File size: 11,780 Bytes
d4c5a78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
"""
Custom Gemma3 model for token classification with non-causal attention
"""

import torch
import torch.nn as nn
from typing import Optional, Tuple, List, Dict, Any
import types

from transformers import PretrainedConfig, PreTrainedModel
from transformers import Gemma3ForCausalLM
from transformers.models.gemma3.modeling_gemma3 import (
    Gemma3Attention,
    repeat_kv,
    apply_rotary_pos_emb,
    ALL_ATTENTION_FUNCTIONS,
    Cache,
    FlashAttentionKwargs,
)
from transformers.modeling_outputs import TokenClassifierOutput
from transformers.utils import logging

logger = logging.get_logger(__name__)


class Gemma3PunctuationConfig(PretrainedConfig):
    """
    Configuration class for Gemma3 punctuation model.
    """
    
    model_type = "cadence_punctuation"
    
    def __init__(
        self,
        num_labels: int = 31,
        classifier_dropout_prob: float = 0.0,
        use_non_causal_attention: bool = True,
        **kwargs
    ):
        self.num_labels = num_labels
        self.classifier_dropout_prob = classifier_dropout_prob
        self.use_non_causal_attention = use_non_causal_attention
        super().__init__(**kwargs)


def _extract_padding_mask_corrected(
    combined_mask_4d: Optional[torch.Tensor],
    debug_print: bool = False
) -> Optional[torch.Tensor]:
    """Extract padding mask from combined 4D attention mask."""
    if combined_mask_4d is None:
        return None
    
    mask_value = torch.finfo(combined_mask_4d.dtype).min
    is_key_padding = (combined_mask_4d == mask_value).all(dim=2, keepdim=True)
    padding_only_mask = torch.where(
        is_key_padding.expand_as(combined_mask_4d),
        torch.full_like(combined_mask_4d, mask_value),
        torch.zeros_like(combined_mask_4d)
    )
    return padding_only_mask


def non_causal_eager_attention_forward_with_padding(
    module: nn.Module, 
    query: torch.Tensor, 
    key: torch.Tensor, 
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor], 
    **kwargs: Any,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Non-causal eager attention implementation."""
    dropout = kwargs.get("dropout", 0.0)
    scaling = kwargs.get("scaling", None)
    softcap = kwargs.get("softcap", None)

    if scaling is None:
        head_dim = getattr(module, "head_dim", query.shape[-1])
        scaling = head_dim**-0.5
    
    num_key_value_groups = getattr(module, "num_key_value_groups", 1)
    key_states = repeat_kv(key, num_key_value_groups)
    value_states = repeat_kv(value, num_key_value_groups)
    
    attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
    
    if softcap is not None:
        attn_weights = attn_weights / softcap
        attn_weights = torch.tanh(attn_weights)
        attn_weights = attn_weights * softcap
    
    if attention_mask is not None:
        mask_slice = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + mask_slice
        
    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    is_training = getattr(module, "training", False)
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=is_training)
    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()
    return attn_output, attn_weights


def modified_gemma3_attention_forward_non_causal(
    self: Gemma3Attention, 
    hidden_states: torch.Tensor, 
    position_embeddings: torch.Tensor,
    attention_mask: Optional[torch.Tensor], 
    past_key_value: Optional[Cache] = None,
    cache_position: Optional[torch.LongTensor] = None, 
    **kwargs: Any,
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
    """Modified Gemma3 attention forward for non-causal behavior."""
    bsz, q_len, _ = hidden_states.size()
    input_shape = hidden_states.shape[:-1]
    hidden_shape = (*input_shape, -1, self.head_dim)

    query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
    key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
    value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)

    query_states = self.q_norm(query_states)
    key_states = self.k_norm(key_states)
    cos, sin = position_embeddings
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

    if past_key_value is not None:
        cache_kwargs = {
            "sin": sin, 
            "cos": cos, 
            "cache_position": cache_position, 
            "sliding_window": self.sliding_window
        }
        key_states, value_states = past_key_value.update(
            key_states, value_states, self.layer_idx, cache_kwargs
        )

    effective_attn_implementation = self.config._attn_implementation
    output_attentions = kwargs.get("output_attentions", False)

    if effective_attn_implementation == "sdpa" and output_attentions:
        effective_attn_implementation = "eager"
    elif effective_attn_implementation == "flash_attention_2" and output_attentions:
        effective_attn_implementation = "eager"

    padding_only_mask = _extract_padding_mask_corrected(attention_mask)
    use_causal_flag = False  # Non-causal for punctuation

    # Select attention interface
    if effective_attn_implementation == "eager":
        attention_interface = non_causal_eager_attention_forward_with_padding
    elif effective_attn_implementation == "sdpa":
        attention_interface = ALL_ATTENTION_FUNCTIONS.get("sdpa", non_causal_eager_attention_forward_with_padding)
    elif effective_attn_implementation == "flash_attention_2":
        attention_interface = ALL_ATTENTION_FUNCTIONS.get("flash_attention_2", non_causal_eager_attention_forward_with_padding)
    else:
        attention_interface = non_causal_eager_attention_forward_with_padding

    final_attention_mask = padding_only_mask
    if final_attention_mask is not None:
        final_attention_mask = final_attention_mask.to(query_states.device)

    # Prepare kwargs for attention interface
    attn_specific_kwargs: Dict[str, Any] = {}
    if attention_interface == non_causal_eager_attention_forward_with_padding:
        attn_specific_kwargs = {
            "dropout": 0.0, 
            "scaling": self.scaling, 
            "softcap": getattr(self, "softcap", None)
        }
    elif effective_attn_implementation == "sdpa":
        attn_specific_kwargs = {"is_causal": use_causal_flag}
        if output_attentions: 
            attn_specific_kwargs["output_attentions"] = True
    elif effective_attn_implementation == "flash_attention_2":
        attn_specific_kwargs = {
            "causal": use_causal_flag,
            "softcap": getattr(self, "softcap", None),
            "dropout": 0.0
        }
        if output_attentions: 
            attn_specific_kwargs["output_attentions"] = True
    
    attn_output, attn_weights = attention_interface(
        self, query_states, key_states, value_states, final_attention_mask, **attn_specific_kwargs
    )

    attn_output = attn_output.reshape(*input_shape, -1).contiguous()
    attn_output = self.o_proj(attn_output)
    
    returned_weights = attn_weights if output_attentions and attn_weights is not None else None
   
    return attn_output, returned_weights


class Gemma3ForTokenClassification(Gemma3ForCausalLM):
    """
    Gemma3 model for token classification (punctuation prediction).
    Inherits from Gemma3ForCausalLM and replaces the LM head with classification head.
    """
    
    config_class = Gemma3PunctuationConfig
    
    def __init__(self, config):
        # Initialize the parent Gemma3ForCausalLM
        super().__init__(config)
        self.num_labels = config.num_labels
        
        # Replace the lm_head with classification head
        # Don't create a separate classifier - just replace lm_head directly
        classifier_dropout_prob = getattr(config, 'classifier_dropout_prob', 0.0)
        self.lm_head = nn.Sequential(
            nn.Dropout(classifier_dropout_prob),
            nn.Linear(config.hidden_size, config.num_labels)
        )
        
        # Update config for classification
        self.config.num_labels = config.num_labels
        
        # Initialize weights for the new head
        self.post_init()
        
        # Apply non-causal attention patching if requested
        if getattr(config, 'use_non_causal_attention', True):
            self._patch_attention_layers()
    
    def _patch_attention_layers(self):
        """Patch attention layers to use non-causal attention."""
        count = 0
        
        # The model structure is self.model.layers (inherited from Gemma3ForCausalLM)
        if hasattr(self, 'model') and hasattr(self.model, 'layers'):
            target_layers = self.model.layers
        else:
            logger.warning("Could not find model.layers for attention patching")
            return
            
        for idx, layer in enumerate(target_layers):
            if hasattr(layer, 'self_attn') and isinstance(layer.self_attn, Gemma3Attention):
                layer.self_attn.layer_idx = idx
                layer.self_attn.forward = types.MethodType(
                    modified_gemma3_attention_forward_non_causal, 
                    layer.self_attn
                )
                count += 1
        
        logger.info(f"Patched {count} attention layers for non-causal attention")
    
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> TokenClassifierOutput:
        """
        Forward pass for token classification.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Call the parent's forward method but get the hidden states instead of logits
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        # Get the hidden states from the model output
        sequence_output = outputs[0]
        
        # Apply the classification head (which is now self.lm_head)
        logits = self.lm_head(sequence_output)

        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


# Register the model for AutoModel
from transformers import AutoConfig, AutoModel
AutoConfig.register("cadence_punctuation", Gemma3PunctuationConfig)
AutoModel.register(Gemma3PunctuationConfig, Gemma3ForTokenClassification)