|
import os |
|
import time |
|
import string |
|
import argparse |
|
|
|
import torch |
|
import torch.backends.cudnn as cudnn |
|
import torch.utils.data |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from nltk.metrics.distance import edit_distance |
|
|
|
from utils import CTCLabelConverter, AttnLabelConverter, Averager |
|
from dataset import hierarchical_dataset, AlignCollate |
|
from model import Model |
|
|
|
def validation(model, criterion, evaluation_loader, converter, opt, device): |
|
""" validation or evaluation """ |
|
n_correct = 0 |
|
norm_ED = 0 |
|
length_of_data = 0 |
|
infer_time = 0 |
|
valid_loss_avg = Averager() |
|
|
|
for i, (image_tensors, labels) in enumerate(evaluation_loader): |
|
batch_size = image_tensors.size(0) |
|
length_of_data = length_of_data + batch_size |
|
image = image_tensors.to(device) |
|
|
|
length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device) |
|
text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device) |
|
|
|
text_for_loss, length_for_loss = converter.encode(labels, batch_max_length=opt.batch_max_length) |
|
|
|
start_time = time.time() |
|
if 'CTC' in opt.Prediction: |
|
preds = model(image, text_for_pred) |
|
forward_time = time.time() - start_time |
|
|
|
|
|
preds_size = torch.IntTensor([preds.size(1)] * batch_size) |
|
|
|
cost = criterion(preds.log_softmax(2).permute(1, 0, 2), text_for_loss, preds_size, length_for_loss) |
|
|
|
if opt.decode == 'greedy': |
|
|
|
_, preds_index = preds.max(2) |
|
preds_index = preds_index.view(-1) |
|
preds_str = converter.decode_greedy(preds_index.data, preds_size.data) |
|
elif opt.decode == 'beamsearch': |
|
preds_str = converter.decode_beamsearch(preds, beamWidth=2) |
|
|
|
else: |
|
preds = model(image, text_for_pred, is_train=False) |
|
forward_time = time.time() - start_time |
|
|
|
preds = preds[:, :text_for_loss.shape[1] - 1, :] |
|
target = text_for_loss[:, 1:] |
|
cost = criterion(preds.contiguous().view(-1, preds.shape[-1]), target.contiguous().view(-1)) |
|
|
|
|
|
_, preds_index = preds.max(2) |
|
preds_str = converter.decode(preds_index, length_for_pred) |
|
labels = converter.decode(text_for_loss[:, 1:], length_for_loss) |
|
|
|
infer_time += forward_time |
|
valid_loss_avg.add(cost) |
|
|
|
|
|
preds_prob = F.softmax(preds, dim=2) |
|
preds_max_prob, _ = preds_prob.max(dim=2) |
|
confidence_score_list = [] |
|
|
|
for gt, pred, pred_max_prob in zip(labels, preds_str, preds_max_prob): |
|
if 'Attn' in opt.Prediction: |
|
gt = gt[:gt.find('[s]')] |
|
pred_EOS = pred.find('[s]') |
|
pred = pred[:pred_EOS] |
|
pred_max_prob = pred_max_prob[:pred_EOS] |
|
|
|
if pred == gt: |
|
n_correct += 1 |
|
|
|
''' |
|
(old version) ICDAR2017 DOST Normalized Edit Distance https://rrc.cvc.uab.es/?ch=7&com=tasks |
|
"For each word we calculate the normalized edit distance to the length of the ground truth transcription." |
|
if len(gt) == 0: |
|
norm_ED += 1 |
|
else: |
|
norm_ED += edit_distance(pred, gt) / len(gt) |
|
''' |
|
|
|
|
|
if len(gt) == 0 or len(pred) ==0: |
|
norm_ED += 0 |
|
elif len(gt) > len(pred): |
|
norm_ED += 1 - edit_distance(pred, gt) / len(gt) |
|
else: |
|
norm_ED += 1 - edit_distance(pred, gt) / len(pred) |
|
|
|
|
|
try: |
|
confidence_score = pred_max_prob.cumprod(dim=0)[-1] |
|
except: |
|
confidence_score = 0 |
|
confidence_score_list.append(confidence_score) |
|
|
|
|
|
accuracy = n_correct / float(length_of_data) * 100 |
|
norm_ED = norm_ED / float(length_of_data) |
|
|
|
return valid_loss_avg.val(), accuracy, norm_ED, preds_str, confidence_score_list, labels, infer_time, length_of_data |
|
|