File size: 15,661 Bytes
8310a1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
''' consistent initial noise for video generation'''
import cv2
import os
from os.path import join, basename, dirname, splitext
import shutil
import argparse
import numpy as np
import random
import torch, torchvision
import subprocess
from audio import audio
import face_detection
from tqdm import tqdm
from guided_diffusion import dist_util, logger
from guided_diffusion.resample import create_named_schedule_sampler
from guided_diffusion.script_util import (
tfg_model_and_diffusion_defaults,
tfg_create_model_and_diffusion,
args_to_dict,
add_dict_to_argparser,
)
from guided_diffusion.tfg_data_util import (
tfg_process_batch,
)
def get_frame_id(frame):
return int(basename(frame).split('.')[0])
def crop_audio_window(spec, start_frame, args ):
if type(start_frame) == int:
start_frame_num = start_frame
else:
start_frame_num = get_frame_id(start_frame)
start_idx = int(args.mel_steps_per_sec * (start_frame_num / float(args.video_fps)))
end_idx = start_idx + args.syncnet_mel_step_size
return spec[start_idx : end_idx, :]
def load_all_indiv_mels(path, args):
in_path = path
out_dir = join(args.sample_path, "temp", basename(in_path).replace(".mp4", ""))
os.makedirs(out_dir, exist_ok= True)
out_path = join(out_dir, "audio.wav")
command2 = 'ffmpeg -loglevel error -y -i {} -strict -2 {}'.format(in_path, out_path)
subprocess.call(command2, shell=True)
wav = audio.load_wav(out_path, args.sample_rate)
orig_mel = audio.melspectrogram(wav).T
all_indiv_mels = []
# i=0
i=1
while True:
m = crop_audio_window(orig_mel.copy(), max(i - args.syncnet_T//2,0), args)
if (m.shape[0] != args.syncnet_mel_step_size):
break
all_indiv_mels.append(m.T)
i+=1
#clean up
shutil.rmtree(join(args.sample_path, "temp"))
return all_indiv_mels, wav
def load_video_frames(path, args):
in_path = path
out_dir = join(args.sample_path, "temp", basename(in_path).replace(".mp4", ""), "image")
os.makedirs(out_dir, exist_ok= True)
command = "ffmpeg -loglevel error -y -i {} -vf fps={} -q:v 2 -qmin 1 {}/%05d.jpg".format(in_path, args.video_fps, out_dir)
subprocess.call(command, shell=True)
video_frames=[]
for i, img_name in enumerate(sorted(os.listdir(out_dir))):
img_path=join(out_dir, img_name)
img = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
video_frames.append(img)
#clean up
shutil.rmtree(join(args.sample_path, "temp"))
return video_frames
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def my_voxceleb2_crop(img):
return img[:-int(img.shape[0]*2.36/8) , int(img.shape[1]*1.8/8): -int(img.shape[1]*1.8/8)]
def my_voxceleb2_crop_bboxs(img):
return 0,img.shape[0]-int(img.shape[0]*2.36/8), int(img.shape[1]*1.8/8), img.shape[1]-int(img.shape[1]*1.8/8)
def face_detect(images, detector, args, resize=False):
batch_size = args.face_det_batch_size
while 1:
predictions = []
try:
for i in range(0, len(images), batch_size):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError('Image too big to run face detection on GPU')
batch_size //= 2
args.face_det_batch_size = batch_size
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
if type(args.pads) == str :
args.pads = [int(x) for x in args.pads.split(",")]
pady1, pady2, padx1, padx2 = args.pads
for rect, image in zip(predictions, images):
if rect is None:
raise ValueError('Face not detected!')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = get_smoothened_boxes(np.array(results), T=5)
if resize:
if args.is_voxceleb2:
results = [[cv2.resize(my_voxceleb2_crop(image),(args.image_size, args.image_size)), my_voxceleb2_crop_bboxs(image), True] for image, (x1, y1, x2, y2) in zip(images, boxes)]
else:
results = [[cv2.resize(image[y1: y2, x1:x2],(args.image_size, args.image_size)), (y1, y2, x1, x2), True] for image, (x1, y1, x2, y2) in zip(images, boxes)]
else:
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2), True] for image, (x1, y1, x2, y2) in zip(images, boxes)]
return results
def normalise(tensor):
""" [-1,1]->[0,1]"""
return ((tensor+1)*0.5).clamp(0,1)
def normalise2(tensor):
""" [0,1]->[-1,1]"""
return (tensor*2-1).clamp(-1,1)
def sample_batch(batch, model, diffusion, args):
B, F, C, H, W = batch[f'image'].shape
sample_shape = (B*F, C, H, W)
#generate fixed noise
init_noise = None
if args.sampling_seed:
state = torch.get_rng_state()
torch.manual_seed(args.sampling_seed)
torch.cuda.manual_seed_all(args.sampling_seed)
init_noise = torch.randn((1,C,H,W))
#repeat noise for all frames
init_noise = init_noise.repeat(B*F,1,1,1)
torch.set_rng_state(state)
img_batch, model_kwargs = tfg_process_batch(batch, args.face_hide_percentage,
use_ref=args.use_ref,
use_audio=args.use_audio,
# sampling_use_gt_for_ref=args.sampling_use_gt_for_ref,
noise=init_noise)
img_batch = img_batch.to(dist_util.dev())
model_kwargs = {k: v.to(dist_util.dev()) for k,v in model_kwargs.items()}
init_noise = init_noise.to(dist_util.dev()) if init_noise is not None else None
sample_fn = (
diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
)
sample = sample_fn(
model,
sample_shape,
clip_denoised=args.clip_denoised,
model_kwargs=model_kwargs,
noise = init_noise
)
return sample, img_batch, model_kwargs
def generate(video_path, audio_path, model, diffusion, detector, args, out_path=None, save_orig=True):
video_frames = load_video_frames(video_path, args)
try:
face_det_results = face_detect(video_frames.copy(), detector, args, resize=True)
except Exception as e:
print("Error:", e, video_path, audio_path)
import traceback
print(traceback.format_exc())
wrong_all_indiv_mels, wrong_audio_wavform = load_all_indiv_mels(audio_path, args)
min_frames = min(len(video_frames), len(wrong_all_indiv_mels))
video_frames = video_frames[:min_frames]
face_det_results = face_det_results[:min_frames]
face_bboxes = [face_det_results[i][1] for i in range(min_frames)]
face_frames = torch.FloatTensor(np.transpose(np.asarray([face_det_results[i][0] for i in range(min_frames)], dtype=np.float32)/255.,(0,3,1,2)))#[N, C, H, W]
wrong_all_indiv_mels = torch.FloatTensor(np.asarray(wrong_all_indiv_mels[:min_frames])).unsqueeze(1) #[N, 1, h, w]
if save_orig:
if out_path is None:
out_path_orig = os.path.join(args.sample_path, splitext(basename(video_path))[0]+"_"+ splitext(basename(audio_path))[0]+"_orig.mp4")
else:
out_path_orig = out_path.replace(".mp4", "_orig.mp4")
torchvision.io.write_video(
out_path_orig,
video_array=torch.from_numpy(np.array(video_frames)), fps = args.video_fps, video_codec='libx264',
audio_array=torch.from_numpy(wrong_audio_wavform).unsqueeze(0), audio_fps=args.sample_rate, audio_codec='aac'
)
if args.sampling_ref_type=='gt':
ref_frames = face_frames.clone()
elif args.sampling_ref_type=='first_frame':
ref_frames = face_frames[0:1].repeat(len(face_frames),1,1,1)
elif args.sampling_ref_type=='random':
rand_idx = random.Random(args.sampling_seed).randint(0, len(face_frames)-1)
ref_frames = face_frames[rand_idx:rand_idx+1].repeat(len(face_frames),1,1,1)
if args.sampling_input_type=='first_frame':
face_frames = face_frames[0:1].repeat(len(face_frames),1,1,1)
video_frames = np.array(video_frames[0:1]*len(video_frames))
face_bboxes = np.array(face_bboxes[0:1]*len(face_bboxes))
generated_video_frames = []
b_s = args.sampling_batch_size
for i in range(0,min_frames, b_s*args.nframes):
video_frames_batch = video_frames[i:i+b_s*args.nframes]
face_bboxes_batch = face_bboxes[i:i+b_s*args.nframes]
try:
img_batch = face_frames[i:i+b_s*args.nframes] #[BF, C, H, W]
img_batch = img_batch.reshape(-1, args.nframes, img_batch.size(-3), img_batch.size(-2), img_batch.size(-1))
ref_batch = ref_frames[i:i+b_s*args.nframes]
ref_batch = ref_batch.reshape(-1, args.nframes, ref_batch.size(-3), ref_batch.size(-2), ref_batch.size(-1))
wrong_indiv_mel_batch = wrong_all_indiv_mels[i:i+b_s*args.nframes] #[BF, 1, h, w]
wrong_indiv_mel_batch = wrong_indiv_mel_batch.reshape(-1, args.nframes, wrong_indiv_mel_batch.size(-3),wrong_indiv_mel_batch.size(-2),wrong_indiv_mel_batch.size(-1))
except: # of the last batch, if B*F % nframes!=0, then the above reshape throws error
# but internally everything is going to get converted to BF
# ie. (B,F, C, H, W) -> (B*F, C, H, W) but (B*F, 1, C, H, W) -> (B*F, C, H, W)
img_batch = face_frames[i:i+b_s*args.nframes] #[BF, C, H, W]
img_batch = img_batch.reshape(-1, 1, img_batch.size(-3), img_batch.size(-2), img_batch.size(-1))
ref_batch = ref_frames[i:i+b_s*args.nframes]
ref_batch = ref_batch.reshape(-1, 1, ref_batch.size(-3), ref_batch.size(-2), ref_batch.size(-1))
wrong_indiv_mel_batch = wrong_all_indiv_mels[i:i+b_s*args.nframes] #[BF, 1, h, w]
wrong_indiv_mel_batch = wrong_indiv_mel_batch.reshape(-1, 1, wrong_indiv_mel_batch.size(-3),wrong_indiv_mel_batch.size(-2),wrong_indiv_mel_batch.size(-1))
batch = {"image":img_batch,
"ref_img":ref_batch,
"indiv_mels":wrong_indiv_mel_batch}
sample, img_batch, model_kwargs = sample_batch(batch, model, diffusion, args)
mask = model_kwargs['mask']
recon_batch = sample * mask + (1. -mask)*img_batch #[BF, C, H, W]
recon_batch = (normalise(recon_batch)*255).cpu().numpy().transpose(0,2,3,1) #[-1,1] -> [0,255]
for g,v,b in zip(recon_batch, video_frames_batch, face_bboxes_batch):
y1, y2, x1, x2 = b
g = cv2.resize(g.astype(np.uint8), (x2 - x1, y2 - y1))
v[y1:y2, x1:x2] = g
generated_video_frames.append(v)
print(wrong_audio_wavform.shape, np.array(generated_video_frames).shape)
min_time = len(generated_video_frames)/args.video_fps # because video is already smaller because it got chopped accoding to the mel array length
wrong_audio_wavform = wrong_audio_wavform[:int(min_time*args.sample_rate)]
print(wrong_audio_wavform.shape, np.array(generated_video_frames).shape)
if out_path is None:
out_path = os.path.join(args.sample_path, splitext(basename(video_path))[0]+"_"+ splitext(basename(audio_path))[0]+".mp4")
torchvision.io.write_video(
out_path,
video_array=torch.from_numpy(np.array(generated_video_frames)), fps = args.video_fps, video_codec='libx264',
audio_array=torch.from_numpy(wrong_audio_wavform).unsqueeze(0), audio_fps=args.sample_rate, audio_codec='aac'
)
def generate_from_filelist(test_video_dir, filelist, model, diffusion, detector, args):
video_names = []
audio_names = []
with open(filelist, "r") as f:
lines = f.readlines()
for line in tqdm(lines):
try:
audio_name, video_name = line.strip().split()
audio_path = join(test_video_dir, audio_name+'.mp4')
video_path = join(test_video_dir, video_name+'.mp4')
out_path = join(args.sample_path,audio_name.replace('/','.')+"_"+video_name.replace('/','.')+".mp4")
generate(video_path, audio_path, model, diffusion, detector, args, out_path=out_path ,save_orig=args.save_orig)
except Exception as e:
print("Error:", e, video_path, audio_path)
import traceback
print(traceback.format_exc())
def main():
args = create_argparser().parse_args()
dist_util.setup_dist()
logger.configure(dir=args.sample_path, format_strs=["stdout", "log"])
logger.log("creating model...")
model, diffusion = tfg_create_model_and_diffusion(
**args_to_dict(args, tfg_model_and_diffusion_defaults().keys())
)
print("Model Loaded")
model.load_state_dict(
dist_util.load_state_dict(args.model_path, map_location='cpu')
)
model.to(dist_util.dev())
if args.use_fp16:
model.convert_to_fp16()
model.eval()
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, device='cuda' if torch.cuda.is_available() else 'cpu')
if args.generate_from_filelist:
generate_from_filelist(args.test_video_dir, args.filelist, model, diffusion, detector, args)
else:
generate(args.video_path, args.audio_path, model, diffusion, detector, args, out_path=args.out_path, save_orig=args.save_orig)
def create_argparser():
defaults = dict(
# generate from a single audio-video pair
generate_from_filelist = False,
video_path = "",
audio_path = "",
out_path = None,
save_orig = True,
#generate from filelist : generate_from_filelist = True
test_video_dir = "test_videos",
filelist = "test_filelist.txt",
use_fp16 = True,
#tfg specific
face_hide_percentage=0.5,
use_ref=False,
use_audio=False,
audio_as_style=False,
audio_as_style_encoder_mlp=False,
#data args
nframes=1,
nrefer=0,
image_size=128,
syncnet_T = 5,
syncnet_mel_step_size = 16,
audio_frames_per_video = 16, #for tfg model, we use sound corresponding to 5 frames centred at that frame
audio_dim=80,
is_voxceleb2=True,
video_fps=25,
sample_rate=16000, #audio sampling rate
mel_steps_per_sec=80.,
#sampling args
clip_denoised=True, # not used in training
sampling_batch_size=2,
use_ddim=False,
model_path="",
sample_path="d2l_gen",
sample_partition="",
sampling_seed=None,
sampling_use_gt_for_ref=False,
sampling_ref_type='gt', #one of ['gt', 'first_frame', 'random']
sampling_input_type='gt', #one of ['gt', 'first_frame']
# face detection args
face_det_batch_size=64,
pads = "0,0,0,0"
)
defaults.update(tfg_model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__=="__main__":
main() |