File size: 9,676 Bytes
47851eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import os
import numpy as np
import pickle
from torch.utils import data
import torchaudio.transforms as T
import torchaudio
import torch
import csv
import pytorch_lightning as pl
from music2latent import EncoderDecoder
import json
import math
from sklearn.preprocessing import StandardScaler
import pandas as pd
class PMEmoDataset(data.Dataset):
def __init__(self, **task_args):
self.task_args = task_args
self.tr_val = task_args.get('tr_val', "train")
self.root = task_args.get('root', "./dataset/pmemo")
self.segment_type = task_args.get('segment_type', "all")
self.cfg = task_args.get('cfg')
# Path to the split file (train/val/test)
self.split_file = os.path.join(self.root, 'meta', 'split', f"{self.tr_val}.txt")
# Read file IDs from the split file
with open(self.split_file, 'r') as f:
self.file_ids = [line.strip() for line in f.readlines()]
# Separate tonic and mode
tonic_signatures = ["A", "A#", "B", "C", "C#", "D", "D#", "E", "F", "F#", "G", "G#"]
mode_signatures = ["major", "minor"] # Major and minor modes
self.tonic_to_idx = {tonic: idx for idx, tonic in enumerate(tonic_signatures)}
self.mode_to_idx = {mode: idx for idx, mode in enumerate(mode_signatures)}
self.idx_to_tonic = {idx: tonic for tonic, idx in self.tonic_to_idx.items()}
self.idx_to_mode = {idx: mode for mode, idx in self.mode_to_idx.items()}
with open('dataset/pmemo/meta/chord.json', 'r') as f:
self.chord_to_idx = json.load(f)
with open('dataset/pmemo/meta/chord_inv.json', 'r') as f:
self.idx_to_chord = json.load(f)
self.idx_to_chord = {int(k): v for k, v in self.idx_to_chord.items()} # Ensure keys are ints
with open('dataset/emomusic/meta/chord_root.json') as json_file:
self.chordRootDic = json.load(json_file)
with open('dataset/emomusic/meta/chord_attr.json') as json_file:
self.chordAttrDic = json.load(json_file)
# MERT and MP3 directories
self.mert_dir = os.path.join(self.root, 'mert_30s')
self.mp3_dir = os.path.join(self.root, 'mp3')
# Load static annotations (valence and arousal)
self.annotation_file = os.path.join(self.root, 'meta', 'static_annotations.csv')
self.annotations = pd.read_csv(self.annotation_file, index_col='song_id')
# Load static annotations (valence and arousal)
self.annotation_tag_file = os.path.join(self.root, 'meta', 'mood_probabilities.csv')
self.annotations_tag = pd.read_csv(self.annotation_tag_file, index_col='song_id')
def __len__(self):
return len(self.file_ids)
def __getitem__(self, index):
file_id = int(self.file_ids[index]) # File ID from split
# Get valence and arousal from annotations
if file_id not in self.annotations.index:
raise ValueError(f"File ID {file_id} not found in annotations.")
valence = self.annotations.loc[file_id, 'valence_mean']
arousal = self.annotations.loc[file_id, 'arousal_mean']
y_valence = torch.tensor(valence, dtype=torch.float32)
y_arousal = torch.tensor(arousal, dtype=torch.float32)
y_mood = np.array(self.annotations_tag.loc[file_id])
y_mood = y_mood.astype('float32')
y_mood = torch.from_numpy(y_mood)
# --- Chord feature ---
fn_chord = os.path.join(self.root, 'chord', 'lab3', str(file_id) + ".lab")
chords = []
if not os.path.exists(fn_chord):
chords.append((float(0), float(0), "N"))
else:
with open(fn_chord, 'r') as file:
for line in file:
start, end, chord = line.strip().split()
chords.append((float(start), float(end), chord))
encoded = []
encoded_root= []
encoded_attr=[]
durations = []
for start, end, chord in chords:
chord_arr = chord.split(":")
if len(chord_arr) == 1:
chordRootID = self.chordRootDic[chord_arr[0]]
if chord_arr[0] == "N" or chord_arr[0] == "X":
chordAttrID = 0
else:
chordAttrID = 1
elif len(chord_arr) == 2:
chordRootID = self.chordRootDic[chord_arr[0]]
chordAttrID = self.chordAttrDic[chord_arr[1]]
encoded_root.append(chordRootID)
encoded_attr.append(chordAttrID)
if chord in self.chord_to_idx:
encoded.append(self.chord_to_idx[chord])
else:
print(f"Warning: Chord {chord} not found in chord.json. Skipping.")
durations.append(end - start) # Compute duration
encoded_chords = np.array(encoded)
encoded_chords_root = np.array(encoded_root)
encoded_chords_attr = np.array(encoded_attr)
# Maximum sequence length for chords
max_sequence_length = 100 # Define this globally or as a parameter
# Truncate or pad chord sequences
if len(encoded_chords) > max_sequence_length:
# Truncate to max length
encoded_chords = encoded_chords[:max_sequence_length]
encoded_chords_root = encoded_chords_root[:max_sequence_length]
encoded_chords_attr = encoded_chords_attr[:max_sequence_length]
else:
# Pad with zeros (padding value for chords)
padding = [0] * (max_sequence_length - len(encoded_chords))
encoded_chords = np.concatenate([encoded_chords, padding])
encoded_chords_root = np.concatenate([encoded_chords_root, padding])
encoded_chords_attr = np.concatenate([encoded_chords_attr, padding])
# Convert to tensor
chords_tensor = torch.tensor(encoded_chords, dtype=torch.long) # Fixed length tensor
chords_root_tensor = torch.tensor(encoded_chords_root, dtype=torch.long) # Fixed length tensor
chords_attr_tensor = torch.tensor(encoded_chords_attr, dtype=torch.long) # Fixed length tensor
# --- Key feature ---
fn_key = os.path.join(self.root, 'key', str(file_id) + ".lab")
if not os.path.exists(fn_key):
mode = "major"
else:
mode = "major" # Default value
with open(fn_key, 'r') as file:
for line in file:
key = line.strip()
if key == "None":
mode = "major"
else:
mode = key.split()[-1]
encoded_mode = self.mode_to_idx.get(mode, 0)
mode_tensor = torch.tensor([encoded_mode], dtype=torch.long)
# --- MERT feature ---
fn_mert = os.path.join(self.mert_dir, str(file_id))
embeddings = []
# Specify the layers to extract (3rd, 6th, 9th, and 12th layers)
layers_to_extract = self.cfg.model.layers
# Collect all segment embeddings
segment_embeddings = []
for filename in sorted(os.listdir(fn_mert)): # Sort files to ensure sequential order
file_path = os.path.join(fn_mert, filename)
if os.path.isfile(file_path) and filename.endswith('.npy'):
segment = np.load(file_path)
# Extract and concatenate features for the specified layers
concatenated_features = np.concatenate(
[segment[:, layer_idx, :] for layer_idx in layers_to_extract], axis=1
)
concatenated_features = np.squeeze(concatenated_features) # Shape: 768 * 2 = 1536
segment_embeddings.append(concatenated_features)
# Convert to numpy array
segment_embeddings = np.array(segment_embeddings)
# Check mode: 'train' or 'val'
if self.tr_val == "train" and len(segment_embeddings) > 0: # Augmentation for training
num_segments = len(segment_embeddings)
# Randomly choose a starting index and the length of the sequence
start_idx = np.random.randint(0, num_segments) # Random starting index
end_idx = np.random.randint(start_idx + 1, num_segments + 1) # Ensure end index is after start index
# Extract the sequential subset
chosen_segments = segment_embeddings[start_idx:end_idx]
# Compute the mean of the chosen sequential segments
final_embedding_mert = np.mean(chosen_segments, axis=0)
else: # Validation or other modes: Use mean of all segments
if len(segment_embeddings) > 0:
final_embedding_mert = np.mean(segment_embeddings, axis=0)
else:
# Handle case with no valid embeddings
final_embedding_mert = np.zeros((1536,)) # Example: Return zero vector of appropriate size
# Convert to PyTorch tensor
final_embedding_mert = torch.from_numpy(final_embedding_mert)
# Get the MP3 path
mp3_path = os.path.join(self.mp3_dir, f"{file_id}.mp3")
if not os.path.exists(mp3_path):
raise FileNotFoundError(f"MP3 file not found for {mp3_path}")
return {
"x_mert": final_embedding_mert,
"x_chord" : chords_tensor,
"x_chord_root" : chords_root_tensor,
"x_chord_attr" : chords_attr_tensor,
"x_key" : mode_tensor,
"y_va": torch.stack([y_valence, y_arousal], dim=0),
"y_mood" : y_mood,
"path": mp3_path
} |