ekolodin commited on
Commit
1e9018d
·
verified ·
1 Parent(s): 68c29f3
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 2048,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,140 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ pipeline_tag: sentence-similarity
7
+ library_name: sentence-transformers
8
+ ---
9
+
10
+ # SentenceTransformer
11
+
12
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 2048-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
13
+
14
+ ## Model Details
15
+
16
+ ### Model Description
17
+ - **Model Type:** Sentence Transformer
18
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
19
+ - **Maximum Sequence Length:** None tokens
20
+ - **Output Dimensionality:** 2048 dimensions
21
+ - **Similarity Function:** Cosine Similarity
22
+ <!-- - **Training Dataset:** Unknown -->
23
+ <!-- - **Language:** Unknown -->
24
+ <!-- - **License:** Unknown -->
25
+
26
+ ### Model Sources
27
+
28
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
29
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
30
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
31
+
32
+ ### Full Model Architecture
33
+
34
+ ```
35
+ SentenceTransformer(
36
+ (0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: GigarEmbedModel
37
+ (1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
38
+ )
39
+ ```
40
+
41
+ ## Usage
42
+
43
+ ### Direct Usage (Sentence Transformers)
44
+
45
+ First install the Sentence Transformers library:
46
+
47
+ ```bash
48
+ pip install -U sentence-transformers
49
+ ```
50
+
51
+ Then you can load this model and run inference.
52
+ ```python
53
+ from sentence_transformers import SentenceTransformer
54
+
55
+ # Download from the 🤗 Hub
56
+ model = SentenceTransformer("sentence_transformers_model_id")
57
+ # Run inference
58
+ sentences = [
59
+ 'The weather is lovely today.',
60
+ "It's so sunny outside!",
61
+ 'He drove to the stadium.',
62
+ ]
63
+ embeddings = model.encode(sentences)
64
+ print(embeddings.shape)
65
+ # [3, 2048]
66
+
67
+ # Get the similarity scores for the embeddings
68
+ similarities = model.similarity(embeddings, embeddings)
69
+ print(similarities.shape)
70
+ # [3, 3]
71
+ ```
72
+
73
+ <!--
74
+ ### Direct Usage (Transformers)
75
+
76
+ <details><summary>Click to see the direct usage in Transformers</summary>
77
+
78
+ </details>
79
+ -->
80
+
81
+ <!--
82
+ ### Downstream Usage (Sentence Transformers)
83
+
84
+ You can finetune this model on your own dataset.
85
+
86
+ <details><summary>Click to expand</summary>
87
+
88
+ </details>
89
+ -->
90
+
91
+ <!--
92
+ ### Out-of-Scope Use
93
+
94
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
95
+ -->
96
+
97
+ <!--
98
+ ## Bias, Risks and Limitations
99
+
100
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
101
+ -->
102
+
103
+ <!--
104
+ ### Recommendations
105
+
106
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
107
+ -->
108
+
109
+ ## Training Details
110
+
111
+ ### Framework Versions
112
+ - Python: 3.10.13
113
+ - Sentence Transformers: 3.3.1
114
+ - Transformers: 4.46.3
115
+ - PyTorch: 2.1.1+cu121
116
+ - Accelerate: 1.2.1
117
+ - Datasets: 2.21.0
118
+ - Tokenizers: 0.20.3
119
+
120
+ ## Citation
121
+
122
+ ### BibTeX
123
+
124
+ <!--
125
+ ## Glossary
126
+
127
+ *Clearly define terms in order to be accessible across audiences.*
128
+ -->
129
+
130
+ <!--
131
+ ## Model Card Authors
132
+
133
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
134
+ -->
135
+
136
+ <!--
137
+ ## Model Card Contact
138
+
139
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
140
+ -->
config.json ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/jovyan/ekolodin/gigachat-embeddings/ckpt/finetune_release_v2/checkpoint-3537",
3
+ "add_eos": true,
4
+ "add_pad_token": true,
5
+ "architectures": [
6
+ "GigarEmbedModel"
7
+ ],
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_gigarembed.GigarEmbedConfig",
10
+ "AutoModel": "modeling_gigarembed.GigarEmbedModel"
11
+ },
12
+ "hidden_size": 2048,
13
+ "is_mask_instruction": true,
14
+ "latent_attention_config": {
15
+ "cross_dim_head": 2048,
16
+ "hidden_dim": 2048,
17
+ "latent_dim": 2048,
18
+ "model_type": "latent_attention"
19
+ },
20
+ "mask_type": "b",
21
+ "model_type": "gigarembed",
22
+ "padding_side": "right",
23
+ "text_config": {
24
+ "_attn_implementation_autoset": false,
25
+ "_name_or_path": "/home/jovyan/ekolodin/models/qiwiembed2.5_3b_pretrain/",
26
+ "activation_checkpoint_layers_num": null,
27
+ "add_cross_attention": false,
28
+ "architectures": [
29
+ "LlamaForCausalLM"
30
+ ],
31
+ "attention_bias": false,
32
+ "attention_dropout": 0.0,
33
+ "attention_hidden_size": null,
34
+ "attention_type": "LlamaPackedAttention",
35
+ "bad_words_ids": null,
36
+ "begin_suppress_tokens": null,
37
+ "bos_token_id": 1,
38
+ "chunk_size_feed_forward": 0,
39
+ "cross_attention_hidden_size": null,
40
+ "decoder_start_token_id": null,
41
+ "deterministic_attention": false,
42
+ "diversity_penalty": 0.0,
43
+ "do_sample": false,
44
+ "early_stopping": false,
45
+ "encoder_no_repeat_ngram_size": 0,
46
+ "eos_token_id": 2,
47
+ "exponential_decay_length_penalty": null,
48
+ "finetuning_task": null,
49
+ "forced_bos_token_id": null,
50
+ "forced_eos_token_id": null,
51
+ "freeze_non_embed": false,
52
+ "fused_mlp": true,
53
+ "fused_mlp_checkpoint_lvl": 3,
54
+ "head_dim": 128,
55
+ "hidden_act": "silu",
56
+ "hidden_size": 2048,
57
+ "id2label": {
58
+ "0": "LABEL_0",
59
+ "1": "LABEL_1"
60
+ },
61
+ "init_device": "meta",
62
+ "initializer_range": 0.02,
63
+ "intermediate_size": 11008,
64
+ "is_decoder": false,
65
+ "is_encoder_decoder": false,
66
+ "label2id": {
67
+ "LABEL_0": 0,
68
+ "LABEL_1": 1
69
+ },
70
+ "length_penalty": 1.0,
71
+ "loss_inplace_backward": true,
72
+ "max_length": 20,
73
+ "max_position_embeddings": 32768,
74
+ "max_window_layers": 36,
75
+ "min_length": 0,
76
+ "mlp_bias": false,
77
+ "model_type": "llama",
78
+ "no_repeat_ngram_size": 0,
79
+ "num_attention_heads": 16,
80
+ "num_beam_groups": 1,
81
+ "num_beams": 1,
82
+ "num_hidden_layers": 27,
83
+ "num_key_value_heads": 2,
84
+ "num_return_sequences": 1,
85
+ "output_attentions": false,
86
+ "output_hidden_states": false,
87
+ "output_scores": false,
88
+ "pad_token_id": 2,
89
+ "prefix": null,
90
+ "pretraining_tp": 1,
91
+ "problem_type": null,
92
+ "pruned_heads": {},
93
+ "remove_invalid_values": false,
94
+ "repetition_penalty": 1.0,
95
+ "return_dict": true,
96
+ "return_dict_in_generate": false,
97
+ "rms_norm_eps": 1e-06,
98
+ "rope_scaling": null,
99
+ "rope_theta": 1300,
100
+ "sep_token_id": null,
101
+ "sliding_window": null,
102
+ "sp_split_type": "equal",
103
+ "suppress_tokens": null,
104
+ "task_specific_params": null,
105
+ "temperature": 1.0,
106
+ "tf_legacy_loss": false,
107
+ "tie_encoder_decoder": false,
108
+ "tie_word_embeddings": false,
109
+ "tokenizer_class": null,
110
+ "top_k": 50,
111
+ "top_p": 1.0,
112
+ "torch_dtype": "float32",
113
+ "torchscript": false,
114
+ "tp_group": null,
115
+ "tp_size": 1,
116
+ "typical_p": 1.0,
117
+ "unk_token_id": 0,
118
+ "use_bfloat16": false,
119
+ "use_cache": true,
120
+ "use_mrope": false,
121
+ "use_sliding_window": false,
122
+ "varlen_input": false,
123
+ "vocab_size": 128256
124
+ },
125
+ "torch_dtype": "float32",
126
+ "transformers_version": "4.46.3"
127
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.1.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
configuration_gigarembed.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Literal
2
+ from transformers import AutoConfig
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.models.auto import CONFIG_MAPPING
5
+ from transformers.models.llama import LlamaConfig
6
+
7
+ GIGAREMBED_TYPE = "gigarembed"
8
+ LATENT_ATTENTION_TYPE = "latent_attention"
9
+ BIDIR_LLAMA_TYPE = "bidir_llama"
10
+
11
+ class GigarEmbedConfig(PretrainedConfig):
12
+ model_type = "gigarembed"
13
+ is_composition = False
14
+
15
+ def __init__(
16
+ self,
17
+ latent_attention_config=None,
18
+ text_config=None,
19
+ padding_side: Literal["right", "left"]="right",
20
+ add_pad_token: bool=True,
21
+ is_mask_instruction: bool = True,
22
+ add_eos: bool=True,
23
+ mask_type: str="b",
24
+ **kwargs,
25
+ ):
26
+ if isinstance(latent_attention_config, dict):
27
+ latent_attention_config["model_type"] = (
28
+ latent_attention_config["model_type"] if "model_type" in latent_attention_config else LATENT_ATTENTION_TYPE
29
+ )
30
+ latent_attention_config = CONFIG_MAPPING[latent_attention_config["model_type"]](**latent_attention_config)
31
+ elif latent_attention_config is None:
32
+ latent_attention_config = CONFIG_MAPPING[LATENT_ATTENTION_TYPE]()
33
+
34
+ self.latent_attention_config = latent_attention_config
35
+
36
+ if isinstance(text_config, dict):
37
+ text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
38
+ text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
39
+ elif text_config is None:
40
+ text_config = None
41
+
42
+ self.text_config = text_config
43
+ self.padding_side = padding_side
44
+ self.is_mask_instruction = is_mask_instruction
45
+ self.add_pad_token = add_pad_token
46
+ self.add_eos = add_eos
47
+ self.mask_type = mask_type
48
+ if "hidden_size" in kwargs:
49
+ self.hidden_size = kwargs["hidden_size"]
50
+ else:
51
+ self.hidden_size = 2560
52
+
53
+ super().__init__(**kwargs)
54
+
55
+
56
+ class LatentAttentionConfig(PretrainedConfig):
57
+ model_type = LATENT_ATTENTION_TYPE
58
+ is_composition = False
59
+ _name_or_path = "latent_attention"
60
+
61
+ def __init__(
62
+ self,
63
+ num_latents_value: int=512,
64
+ num_cross_heads: int=8,
65
+ output_normalize: bool=True,
66
+ hidden_dim: int=2560,
67
+ latent_dim: int=2560,
68
+ cross_dim_head: int=2560,
69
+ **kwargs,
70
+ ):
71
+ self.num_latents_value = num_latents_value
72
+ self.num_cross_heads = num_cross_heads
73
+ self.output_normalize = output_normalize
74
+ self.hidden_dim = hidden_dim
75
+ self.latent_dim = latent_dim
76
+ self.cross_dim_head = cross_dim_head
77
+ self._attn_implementation = "eager"
78
+
79
+ class BidirectionalLlamaConfig(LlamaConfig):
80
+ model_type = BIDIR_LLAMA_TYPE
81
+ keys_to_ignore_at_inference = ["past_key_values"]
82
+
83
+ AutoConfig.register(GIGAREMBED_TYPE, GigarEmbedConfig)
84
+ AutoConfig.register(LATENT_ATTENTION_TYPE, LatentAttentionConfig)
85
+ AutoConfig.register(BIDIR_LLAMA_TYPE, BidirectionalLlamaConfig)
86
+
87
+ GigarEmbedConfig.register_for_auto_class()
88
+ LatentAttentionConfig.register_for_auto_class()
89
+ BidirectionalLlamaConfig.register_for_auto_class()
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d238861e08c2f1f5b4b4a6d08839ea604f548084538f093df4dc55505ad9b9d
3
+ size 4930670700
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edba6d1f9756e085da66caca3be27249cfea970d40e38517ba5a933437524f70
3
+ size 4932780264
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d5d675cba1ea6243210d44e5643b086467709a51a1a52128f7fd4a7b4d5953c
3
+ size 270557856
model.safetensors.index.json ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 10133979140
4
+ },
5
+ "weight_map": {
6
+ "latent_attention_model.cross_attend_blocks.0.to_kv.weight": "model-00001-of-00003.safetensors",
7
+ "latent_attention_model.cross_attend_blocks.0.to_out.weight": "model-00001-of-00003.safetensors",
8
+ "latent_attention_model.cross_attend_blocks.0.to_q.weight": "model-00001-of-00003.safetensors",
9
+ "latent_attention_model.cross_attend_blocks.1.net.0.bias": "model-00001-of-00003.safetensors",
10
+ "latent_attention_model.cross_attend_blocks.1.net.0.weight": "model-00001-of-00003.safetensors",
11
+ "latent_attention_model.cross_attend_blocks.1.net.2.bias": "model-00001-of-00003.safetensors",
12
+ "latent_attention_model.cross_attend_blocks.1.net.2.weight": "model-00001-of-00003.safetensors",
13
+ "latent_attention_model.latents": "model-00001-of-00003.safetensors",
14
+ "latent_attention_model.w_lexical.bias": "model-00001-of-00003.safetensors",
15
+ "latent_attention_model.w_lexical.weight": "model-00001-of-00003.safetensors",
16
+ "latent_attention_model.w_multi_vector.bias": "model-00001-of-00003.safetensors",
17
+ "latent_attention_model.w_multi_vector.weight": "model-00001-of-00003.safetensors",
18
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
36
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
37
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
43
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
45
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
46
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
117
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
118
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
119
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
120
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
121
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
122
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
123
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
124
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
125
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
128
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
129
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
130
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
131
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
132
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
133
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
134
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
135
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
136
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
153
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
154
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
157
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
162
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
163
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
164
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
165
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
166
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
167
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
168
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
169
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
170
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
171
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
172
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00003.safetensors",
173
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
174
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
175
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
176
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
177
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
178
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
179
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
180
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
181
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00003.safetensors",
182
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
183
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
184
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
185
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
186
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
187
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
188
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
189
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
190
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
196
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
197
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
198
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
199
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
200
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
201
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
202
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
203
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
204
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
205
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
206
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
207
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
208
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
209
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
210
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
211
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
212
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
213
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
214
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
215
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
225
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
226
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
227
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
228
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
229
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
230
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
231
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
232
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
233
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
234
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
235
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
236
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
237
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
238
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
239
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
240
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
241
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
242
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.norm.weight": "model-00003-of-00003.safetensors"
263
+ }
264
+ }
modeling_gigarembed.py ADDED
@@ -0,0 +1,435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Union, Dict, Mapping, Optional, Tuple, TypedDict
2
+ import torch
3
+ import os
4
+ import json
5
+ import numpy as np
6
+ import torch.nn.functional as F
7
+
8
+ from functools import partial
9
+ from contextlib import nullcontext
10
+ from transformers import AutoModel, PreTrainedTokenizerFast, BatchEncoding, DataCollatorWithPadding
11
+ from transformers.modeling_utils import PreTrainedModel
12
+ from transformers.models.auto import AutoTokenizer
13
+ from transformers.models.llama.modeling_llama import LLAMA_INPUTS_DOCSTRING
14
+ from transformers.modeling_outputs import BaseModelOutputWithPast
15
+ from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
16
+ from transformers import LlamaModel, LlamaConfig
17
+ from transformers.cache_utils import Cache, DynamicCache
18
+ from transformers.utils import (
19
+ add_start_docstrings_to_model_forward,
20
+ logging,
21
+ )
22
+ from einops import rearrange, repeat
23
+ from tqdm.auto import tqdm
24
+ from datasets import Dataset
25
+ from torch.utils.data import DataLoader
26
+ from .configuration_gigarembed import GigarEmbedConfig, LatentAttentionConfig, BidirectionalLlamaConfig
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ class GigarEmbedFeatures(TypedDict):
31
+ input_dict: torch.Tensor
32
+ attention_mask: torch.Tensor
33
+ pool_mask: torch.Tensor
34
+
35
+ class BidirectionalLlamaModel(LlamaModel):
36
+ config_class = BidirectionalLlamaConfig
37
+
38
+ def __init__(self, config: LlamaConfig):
39
+ super().__init__(config)
40
+ for layer in self.layers:
41
+ layer.self_attn.is_causal = False
42
+ self._attn_implementation = "eager"
43
+
44
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
45
+ def forward(
46
+ self,
47
+ input_ids: torch.LongTensor = None,
48
+ attention_mask: Optional[torch.Tensor] = None,
49
+ position_ids: Optional[torch.LongTensor] = None,
50
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
51
+ inputs_embeds: Optional[torch.FloatTensor] = None,
52
+ use_cache: Optional[bool] = None,
53
+ output_attentions: Optional[bool] = None,
54
+ output_hidden_states: Optional[bool] = None,
55
+ return_dict: Optional[bool] = None,
56
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
57
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
58
+ output_hidden_states = (
59
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
60
+ )
61
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
62
+
63
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
64
+
65
+ # retrieve input_ids and inputs_embeds
66
+ if input_ids is not None and inputs_embeds is not None:
67
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
68
+ elif input_ids is not None:
69
+ batch_size, seq_length = input_ids.shape
70
+ elif inputs_embeds is not None:
71
+ batch_size, seq_length, _ = inputs_embeds.shape
72
+ else:
73
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
74
+
75
+ if self.gradient_checkpointing and self.training:
76
+ if use_cache:
77
+ logger.warning_once(
78
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
79
+ )
80
+ use_cache = False
81
+
82
+ past_key_values_length = 0
83
+
84
+ if use_cache:
85
+ use_legacy_cache = not isinstance(past_key_values, Cache)
86
+ if use_legacy_cache:
87
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
88
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
89
+
90
+ if position_ids is None:
91
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
92
+ position_ids = torch.arange(
93
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
94
+ )
95
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
96
+ else:
97
+ position_ids = position_ids.view(-1, seq_length).long()
98
+
99
+ if inputs_embeds is None:
100
+ inputs_embeds = self.embed_tokens(input_ids)
101
+
102
+ if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
103
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
104
+ if is_padding_right:
105
+ raise ValueError(
106
+ "You are attempting to perform batched generation with padding_side='right'"
107
+ " this may lead to unexpected behaviour for Flash Attention version of Llama. Make sure to "
108
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
109
+ )
110
+
111
+ if self._attn_implementation == "flash_attention_2":
112
+ # 2d mask is passed through the layers
113
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
114
+ elif self._attn_implementation == "sdpa" and not output_attentions:
115
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
116
+ # the manual implementation that requires a 4D causal mask in all cases.
117
+ attention_mask = _prepare_4d_attention_mask_for_sdpa(
118
+ attention_mask, inputs_embeds.dtype
119
+ )
120
+ else:
121
+ # 4d mask is passed through the layers
122
+ attention_mask = _prepare_4d_attention_mask(
123
+ attention_mask, inputs_embeds.dtype,
124
+ )
125
+
126
+ hidden_states = inputs_embeds
127
+
128
+ # create position embeddings to be shared across the decoder layers
129
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
130
+
131
+ # decoder layers
132
+ all_hidden_states = () if output_hidden_states else None
133
+ all_self_attns = () if output_attentions else None
134
+ next_decoder_cache = None
135
+
136
+ for decoder_layer in self.layers:
137
+ if output_hidden_states:
138
+ all_hidden_states += (hidden_states,)
139
+
140
+ if self.gradient_checkpointing and self.training:
141
+ layer_outputs = self._gradient_checkpointing_func(
142
+ decoder_layer.__call__,
143
+ hidden_states,
144
+ attention_mask,
145
+ position_ids,
146
+ past_key_values,
147
+ output_attentions,
148
+ use_cache,
149
+ position_embeddings=position_embeddings
150
+ )
151
+ else:
152
+ layer_outputs = decoder_layer(
153
+ hidden_states,
154
+ attention_mask=attention_mask,
155
+ position_ids=position_ids,
156
+ past_key_value=past_key_values,
157
+ output_attentions=output_attentions,
158
+ use_cache=use_cache,
159
+ position_embeddings=position_embeddings
160
+ )
161
+
162
+ hidden_states = layer_outputs[0]
163
+
164
+ if use_cache:
165
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
166
+
167
+ if output_attentions:
168
+ all_self_attns += (layer_outputs[1],)
169
+
170
+ hidden_states = self.norm(hidden_states)
171
+
172
+ # add hidden states from the last decoder layer
173
+ if output_hidden_states:
174
+ all_hidden_states += (hidden_states,)
175
+
176
+ next_cache = None
177
+ if use_cache:
178
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
179
+
180
+ if not return_dict:
181
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
182
+ return BaseModelOutputWithPast(
183
+ last_hidden_state=hidden_states,
184
+ past_key_values=next_cache,
185
+ hidden_states=all_hidden_states,
186
+ attentions=all_self_attns,
187
+ )
188
+
189
+ def _move_to_device(maybe_tensor, device: torch.device):
190
+ if torch.is_tensor(maybe_tensor):
191
+ return maybe_tensor.to(device, non_blocking=device.type == "cuda")
192
+ elif isinstance(maybe_tensor, dict):
193
+ return {key: _move_to_device(value, device) for key, value in maybe_tensor.items()}
194
+ elif isinstance(maybe_tensor, list):
195
+ return [_move_to_device(x, device) for x in maybe_tensor]
196
+ elif isinstance(maybe_tensor, tuple):
197
+ return tuple([_move_to_device(x, device) for x in maybe_tensor])
198
+ elif isinstance(maybe_tensor, Mapping):
199
+ return type(maybe_tensor)({k: _move_to_device(v, device) for k, v in maybe_tensor.items()})
200
+ else:
201
+ return maybe_tensor
202
+
203
+ def move_to_device(sample, device: torch.device):
204
+ if device.type == "cpu":
205
+ return sample
206
+
207
+ if len(sample) == 0:
208
+ return {}
209
+ return _move_to_device(sample, device)
210
+
211
+
212
+ def input_transform_func(
213
+ tokenizer: PreTrainedTokenizerFast,
214
+ examples: Dict[str, List],
215
+ max_length: int,
216
+ instruction: str,
217
+ ) -> BatchEncoding:
218
+ examples['input_texts'] = [instruction + input_example for input_example in examples['input_texts']]
219
+ batch_dict = tokenizer(
220
+ examples['input_texts'],
221
+ max_length=max_length,
222
+ padding=True,
223
+ return_token_type_ids=False,
224
+ return_tensors="pt",
225
+ truncation=True)
226
+ return batch_dict
227
+
228
+ class GEGLU(torch.nn.Module):
229
+ def forward(self, x):
230
+ x, gates = x.chunk(2, dim = -1)
231
+ return x * F.gelu(gates)
232
+
233
+ class FeedForward(torch.nn.Module):
234
+ def __init__(self, dim, mult = 4):
235
+ super().__init__()
236
+ self.net = torch.nn.Sequential(
237
+ torch.nn.Linear(dim, 2 * dim * mult),
238
+ GEGLU(),
239
+ torch.nn.Linear(dim * mult, dim)
240
+ )
241
+
242
+ def forward(self, x):
243
+ return self.net(x)
244
+
245
+ def exists(val):
246
+ return val is not None
247
+
248
+ def default(val, d):
249
+ return val if exists(val) else d
250
+
251
+
252
+ class Attention(torch.nn.Module):
253
+ def __init__(self, query_dim, context_dim = None, heads = 8, dim_head = 64):
254
+ super().__init__()
255
+ inner_dim = dim_head * heads
256
+ context_dim = default(context_dim, query_dim)
257
+ self.scale = dim_head ** -0.5
258
+ self.heads = heads
259
+
260
+ self.to_q = torch.nn.Linear(query_dim, inner_dim, bias = False)
261
+ self.to_kv = torch.nn.Linear(context_dim, inner_dim * 2, bias = False)
262
+ self.to_out = torch.nn.Linear(inner_dim, query_dim, bias = False)
263
+
264
+ def forward(self, x, context = None, mask = None):
265
+ h = self.heads
266
+ q = self.to_q(x)
267
+ context = default(context, x)
268
+ k, v = self.to_kv(context).chunk(2, dim = -1)
269
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
270
+
271
+ with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
272
+ out = torch.nn.functional.scaled_dot_product_attention(q, k, v)
273
+
274
+ out = rearrange(out, 'b h n d -> b n (h d)', h = h)
275
+ return self.to_out(out)
276
+
277
+
278
+ class LatentAttentionModel(PreTrainedModel):
279
+ config_class = LatentAttentionConfig
280
+
281
+ def __init__(self, config: LatentAttentionConfig):
282
+ super().__init__(config)
283
+ ## cross-attention block
284
+ num_latents, latent_dim, cross_heads, cross_dim_head = config.num_latents_value, config.latent_dim, config.num_cross_heads, config.cross_dim_head
285
+ dim = config.hidden_dim
286
+ # init latent_attention and latents
287
+ self.cross_attend_blocks = torch.nn.ModuleList([
288
+ Attention(latent_dim, dim, heads = cross_heads, dim_head = cross_dim_head),
289
+ FeedForward(latent_dim),
290
+ ])
291
+
292
+ self.w_lexical = torch.nn.Linear(latent_dim, 1)
293
+ self.w_multi_vector = torch.nn.Linear(latent_dim, latent_dim)
294
+
295
+ # self.output_normalize = config.output_normalize
296
+ self.register_parameter("latents", torch.nn.Parameter(torch.randn(num_latents, latent_dim)))
297
+ self._attn_implementation = "eager"
298
+
299
+ def forward(self, hiddens, attention_mask: torch.Tensor=None):
300
+ # cross-attention block
301
+ cross_attn, cross_ff = self.cross_attend_blocks
302
+ b, *_, device = *hiddens.shape, hiddens.device
303
+ x = repeat(self.latents, 'n d -> b n d', b = b)
304
+ output = cross_attn(hiddens, context=x, mask=attention_mask) + hiddens
305
+ output = cross_ff(output) + output
306
+ if attention_mask != None:
307
+ s = torch.sum(output * attention_mask.unsqueeze(-1), dim=1)
308
+ d = attention_mask.sum(dim=1, keepdim=True)
309
+ output = s / d
310
+ output = F.normalize(output, p=2, dim=-1)
311
+ return output
312
+
313
+
314
+ class GigarEmbedModel(PreTrainedModel):
315
+ config_class = GigarEmbedConfig
316
+ _no_split_modules = ["LlamaDecoderLayer", "LatentAttentionModel"]
317
+
318
+ def __init__(self, config: GigarEmbedConfig):
319
+ super().__init__(config)
320
+ self.latent_attention_model = AutoModel.from_config(config.latent_attention_config)
321
+
322
+ self.model = AutoModel.from_config(
323
+ config.text_config,
324
+ ) if config.text_config is not None else None
325
+ self.tokenizer = AutoTokenizer.from_pretrained(config.text_config._name_or_path) if config.text_config is not None else None
326
+ self.padding_side = config.padding_side
327
+ self.is_mask_instruction = config.is_mask_instruction
328
+ self.add_eos = config.add_eos
329
+ self.mask_type = config.mask_type
330
+ if config.add_pad_token and self.tokenizer is not None:
331
+ self.add_pad_token()
332
+
333
+ def add_pad_token(self):
334
+ self.tokenizer.pad_token_id = 0
335
+ self.tokenizer.padding_side = self.padding_side
336
+
337
+ def prepare_kwargs_from_batch(self, batch_dict: dict, instruction_lens: int, device: torch.device):
338
+ batch_dict = move_to_device(batch_dict, device)
339
+ attention_mask = batch_dict['attention_mask'].clone() if 'attention_mask' in batch_dict else None
340
+ if (attention_mask is not None and
341
+ self.padding_side == "right" and
342
+ self.is_mask_instruction == True and
343
+ instruction_lens > 0):
344
+ # Mask out the instruction tokens for mean-pooling
345
+ attention_mask[:, :instruction_lens] = 0
346
+ features: GigarEmbedFeatures = {
347
+ 'input_ids': torch.tensor(batch_dict.get('input_ids').to(batch_dict.get('input_ids')).long()),
348
+ 'attention_mask': batch_dict['attention_mask'],
349
+ 'pool_mask': attention_mask,
350
+ }
351
+ return features
352
+
353
+ @torch.no_grad()
354
+ def _do_encode(self,
355
+ prompts: List[str],
356
+ batch_size: int=1,
357
+ instruction: str="",
358
+ max_length: int=4096,
359
+ num_workers: int=32,
360
+ **kwargs
361
+ ) -> Union[np.ndarray, torch.FloatTensor]:
362
+ dataset: Dataset = Dataset.from_dict({'input_texts': prompts})
363
+ dataset.set_transform(partial(input_transform_func,
364
+ self.tokenizer,
365
+ max_length=max_length,
366
+ instruction=instruction))
367
+
368
+ data_collator = DataCollatorWithPadding(self.tokenizer)
369
+ data_loader = DataLoader(
370
+ dataset,
371
+ batch_size=batch_size,
372
+ shuffle=False,
373
+ drop_last=False,
374
+ num_workers=num_workers,
375
+ collate_fn=data_collator,
376
+ pin_memory=True)
377
+
378
+ if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0:
379
+ instruction_lens = len(self.tokenizer.tokenize(instruction))
380
+ else:
381
+ instruction_lens = 0
382
+
383
+ encoded_embeds = []
384
+ device = next(self.model.parameters()).device
385
+ for batch_dict in tqdm(data_loader, desc='encoding', mininterval=10):
386
+ features = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
387
+ embeds=self(**features)["sentence_embeddings"].squeeze(1)
388
+ encoded_embeds.append(embeds)
389
+ encoded_embeds = torch.cat(encoded_embeds, axis=0)
390
+ if "return_numpy" in kwargs and kwargs.get("return_numpy"):
391
+ encoded_embeds = encoded_embeds.cpu().detach().numpy()
392
+ return encoded_embeds
393
+
394
+ def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, pool_mask: Optional[torch.Tensor]=None,
395
+ return_dict: bool=True, **kwargs):
396
+ kwargs.pop('token_type_ids', None)
397
+
398
+ with torch.autocast('cuda', dtype=torch.bfloat16):
399
+ outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
400
+
401
+ if pool_mask is None: pool_mask = attention_mask.clone()
402
+
403
+ embeds = self.latent_attention_model(outputs.last_hidden_state, pool_mask)
404
+
405
+ if not return_dict:
406
+ return (embeds,)
407
+ return {"sentence_embeddings": embeds}
408
+
409
+
410
+ @torch.no_grad()
411
+ def encode(self, prompts: List[str], instruction: str="", max_length: int=4096, **kwargs):
412
+ if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0:
413
+ instruction_lens = len(self.tokenizer.tokenize(instruction))
414
+ else:
415
+ instruction_lens = 0
416
+
417
+ device = next(self.model.parameters()).device
418
+ batch_dict = input_transform_func(self.tokenizer,
419
+ {"input_texts": [prompt for prompt in prompts]},
420
+ max_length=max_length,
421
+ instruction=instruction)
422
+
423
+ features: GigarEmbedFeatures = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
424
+ return self(**features)["sentence_embeddings"].squeeze(1)
425
+
426
+
427
+ ## AutoModel Register
428
+ AutoModel.register(GigarEmbedConfig, GigarEmbedModel)
429
+ AutoModel.register(LatentAttentionConfig, LatentAttentionModel)
430
+ AutoModel.register(BidirectionalLlamaConfig, BidirectionalLlamaModel)
431
+
432
+ ## Register for auto class
433
+ GigarEmbedModel.register_for_auto_class("AutoModel")
434
+ LatentAttentionModel.register_for_auto_class("AutoModel")
435
+ BidirectionalLlamaModel.register_for_auto_class("AutoModel")
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": null,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "<unk>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcb50618d6a02d4562ada12978a8aa9e0b6e31260f71acce28586072a9005d4a
3
+ size 10728437
tokenizer_config.json ADDED
@@ -0,0 +1,2091 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128000": {
28
+ "content": "<|gigatoken_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128001": {
36
+ "content": "<|gigatoken_2|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128002": {
44
+ "content": "<|gigatoken_3|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128003": {
52
+ "content": "<|gigatoken_4|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128004": {
60
+ "content": "<|gigatoken_5|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128005": {
68
+ "content": "<|gigatoken_6|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128006": {
76
+ "content": "<|gigatoken_7|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128007": {
84
+ "content": "<|gigatoken_8|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128008": {
92
+ "content": "<|gigatoken_9|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128009": {
100
+ "content": "<|gigatoken_10|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128010": {
108
+ "content": "<|gigatoken_11|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128011": {
116
+ "content": "<|gigatoken_12|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128012": {
124
+ "content": "<|gigatoken_13|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128013": {
132
+ "content": "<|gigatoken_14|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128014": {
140
+ "content": "<|gigatoken_15|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128015": {
148
+ "content": "<|gigatoken_16|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128016": {
156
+ "content": "<|gigatoken_17|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128017": {
164
+ "content": "<|gigatoken_18|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128018": {
172
+ "content": "<|gigatoken_19|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128019": {
180
+ "content": "<|gigatoken_20|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128020": {
188
+ "content": "<|gigatoken_21|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128021": {
196
+ "content": "<|gigatoken_22|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128022": {
204
+ "content": "<|gigatoken_23|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128023": {
212
+ "content": "<|gigatoken_24|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128024": {
220
+ "content": "<|gigatoken_25|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128025": {
228
+ "content": "<|gigatoken_26|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128026": {
236
+ "content": "<|gigatoken_27|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128027": {
244
+ "content": "<|gigatoken_28|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128028": {
252
+ "content": "<|gigatoken_29|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128029": {
260
+ "content": "<|gigatoken_30|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128030": {
268
+ "content": "<|gigatoken_31|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128031": {
276
+ "content": "<|gigatoken_32|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128032": {
284
+ "content": "<|gigatoken_33|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128033": {
292
+ "content": "<|gigatoken_34|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128034": {
300
+ "content": "<|gigatoken_35|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128035": {
308
+ "content": "<|gigatoken_36|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128036": {
316
+ "content": "<|gigatoken_37|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128037": {
324
+ "content": "<|gigatoken_38|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128038": {
332
+ "content": "<|gigatoken_39|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128039": {
340
+ "content": "<|gigatoken_40|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128040": {
348
+ "content": "<|gigatoken_41|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128041": {
356
+ "content": "<|gigatoken_42|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128042": {
364
+ "content": "<|gigatoken_43|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128043": {
372
+ "content": "<|gigatoken_44|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128044": {
380
+ "content": "<|gigatoken_45|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128045": {
388
+ "content": "<|gigatoken_46|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128046": {
396
+ "content": "<|gigatoken_47|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128047": {
404
+ "content": "<|gigatoken_48|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128048": {
412
+ "content": "<|gigatoken_49|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128049": {
420
+ "content": "<|gigatoken_50|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128050": {
428
+ "content": "<|gigatoken_51|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128051": {
436
+ "content": "<|gigatoken_52|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128052": {
444
+ "content": "<|gigatoken_53|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128053": {
452
+ "content": "<|gigatoken_54|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128054": {
460
+ "content": "<|gigatoken_55|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128055": {
468
+ "content": "<|gigatoken_56|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128056": {
476
+ "content": "<|gigatoken_57|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128057": {
484
+ "content": "<|gigatoken_58|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128058": {
492
+ "content": "<|gigatoken_59|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128059": {
500
+ "content": "<|gigatoken_60|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128060": {
508
+ "content": "<|gigatoken_61|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128061": {
516
+ "content": "<|gigatoken_62|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128062": {
524
+ "content": "<|gigatoken_63|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128063": {
532
+ "content": "<|gigatoken_64|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128064": {
540
+ "content": "<|gigatoken_65|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128065": {
548
+ "content": "<|gigatoken_66|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128066": {
556
+ "content": "<|gigatoken_67|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128067": {
564
+ "content": "<|gigatoken_68|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128068": {
572
+ "content": "<|gigatoken_69|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128069": {
580
+ "content": "<|gigatoken_70|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128070": {
588
+ "content": "<|gigatoken_71|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128071": {
596
+ "content": "<|gigatoken_72|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128072": {
604
+ "content": "<|gigatoken_73|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128073": {
612
+ "content": "<|gigatoken_74|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128074": {
620
+ "content": "<|gigatoken_75|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128075": {
628
+ "content": "<|gigatoken_76|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128076": {
636
+ "content": "<|gigatoken_77|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128077": {
644
+ "content": "<|gigatoken_78|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128078": {
652
+ "content": "<|gigatoken_79|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128079": {
660
+ "content": "<|gigatoken_80|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128080": {
668
+ "content": "<|gigatoken_81|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128081": {
676
+ "content": "<|gigatoken_82|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128082": {
684
+ "content": "<|gigatoken_83|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128083": {
692
+ "content": "<|gigatoken_84|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128084": {
700
+ "content": "<|gigatoken_85|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128085": {
708
+ "content": "<|gigatoken_86|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128086": {
716
+ "content": "<|gigatoken_87|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128087": {
724
+ "content": "<|gigatoken_88|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128088": {
732
+ "content": "<|gigatoken_89|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128089": {
740
+ "content": "<|gigatoken_90|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128090": {
748
+ "content": "<|gigatoken_91|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128091": {
756
+ "content": "<|gigatoken_92|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128092": {
764
+ "content": "<|gigatoken_93|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128093": {
772
+ "content": "<|gigatoken_94|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128094": {
780
+ "content": "<|gigatoken_95|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128095": {
788
+ "content": "<|gigatoken_96|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128096": {
796
+ "content": "<|gigatoken_97|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128097": {
804
+ "content": "<|gigatoken_98|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128098": {
812
+ "content": "<|gigatoken_99|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128099": {
820
+ "content": "<|gigatoken_100|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128100": {
828
+ "content": "<|gigatoken_101|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128101": {
836
+ "content": "<|gigatoken_102|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128102": {
844
+ "content": "<|gigatoken_103|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128103": {
852
+ "content": "<|gigatoken_104|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128104": {
860
+ "content": "<|gigatoken_105|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128105": {
868
+ "content": "<|gigatoken_106|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128106": {
876
+ "content": "<|gigatoken_107|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128107": {
884
+ "content": "<|gigatoken_108|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128108": {
892
+ "content": "<|gigatoken_109|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128109": {
900
+ "content": "<|gigatoken_110|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128110": {
908
+ "content": "<|gigatoken_111|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128111": {
916
+ "content": "<|gigatoken_112|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128112": {
924
+ "content": "<|gigatoken_113|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128113": {
932
+ "content": "<|gigatoken_114|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128114": {
940
+ "content": "<|gigatoken_115|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128115": {
948
+ "content": "<|gigatoken_116|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128116": {
956
+ "content": "<|gigatoken_117|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128117": {
964
+ "content": "<|gigatoken_118|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128118": {
972
+ "content": "<|gigatoken_119|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128119": {
980
+ "content": "<|gigatoken_120|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128120": {
988
+ "content": "<|gigatoken_121|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128121": {
996
+ "content": "<|gigatoken_122|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128122": {
1004
+ "content": "<|gigatoken_123|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128123": {
1012
+ "content": "<|gigatoken_124|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128124": {
1020
+ "content": "<|gigatoken_125|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128125": {
1028
+ "content": "<|gigatoken_126|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128126": {
1036
+ "content": "<|gigatoken_127|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128127": {
1044
+ "content": "<|gigatoken_128|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128128": {
1052
+ "content": "<|gigatoken_129|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128129": {
1060
+ "content": "<|gigatoken_130|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128130": {
1068
+ "content": "<|gigatoken_131|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128131": {
1076
+ "content": "<|gigatoken_132|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128132": {
1084
+ "content": "<|gigatoken_133|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128133": {
1092
+ "content": "<|gigatoken_134|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128134": {
1100
+ "content": "<|gigatoken_135|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128135": {
1108
+ "content": "<|gigatoken_136|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128136": {
1116
+ "content": "<|gigatoken_137|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128137": {
1124
+ "content": "<|gigatoken_138|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128138": {
1132
+ "content": "<|gigatoken_139|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128139": {
1140
+ "content": "<|gigatoken_140|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128140": {
1148
+ "content": "<|gigatoken_141|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128141": {
1156
+ "content": "<|gigatoken_142|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128142": {
1164
+ "content": "<|gigatoken_143|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128143": {
1172
+ "content": "<|gigatoken_144|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128144": {
1180
+ "content": "<|gigatoken_145|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128145": {
1188
+ "content": "<|gigatoken_146|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128146": {
1196
+ "content": "<|gigatoken_147|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128147": {
1204
+ "content": "<|gigatoken_148|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128148": {
1212
+ "content": "<|gigatoken_149|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128149": {
1220
+ "content": "<|gigatoken_150|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128150": {
1228
+ "content": "<|gigatoken_151|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128151": {
1236
+ "content": "<|gigatoken_152|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128152": {
1244
+ "content": "<|gigatoken_153|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128153": {
1252
+ "content": "<|gigatoken_154|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128154": {
1260
+ "content": "<|gigatoken_155|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128155": {
1268
+ "content": "<|gigatoken_156|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128156": {
1276
+ "content": "<|gigatoken_157|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128157": {
1284
+ "content": "<|gigatoken_158|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128158": {
1292
+ "content": "<|gigatoken_159|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128159": {
1300
+ "content": "<|gigatoken_160|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128160": {
1308
+ "content": "<|gigatoken_161|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128161": {
1316
+ "content": "<|gigatoken_162|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128162": {
1324
+ "content": "<|gigatoken_163|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128163": {
1332
+ "content": "<|gigatoken_164|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128164": {
1340
+ "content": "<|gigatoken_165|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128165": {
1348
+ "content": "<|gigatoken_166|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128166": {
1356
+ "content": "<|gigatoken_167|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128167": {
1364
+ "content": "<|gigatoken_168|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128168": {
1372
+ "content": "<|gigatoken_169|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128169": {
1380
+ "content": "<|gigatoken_170|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128170": {
1388
+ "content": "<|gigatoken_171|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128171": {
1396
+ "content": "<|gigatoken_172|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128172": {
1404
+ "content": "<|gigatoken_173|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128173": {
1412
+ "content": "<|gigatoken_174|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128174": {
1420
+ "content": "<|gigatoken_175|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128175": {
1428
+ "content": "<|gigatoken_176|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128176": {
1436
+ "content": "<|gigatoken_177|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128177": {
1444
+ "content": "<|gigatoken_178|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128178": {
1452
+ "content": "<|gigatoken_179|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128179": {
1460
+ "content": "<|gigatoken_180|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128180": {
1468
+ "content": "<|gigatoken_181|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128181": {
1476
+ "content": "<|gigatoken_182|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128182": {
1484
+ "content": "<|gigatoken_183|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128183": {
1492
+ "content": "<|gigatoken_184|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128184": {
1500
+ "content": "<|gigatoken_185|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128185": {
1508
+ "content": "<|gigatoken_186|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128186": {
1516
+ "content": "<|gigatoken_187|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128187": {
1524
+ "content": "<|gigatoken_188|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128188": {
1532
+ "content": "<|gigatoken_189|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128189": {
1540
+ "content": "<|gigatoken_190|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128190": {
1548
+ "content": "<|gigatoken_191|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128191": {
1556
+ "content": "<|gigatoken_192|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128192": {
1564
+ "content": "<|gigatoken_193|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128193": {
1572
+ "content": "<|gigatoken_194|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128194": {
1580
+ "content": "<|gigatoken_195|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128195": {
1588
+ "content": "<|gigatoken_196|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128196": {
1596
+ "content": "<|gigatoken_197|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128197": {
1604
+ "content": "<|gigatoken_198|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128198": {
1612
+ "content": "<|gigatoken_199|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128199": {
1620
+ "content": "<|gigatoken_200|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128200": {
1628
+ "content": "<|gigatoken_201|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128201": {
1636
+ "content": "<|gigatoken_202|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128202": {
1644
+ "content": "<|gigatoken_203|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128203": {
1652
+ "content": "<|gigatoken_204|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128204": {
1660
+ "content": "<|gigatoken_205|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128205": {
1668
+ "content": "<|gigatoken_206|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128206": {
1676
+ "content": "<|gigatoken_207|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128207": {
1684
+ "content": "<|gigatoken_208|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128208": {
1692
+ "content": "<|gigatoken_209|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128209": {
1700
+ "content": "<|gigatoken_210|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128210": {
1708
+ "content": "<|gigatoken_211|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128211": {
1716
+ "content": "<|gigatoken_212|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128212": {
1724
+ "content": "<|gigatoken_213|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128213": {
1732
+ "content": "<|gigatoken_214|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128214": {
1740
+ "content": "<|gigatoken_215|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128215": {
1748
+ "content": "<|gigatoken_216|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128216": {
1756
+ "content": "<|gigatoken_217|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128217": {
1764
+ "content": "<|gigatoken_218|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128218": {
1772
+ "content": "<|gigatoken_219|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128219": {
1780
+ "content": "<|gigatoken_220|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128220": {
1788
+ "content": "<|gigatoken_221|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128221": {
1796
+ "content": "<|gigatoken_222|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128222": {
1804
+ "content": "<|gigatoken_223|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128223": {
1812
+ "content": "<|gigatoken_224|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128224": {
1820
+ "content": "<|gigatoken_225|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128225": {
1828
+ "content": "<|gigatoken_226|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128226": {
1836
+ "content": "<|gigatoken_227|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128227": {
1844
+ "content": "<|gigatoken_228|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128228": {
1852
+ "content": "<|gigatoken_229|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128229": {
1860
+ "content": "<|gigatoken_230|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128230": {
1868
+ "content": "<|gigatoken_231|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128231": {
1876
+ "content": "<|gigatoken_232|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128232": {
1884
+ "content": "<|gigatoken_233|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128233": {
1892
+ "content": "<|gigatoken_234|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128234": {
1900
+ "content": "<|gigatoken_235|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128235": {
1908
+ "content": "<|gigatoken_236|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128236": {
1916
+ "content": "<|gigatoken_237|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128237": {
1924
+ "content": "<|gigatoken_238|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128238": {
1932
+ "content": "<|gigatoken_239|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128239": {
1940
+ "content": "<|gigatoken_240|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128240": {
1948
+ "content": "<|gigatoken_241|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128241": {
1956
+ "content": "<|gigatoken_242|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128242": {
1964
+ "content": "<|gigatoken_243|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128243": {
1972
+ "content": "<|gigatoken_244|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128244": {
1980
+ "content": "<|gigatoken_245|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128245": {
1988
+ "content": "<|gigatoken_246|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128246": {
1996
+ "content": "<|gigatoken_247|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128247": {
2004
+ "content": "<|gigatoken_248|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128248": {
2012
+ "content": "<|gigatoken_249|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128249": {
2020
+ "content": "<|gigatoken_250|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128250": {
2028
+ "content": "<|gigatoken_251|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128251": {
2036
+ "content": "<|gigatoken_252|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128252": {
2044
+ "content": "<|gigatoken_253|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ },
2051
+ "128253": {
2052
+ "content": "<|gigatoken_254|>",
2053
+ "lstrip": false,
2054
+ "normalized": false,
2055
+ "rstrip": false,
2056
+ "single_word": false,
2057
+ "special": true
2058
+ },
2059
+ "128254": {
2060
+ "content": "<|gigatoken_255|>",
2061
+ "lstrip": false,
2062
+ "normalized": false,
2063
+ "rstrip": false,
2064
+ "single_word": false,
2065
+ "special": true
2066
+ },
2067
+ "128255": {
2068
+ "content": "<|gigatoken_256|>",
2069
+ "lstrip": false,
2070
+ "normalized": false,
2071
+ "rstrip": false,
2072
+ "single_word": false,
2073
+ "special": true
2074
+ }
2075
+ },
2076
+ "bos_token": "<s>",
2077
+ "clean_up_tokenization_spaces": true,
2078
+ "eos_token": "</s>",
2079
+ "max_length": 512,
2080
+ "model_max_length": 1000000000000000019884624838656,
2081
+ "pad_to_multiple_of": null,
2082
+ "pad_token": "<unk>",
2083
+ "pad_token_type_id": 0,
2084
+ "padding_side": "right",
2085
+ "sep_token": "<unk>",
2086
+ "stride": 0,
2087
+ "tokenizer_class": "PreTrainedTokenizerFast",
2088
+ "truncation_side": "right",
2089
+ "truncation_strategy": "longest_first",
2090
+ "unk_token": "<unk>"
2091
+ }