# coding: utf-8 # Copyright (c) Antfin, Inc. All rights reserved. from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch def _patch_forward( self, query, key, value, incremental_state=None, key_padding_mask=None, attn_mask=None, rel_pos=None, ): bsz, tgt_len, embed_dim = query.size() src_len = tgt_len assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" key_bsz, src_len, _ = key.size() assert key_bsz == bsz, f"{query.size(), key.size()}" assert value is not None assert bsz, src_len == value.shape[:2] q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q = q.view(bsz, tgt_len, self.num_heads, self.head_dim).transpose(1, 2) k = k.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) v = v.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) if incremental_state is not None or self.xpos is not None: q = q.reshape(bsz * self.num_heads, tgt_len, self.head_dim) k = k.reshape(bsz * self.num_heads, src_len, self.head_dim) v = v.reshape(bsz * self.num_heads, src_len, self.head_dim) if incremental_state is not None: if "prev_key" in incremental_state: prev_key = incremental_state["prev_key"].view(bsz * self.num_heads, -1, self.head_dim) prev_value = incremental_state["prev_value"].view(bsz * self.num_heads, -1, self.head_dim) k = torch.cat([prev_key, k], dim=1) v = torch.cat([prev_value, v], dim=1) incremental_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) incremental_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) src_len = k.size(1) if self.xpos is not None: if incremental_state is not None: offset = src_len - 1 else: offset = 0 k = self.xpos(k, offset=0, downscale=True) q = self.xpos(q, offset=offset, downscale=False) q = q.reshape(bsz, self.num_heads, tgt_len, self.head_dim) k = k.reshape(bsz, self.num_heads, src_len, self.head_dim) v = v.reshape(bsz, self.num_heads, src_len, self.head_dim) assert rel_pos is None # move repeat_interleave to encoder.py is useless?(recompute will save more tensor) if attn_mask is not None: if len(attn_mask.shape) == 2: attn_mask = attn_mask.unsqueeze(0).repeat_interleave(bsz * self.num_heads, dim=0) else: attn_mask = attn_mask.repeat_interleave(self.num_heads, dim=0) if key_padding_mask is not None: key_padding_mask = key_padding_mask.unsqueeze(1).unsqueeze(2) key_padding_mask = key_padding_mask.repeat_interleave(tgt_len, dim=2) key_padding_mask = key_padding_mask.repeat_interleave(self.num_heads, dim=1) key_padding_mask = key_padding_mask.view(bsz * self.num_heads, tgt_len, src_len) if attn_mask is not None: attn_mask.masked_fill_(key_padding_mask.to(torch.bool), -torch.inf) else: attn_mask = key_padding_mask.to(q.dtype).masked_fill(key_padding_mask.to(torch.bool), -torch.inf) if attn_mask is not None: attn_mask = attn_mask.to(q.dtype).reshape(bsz, self.num_heads, *tuple(attn_mask.shape[-2:])) with torch.backends.cuda.sdp_kernel(enable_math=False if attn_mask is None else True): attn = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, dropout_p=self.dropout_module.p if self.training else 0.0, ) attn = attn.transpose(1, 2).reshape(bsz, tgt_len, embed_dim) if self.inner_attn_ln is not None: attn = self.inner_attn_ln(attn) attn = self.out_proj(attn) # encoder未使用attn weight,直接返回None return attn, None def patch_torch_scale_with_flash_attn(): from vlmo.torchscale.component.multihead_attention import MultiheadAttention torch.backends.cuda.enable_flash_sdp(True) MultiheadAttention._origin_forward = MultiheadAttention.forward MultiheadAttention.forward = _patch_forward print('Finish patch_torch_scale_with_flash_attn!')