|
from torchvision import transforms |
|
from PIL import Image |
|
|
|
|
|
class MinMaxResize: |
|
def __init__(self, shorter=800, longer=1333): |
|
self.min = shorter |
|
self.max = longer |
|
|
|
def __call__(self, x): |
|
w, h = x.size |
|
scale = self.min / min(w, h) |
|
if h < w: |
|
newh, neww = self.min, scale * w |
|
else: |
|
newh, neww = scale * h, self.min |
|
|
|
if max(newh, neww) > self.max: |
|
scale = self.max / max(newh, neww) |
|
newh = newh * scale |
|
neww = neww * scale |
|
|
|
newh, neww = int(newh + 0.5), int(neww + 0.5) |
|
newh, neww = newh // 32 * 32, neww // 32 * 32 |
|
|
|
return x.resize((neww, newh), resample=Image.BICUBIC) |
|
|
|
|
|
class UnNormalize(object): |
|
def __init__(self, mean, std): |
|
self.mean = mean |
|
self.std = std |
|
|
|
def __call__(self, tensor): |
|
""" |
|
Args: |
|
tensor (Tensor): Tensor image of size (C, H, W) to be normalized. |
|
Returns: |
|
Tensor: Normalized image. |
|
""" |
|
for t, m, s in zip(tensor, self.mean, self.std): |
|
t.mul_(s).add_(m) |
|
|
|
return tensor |
|
|
|
|
|
|
|
inception_normalize = transforms.Compose([transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])]) |
|
|
|
|
|
|
|
inception_unnormalize = transforms.Compose([UnNormalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])]) |
|
|
|
cn_clip_normalize = transforms.Compose( |
|
[transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])] |
|
) |
|
|