M2_Encoder_Large / vlmo /utils /patch_utils.py
acai66's picture
Upload folder using huggingface_hub
3440f83 verified
# coding: utf-8
# Copyright (c) Antfin, Inc. All rights reserved.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
def _patch_forward(
self,
query,
key,
value,
incremental_state=None,
key_padding_mask=None,
attn_mask=None,
rel_pos=None,
):
bsz, tgt_len, embed_dim = query.size()
src_len = tgt_len
assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}"
key_bsz, src_len, _ = key.size()
assert key_bsz == bsz, f"{query.size(), key.size()}"
assert value is not None
assert bsz, src_len == value.shape[:2]
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
q = q.view(bsz, tgt_len, self.num_heads, self.head_dim).transpose(1, 2)
k = k.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2)
v = v.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2)
if incremental_state is not None or self.xpos is not None:
q = q.reshape(bsz * self.num_heads, tgt_len, self.head_dim)
k = k.reshape(bsz * self.num_heads, src_len, self.head_dim)
v = v.reshape(bsz * self.num_heads, src_len, self.head_dim)
if incremental_state is not None:
if "prev_key" in incremental_state:
prev_key = incremental_state["prev_key"].view(bsz * self.num_heads, -1, self.head_dim)
prev_value = incremental_state["prev_value"].view(bsz * self.num_heads, -1, self.head_dim)
k = torch.cat([prev_key, k], dim=1)
v = torch.cat([prev_value, v], dim=1)
incremental_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
incremental_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
src_len = k.size(1)
if self.xpos is not None:
if incremental_state is not None:
offset = src_len - 1
else:
offset = 0
k = self.xpos(k, offset=0, downscale=True)
q = self.xpos(q, offset=offset, downscale=False)
q = q.reshape(bsz, self.num_heads, tgt_len, self.head_dim)
k = k.reshape(bsz, self.num_heads, src_len, self.head_dim)
v = v.reshape(bsz, self.num_heads, src_len, self.head_dim)
assert rel_pos is None
# move repeat_interleave to encoder.py is useless?(recompute will save more tensor)
if attn_mask is not None:
if len(attn_mask.shape) == 2:
attn_mask = attn_mask.unsqueeze(0).repeat_interleave(bsz * self.num_heads, dim=0)
else:
attn_mask = attn_mask.repeat_interleave(self.num_heads, dim=0)
if key_padding_mask is not None:
key_padding_mask = key_padding_mask.unsqueeze(1).unsqueeze(2)
key_padding_mask = key_padding_mask.repeat_interleave(tgt_len, dim=2)
key_padding_mask = key_padding_mask.repeat_interleave(self.num_heads, dim=1)
key_padding_mask = key_padding_mask.view(bsz * self.num_heads, tgt_len, src_len)
if attn_mask is not None:
attn_mask.masked_fill_(key_padding_mask.to(torch.bool), -torch.inf)
else:
attn_mask = key_padding_mask.to(q.dtype).masked_fill(key_padding_mask.to(torch.bool), -torch.inf)
if attn_mask is not None:
attn_mask = attn_mask.to(q.dtype).reshape(bsz, self.num_heads, *tuple(attn_mask.shape[-2:]))
with torch.backends.cuda.sdp_kernel(enable_math=False if attn_mask is None else True):
attn = torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
attn_mask=attn_mask,
dropout_p=self.dropout_module.p if self.training else 0.0,
)
attn = attn.transpose(1, 2).reshape(bsz, tgt_len, embed_dim)
if self.inner_attn_ln is not None:
attn = self.inner_attn_ln(attn)
attn = self.out_proj(attn)
# encoder未使用attn weight,直接返回None
return attn, None
def patch_torch_scale_with_flash_attn():
from vlmo.torchscale.component.multihead_attention import MultiheadAttention
torch.backends.cuda.enable_flash_sdp(True)
MultiheadAttention._origin_forward = MultiheadAttention.forward
MultiheadAttention.forward = _patch_forward
print('Finish patch_torch_scale_with_flash_attn!')