File size: 27,755 Bytes
5bf1581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import torch, math
from einops import rearrange, repeat
from .sd_unet import Timesteps, PushBlock, PopBlock, Attention, GEGLU, ResnetBlock, AttentionBlock, DownSampler, UpSampler


class TemporalResnetBlock(torch.nn.Module):
    def __init__(self, in_channels, out_channels, temb_channels=None, groups=32, eps=1e-5):
        super().__init__()
        self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
        self.conv1 = torch.nn.Conv3d(in_channels, out_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1), padding=(1, 0, 0))
        if temb_channels is not None:
            self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels)
        self.norm2 = torch.nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True)
        self.conv2 = torch.nn.Conv3d(out_channels, out_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1), padding=(1, 0, 0))
        self.nonlinearity = torch.nn.SiLU()
        self.conv_shortcut = None
        if in_channels != out_channels:
            self.conv_shortcut = torch.nn.Conv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=True)

    def forward(self, hidden_states, time_emb, text_emb, res_stack):
        x = rearrange(hidden_states, "f c h w -> 1 c f h w")
        x = self.norm1(x)
        x = self.nonlinearity(x)
        x = self.conv1(x)
        if time_emb is not None:
            emb = self.nonlinearity(time_emb)
            emb = self.time_emb_proj(emb)
            emb = repeat(emb, "b c -> b c f 1 1", f=hidden_states.shape[0])
            x = x + emb
        x = self.norm2(x)
        x = self.nonlinearity(x)
        x = self.conv2(x)
        if self.conv_shortcut is not None:
            hidden_states = self.conv_shortcut(hidden_states)
        x = rearrange(x[0], "c f h w -> f c h w")
        hidden_states = hidden_states + x
        return hidden_states, time_emb, text_emb, res_stack


def get_timestep_embedding(
    timesteps: torch.Tensor,
    embedding_dim: int,
    flip_sin_to_cos: bool = False,
    downscale_freq_shift: float = 1,
    scale: float = 1,
    max_period: int = 10000,
):
    """
    This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.

    :param timesteps: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
    embeddings. :return: an [N x dim] Tensor of positional embeddings.
    """
    assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"

    half_dim = embedding_dim // 2
    exponent = -math.log(max_period) * torch.arange(
        start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
    )
    exponent = exponent / (half_dim - downscale_freq_shift)

    emb = torch.exp(exponent)
    emb = timesteps[:, None].float() * emb[None, :]

    # scale embeddings
    emb = scale * emb

    # concat sine and cosine embeddings
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)

    # flip sine and cosine embeddings
    if flip_sin_to_cos:
        emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)

    # zero pad
    if embedding_dim % 2 == 1:
        emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
    return emb


class TemporalTimesteps(torch.nn.Module):
    def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
        super().__init__()
        self.num_channels = num_channels
        self.flip_sin_to_cos = flip_sin_to_cos
        self.downscale_freq_shift = downscale_freq_shift

    def forward(self, timesteps):
        t_emb = get_timestep_embedding(
            timesteps,
            self.num_channels,
            flip_sin_to_cos=self.flip_sin_to_cos,
            downscale_freq_shift=self.downscale_freq_shift,
        )
        return t_emb


class TemporalAttentionBlock(torch.nn.Module):

    def __init__(self, num_attention_heads, attention_head_dim, in_channels, cross_attention_dim=None):
        super().__init__()

        self.positional_embedding = TemporalTimesteps(in_channels, True, 0)
        self.positional_embedding_proj = torch.nn.Sequential(
            torch.nn.Linear(in_channels, in_channels * 4),
            torch.nn.SiLU(),
            torch.nn.Linear(in_channels * 4, in_channels)
        )

        self.norm_in = torch.nn.LayerNorm(in_channels)
        self.act_fn_in = GEGLU(in_channels, in_channels * 4)
        self.ff_in = torch.nn.Linear(in_channels * 4, in_channels)

        self.norm1 = torch.nn.LayerNorm(in_channels)
        self.attn1 = Attention(
            q_dim=in_channels,
            num_heads=num_attention_heads,
            head_dim=attention_head_dim,
            bias_out=True
        )

        self.norm2 = torch.nn.LayerNorm(in_channels)
        self.attn2 = Attention(
            q_dim=in_channels,
            kv_dim=cross_attention_dim,
            num_heads=num_attention_heads,
            head_dim=attention_head_dim,
            bias_out=True
        )

        self.norm_out = torch.nn.LayerNorm(in_channels)
        self.act_fn_out = GEGLU(in_channels, in_channels * 4)
        self.ff_out = torch.nn.Linear(in_channels * 4, in_channels)

    def forward(self, hidden_states, time_emb, text_emb, res_stack):

        batch, inner_dim, height, width = hidden_states.shape
        pos_emb = torch.arange(batch)
        pos_emb = self.positional_embedding(pos_emb).to(dtype=hidden_states.dtype, device=hidden_states.device)
        pos_emb = self.positional_embedding_proj(pos_emb)[None, :, :]

        hidden_states = hidden_states.permute(2, 3, 0, 1).reshape(height * width, batch, inner_dim)
        hidden_states = hidden_states + pos_emb

        residual = hidden_states
        hidden_states = self.norm_in(hidden_states)
        hidden_states = self.act_fn_in(hidden_states)
        hidden_states = self.ff_in(hidden_states)
        hidden_states = hidden_states + residual

        norm_hidden_states = self.norm1(hidden_states)
        attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
        hidden_states = attn_output + hidden_states

        norm_hidden_states = self.norm2(hidden_states)
        attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=text_emb.repeat(height * width, 1))
        hidden_states = attn_output + hidden_states

        residual = hidden_states
        hidden_states = self.norm_out(hidden_states)
        hidden_states = self.act_fn_out(hidden_states)
        hidden_states = self.ff_out(hidden_states)
        hidden_states = hidden_states + residual

        hidden_states = hidden_states.reshape(height, width, batch, inner_dim).permute(2, 3, 0, 1)

        return hidden_states, time_emb, text_emb, res_stack
    

class PopMixBlock(torch.nn.Module):
    def __init__(self, in_channels=None):
        super().__init__()
        self.mix_factor = torch.nn.Parameter(torch.Tensor([0.5]))
        self.need_proj = in_channels is not None
        if self.need_proj:
            self.proj = torch.nn.Linear(in_channels, in_channels)
    
    def forward(self, hidden_states, time_emb, text_emb, res_stack):
        res_hidden_states = res_stack.pop()
        alpha = torch.sigmoid(self.mix_factor)
        hidden_states = alpha * res_hidden_states + (1 - alpha) * hidden_states
        if self.need_proj:
            hidden_states = hidden_states.permute(0, 2, 3, 1)
            hidden_states = self.proj(hidden_states)
            hidden_states = hidden_states.permute(0, 3, 1, 2)
            res_hidden_states = res_stack.pop()
            hidden_states = hidden_states + res_hidden_states
        return hidden_states, time_emb, text_emb, res_stack


class SVDUNet(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.time_proj = Timesteps(320)
        self.time_embedding = torch.nn.Sequential(
            torch.nn.Linear(320, 1280),
            torch.nn.SiLU(),
            torch.nn.Linear(1280, 1280)
        )
        self.add_time_proj = Timesteps(256)
        self.add_time_embedding = torch.nn.Sequential(
            torch.nn.Linear(768, 1280),
            torch.nn.SiLU(),
            torch.nn.Linear(1280, 1280)
        )
        self.conv_in = torch.nn.Conv2d(8, 320, kernel_size=3, padding=1)

        self.blocks = torch.nn.ModuleList([
            # CrossAttnDownBlockSpatioTemporal
            ResnetBlock(320, 320, 1280, eps=1e-6),                      PushBlock(), TemporalResnetBlock(320, 320, 1280, eps=1e-6),   PopMixBlock(),     PushBlock(),
            AttentionBlock(5, 64, 320, 1, 1024, need_proj_out=False),   PushBlock(), TemporalAttentionBlock(5, 64, 320, 1024),        PopMixBlock(320),  PushBlock(),
            ResnetBlock(320, 320, 1280, eps=1e-6),                      PushBlock(), TemporalResnetBlock(320, 320, 1280, eps=1e-6),   PopMixBlock(),     PushBlock(),
            AttentionBlock(5, 64, 320, 1, 1024, need_proj_out=False),   PushBlock(), TemporalAttentionBlock(5, 64, 320, 1024),        PopMixBlock(320),  PushBlock(),
            DownSampler(320), PushBlock(),
            # CrossAttnDownBlockSpatioTemporal
            ResnetBlock(320, 640, 1280, eps=1e-6),                      PushBlock(), TemporalResnetBlock(640, 640, 1280, eps=1e-6),   PopMixBlock(),     PushBlock(),
            AttentionBlock(10, 64, 640, 1, 1024, need_proj_out=False),  PushBlock(), TemporalAttentionBlock(10, 64, 640, 1024),       PopMixBlock(640),  PushBlock(),
            ResnetBlock(640, 640, 1280, eps=1e-6),                      PushBlock(), TemporalResnetBlock(640, 640, 1280, eps=1e-6),   PopMixBlock(),     PushBlock(),
            AttentionBlock(10, 64, 640, 1, 1024, need_proj_out=False),  PushBlock(), TemporalAttentionBlock(10, 64, 640, 1024),       PopMixBlock(640),  PushBlock(),
            DownSampler(640), PushBlock(),
            # CrossAttnDownBlockSpatioTemporal
            ResnetBlock(640, 1280, 1280, eps=1e-6),                     PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-6), PopMixBlock(),     PushBlock(),
            AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024),      PopMixBlock(1280), PushBlock(),
            ResnetBlock(1280, 1280, 1280, eps=1e-6),                    PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-6), PopMixBlock(),     PushBlock(),
            AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024),      PopMixBlock(1280), PushBlock(),
            DownSampler(1280), PushBlock(),
            # DownBlockSpatioTemporal
            ResnetBlock(1280, 1280, 1280, eps=1e-5),                    PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(),     PushBlock(),
            ResnetBlock(1280, 1280, 1280, eps=1e-5),                    PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(),     PushBlock(),
            # UNetMidBlockSpatioTemporal
            ResnetBlock(1280, 1280, 1280, eps=1e-5),                    PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(),     PushBlock(),
            AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024),      PopMixBlock(1280),
            ResnetBlock(1280, 1280, 1280, eps=1e-5),                    PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(),
            # UpBlockSpatioTemporal
            PopBlock(), ResnetBlock(2560, 1280, 1280, eps=1e-6),        PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(),
            PopBlock(), ResnetBlock(2560, 1280, 1280, eps=1e-6),        PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(),
            PopBlock(), ResnetBlock(2560, 1280, 1280, eps=1e-6),        PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(),
            UpSampler(1280),
            # CrossAttnUpBlockSpatioTemporal
            PopBlock(),        ResnetBlock(2560, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-6), PopMixBlock(),     PushBlock(),
            AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024),      PopMixBlock(1280),
            PopBlock(),        ResnetBlock(2560, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-6), PopMixBlock(),     PushBlock(),
            AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024),      PopMixBlock(1280),
            PopBlock(),        ResnetBlock(1920, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-6), PopMixBlock(),     PushBlock(),
            AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024),      PopMixBlock(1280),
            UpSampler(1280),
            # CrossAttnUpBlockSpatioTemporal
            PopBlock(),        ResnetBlock(1920, 640, 1280, eps=1e-6),  PushBlock(), TemporalResnetBlock(640, 640, 1280, eps=1e-6),   PopMixBlock(),     PushBlock(),
            AttentionBlock(10, 64, 640, 1, 1024, need_proj_out=False),  PushBlock(), TemporalAttentionBlock(10, 64, 640, 1024),       PopMixBlock(640),
            PopBlock(),        ResnetBlock(1280, 640, 1280, eps=1e-6),  PushBlock(), TemporalResnetBlock(640, 640, 1280, eps=1e-6),   PopMixBlock(),     PushBlock(),
            AttentionBlock(10, 64, 640, 1, 1024, need_proj_out=False),  PushBlock(), TemporalAttentionBlock(10, 64, 640, 1024),       PopMixBlock(640),
            PopBlock(),        ResnetBlock(960, 640, 1280, eps=1e-6),   PushBlock(), TemporalResnetBlock(640, 640, 1280, eps=1e-6),   PopMixBlock(),     PushBlock(),
            AttentionBlock(10, 64, 640, 1, 1024, need_proj_out=False),  PushBlock(), TemporalAttentionBlock(10, 64, 640, 1024),       PopMixBlock(640),
            UpSampler(640),
            # CrossAttnUpBlockSpatioTemporal
            PopBlock(),        ResnetBlock(960, 320, 1280, eps=1e-6),   PushBlock(), TemporalResnetBlock(320, 320, 1280, eps=1e-6),   PopMixBlock(),     PushBlock(),
            AttentionBlock(5, 64, 320, 1, 1024, need_proj_out=False),   PushBlock(), TemporalAttentionBlock(5, 64, 320, 1024),        PopMixBlock(320),
            PopBlock(),        ResnetBlock(640, 320, 1280, eps=1e-6),   PushBlock(), TemporalResnetBlock(320, 320, 1280, eps=1e-6),   PopMixBlock(),     PushBlock(),
            AttentionBlock(5, 64, 320, 1, 1024, need_proj_out=False),   PushBlock(), TemporalAttentionBlock(5, 64, 320, 1024),        PopMixBlock(320),
            PopBlock(),        ResnetBlock(640, 320, 1280, eps=1e-6),   PushBlock(), TemporalResnetBlock(320, 320, 1280, eps=1e-6),   PopMixBlock(),     PushBlock(),
            AttentionBlock(5, 64, 320, 1, 1024, need_proj_out=False),   PushBlock(), TemporalAttentionBlock(5, 64, 320, 1024),        PopMixBlock(320),
        ])

        self.conv_norm_out = torch.nn.GroupNorm(32, 320, eps=1e-05, affine=True)
        self.conv_act = torch.nn.SiLU()
        self.conv_out = torch.nn.Conv2d(320, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

    def forward(self, sample, timestep, encoder_hidden_states, add_time_id, **kwargs):
        # 1. time
        t_emb = self.time_proj(timestep[None]).to(sample.dtype)
        t_emb = self.time_embedding(t_emb)

        add_embeds = self.add_time_proj(add_time_id.flatten()).to(sample.dtype)
        add_embeds = add_embeds.reshape((-1, 768))
        add_embeds = self.add_time_embedding(add_embeds)

        time_emb = t_emb + add_embeds

        # 2. pre-process
        height, width = sample.shape[2], sample.shape[3]
        hidden_states = self.conv_in(sample)
        text_emb = encoder_hidden_states
        res_stack = [hidden_states]

        # 3. blocks
        for i, block in enumerate(self.blocks):
            hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack)

        # 4. output
        hidden_states = self.conv_norm_out(hidden_states)
        hidden_states = self.conv_act(hidden_states)
        hidden_states = self.conv_out(hidden_states)

        return hidden_states
    
    def state_dict_converter(self):
        return SVDUNetStateDictConverter()
    


class SVDUNetStateDictConverter:
    def __init__(self):
        pass

    def get_block_name(self, names):
        if names[0] in ["down_blocks", "mid_block", "up_blocks"]:
            if names[4] in ["norm", "proj_in"]:
                return ".".join(names[:4] + ["transformer_blocks"])
            elif names[4] in ["time_pos_embed"]:
                return ".".join(names[:4] + ["temporal_transformer_blocks"])
            elif names[4] in ["proj_out"]:
                return ".".join(names[:4] + ["time_mixer"])
            else:
                return ".".join(names[:5])
        return ""

    def from_diffusers(self, state_dict):
        rename_dict = {
            "time_embedding.linear_1": "time_embedding.0",
            "time_embedding.linear_2": "time_embedding.2",
            "add_embedding.linear_1": "add_time_embedding.0",
            "add_embedding.linear_2": "add_time_embedding.2",
            "conv_in": "conv_in",
            "conv_norm_out": "conv_norm_out",
            "conv_out": "conv_out",
        }
        blocks_rename_dict = [
            "down_blocks.0.resnets.0.spatial_res_block", None, "down_blocks.0.resnets.0.temporal_res_block", "down_blocks.0.resnets.0.time_mixer", None,
            "down_blocks.0.attentions.0.transformer_blocks", None, "down_blocks.0.attentions.0.temporal_transformer_blocks", "down_blocks.0.attentions.0.time_mixer", None,
            "down_blocks.0.resnets.1.spatial_res_block", None, "down_blocks.0.resnets.1.temporal_res_block", "down_blocks.0.resnets.1.time_mixer", None,
            "down_blocks.0.attentions.1.transformer_blocks", None, "down_blocks.0.attentions.1.temporal_transformer_blocks", "down_blocks.0.attentions.1.time_mixer", None,
            "down_blocks.0.downsamplers.0.conv", None,
            "down_blocks.1.resnets.0.spatial_res_block", None, "down_blocks.1.resnets.0.temporal_res_block", "down_blocks.1.resnets.0.time_mixer", None,
            "down_blocks.1.attentions.0.transformer_blocks", None, "down_blocks.1.attentions.0.temporal_transformer_blocks", "down_blocks.1.attentions.0.time_mixer", None,
            "down_blocks.1.resnets.1.spatial_res_block", None, "down_blocks.1.resnets.1.temporal_res_block", "down_blocks.1.resnets.1.time_mixer", None,
            "down_blocks.1.attentions.1.transformer_blocks", None, "down_blocks.1.attentions.1.temporal_transformer_blocks", "down_blocks.1.attentions.1.time_mixer", None,
            "down_blocks.1.downsamplers.0.conv", None,
            "down_blocks.2.resnets.0.spatial_res_block", None, "down_blocks.2.resnets.0.temporal_res_block", "down_blocks.2.resnets.0.time_mixer", None,
            "down_blocks.2.attentions.0.transformer_blocks", None, "down_blocks.2.attentions.0.temporal_transformer_blocks", "down_blocks.2.attentions.0.time_mixer", None,
            "down_blocks.2.resnets.1.spatial_res_block", None, "down_blocks.2.resnets.1.temporal_res_block", "down_blocks.2.resnets.1.time_mixer", None,
            "down_blocks.2.attentions.1.transformer_blocks", None, "down_blocks.2.attentions.1.temporal_transformer_blocks", "down_blocks.2.attentions.1.time_mixer", None,
            "down_blocks.2.downsamplers.0.conv", None,
            "down_blocks.3.resnets.0.spatial_res_block", None, "down_blocks.3.resnets.0.temporal_res_block", "down_blocks.3.resnets.0.time_mixer", None,
            "down_blocks.3.resnets.1.spatial_res_block", None, "down_blocks.3.resnets.1.temporal_res_block", "down_blocks.3.resnets.1.time_mixer", None,
            "mid_block.mid_block.resnets.0.spatial_res_block", None, "mid_block.mid_block.resnets.0.temporal_res_block", "mid_block.mid_block.resnets.0.time_mixer", None,
            "mid_block.mid_block.attentions.0.transformer_blocks", None, "mid_block.mid_block.attentions.0.temporal_transformer_blocks", "mid_block.mid_block.attentions.0.time_mixer",
            "mid_block.mid_block.resnets.1.spatial_res_block", None, "mid_block.mid_block.resnets.1.temporal_res_block", "mid_block.mid_block.resnets.1.time_mixer",
            None, "up_blocks.0.resnets.0.spatial_res_block", None, "up_blocks.0.resnets.0.temporal_res_block", "up_blocks.0.resnets.0.time_mixer",
            None, "up_blocks.0.resnets.1.spatial_res_block", None, "up_blocks.0.resnets.1.temporal_res_block", "up_blocks.0.resnets.1.time_mixer",
            None, "up_blocks.0.resnets.2.spatial_res_block", None, "up_blocks.0.resnets.2.temporal_res_block", "up_blocks.0.resnets.2.time_mixer",
            "up_blocks.0.upsamplers.0.conv",
            None, "up_blocks.1.resnets.0.spatial_res_block", None, "up_blocks.1.resnets.0.temporal_res_block", "up_blocks.1.resnets.0.time_mixer", None,
            "up_blocks.1.attentions.0.transformer_blocks", None, "up_blocks.1.attentions.0.temporal_transformer_blocks", "up_blocks.1.attentions.0.time_mixer",
            None, "up_blocks.1.resnets.1.spatial_res_block", None, "up_blocks.1.resnets.1.temporal_res_block", "up_blocks.1.resnets.1.time_mixer", None,
            "up_blocks.1.attentions.1.transformer_blocks", None, "up_blocks.1.attentions.1.temporal_transformer_blocks", "up_blocks.1.attentions.1.time_mixer",
            None, "up_blocks.1.resnets.2.spatial_res_block", None, "up_blocks.1.resnets.2.temporal_res_block", "up_blocks.1.resnets.2.time_mixer", None,
            "up_blocks.1.attentions.2.transformer_blocks", None, "up_blocks.1.attentions.2.temporal_transformer_blocks", "up_blocks.1.attentions.2.time_mixer",
            "up_blocks.1.upsamplers.0.conv",
            None, "up_blocks.2.resnets.0.spatial_res_block", None, "up_blocks.2.resnets.0.temporal_res_block", "up_blocks.2.resnets.0.time_mixer", None,
            "up_blocks.2.attentions.0.transformer_blocks", None, "up_blocks.2.attentions.0.temporal_transformer_blocks", "up_blocks.2.attentions.0.time_mixer",
            None, "up_blocks.2.resnets.1.spatial_res_block", None, "up_blocks.2.resnets.1.temporal_res_block", "up_blocks.2.resnets.1.time_mixer", None,
            "up_blocks.2.attentions.1.transformer_blocks", None, "up_blocks.2.attentions.1.temporal_transformer_blocks", "up_blocks.2.attentions.1.time_mixer",
            None, "up_blocks.2.resnets.2.spatial_res_block", None, "up_blocks.2.resnets.2.temporal_res_block", "up_blocks.2.resnets.2.time_mixer", None,
            "up_blocks.2.attentions.2.transformer_blocks", None, "up_blocks.2.attentions.2.temporal_transformer_blocks", "up_blocks.2.attentions.2.time_mixer",
            "up_blocks.2.upsamplers.0.conv",
            None, "up_blocks.3.resnets.0.spatial_res_block", None, "up_blocks.3.resnets.0.temporal_res_block", "up_blocks.3.resnets.0.time_mixer", None,
            "up_blocks.3.attentions.0.transformer_blocks", None, "up_blocks.3.attentions.0.temporal_transformer_blocks", "up_blocks.3.attentions.0.time_mixer",
            None, "up_blocks.3.resnets.1.spatial_res_block", None, "up_blocks.3.resnets.1.temporal_res_block", "up_blocks.3.resnets.1.time_mixer", None,
            "up_blocks.3.attentions.1.transformer_blocks", None, "up_blocks.3.attentions.1.temporal_transformer_blocks", "up_blocks.3.attentions.1.time_mixer",
            None, "up_blocks.3.resnets.2.spatial_res_block", None, "up_blocks.3.resnets.2.temporal_res_block", "up_blocks.3.resnets.2.time_mixer", None,
            "up_blocks.3.attentions.2.transformer_blocks", None, "up_blocks.3.attentions.2.temporal_transformer_blocks", "up_blocks.3.attentions.2.time_mixer",
        ]
        blocks_rename_dict = {i:j for j,i in enumerate(blocks_rename_dict) if i is not None}
        state_dict_ = {}
        for name, param in sorted(state_dict.items()):
            names = name.split(".")
            if names[0] == "mid_block":
                names = ["mid_block"] + names
            if names[-1] in ["weight", "bias"]:
                name_prefix = ".".join(names[:-1])
                if name_prefix in rename_dict:
                    state_dict_[rename_dict[name_prefix] + "." + names[-1]] = param
                else:
                    block_name = self.get_block_name(names)
                    if "resnets" in block_name and block_name in blocks_rename_dict:
                        rename = ".".join(["blocks", str(blocks_rename_dict[block_name])] + names[5:])
                        state_dict_[rename] = param
                    elif ("downsamplers" in block_name or "upsamplers" in block_name) and block_name in blocks_rename_dict:
                        rename = ".".join(["blocks", str(blocks_rename_dict[block_name])] + names[-2:])
                        state_dict_[rename] = param
                    elif "attentions" in block_name and block_name in blocks_rename_dict:
                        attention_id = names[5]
                        if "transformer_blocks" in names:
                            suffix_dict = {
                                "attn1.to_out.0": "attn1.to_out",
                                "attn2.to_out.0": "attn2.to_out",
                                "ff.net.0.proj": "act_fn.proj",
                                "ff.net.2": "ff",
                            }
                            suffix = ".".join(names[6:-1])
                            suffix = suffix_dict.get(suffix, suffix)
                            rename = ".".join(["blocks", str(blocks_rename_dict[block_name]), "transformer_blocks", attention_id, suffix, names[-1]])
                        elif "temporal_transformer_blocks" in names:
                            suffix_dict = {
                                "attn1.to_out.0": "attn1.to_out",
                                "attn2.to_out.0": "attn2.to_out",
                                "ff_in.net.0.proj": "act_fn_in.proj",
                                "ff_in.net.2": "ff_in",
                                "ff.net.0.proj": "act_fn_out.proj",
                                "ff.net.2": "ff_out",
                                "norm3": "norm_out",
                            }
                            suffix = ".".join(names[6:-1])
                            suffix = suffix_dict.get(suffix, suffix)
                            rename = ".".join(["blocks", str(blocks_rename_dict[block_name]), suffix, names[-1]])
                        elif "time_mixer" in block_name:
                            rename = ".".join(["blocks", str(blocks_rename_dict[block_name]), "proj", names[-1]])
                        else:
                            suffix_dict = {
                                "linear_1": "positional_embedding_proj.0",
                                "linear_2": "positional_embedding_proj.2",
                            }
                            suffix = names[-2]
                            suffix = suffix_dict.get(suffix, suffix)
                            rename = ".".join(["blocks", str(blocks_rename_dict[block_name]), suffix, names[-1]])
                        state_dict_[rename] = param
                    else:
                        print(name)
            else:
                block_name = self.get_block_name(names)
                if len(block_name)>0 and block_name in blocks_rename_dict:
                    rename = ".".join(["blocks", str(blocks_rename_dict[block_name]), names[-1]])
                    state_dict_[rename] = param
        return state_dict_