Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
This is the code used to create this model
|
2 |
+
```
|
3 |
+
import torch
|
4 |
+
import diffusers
|
5 |
+
|
6 |
+
|
7 |
+
model = diffusers.UNet2DConditionModel(
|
8 |
+
block_out_channels=(4, 4, 4),
|
9 |
+
down_block_types=('CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D'),
|
10 |
+
up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D'),
|
11 |
+
norm_num_groups=2,
|
12 |
+
cross_attention_dim=2,
|
13 |
+
layers_per_block=1,
|
14 |
+
attention_head_dim=2,
|
15 |
+
addition_embed_type_num_heads=2,
|
16 |
+
)
|
17 |
+
|
18 |
+
# noisy latent
|
19 |
+
x = torch.randn(7,4,33,33)
|
20 |
+
# timestep
|
21 |
+
t = torch.Tensor([1.0])
|
22 |
+
# conditioning embed
|
23 |
+
z = torch.randn(7, 4, 2)
|
24 |
+
# denoised latent
|
25 |
+
y = model(x, t, z)
|
26 |
+
```
|