File size: 13,390 Bytes
5bf1581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import torch, os
from safetensors import safe_open

from .sd_text_encoder import SDTextEncoder
from .sd_unet import SDUNet
from .sd_vae_encoder import SDVAEEncoder
from .sd_vae_decoder import SDVAEDecoder
from .sd_lora import SDLoRA

from .sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2
from .sdxl_unet import SDXLUNet
from .sdxl_vae_decoder import SDXLVAEDecoder
from .sdxl_vae_encoder import SDXLVAEEncoder

from .sd_controlnet import SDControlNet

from .sd_motion import SDMotionModel


class ModelManager:
    def __init__(self, torch_dtype=torch.float16, device="cuda"):
        self.torch_dtype = torch_dtype
        self.device = device
        self.model = {}
        self.model_path = {}
        self.textual_inversion_dict = {}

    def is_RIFE(self, state_dict):
        param_name = "block_tea.convblock3.0.1.weight"
        return param_name in state_dict or ("module." + param_name) in state_dict

    def is_beautiful_prompt(self, state_dict):
        param_name = "transformer.h.9.self_attention.query_key_value.weight"
        return param_name in state_dict

    def is_stabe_diffusion_xl(self, state_dict):
        param_name = "conditioner.embedders.0.transformer.text_model.embeddings.position_embedding.weight"
        return param_name in state_dict

    def is_stable_diffusion(self, state_dict):
        if self.is_stabe_diffusion_xl(state_dict):
            return False
        param_name = "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.weight"
        return param_name in state_dict
    
    def is_controlnet(self, state_dict):
        param_name = "control_model.time_embed.0.weight"
        return param_name in state_dict
    
    def is_animatediff(self, state_dict):
        param_name = "mid_block.motion_modules.0.temporal_transformer.proj_out.weight"
        return param_name in state_dict
    
    def is_sd_lora(self, state_dict):
        param_name = "lora_unet_up_blocks_3_attentions_2_transformer_blocks_0_ff_net_2.lora_up.weight"
        return param_name in state_dict
    
    def is_translator(self, state_dict):
        param_name = "model.encoder.layers.5.self_attn_layer_norm.weight"
        return param_name in state_dict and len(state_dict) == 254
    
    def load_stable_diffusion(self, state_dict, components=None, file_path=""):
        component_dict = {
            "text_encoder": SDTextEncoder,
            "unet": SDUNet,
            "vae_decoder": SDVAEDecoder,
            "vae_encoder": SDVAEEncoder,
            "refiner": SDXLUNet,
        }
        if components is None:
            components = ["text_encoder", "unet", "vae_decoder", "vae_encoder"]
        for component in components:
            if component == "text_encoder":
                # Add additional token embeddings to text encoder
                token_embeddings = [state_dict["cond_stage_model.transformer.text_model.embeddings.token_embedding.weight"]]
                for keyword in self.textual_inversion_dict:
                    _, embeddings = self.textual_inversion_dict[keyword]
                    token_embeddings.append(embeddings.to(dtype=token_embeddings[0].dtype))
                token_embeddings = torch.concat(token_embeddings, dim=0)
                state_dict["cond_stage_model.transformer.text_model.embeddings.token_embedding.weight"] = token_embeddings
                self.model[component] = component_dict[component](vocab_size=token_embeddings.shape[0])
                self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict))
                self.model[component].to(self.torch_dtype).to(self.device)
            else:
                self.model[component] = component_dict[component]()
                self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict))
                self.model[component].to(self.torch_dtype).to(self.device)
            self.model_path[component] = file_path

    def load_stable_diffusion_xl(self, state_dict, components=None, file_path=""):
        component_dict = {
            "text_encoder": SDXLTextEncoder,
            "text_encoder_2": SDXLTextEncoder2,
            "unet": SDXLUNet,
            "vae_decoder": SDXLVAEDecoder,
            "vae_encoder": SDXLVAEEncoder,
        }
        if components is None:
            components = ["text_encoder", "text_encoder_2", "unet", "vae_decoder", "vae_encoder"]
        for component in components:
            self.model[component] = component_dict[component]()
            self.model[component].load_state_dict(self.model[component].state_dict_converter().from_civitai(state_dict))
            if component in ["vae_decoder", "vae_encoder"]:
                # These two model will output nan when float16 is enabled.
                # The precision problem happens in the last three resnet blocks.
                # I do not know how to solve this problem.
                self.model[component].to(torch.float32).to(self.device)
            else:
                self.model[component].to(self.torch_dtype).to(self.device)
            self.model_path[component] = file_path

    def load_controlnet(self, state_dict, file_path=""):
        component = "controlnet"
        if component not in self.model:
            self.model[component] = []
            self.model_path[component] = []
        model = SDControlNet()
        model.load_state_dict(model.state_dict_converter().from_civitai(state_dict))
        model.to(self.torch_dtype).to(self.device)
        self.model[component].append(model)
        self.model_path[component].append(file_path)

    def load_animatediff(self, state_dict, file_path=""):
        component = "motion_modules"
        model = SDMotionModel()
        model.load_state_dict(model.state_dict_converter().from_civitai(state_dict))
        model.to(self.torch_dtype).to(self.device)
        self.model[component] = model
        self.model_path[component] = file_path

    def load_beautiful_prompt(self, state_dict, file_path=""):
        component = "beautiful_prompt"
        from transformers import AutoModelForCausalLM
        model_folder = os.path.dirname(file_path)
        model = AutoModelForCausalLM.from_pretrained(
            model_folder, state_dict=state_dict, local_files_only=True, torch_dtype=self.torch_dtype
        ).to(self.device).eval()
        self.model[component] = model
        self.model_path[component] = file_path

    def load_RIFE(self, state_dict, file_path=""):
        component = "RIFE"
        from ..extensions.RIFE import IFNet
        model = IFNet().eval()
        model.load_state_dict(model.state_dict_converter().from_civitai(state_dict))
        model.to(torch.float32).to(self.device)
        self.model[component] = model
        self.model_path[component] = file_path

    def load_sd_lora(self, state_dict, alpha):
        SDLoRA().add_lora_to_text_encoder(self.model["text_encoder"], state_dict, alpha=alpha, device=self.device)
        SDLoRA().add_lora_to_unet(self.model["unet"], state_dict, alpha=alpha, device=self.device)

    def load_translator(self, state_dict, file_path=""):
        # This model is lightweight, we do not place it on GPU.
        component = "translator"
        from transformers import AutoModelForSeq2SeqLM
        model_folder = os.path.dirname(file_path)
        model = AutoModelForSeq2SeqLM.from_pretrained(model_folder).eval()
        self.model[component] = model
        self.model_path[component] = file_path

    def search_for_embeddings(self, state_dict):
        embeddings = []
        for k in state_dict:
            if isinstance(state_dict[k], torch.Tensor):
                embeddings.append(state_dict[k])
            elif isinstance(state_dict[k], dict):
                embeddings += self.search_for_embeddings(state_dict[k])
        return embeddings

    def load_textual_inversions(self, folder):
        # Store additional tokens here
        self.textual_inversion_dict = {}

        # Load every textual inversion file
        for file_name in os.listdir(folder):
            if file_name.endswith(".txt"):
                continue
            keyword = os.path.splitext(file_name)[0]
            state_dict = load_state_dict(os.path.join(folder, file_name))

            # Search for embeddings
            for embeddings in self.search_for_embeddings(state_dict):
                if len(embeddings.shape) == 2 and embeddings.shape[1] == 768:
                    tokens = [f"{keyword}_{i}" for i in range(embeddings.shape[0])]
                    self.textual_inversion_dict[keyword] = (tokens, embeddings)
                    break
        
    def load_model(self, file_path, components=None, lora_alphas=[]):
        state_dict = load_state_dict(file_path, torch_dtype=self.torch_dtype)
        if self.is_animatediff(state_dict):
            self.load_animatediff(state_dict, file_path=file_path)
        elif self.is_controlnet(state_dict):
            self.load_controlnet(state_dict, file_path=file_path)
        elif self.is_stabe_diffusion_xl(state_dict):
            self.load_stable_diffusion_xl(state_dict, components=components, file_path=file_path)
        elif self.is_stable_diffusion(state_dict):
            self.load_stable_diffusion(state_dict, components=components, file_path=file_path)
        elif self.is_sd_lora(state_dict):
            self.load_sd_lora(state_dict, alpha=lora_alphas.pop(0))
        elif self.is_beautiful_prompt(state_dict):
            self.load_beautiful_prompt(state_dict, file_path=file_path)
        elif self.is_RIFE(state_dict):
            self.load_RIFE(state_dict, file_path=file_path)
        elif self.is_translator(state_dict):
            self.load_translator(state_dict, file_path=file_path)

    def load_models(self, file_path_list, lora_alphas=[]):
        for file_path in file_path_list:
            self.load_model(file_path, lora_alphas=lora_alphas)
        
    def to(self, device):
        for component in self.model:
            if isinstance(self.model[component], list):
                for model in self.model[component]:
                    model.to(device)
            else:
                self.model[component].to(device)
        torch.cuda.empty_cache()

    def get_model_with_model_path(self, model_path):
        for component in self.model_path:
            if isinstance(self.model_path[component], str):
                if os.path.samefile(self.model_path[component], model_path):
                    return self.model[component]
            elif isinstance(self.model_path[component], list):
                for i, model_path_ in enumerate(self.model_path[component]):
                    if os.path.samefile(model_path_, model_path):
                        return self.model[component][i]
        raise ValueError(f"Please load model {model_path} before you use it.")
    
    def __getattr__(self, __name):
        if __name in self.model:
            return self.model[__name]
        else:
            return super.__getattribute__(__name)


def load_state_dict(file_path, torch_dtype=None):
    if file_path.endswith(".safetensors"):
        return load_state_dict_from_safetensors(file_path, torch_dtype=torch_dtype)
    else:
        return load_state_dict_from_bin(file_path, torch_dtype=torch_dtype)


def load_state_dict_from_safetensors(file_path, torch_dtype=None):
    state_dict = {}
    with safe_open(file_path, framework="pt", device="cpu") as f:
        for k in f.keys():
            state_dict[k] = f.get_tensor(k)
            if torch_dtype is not None:
                state_dict[k] = state_dict[k].to(torch_dtype)
    return state_dict


def load_state_dict_from_bin(file_path, torch_dtype=None):
    state_dict = torch.load(file_path, map_location="cpu")
    if torch_dtype is not None:
        state_dict = {i: state_dict[i].to(torch_dtype) for i in state_dict}
    return state_dict


def search_parameter(param, state_dict):
    for name, param_ in state_dict.items():
        if param.numel() == param_.numel():
            if param.shape == param_.shape:
                if torch.dist(param, param_) < 1e-6:
                    return name
            else:
                if torch.dist(param.flatten(), param_.flatten()) < 1e-6:
                    return name
    return None


def build_rename_dict(source_state_dict, target_state_dict, split_qkv=False):
    matched_keys = set()
    with torch.no_grad():
        for name in source_state_dict:
            rename = search_parameter(source_state_dict[name], target_state_dict)
            if rename is not None:
                print(f'"{name}": "{rename}",')
                matched_keys.add(rename)
            elif split_qkv and len(source_state_dict[name].shape)>=1 and source_state_dict[name].shape[0]%3==0:
                length = source_state_dict[name].shape[0] // 3
                rename = []
                for i in range(3):
                    rename.append(search_parameter(source_state_dict[name][i*length: i*length+length], target_state_dict))
                if None not in rename:
                    print(f'"{name}": {rename},')
                    for rename_ in rename:
                        matched_keys.add(rename_)
    for name in target_state_dict:
        if name not in matched_keys:
            print("Cannot find", name, target_state_dict[name].shape)