|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import torch |
|
|
|
|
|
def _patch_forward( |
|
self, |
|
query, |
|
key, |
|
value, |
|
incremental_state=None, |
|
key_padding_mask=None, |
|
attn_mask=None, |
|
rel_pos=None, |
|
): |
|
bsz, tgt_len, embed_dim = query.size() |
|
src_len = tgt_len |
|
assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" |
|
|
|
key_bsz, src_len, _ = key.size() |
|
assert key_bsz == bsz, f"{query.size(), key.size()}" |
|
assert value is not None |
|
assert bsz, src_len == value.shape[:2] |
|
|
|
q = self.q_proj(query) |
|
k = self.k_proj(key) |
|
v = self.v_proj(value) |
|
|
|
q = q.view(bsz, tgt_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
k = k.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
v = v.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
if incremental_state is not None or self.xpos is not None: |
|
q = q.reshape(bsz * self.num_heads, tgt_len, self.head_dim) |
|
k = k.reshape(bsz * self.num_heads, src_len, self.head_dim) |
|
v = v.reshape(bsz * self.num_heads, src_len, self.head_dim) |
|
if incremental_state is not None: |
|
if "prev_key" in incremental_state: |
|
prev_key = incremental_state["prev_key"].view(bsz * self.num_heads, -1, self.head_dim) |
|
prev_value = incremental_state["prev_value"].view(bsz * self.num_heads, -1, self.head_dim) |
|
k = torch.cat([prev_key, k], dim=1) |
|
v = torch.cat([prev_value, v], dim=1) |
|
incremental_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) |
|
incremental_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) |
|
src_len = k.size(1) |
|
|
|
if self.xpos is not None: |
|
if incremental_state is not None: |
|
offset = src_len - 1 |
|
else: |
|
offset = 0 |
|
k = self.xpos(k, offset=0, downscale=True) |
|
q = self.xpos(q, offset=offset, downscale=False) |
|
q = q.reshape(bsz, self.num_heads, tgt_len, self.head_dim) |
|
k = k.reshape(bsz, self.num_heads, src_len, self.head_dim) |
|
v = v.reshape(bsz, self.num_heads, src_len, self.head_dim) |
|
|
|
assert rel_pos is None |
|
|
|
|
|
if attn_mask is not None: |
|
if len(attn_mask.shape) == 2: |
|
attn_mask = attn_mask.unsqueeze(0).repeat_interleave(bsz * self.num_heads, dim=0) |
|
else: |
|
attn_mask = attn_mask.repeat_interleave(self.num_heads, dim=0) |
|
|
|
if key_padding_mask is not None: |
|
key_padding_mask = key_padding_mask.unsqueeze(1).unsqueeze(2) |
|
key_padding_mask = key_padding_mask.repeat_interleave(tgt_len, dim=2) |
|
key_padding_mask = key_padding_mask.repeat_interleave(self.num_heads, dim=1) |
|
key_padding_mask = key_padding_mask.view(bsz * self.num_heads, tgt_len, src_len) |
|
if attn_mask is not None: |
|
attn_mask.masked_fill_(key_padding_mask.to(torch.bool), -torch.inf) |
|
else: |
|
attn_mask = key_padding_mask.to(q.dtype).masked_fill(key_padding_mask.to(torch.bool), -torch.inf) |
|
if attn_mask is not None: |
|
attn_mask = attn_mask.to(q.dtype).reshape(bsz, self.num_heads, *tuple(attn_mask.shape[-2:])) |
|
with torch.backends.cuda.sdp_kernel(enable_math=False if attn_mask is None else True): |
|
attn = torch.nn.functional.scaled_dot_product_attention( |
|
q, |
|
k, |
|
v, |
|
attn_mask=attn_mask, |
|
dropout_p=self.dropout_module.p if self.training else 0.0, |
|
) |
|
|
|
attn = attn.transpose(1, 2).reshape(bsz, tgt_len, embed_dim) |
|
|
|
if self.inner_attn_ln is not None: |
|
attn = self.inner_attn_ln(attn) |
|
|
|
attn = self.out_proj(attn) |
|
|
|
return attn, None |
|
|
|
|
|
def patch_torch_scale_with_flash_attn(): |
|
from vlmo.torchscale.component.multihead_attention import MultiheadAttention |
|
torch.backends.cuda.enable_flash_sdp(True) |
|
MultiheadAttention._origin_forward = MultiheadAttention.forward |
|
MultiheadAttention.forward = _patch_forward |
|
print('Finish patch_torch_scale_with_flash_attn!') |
|
|