# Extract region features for a folder of images # RN50, LVIS 1203 concepts python3 ./tools/extract_region_features.py \ --config-file ./configs/LVISv1-InstanceSegmentation/CLIP_fast_rcnn_R_50_C4_zsinf.yaml \ MODEL.WEIGHTS ./pretrained_ckpt/regionclip/regionclip_pretrained-cc_rn50.pth \ MODEL.CLIP.TEXT_EMB_PATH ./pretrained_ckpt/concept_emb/lvis_1203_cls_emb.pth \ MODEL.CLIP.CROP_REGION_TYPE RPN \ MODEL.CLIP.MULTIPLY_RPN_SCORE True \ MODEL.CLIP.OFFLINE_RPN_CONFIG ./configs/LVISv1-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \ MODEL.CLIP.BB_RPN_WEIGHTS ./pretrained_ckpt/rpn/rpn_lvis_866.pth \ INPUT_DIR ./datasets/custom_images \ OUTPUT_DIR ./output/region_feats \ TEST.DETECTIONS_PER_IMAGE 100 \ # # RN50, features of RPN proposals # python3 ./tools/extract_region_features.py \ # --config-file ./configs/LVISv1-InstanceSegmentation/CLIP_fast_rcnn_R_50_C4_zsinf.yaml \ # MODEL.WEIGHTS ./pretrained_ckpt/regionclip/regionclip_pretrained-cc_rn50.pth \ # MODEL.CLIP.CROP_REGION_TYPE RPN \ # MODEL.CLIP.MULTIPLY_RPN_SCORE True \ # MODEL.CLIP.OFFLINE_RPN_CONFIG ./configs/LVISv1-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \ # MODEL.CLIP.BB_RPN_WEIGHTS ./pretrained_ckpt/rpn/rpn_lvis_866.pth \ # INPUT_DIR ./datasets/custom_images \ # OUTPUT_DIR ./output/region_feats \ # MODEL.CLIP.OFFLINE_RPN_POST_NMS_TOPK_TEST 100 \ # # RN50x4, LVIS 1203 concepts # python3 ./tools/extract_region_features.py \ # --config-file ./configs/LVISv1-InstanceSegmentation/CLIP_fast_rcnn_R_50_C4_zsinf.yaml \ # MODEL.WEIGHTS ./pretrained_ckpt/regionclip/regionclip_pretrained-cc_rn50x4.pth \ # MODEL.CLIP.TEXT_EMB_PATH ./pretrained_ckpt/concept_emb/lvis_1203_cls_emb_rn50x4.pth \ # MODEL.CLIP.CROP_REGION_TYPE RPN \ # MODEL.CLIP.MULTIPLY_RPN_SCORE True \ # MODEL.CLIP.OFFLINE_RPN_CONFIG ./configs/LVISv1-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \ # MODEL.CLIP.BB_RPN_WEIGHTS ./pretrained_ckpt/rpn/rpn_lvis_866.pth \ # MODEL.CLIP.TEXT_EMB_DIM 640 \ # MODEL.RESNETS.DEPTH 200 \ # MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION 18 \ # INPUT_DIR ./datasets/custom_images \ # OUTPUT_DIR ./output/region_feats \ # TEST.DETECTIONS_PER_IMAGE 100 \