Update References
Browse files- References +66 -1
References
CHANGED
@@ -5,4 +5,69 @@ Automatically generated by Colab.
|
|
5 |
|
6 |
Original file is located at
|
7 |
https://colab.research.google.com/drive/1n4ADxn-u0nAkYm6mKMzzhiH1vl97qImr
|
8 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
Original file is located at
|
7 |
https://colab.research.google.com/drive/1n4ADxn-u0nAkYm6mKMzzhiH1vl97qImr
|
8 |
+
"""
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.optim as optim
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
|
15 |
+
wealth_distribution = torch.randn(32, 24, 1)
|
16 |
+
target_direction = torch.randn(32, 24, 1)
|
17 |
+
|
18 |
+
class WealthTransferModelWithVPN(nn.Module):
|
19 |
+
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
|
20 |
+
super(WealthTransferModelWithVPN, self).__init__()
|
21 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
22 |
+
self.relu = nn.ReLU()
|
23 |
+
|
24 |
+
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
|
25 |
+
|
26 |
+
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
|
27 |
+
|
28 |
+
self.vpn_layer = nn.Linear(output_size, vpn_size)
|
29 |
+
self.decrypt_layer = nn.Linear(vpn_size, output_size)
|
30 |
+
|
31 |
+
def forward(self, x, target):
|
32 |
+
x = torch.cat((x, target), dim=1)
|
33 |
+
|
34 |
+
x = self.relu(self.fc1(x))
|
35 |
+
|
36 |
+
x, _ = self.lstm(x)
|
37 |
+
|
38 |
+
x = self.fc2(x)
|
39 |
+
|
40 |
+
encrypted_output = torch.sigmoid(self.vpn_layer(x))
|
41 |
+
|
42 |
+
decrypted_output = self.decrypt_layer(encrypted_output)
|
43 |
+
|
44 |
+
return decrypted_output
|
45 |
+
|
46 |
+
input_size = wealth_distribution[-1] + target_direction.shape[-1]
|
47 |
+
hidden_size = 64
|
48 |
+
lstm_hidden_size = 32
|
49 |
+
output_size = wealth_distribution.shape[-1]
|
50 |
+
vpn_size = 128
|
51 |
+
|
52 |
+
model = WealthTransferWithVPN(input_size, hidden_sizse, lstm_hidden_size, vpn_size)
|
53 |
+
|
54 |
+
|
55 |
+
with torch.no_grad():
|
56 |
+
output_signal = model(wealth_distribution, target_direction)
|
57 |
+
|
58 |
+
wealth_waveform = output_signal[0].squeeze().numpy()
|
59 |
+
|
60 |
+
hours = list(range(24))
|
61 |
+
|
62 |
+
plt.figure(figsize=(10, 5))
|
63 |
+
plt.plot(hours, wealth_waveform, label='Wealth Transfer Signal over 24 hours', marker='o')
|
64 |
+
plt.title('Wealth Transfer Signal in 24-Hour Intervals')
|
65 |
+
plt.xlabel('Hour of the Day')
|
66 |
+
plt.ylabel('Wealth Signal Intensity')
|
67 |
+
plt.xticks(hours)
|
68 |
+
plt.grid(True)
|
69 |
+
plt.legend()
|
70 |
+
plt.show()
|
71 |
+
|
72 |
+
|
73 |
+
|