antitheft159 commited on
Commit
2dd35a8
·
verified ·
1 Parent(s): 12602b1

Update References

Browse files
Files changed (1) hide show
  1. References +66 -1
References CHANGED
@@ -5,4 +5,69 @@ Automatically generated by Colab.
5
 
6
  Original file is located at
7
  https://colab.research.google.com/drive/1n4ADxn-u0nAkYm6mKMzzhiH1vl97qImr
8
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
  Original file is located at
7
  https://colab.research.google.com/drive/1n4ADxn-u0nAkYm6mKMzzhiH1vl97qImr
8
+ """
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.optim as optim
13
+ import matplotlib.pyplot as plt
14
+
15
+ wealth_distribution = torch.randn(32, 24, 1)
16
+ target_direction = torch.randn(32, 24, 1)
17
+
18
+ class WealthTransferModelWithVPN(nn.Module):
19
+ def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
20
+ super(WealthTransferModelWithVPN, self).__init__()
21
+ self.fc1 = nn.Linear(input_size, hidden_size)
22
+ self.relu = nn.ReLU()
23
+
24
+ self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
25
+
26
+ self.fc2 = nn.Linear(lstm_hidden_size, output_size)
27
+
28
+ self.vpn_layer = nn.Linear(output_size, vpn_size)
29
+ self.decrypt_layer = nn.Linear(vpn_size, output_size)
30
+
31
+ def forward(self, x, target):
32
+ x = torch.cat((x, target), dim=1)
33
+
34
+ x = self.relu(self.fc1(x))
35
+
36
+ x, _ = self.lstm(x)
37
+
38
+ x = self.fc2(x)
39
+
40
+ encrypted_output = torch.sigmoid(self.vpn_layer(x))
41
+
42
+ decrypted_output = self.decrypt_layer(encrypted_output)
43
+
44
+ return decrypted_output
45
+
46
+ input_size = wealth_distribution[-1] + target_direction.shape[-1]
47
+ hidden_size = 64
48
+ lstm_hidden_size = 32
49
+ output_size = wealth_distribution.shape[-1]
50
+ vpn_size = 128
51
+
52
+ model = WealthTransferWithVPN(input_size, hidden_sizse, lstm_hidden_size, vpn_size)
53
+
54
+
55
+ with torch.no_grad():
56
+ output_signal = model(wealth_distribution, target_direction)
57
+
58
+ wealth_waveform = output_signal[0].squeeze().numpy()
59
+
60
+ hours = list(range(24))
61
+
62
+ plt.figure(figsize=(10, 5))
63
+ plt.plot(hours, wealth_waveform, label='Wealth Transfer Signal over 24 hours', marker='o')
64
+ plt.title('Wealth Transfer Signal in 24-Hour Intervals')
65
+ plt.xlabel('Hour of the Day')
66
+ plt.ylabel('Wealth Signal Intensity')
67
+ plt.xticks(hours)
68
+ plt.grid(True)
69
+ plt.legend()
70
+ plt.show()
71
+
72
+
73
+