original output
|
542 |
+
|
543 |
+
def forward(self, x, target):
|
544 |
+
# Combine wealth signal with target information (concatenate along the feature dimension)
|
545 |
+
x = torch.cat((x, target), dim=-1)
|
546 |
+
|
547 |
+
# Process through the first dense layer
|
548 |
+
x = self.relu(self.fc1(x))
|
549 |
+
|
550 |
+
# Pass through the LSTM layer (to store the wealth signal in the nerves)
|
551 |
+
x, _ = self.lstm(x)
|
552 |
+
|
553 |
+
# Output layer to compute the final wealth transfer signal
|
554 |
+
x = self.fc2(x)
|
555 |
+
|
556 |
+
# Pass through the VPN encryption layer
|
557 |
+
encrypted_output = torch.sigmoid(self.vpn_layer(x)) # Apply transformation (like encryption)
|
558 |
+
|
559 |
+
# Simulate decryption by passing through another layer
|
560 |
+
decrypted_output = self.decrypt_layer(encrypted_output)
|
561 |
+
|
562 |
+
return decrypted_output # Return the "secure" output
|
563 |
+
|
564 |
+
# Initialize the model
|
565 |
+
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1] # Input: wealth + target direction
|
566 |
+
hidden_size = 64 # Hidden layer size
|
567 |
+
lstm_hidden_size = 32 # LSTM hidden size (for storing wealth signal in the nerves)
|
568 |
+
output_size = wealth_distribution.shape[-1] # Output size matches wealth distribution
|
569 |
+
vpn_size = 128 # Size of the "VPN" encryption layer
|
570 |
+
|
571 |
+
model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)
|
572 |
+
|
573 |
+
# Define loss function and optimizer
|
574 |
+
loss_fn = nn.MSELoss()
|
575 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
576 |
+
|
577 |
+
# Dummy target wealth state (after transfer)
|
578 |
+
target_wealth_state = torch.randn(32, 100, 1) # Random for now
|
579 |
+
|
580 |
+
# Training loop (just for illustration)
|
581 |
+
num_epochs = 100
|
582 |
+
for epoch in range(num_epochs):
|
583 |
+
# Zero gradients
|
584 |
+
optimizer.zero_grad()
|
585 |
+
|
586 |
+
# Forward pass: compute the wealth transfer with VPN-like protection
|
587 |
+
output = model(wealth_distribution, target_direction)
|
588 |
+
|
589 |
+
# Compute loss (compare output to the target wealth state)
|
590 |
+
loss = loss_fn(output, target_wealth_state)
|
591 |
+
|
592 |
+
# Backpropagation and optimization step
|
593 |
+
loss.backward()
|
594 |
+
optimizer.step()
|
595 |
+
|
596 |
+
if (epoch + 1) % 10 == 0:
|
597 |
+
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
|
598 |
+
|
599 |
+
import torch
|
600 |
+
import torch.nn as nn
|
601 |
+
import torch.optim as optim
|
602 |
+
import matplotlib.pyplot as plt
|
603 |
+
|
604 |
+
# Simulate wealth distribution for 100 people
|
605 |
+
wealth_distribution = torch.randn(32, 100, 1) # (batch_size, 100 people, 1 wealth feature)
|
606 |
+
|
607 |
+
# Define the target direction (randomly initialized or learned)
|
608 |
+
target_direction = torch.randn(32, 100, 1) # (batch_size, 100 people, 1 feature for direction)
|
609 |
+
|
610 |
+
# Define the model with LSTM and VPN-like layer for protection
|
611 |
+
class WealthTransferModelWithVPN(nn.Module):
|
612 |
+
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
|
613 |
+
super(WealthTransferModelWithVPN, self).__init__()
|
614 |
+
# First dense layer
|
615 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
616 |
+
self.relu = nn.ReLU()
|
617 |
+
|
618 |
+
# LSTM layer to store wealth signal in the "nerves"
|
619 |
+
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
|
620 |
+
|
621 |
+
# Final dense layer to transfer wealth in the target direction
|
622 |
+
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
|
623 |
+
|
624 |
+
# VPN-like encryption layer (simulated with a non-linear transformation)
|
625 |
+
self.vpn_layer = nn.Linear(output_size, vpn_size) # A layer to "encrypt" the output
|
626 |
+
self.decrypt_layer = nn.Linear(vpn_size, output_size) # To recover the original output
|
627 |
+
|
628 |
+
def forward(self, x, target):
|
629 |
+
# Combine wealth signal with target information (concatenate along the feature dimension)
|
630 |
+
x = torch.cat((x, target), dim=-1)
|
631 |
+
|
632 |
+
# Process through the first dense layer
|
633 |
+
x = self.relu(self.fc1(x))
|
634 |
+
|
635 |
+
# Pass through the LSTM layer (to store the wealth signal in the nerves)
|
636 |
+
x, _ = self.lstm(x)
|
637 |
+
|
638 |
+
# Output layer to compute the final wealth transfer signal
|
639 |
+
x = self.fc2(x)
|
640 |
+
|
641 |
+
# Pass through the VPN encryption layer
|
642 |
+
encrypted_output = torch.sigmoid(self.vpn_layer(x)) # Apply transformation (like encryption)
|
643 |
+
|
644 |
+
# Simulate decryption by passing through another layer
|
645 |
+
decrypted_output = self.decrypt_layer(encrypted_output)
|
646 |
+
|
647 |
+
return decrypted_output # Return the "secure" output
|
648 |
+
|
649 |
+
# Initialize the model
|
650 |
+
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1] # Input: wealth + target direction
|
651 |
+
hidden_size = 64 # Hidden layer size
|
652 |
+
lstm_hidden_size = 32 # LSTM hidden size (for storing wealth signal in the nerves)
|
653 |
+
output_size = wealth_distribution.shape[-1] # Output size matches wealth distribution
|
654 |
+
vpn_size = 128 # Size of the "VPN" encryption layer
|
655 |
+
|
656 |
+
model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)
|
657 |
+
|
658 |
+
# Forward pass: compute the wealth transfer signal (without training for simplicity)
|
659 |
+
with torch.no_grad():
|
660 |
+
output_signal = model(wealth_distribution, target_direction)
|
661 |
+
|
662 |
+
# Select one example (first sample from batch) for plotting
|
663 |
+
wealth_waveform = output_signal[0].squeeze().numpy() # Remove extra dimensions (100,)
|
664 |
+
|
665 |
+
# Plot the wealth signal as a waveform
|
666 |
+
plt.figure(figsize=(10, 5))
|
667 |
+
plt.plot(wealth_waveform, label='Wealth Transfer Signal')
|
668 |
+
plt.title('Wealth Transfer Signal Waveform')
|
669 |
+
plt.xlabel('Individual (or Time Step)')
|
670 |
+
plt.ylabel('Wealth Signal Intensity')
|
671 |
+
plt.legend()
|
672 |
+
plt.grid(True)
|
673 |
+
plt.show()
|
674 |
+
|
675 |
+
import torch
|
676 |
+
import torch.nn as nn
|
677 |
+
import torch.optim as optim
|
678 |
+
import matplotlib.pyplot as plt
|
679 |
+
|
680 |
+
# Simulate wealth distribution for 100 people across 24 hours
|
681 |
+
# Let's assume each sample corresponds to a different time step (hour)
|
682 |
+
wealth_distribution = torch.randn(32, 24, 1) # (batch_size, 24 hours, 1 wealth feature)
|
683 |
+
|
684 |
+
# Define the target direction (randomly initialized or learned) for 24 hours
|
685 |
+
target_direction = torch.randn(32, 24, 1) # (batch_size, 24 hours, 1 feature for direction)
|
686 |
+
|
687 |
+
# Define the model with LSTM and VPN-like layer for protection
|
688 |
+
class WealthTransferModelWithVPN(nn.Module):
|
689 |
+
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
|
690 |
+
super(WealthTransferModelWithVPN, self).__init__()
|
691 |
+
# First dense layer
|
692 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
693 |
+
self.relu = nn.ReLU()
|
694 |
+
|
695 |
+
# LSTM layer to store wealth signal in the "nerves"
|
696 |
+
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
|
697 |
+
|
698 |
+
# Final dense layer to transfer wealth in the target direction
|
699 |
+
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
|
700 |
+
|
701 |
+
# VPN-like encryption layer (simulated with a non-linear transformation)
|
702 |
+
self.vpn_layer = nn.Linear(output_size, vpn_size) # A layer to "encrypt" the output
|
703 |
+
self.decrypt_layer = nn.Linear(vpn_size, output_size) # To recover the original output
|
704 |
+
|
705 |
+
def forward(self, x, target):
|
706 |
+
# Combine wealth signal with target information (concatenate along the feature dimension)
|
707 |
+
x = torch.cat((x, target), dim=-1)
|
708 |
+
|
709 |
+
# Process through the first dense layer
|
710 |
+
x = self.relu(self.fc1(x))
|
711 |
+
|
712 |
+
# Pass through the LSTM layer (to store the wealth signal in the nerves)
|
713 |
+
x, _ = self.lstm(x)
|
714 |
+
|
715 |
+
# Output layer to compute the final wealth transfer signal
|
716 |
+
x = self.fc2(x)
|
717 |
+
|
718 |
+
# Pass through the VPN encryption layer
|
719 |
+
encrypted_output = torch.sigmoid(self.vpn_layer(x)) # Apply transformation (like encryption)
|
720 |
+
|
721 |
+
# Simulate decryption by passing through another layer
|
722 |
+
decrypted_output = self.decrypt_layer(encrypted_output)
|
723 |
+
|
724 |
+
return decrypted_output # Return the "secure" output
|
725 |
+
|
726 |
+
# Initialize the model
|
727 |
+
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1] # Input: wealth + target direction
|
728 |
+
hidden_size = 64 # Hidden layer size
|
729 |
+
lstm_hidden_size = 32 # LSTM hidden size (for storing wealth signal in the nerves)
|
730 |
+
output_size = wealth_distribution.shape[-1] # Output size matches wealth distribution
|
731 |
+
vpn_size = 128 # Size of the "VPN" encryption layer
|
732 |
+
|
733 |
+
model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)
|
734 |
+
|
735 |
+
# Forward pass: compute the wealth transfer signal (without training for simplicity)
|
736 |
+
with torch.no_grad():
|
737 |
+
output_signal = model(wealth_distribution, target_direction)
|
738 |
+
|
739 |
+
# Select one example (first sample from batch) for plotting
|
740 |
+
wealth_waveform = output_signal[0].squeeze().numpy() # Remove extra dimensions (24 hours,)
|
741 |
+
|
742 |
+
# Create an x-axis for 24 hours (from 0 to 23 hours)
|
743 |
+
hours = list(range(24))
|
744 |
+
|
745 |
+
# Plot the wealth signal as a waveform over 24 hours
|
746 |
+
plt.figure(figsize=(10, 5))
|
747 |
+
plt.plot(hours, wealth_waveform, label='Wealth Transfer Signal over 24 Hours', marker='o')
|
748 |
+
plt.title('Wealth Transfer Signal in 24-Hour Intervals')
|
749 |
+
plt.xlabel('Hour of the Day')
|
750 |
+
plt.ylabel('Wealth Signal Intensity')
|
751 |
+
plt.xticks(hours) # Show each hour as a tick on the x-axis
|
752 |
+
plt.grid(True)
|
753 |
+
plt.legend()
|
754 |
+
plt.show()
|
755 |
+
|
756 |
+
import torch
|
757 |
+
import torch.nn as nn
|
758 |
+
import torch.optim as optim
|
759 |
+
import matplotlib.pyplot as plt
|
760 |
+
import numpy as np
|
761 |
+
|
762 |
+
# Simulate wealth distribution for 100 people across 24 hours
|
763 |
+
wealth_distribution = torch.randn(32, 24, 1) # (batch_size, 24 hours, 1 wealth feature)
|
764 |
+
|
765 |
+
# Define the target direction (randomly initialized or learned) for 24 hours
|
766 |
+
target_direction = torch.randn(32, 24, 1) # (batch_size, 24 hours, 1 feature for direction)
|
767 |
+
|
768 |
+
# Define the model with LSTM and VPN-like layer for protection
|
769 |
+
class WealthTransferModelWithVPN(nn.Module):
|
770 |
+
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
|
771 |
+
super(WealthTransferModelWithVPN, self).__init__()
|
772 |
+
# First dense layer
|
773 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
774 |
+
self.relu = nn.ReLU()
|
775 |
+
|
776 |
+
# LSTM layer to store wealth signal in the "nerves"
|
777 |
+
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
|
778 |
+
|
779 |
+
# Final dense layer to transfer wealth in the target direction
|
780 |
+
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
|
781 |
+
|
782 |
+
# VPN-like encryption layer (simulated with a non-linear transformation)
|
783 |
+
self.vpn_layer = nn.Linear(output_size, vpn_size) # A layer to "encrypt" the output
|
784 |
+
self.decrypt_layer = nn.Linear(vpn_size, output_size) # To recover the original output
|
785 |
+
|
786 |
+
def forward(self, x, target):
|
787 |
+
# Combine wealth signal with target information (concatenate along the feature dimension)
|
788 |
+
x = torch.cat((x, target), dim=-1)
|
789 |
+
|
790 |
+
# Process through the first dense layer
|
791 |
+
x = self.relu(self.fc1(x))
|
792 |
+
|
793 |
+
# Pass through the LSTM layer (to store the wealth signal in the nerves)
|
794 |
+
x, _ = self.lstm(x)
|
795 |
+
|
796 |
+
# Output layer to compute the final wealth transfer signal
|
797 |
+
x = self.fc2(x)
|
798 |
+
|
799 |
+
# Pass through the VPN encryption layer
|
800 |
+
encrypted_output = torch.sigmoid(self.vpn_layer(x)) # Apply transformation (like encryption)
|
801 |
+
|
802 |
+
# Simulate decryption by passing through another layer
|
803 |
+
decrypted_output = self.decrypt_layer(encrypted_output)
|
804 |
+
|
805 |
+
return decrypted_output # Return the "secure" output
|
806 |
+
|
807 |
+
# Initialize the model
|
808 |
+
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1] # Input: wealth + target direction
|
809 |
+
hidden_size = 64 # Hidden layer size
|
810 |
+
lstm_hidden_size = 32 # LSTM hidden size (for storing wealth signal in the nerves)
|
811 |
+
output_size = wealth_distribution.shape[-1] # Output size matches wealth distribution
|
812 |
+
vpn_size = 128 # Size of the "VPN" encryption layer
|
813 |
+
|
814 |
+
model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)
|
815 |
+
|
816 |
+
# Forward pass: compute the wealth transfer signal (without training for simplicity)
|
817 |
+
with torch.no_grad():
|
818 |
+
output_signal = model(wealth_distribution, target_direction)
|
819 |
+
|
820 |
+
# Select one example (first sample from batch) for plotting
|
821 |
+
wealth_waveform = output_signal[0].squeeze().numpy() # Remove extra dimensions (24 hours,)
|
822 |
+
|
823 |
+
# Create a mask (example: mask where signal < 0.5)
|
824 |
+
mask = wealth_waveform > 0.5 # Only display parts of the signal that exceed 0.5 in intensity
|
825 |
+
|
826 |
+
# Apply the mask to the wealth waveform
|
827 |
+
masked_signal = wealth_waveform * mask # Set masked elements to 0
|
828 |
+
|
829 |
+
# Create an x-axis for 24 hours (from 0 to 23 hours)
|
830 |
+
hours = list(range(24))
|
831 |
+
|
832 |
+
# Plot the masked wealth signal as a colorful waveform
|
833 |
+
plt.figure(figsize=(10, 5))
|
834 |
+
|
835 |
+
# Use a colormap to display the intensity of the signal
|
836 |
+
scatter = plt.scatter(hours, masked_signal, c=masked_signal, cmap='viridis', s=100, edgecolor='k', marker='o')
|
837 |
+
|
838 |
+
# Add a color bar to show intensity mapping
|
839 |
+
plt.colorbar(scatter, label="Wealth Signal Intensity")
|
840 |
+
|
841 |
+
plt.title('Masked Wealth Transfer Signal in 24-Hour Intervals (Colorful Waveform)')
|
842 |
+
plt.xlabel('Hour of the Day')
|
843 |
+
plt.ylabel('Wealth Signal Intensity')
|
844 |
+
plt.xticks(hours) # Show each hour as a tick on the x-axis
|
845 |
+
plt.grid(True)
|
846 |
+
plt.show()
|
847 |
+
|
848 |
+
import torch
|
849 |
+
import torch.nn as nn
|
850 |
+
import torch.optim as optim
|
851 |
+
import matplotlib.pyplot as plt
|
852 |
+
import numpy as np
|
853 |
+
|
854 |
+
# Simulate wealth distribution for 100 people across 24 hours
|
855 |
+
wealth_distribution = torch.randn(32, 24, 1) # (batch_size, 24 hours, 1 wealth feature)
|
856 |
+
|
857 |
+
# Define the target direction (randomly initialized or learned) for 24 hours
|
858 |
+
target_direction = torch.randn(32, 24, 1) # (batch_size, 24 hours, 1 feature for direction)
|
859 |
+
|
860 |
+
# Define the model with LSTM and VPN-like layer for protection
|
861 |
+
class WealthTransferModelWithVPN(nn.Module):
|
862 |
+
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
|
863 |
+
super(WealthTransferModelWithVPN, self).__init__()
|
864 |
+
# First dense layer
|
865 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
866 |
+
self.relu = nn.ReLU()
|
867 |
+
|
868 |
+
# LSTM layer to store wealth signal in the "nerves"
|
869 |
+
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
|
870 |
+
|
871 |
+
# Final dense layer to transfer wealth in the target direction
|
872 |
+
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
|
873 |
+
|
874 |
+
# VPN-like encryption layer (simulated with a non-linear transformation)
|
875 |
+
self.vpn_layer = nn.Linear(output_size, vpn_size) # A layer to "encrypt" the output
|
876 |
+
self.decrypt_layer = nn.Linear(vpn_size, output_size) # To recover the original output
|
877 |
+
|
878 |
+
def forward(self, x, target):
|
879 |
+
# Combine wealth signal with target information (concatenate along the feature dimension)
|
880 |
+
x = torch.cat((x, target), dim=-1)
|
881 |
+
|
882 |
+
# Process through the first dense layer
|
883 |
+
x = self.relu(self.fc1(x))
|
884 |
+
|
885 |
+
# Pass through the LSTM layer (to store the wealth signal in the nerves)
|
886 |
+
x, _ = self.lstm(x)
|
887 |
+
|
888 |
+
# Output layer to compute the final wealth transfer signal
|
889 |
+
x = self.fc2(x)
|
890 |
+
|
891 |
+
# Pass through the VPN encryption layer
|
892 |
+
encrypted_output = torch.sigmoid(self.vpn_layer(x)) # Apply transformation (like encryption)
|
893 |
+
|
894 |
+
# Simulate decryption by passing through another layer
|
895 |
+
decrypted_output = self.decrypt_layer(encrypted_output)
|
896 |
+
|
897 |
+
return decrypted_output # Return the "secure" output
|
898 |
+
|
899 |
+
# Initialize the model
|
900 |
+
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1] # Input: wealth + target direction
|
901 |
+
hidden_size = 64 # Hidden layer size
|
902 |
+
lstm_hidden_size = 32 # LSTM hidden size (for storing wealth signal in the nerves)
|
903 |
+
output_size = wealth_distribution.shape[-1] # Output size matches wealth distribution
|
904 |
+
vpn_size = 128 # Size of the "VPN" encryption layer
|
905 |
+
|
906 |
+
model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)
|
907 |
+
|
908 |
+
# Forward pass: compute the wealth transfer signal (without training for simplicity)
|
909 |
+
with torch.no_grad():
|
910 |
+
output_signal = model(wealth_distribution, target_direction)
|
911 |
+
|
912 |
+
# Select one example (first sample from batch) for plotting
|
913 |
+
wealth_waveform = output_signal[0].squeeze().numpy() # Remove extra dimensions (24 hours,)
|
914 |
+
|
915 |
+
# Create the first mask (example: mask where signal < 0.5)
|
916 |
+
mask1 = wealth_waveform > 0.5 # First mask: Only display parts of the signal that exceed 0.5 in intensity
|
917 |
+
|
918 |
+
# Apply the first mask to the wealth waveform
|
919 |
+
masked_signal1 = wealth_waveform * mask1 # Set masked elements to 0
|
920 |
+
|
921 |
+
# Create the second mask (example: mask where signal > 0.2)
|
922 |
+
mask2 = wealth_waveform < 0.2 # Second mask: Only display parts of the signal below 0.2 in intensity
|
923 |
+
|
924 |
+
# Apply the second mask to the wealth waveform
|
925 |
+
masked_signal2 = wealth_waveform * mask2 # Set masked elements to 0
|
926 |
+
|
927 |
+
# Combine both masked signals (for visualization purposes)
|
928 |
+
combined_masked_signal = masked_signal1 + masked_signal2
|
929 |
+
|
930 |
+
# Create an x-axis for 24 hours (from 0 to 23 hours)
|
931 |
+
hours = list(range(24))
|
932 |
+
|
933 |
+
# Plot the combined masked wealth signal as a colorful waveform
|
934 |
+
plt.figure(figsize=(10, 5))
|
935 |
+
|
936 |
+
# Use a colormap to display the intensity of the signal
|
937 |
+
scatter = plt.scatter(hours, combined_masked_signal, c=combined_masked_signal, cmap='plasma', s=100, edgecolor='k', marker='o')
|
938 |
+
|
939 |
+
# Add a color bar to show intensity mapping
|
940 |
+
plt.colorbar(scatter, label="Wealth Signal Intensity")
|
941 |
+
|
942 |
+
plt.title('Combined Masked Wealth Transfer Signal in 24-Hour Intervals (Colorful Waveform)')
|
943 |
+
plt.xlabel('Hour of the Day')
|
944 |
+
plt.ylabel('Wealth Signal Intensity')
|
945 |
+
plt.xticks(hours) # Show each hour as a tick on the x-axis
|
946 |
+
plt.grid(True)
|
947 |
+
plt.show()
|