File size: 11,060 Bytes
b4959be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
import sys
import re
import six
import math
import torch
import pandas  as pd

from natsort import natsorted
from PIL import Image
import numpy as np
from torch.utils.data import Dataset, ConcatDataset, Subset
from torch._utils import _accumulate
import torchvision.transforms as transforms

def contrast_grey(img):
    high = np.percentile(img, 90)
    low  = np.percentile(img, 10)
    return (high-low)/(high+low), high, low

def adjust_contrast_grey(img, target = 0.4):
    contrast, high, low = contrast_grey(img)
    if contrast < target:
        img = img.astype(int)
        ratio = 200./(high-low)
        img = (img - low + 25)*ratio
        img = np.maximum(np.full(img.shape, 0) ,np.minimum(np.full(img.shape, 255), img)).astype(np.uint8)
    return img


class Batch_Balanced_Dataset(object):

    def __init__(self, opt):
        """
        Modulate the data ratio in the batch.
        For example, when select_data is "MJ-ST" and batch_ratio is "0.5-0.5",
        the 50% of the batch is filled with MJ and the other 50% of the batch is filled with ST.
        """
        log = open(f'./saved_models/{opt.experiment_name}/log_dataset.txt', 'a')
        dashed_line = '-' * 80
        print(dashed_line)
        log.write(dashed_line + '\n')
        print(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}')
        log.write(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}\n')
        assert len(opt.select_data) == len(opt.batch_ratio)

        _AlignCollate = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, contrast_adjust = opt.contrast_adjust)
        self.data_loader_list = []
        self.dataloader_iter_list = []
        batch_size_list = []
        Total_batch_size = 0
        for selected_d, batch_ratio_d in zip(opt.select_data, opt.batch_ratio):
            _batch_size = max(round(opt.batch_size * float(batch_ratio_d)), 1)
            print(dashed_line)
            log.write(dashed_line + '\n')
            _dataset, _dataset_log = hierarchical_dataset(root=opt.train_data, opt=opt, select_data=[selected_d])
            total_number_dataset = len(_dataset)
            log.write(_dataset_log)

            """
            The total number of data can be modified with opt.total_data_usage_ratio.
            ex) opt.total_data_usage_ratio = 1 indicates 100% usage, and 0.2 indicates 20% usage.
            See 4.2 section in our paper.
            """
            number_dataset = int(total_number_dataset * float(opt.total_data_usage_ratio))
            dataset_split = [number_dataset, total_number_dataset - number_dataset]
            indices = range(total_number_dataset)
            _dataset, _ = [Subset(_dataset, indices[offset - length:offset])
                           for offset, length in zip(_accumulate(dataset_split), dataset_split)]
            selected_d_log = f'num total samples of {selected_d}: {total_number_dataset} x {opt.total_data_usage_ratio} (total_data_usage_ratio) = {len(_dataset)}\n'
            selected_d_log += f'num samples of {selected_d} per batch: {opt.batch_size} x {float(batch_ratio_d)} (batch_ratio) = {_batch_size}'
            print(selected_d_log)
            log.write(selected_d_log + '\n')
            batch_size_list.append(str(_batch_size))
            Total_batch_size += _batch_size

            _data_loader = torch.utils.data.DataLoader(
                _dataset, batch_size=_batch_size,
                shuffle=True,
                num_workers=int(opt.workers), #prefetch_factor=2,persistent_workers=True,
                collate_fn=_AlignCollate, pin_memory=True)
            self.data_loader_list.append(_data_loader)
            self.dataloader_iter_list.append(iter(_data_loader))

        Total_batch_size_log = f'{dashed_line}\n'
        batch_size_sum = '+'.join(batch_size_list)
        Total_batch_size_log += f'Total_batch_size: {batch_size_sum} = {Total_batch_size}\n'
        Total_batch_size_log += f'{dashed_line}'
        opt.batch_size = Total_batch_size

        print(Total_batch_size_log)
        log.write(Total_batch_size_log + '\n')
        log.close()

    def get_batch(self):
        balanced_batch_images = []
        balanced_batch_texts = []

        for i, data_loader_iter in enumerate(self.dataloader_iter_list):
            try:
                image, text = data_loader_iter.next()
                balanced_batch_images.append(image)
                balanced_batch_texts += text
            except StopIteration:
                self.dataloader_iter_list[i] = iter(self.data_loader_list[i])
                image, text = self.dataloader_iter_list[i].next()
                balanced_batch_images.append(image)
                balanced_batch_texts += text
            except ValueError:
                pass

        balanced_batch_images = torch.cat(balanced_batch_images, 0)

        return balanced_batch_images, balanced_batch_texts


def hierarchical_dataset(root, opt, select_data='/'):
    """ select_data='/' contains all sub-directory of root directory """
    dataset_list = []
    dataset_log = f'dataset_root:    {root}\t dataset: {select_data[0]}'
    print(dataset_log)
    dataset_log += '\n'
    for dirpath, dirnames, filenames in os.walk(root+'/'):
        if not dirnames:
            select_flag = False
            for selected_d in select_data:
                if selected_d in dirpath:
                    select_flag = True
                    break

            if select_flag:
                dataset = OCRDataset(dirpath, opt)
                sub_dataset_log = f'sub-directory:\t/{os.path.relpath(dirpath, root)}\t num samples: {len(dataset)}'
                print(sub_dataset_log)
                dataset_log += f'{sub_dataset_log}\n'
                dataset_list.append(dataset)

    concatenated_dataset = ConcatDataset(dataset_list)

    return concatenated_dataset, dataset_log

class OCRDataset(Dataset):

    def __init__(self, root, opt):

        self.root = root
        self.opt = opt
        print(root)
        self.df = pd.read_csv(os.path.join(root,'labels.csv'), sep='^([^,]+),', engine='python', usecols=['filename', 'words'], keep_default_na=False)
        self.nSamples = len(self.df)

        if self.opt.data_filtering_off:
            self.filtered_index_list = [index + 1 for index in range(self.nSamples)]
        else:
            self.filtered_index_list = []
            for index in range(self.nSamples):
                label = self.df.at[index,'words']
                try:
                    if len(label) > self.opt.batch_max_length:
                        continue
                except:
                    print(label)
                out_of_char = f'[^{self.opt.character}]'
                if re.search(out_of_char, label.lower()):
                    continue
                self.filtered_index_list.append(index)
            self.nSamples = len(self.filtered_index_list)

    def __len__(self):
        return self.nSamples

    def __getitem__(self, index):
        index = self.filtered_index_list[index]
        img_fname = self.df.at[index,'filename']
        img_fpath = os.path.join(self.root, img_fname)
        label = self.df.at[index,'words']

        if self.opt.rgb:
            img = Image.open(img_fpath).convert('RGB')  # for color image
        else:
            img = Image.open(img_fpath).convert('L')

        if not self.opt.sensitive:
            label = label.lower()

        # We only train and evaluate on alphanumerics (or pre-defined character set in train.py)
        out_of_char = f'[^{self.opt.character}]'
        label = re.sub(out_of_char, '', label)

        return (img, label)

class ResizeNormalize(object):

    def __init__(self, size, interpolation=Image.BICUBIC):
        self.size = size
        self.interpolation = interpolation
        self.toTensor = transforms.ToTensor()

    def __call__(self, img):
        img = img.resize(self.size, self.interpolation)
        img = self.toTensor(img)
        img.sub_(0.5).div_(0.5)
        return img


class NormalizePAD(object):

    def __init__(self, max_size, PAD_type='right'):
        self.toTensor = transforms.ToTensor()
        self.max_size = max_size
        self.max_width_half = math.floor(max_size[2] / 2)
        self.PAD_type = PAD_type

    def __call__(self, img):
        img = self.toTensor(img)
        img.sub_(0.5).div_(0.5)
        c, h, w = img.size()
        Pad_img = torch.FloatTensor(*self.max_size).fill_(0)
        Pad_img[:, :, :w] = img  # right pad
        if self.max_size[2] != w:  # add border Pad
            Pad_img[:, :, w:] = img[:, :, w - 1].unsqueeze(2).expand(c, h, self.max_size[2] - w)

        return Pad_img


class AlignCollate(object):

    def __init__(self, imgH=32, imgW=100, keep_ratio_with_pad=False, contrast_adjust = 0.):
        self.imgH = imgH
        self.imgW = imgW
        self.keep_ratio_with_pad = keep_ratio_with_pad
        self.contrast_adjust = contrast_adjust

    def __call__(self, batch):
        batch = filter(lambda x: x is not None, batch)
        images, labels = zip(*batch)

        if self.keep_ratio_with_pad:  # same concept with 'Rosetta' paper
            resized_max_w = self.imgW
            input_channel = 3 if images[0].mode == 'RGB' else 1
            transform = NormalizePAD((input_channel, self.imgH, resized_max_w))

            resized_images = []
            for image in images:
                w, h = image.size

                #### augmentation here - change contrast
                if self.contrast_adjust > 0:
                    image = np.array(image.convert("L"))
                    image = adjust_contrast_grey(image, target = self.contrast_adjust)
                    image = Image.fromarray(image, 'L')

                ratio = w / float(h)
                if math.ceil(self.imgH * ratio) > self.imgW:
                    resized_w = self.imgW
                else:
                    resized_w = math.ceil(self.imgH * ratio)

                resized_image = image.resize((resized_w, self.imgH), Image.BICUBIC)
                resized_images.append(transform(resized_image))
                # resized_image.save('./image_test/%d_test.jpg' % w)

            image_tensors = torch.cat([t.unsqueeze(0) for t in resized_images], 0)

        else:
            transform = ResizeNormalize((self.imgW, self.imgH))
            image_tensors = [transform(image) for image in images]
            image_tensors = torch.cat([t.unsqueeze(0) for t in image_tensors], 0)

        return image_tensors, labels


def tensor2im(image_tensor, imtype=np.uint8):
    image_numpy = image_tensor.cpu().float().numpy()
    if image_numpy.shape[0] == 1:
        image_numpy = np.tile(image_numpy, (3, 1, 1))
    image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
    return image_numpy.astype(imtype)


def save_image(image_numpy, image_path):
    image_pil = Image.fromarray(image_numpy)
    image_pil.save(image_path)