File size: 12,198 Bytes
b4959be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import os
import sys
import time
import random
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.init as init
import torch.optim as optim
import torch.utils.data
from torch.cuda.amp import autocast, GradScaler
import numpy as np
from utils import CTCLabelConverter, AttnLabelConverter, Averager
from dataset import hierarchical_dataset, AlignCollate, Batch_Balanced_Dataset
from model import Model
from test import validation
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def count_parameters(model):
print("Modules, Parameters")
total_params = 0
for name, parameter in model.named_parameters():
if not parameter.requires_grad: continue
param = parameter.numel()
#table.add_row([name, param])
total_params+=param
print(name, param)
print(f"Total Trainable Params: {total_params}")
return total_params
def train(opt, show_number = 2, amp=False):
""" dataset preparation """
if not opt.data_filtering_off:
print('Filtering the images containing characters which are not in opt.character')
print('Filtering the images whose label is longer than opt.batch_max_length')
opt.select_data = opt.select_data.split('-')
opt.batch_ratio = opt.batch_ratio.split('-')
train_dataset = Batch_Balanced_Dataset(opt)
log = open(f'./saved_models/{opt.experiment_name}/log_dataset.txt', 'a', encoding="utf8")
AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, contrast_adjust=opt.contrast_adjust)
valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
valid_loader = torch.utils.data.DataLoader(
valid_dataset, batch_size=min(32, opt.batch_size),
shuffle=True, # 'True' to check training progress with validation function.
num_workers=int(opt.workers), prefetch_factor=512,
collate_fn=AlignCollate_valid, pin_memory=True)
log.write(valid_dataset_log)
print('-' * 80)
log.write('-' * 80 + '\n')
log.close()
""" model configuration """
if 'CTC' in opt.Prediction:
converter = CTCLabelConverter(opt.character)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model = Model(opt)
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
opt.SequenceModeling, opt.Prediction)
if opt.saved_model != '':
pretrained_dict = torch.load(opt.saved_model)
if opt.new_prediction:
model.Prediction = nn.Linear(model.SequenceModeling_output, len(pretrained_dict['module.Prediction.weight']))
model = torch.nn.DataParallel(model).to(device)
print(f'loading pretrained model from {opt.saved_model}')
if opt.FT:
model.load_state_dict(pretrained_dict, strict=False)
else:
model.load_state_dict(pretrained_dict)
if opt.new_prediction:
model.module.Prediction = nn.Linear(model.module.SequenceModeling_output, opt.num_class)
for name, param in model.module.Prediction.named_parameters():
if 'bias' in name:
init.constant_(param, 0.0)
elif 'weight' in name:
init.kaiming_normal_(param)
model = model.to(device)
else:
# weight initialization
for name, param in model.named_parameters():
if 'localization_fc2' in name:
print(f'Skip {name} as it is already initialized')
continue
try:
if 'bias' in name:
init.constant_(param, 0.0)
elif 'weight' in name:
init.kaiming_normal_(param)
except Exception as e: # for batchnorm.
if 'weight' in name:
param.data.fill_(1)
continue
model = torch.nn.DataParallel(model).to(device)
model.train()
print("Model:")
print(model)
count_parameters(model)
""" setup loss """
if 'CTC' in opt.Prediction:
criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
else:
criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device) # ignore [GO] token = ignore index 0
# loss averager
loss_avg = Averager()
# freeze some layers
try:
if opt.freeze_FeatureFxtraction:
for param in model.module.FeatureExtraction.parameters():
param.requires_grad = False
if opt.freeze_SequenceModeling:
for param in model.module.SequenceModeling.parameters():
param.requires_grad = False
except:
pass
# filter that only require gradient decent
filtered_parameters = []
params_num = []
for p in filter(lambda p: p.requires_grad, model.parameters()):
filtered_parameters.append(p)
params_num.append(np.prod(p.size()))
print('Trainable params num : ', sum(params_num))
# [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]
# setup optimizer
if opt.optim=='adam':
#optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
optimizer = optim.Adam(filtered_parameters)
else:
optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps)
print("Optimizer:")
print(optimizer)
""" final options """
# print(opt)
with open(f'./saved_models/{opt.experiment_name}/opt.txt', 'a', encoding="utf8") as opt_file:
opt_log = '------------ Options -------------\n'
args = vars(opt)
for k, v in args.items():
opt_log += f'{str(k)}: {str(v)}\n'
opt_log += '---------------------------------------\n'
print(opt_log)
opt_file.write(opt_log)
""" start training """
start_iter = 0
if opt.saved_model != '':
try:
start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
print(f'continue to train, start_iter: {start_iter}')
except:
pass
start_time = time.time()
best_accuracy = -1
best_norm_ED = -1
i = start_iter
scaler = GradScaler()
t1= time.time()
while(True):
# train part
optimizer.zero_grad(set_to_none=True)
if amp:
with autocast():
image_tensors, labels = train_dataset.get_batch()
image = image_tensors.to(device)
text, length = converter.encode(labels, batch_max_length=opt.batch_max_length)
batch_size = image.size(0)
if 'CTC' in opt.Prediction:
preds = model(image, text).log_softmax(2)
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
preds = preds.permute(1, 0, 2)
torch.backends.cudnn.enabled = False
cost = criterion(preds, text.to(device), preds_size.to(device), length.to(device))
torch.backends.cudnn.enabled = True
else:
preds = model(image, text[:, :-1]) # align with Attention.forward
target = text[:, 1:] # without [GO] Symbol
cost = criterion(preds.view(-1, preds.shape[-1]), target.contiguous().view(-1))
scaler.scale(cost).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
scaler.step(optimizer)
scaler.update()
else:
image_tensors, labels = train_dataset.get_batch()
image = image_tensors.to(device)
text, length = converter.encode(labels, batch_max_length=opt.batch_max_length)
batch_size = image.size(0)
if 'CTC' in opt.Prediction:
preds = model(image, text).log_softmax(2)
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
preds = preds.permute(1, 0, 2)
torch.backends.cudnn.enabled = False
cost = criterion(preds, text.to(device), preds_size.to(device), length.to(device))
torch.backends.cudnn.enabled = True
else:
preds = model(image, text[:, :-1]) # align with Attention.forward
target = text[:, 1:] # without [GO] Symbol
cost = criterion(preds.view(-1, preds.shape[-1]), target.contiguous().view(-1))
cost.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
optimizer.step()
loss_avg.add(cost)
# validation part
if (i % opt.valInterval == 0) and (i!=0):
print('training time: ', time.time()-t1)
t1=time.time()
elapsed_time = time.time() - start_time
# for log
with open(f'./saved_models/{opt.experiment_name}/log_train.txt', 'a', encoding="utf8") as log:
model.eval()
with torch.no_grad():
valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels,\
infer_time, length_of_data = validation(model, criterion, valid_loader, converter, opt, device)
model.train()
# training loss and validation loss
loss_log = f'[{i}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
loss_avg.reset()
current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.4f}'
# keep best accuracy model (on valid dataset)
if current_accuracy > best_accuracy:
best_accuracy = current_accuracy
torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_accuracy.pth')
if current_norm_ED > best_norm_ED:
best_norm_ED = current_norm_ED
torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_norm_ED.pth')
best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.4f}'
loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
print(loss_model_log)
log.write(loss_model_log + '\n')
# show some predicted results
dashed_line = '-' * 80
head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
#show_number = min(show_number, len(labels))
start = random.randint(0,len(labels) - show_number )
for gt, pred, confidence in zip(labels[start:start+show_number], preds[start:start+show_number], confidence_score[start:start+show_number]):
if 'Attn' in opt.Prediction:
gt = gt[:gt.find('[s]')]
pred = pred[:pred.find('[s]')]
predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
predicted_result_log += f'{dashed_line}'
print(predicted_result_log)
log.write(predicted_result_log + '\n')
print('validation time: ', time.time()-t1)
t1=time.time()
# save model per 1e+4 iter.
if (i + 1) % 1e+4 == 0:
torch.save(
model.state_dict(), f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth')
if i == opt.num_iter:
print('end the training')
sys.exit()
i += 1
|