File size: 18,843 Bytes
3440f83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]

import math

import numpy as np
import torch
import torch.nn as nn
from fairscale.nn import checkpoint_wrapper, wrap

try:
    from apex.normalization import FusedLayerNorm as LayerNorm
except ModuleNotFoundError:
    from torch.nn import LayerNorm

from vlmo.torchscale.architecture.utils import init_bert_params
from vlmo.torchscale.component.droppath import DropPath
from vlmo.torchscale.component.feedforward_network import FeedForwardNetwork, make_experts
from vlmo.torchscale.component.multihead_attention import MultiheadAttention
from vlmo.torchscale.component.multiway_network import MultiwayWrapper, set_split_position
from vlmo.torchscale.component.relative_position_bias import RelativePositionBias
#from vlmo.torchscale.component.xmoe.moe_layer import MOELayer
#from vlmo.torchscale.component.xmoe.routing import Top1Gate, Top2Gate
# from vlmo.modules.vlmo_utils import no_sync_module_apply
from pytorch_lightning.utilities.rank_zero import rank_zero_info

def no_sync_module_apply(module, fn):
    """FSDP module .apply will use _unshard_params_recurse which will sync params across ranks.
    using this function when apply fn is unnecessary to sync params across ranks.
    """
    for child in module.children():
        fn(child)
        no_sync_module_apply(child, fn)

class EncoderLayer(nn.Module):
    def __init__(self, args, depth, attn=None, is_moe_layer=False, is_encoder_decoder=False):
        super().__init__()
        self.args = args
        self.embed_dim = args.encoder_embed_dim
        self.self_attn = self.build_self_attention(self.embed_dim, args) if attn is None else attn
        self.self_attn_layer_norm = MultiwayWrapper(args, LayerNorm(self.embed_dim, eps=args.layernorm_eps))
        self.dropout_module = torch.nn.Dropout(args.dropout)

        if args.drop_path_rate > 0:
            drop_path_prob = np.linspace(0, args.drop_path_rate, args.encoder_layers)[depth]
            self.drop_path = DropPath(drop_path_prob)
        else:
            self.drop_path = None

        self.normalize_before = args.encoder_normalize_before
        self.is_moe_layer = is_moe_layer
        self.ffn_dim = args.encoder_ffn_embed_dim

        if not self.is_moe_layer:
            self.ffn = MultiwayWrapper(
                args,
                self.build_ffn(
                    self.embed_dim,
                    self.args,
                ),
            )
        else:
            assert not self.args.multiway
            if args.moe_top1_expert:
                gate = Top1Gate(
                    self.embed_dim,
                    args.moe_expert_count,
                    use_fp32=args.moe_gating_use_fp32,
                    moe_eval_capacity_token_fraction=args.moe_eval_capacity_token_fraction,
                    use_xmoe=args.use_xmoe,
                )
            else:
                gate = Top2Gate(
                    self.embed_dim,
                    args.moe_expert_count,
                    args.moe_gating_use_fp32,
                    args.moe_second_expert_policy,
                    args.moe_normalize_gate_prob_before_dropping,
                    args.moe_eval_capacity_token_fraction,
                    use_xmoe=args.use_xmoe,
                )
            experts = make_experts(args, self.embed_dim, self.ffn_dim)
            self.moe_layer = MOELayer(gate, experts, args)
        self.final_layer_norm = MultiwayWrapper(args, LayerNorm(self.embed_dim, eps=args.layernorm_eps))

        if args.deepnorm:
            if is_encoder_decoder:
                self.alpha = math.pow(math.pow(args.encoder_layers, 4) * args.decoder_layers, 0.0625) * 0.81
            else:
                self.alpha = math.pow(2.0 * args.encoder_layers, 0.25)
        else:
            self.alpha = 1.0

    def build_ffn(self, embed_dim, args):
        return FeedForwardNetwork(
            embed_dim,
            self.ffn_dim,
            args.activation_fn,
            args.dropout,
            args.activation_dropout,
            args.layernorm_eps,
            args.subln,
        )

    def build_self_attention(self, embed_dim, args):
        return MultiheadAttention(
            args,
            embed_dim,
            args.encoder_attention_heads,
            dropout=args.attention_dropout,
            self_attention=True,
            encoder_decoder_attention=False,
            subln=args.subln,
            one_attn=args.one_attn,
        )

    def residual_connection(self, x, residual):
        return residual * self.alpha + x

    def forward(
        self,
        x,
        encoder_padding_mask,
        attn_mask=None,
        rel_pos=None,
        multiway_split_position=None,
        incremental_state=None,
    ):
        if multiway_split_position is not None:
            assert self.args.multiway
            no_sync_module_apply(self, set_split_position(multiway_split_position))

        if attn_mask is not None:
            # float16: -1e8 equal 0
            attn_mask = attn_mask.masked_fill(attn_mask.to(torch.bool), -1e8)

        residual = x
        if self.normalize_before:
            x = self.self_attn_layer_norm(x)
        x, _ = self.self_attn(
            query=x,
            key=x,
            value=x,
            key_padding_mask=encoder_padding_mask,
            attn_mask=attn_mask,
            rel_pos=rel_pos,
            incremental_state=incremental_state,
        )
        x = self.dropout_module(x)

        if self.drop_path is not None:
            x = self.drop_path(x)

        x = self.residual_connection(x, residual)
        if not self.normalize_before:
            x = self.self_attn_layer_norm(x)

        residual = x
        if self.normalize_before:
            x = self.final_layer_norm(x)
        if not self.is_moe_layer:
            x = self.ffn(x)
            l_aux = None
        else:
            x = x.transpose(0, 1)
            x, l_aux = self.moe_layer(x)
            x = x.transpose(0, 1)

        if self.drop_path is not None:
            x = self.drop_path(x)

        x = self.residual_connection(x, residual)
        if not self.normalize_before:
            x = self.final_layer_norm(x)
        return x, l_aux


class Encoder(nn.Module):
    def __init__(
        self, args, embed_tokens=None, embed_positions=None, output_projection=None, is_encoder_decoder=False, **kwargs
    ):
        self.args = args
        super().__init__(**kwargs)

        self.dropout_module = torch.nn.Dropout(args.dropout)

        embed_dim = args.encoder_embed_dim
        self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim)
        self.mask_ratio = args.mask_ratio
        self.max_text_len = args.max_text_len
        self.vision_len = (args.img_size // args.patch_size) * (args.img_size // args.patch_size)

        self.embed_tokens = embed_tokens
        self.embed_positions = embed_positions

        if output_projection is None and not is_encoder_decoder and not args.no_output_layer and args.vocab_size > 0:
            self.output_projection = self.build_output_projection(args)
        else:
            self.output_projection = output_projection

        if args.layernorm_embedding:
            self.layernorm_embedding = MultiwayWrapper(args, LayerNorm(embed_dim, eps=args.layernorm_eps), dim=1)
        else:
            self.layernorm_embedding = None

        self.layers = nn.ModuleList([])
        if self.args.share_layer:
            single_layer = self.build_encoder_layer(
                args, depth=0, is_moe_layer=False, is_encoder_decoder=is_encoder_decoder
            )
            for i in range(args.encoder_layers):
                self.layers.append(single_layer)
        elif self.args.share_attn:
            moe_freq = args.moe_freq
            embed_dim = args.encoder_embed_dim
            shared_attn = self.build_self_attention(embed_dim, self.args)
            for i in range(args.encoder_layers):
                is_moe_layer = moe_freq != 0 and (i + 1) % moe_freq == 0
                self.layers.append(
                    self.build_encoder_layer(
                        args,
                        depth=i,
                        attn=shared_attn,
                        is_moe_layer=is_moe_layer,
                        is_encoder_decoder=is_encoder_decoder,
                    )
                )

        else:
            moe_freq = args.moe_freq
            for i in range(args.encoder_layers):
                is_moe_layer = moe_freq != 0 and (i + 1) % moe_freq == 0
                self.layers.append(
                    self.build_encoder_layer(
                        args,
                        depth=i,
                        is_moe_layer=is_moe_layer,
                        is_encoder_decoder=is_encoder_decoder,
                    )
                )
        self.num_layers = len(self.layers)

        if args.encoder_normalize_before and args.normalize_output:
            self.layer_norm = MultiwayWrapper(args, LayerNorm(embed_dim, eps=args.layernorm_eps))
        else:
            self.layer_norm = None

        if args.rel_pos_buckets > 0 and args.max_rel_pos > 0:
            self.relative_position = RelativePositionBias(
                num_buckets=args.rel_pos_buckets,
                max_distance=args.max_rel_pos,
                n_heads=args.encoder_attention_heads,
            )
        else:
            self.relative_position = None

        if args.bert_init:
            self.apply(init_bert_params)

        if args.deepnorm:
            if is_encoder_decoder:
                init_scale = math.pow(math.pow(args.encoder_layers, 4) * args.decoder_layers, 0.0625) / 1.15
            else:
                init_scale = math.pow(8.0 * args.encoder_layers, 0.25)
            for name, p in self.named_parameters():
                if "fc1" in name or "fc2" in name or "out_proj" in name or "v_proj" in name:
                    p.data.div_(init_scale)

        if args.subln:
            if is_encoder_decoder:
                init_scale = math.sqrt(math.log(3 * args.decoder_layers) * math.log(2 * args.encoder_layers) / 3)
            else:
                init_scale = math.sqrt(math.log(args.encoder_layers * 2))
            for name, p in self.named_parameters():
                if "fc1" in name or "fc2" in name or "out_proj" in name or "v_proj" in name:
                    p.data.mul_(init_scale)

    def random_masking(self, x, mask_ratio):
        N, L, D = x.shape  # batch, length, dim
        len_keep = int(L * (1 - mask_ratio))

        noise = torch.rand(N, L - 1, device=x.device)
        ids_shuffle = torch.argsort(noise, dim=1) + torch.ones(N, L - 1, device=x.device, dtype=int)
        ids_keep = ids_shuffle[:, :len_keep]

        x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))

        x0 = x[:, 0, :]
        x0 = x0.reshape(N, 1, D)
        x_masked_add = torch.cat([x0, x_masked], axis=1)
        return x_masked_add, ids_keep

    def build_self_attention(self, embed_dim, args):
        return MultiheadAttention(
            args,
            embed_dim,
            args.encoder_attention_heads,
            dropout=args.attention_dropout,
            self_attention=True,
            encoder_decoder_attention=False,
            subln=args.subln,
            one_attn=args.one_attn,
        )

    def build_output_projection(
        self,
        args,
    ):
        if args.share_encoder_input_output_embed:
            assert args.encoder_embedding_type == "language"
            output_projection = torch.nn.Linear(
                self.embed_tokens.weight.shape[1],
                self.embed_tokens.weight.shape[0],
                bias=False,
            )
            output_projection.weight = self.embed_tokens.weight
        else:
            output_projection = torch.nn.Linear(args.encoder_embed_dim, args.vocab_size, bias=False)
            torch.nn.init.normal_(output_projection.weight, mean=0, std=args.encoder_embed_dim**-0.5)
        return output_projection

    def checkpointing_and_params_allgather(
        self,
        origin_layer,
    ):
        origin_forward = origin_layer.forward

        from deepspeed import checkpointing
        def forward(*args, **kwargs):
            # deepspeed checkpoint not support kwargs
            ret = checkpointing.checkpoint(origin_forward, *args, **kwargs)
            return ret

        return forward

    def build_encoder_layer(self, args, depth, attn=None, is_moe_layer=False, is_encoder_decoder=False):
        layer = EncoderLayer(
            args,
            depth,
            attn,
            is_moe_layer=is_moe_layer,
            is_encoder_decoder=is_encoder_decoder,
        )
        if args.checkpoint_activations:
            rank_zero_info("EncoderLayer params: %s", sum(p.numel() for p in layer.parameters() if p.requires_grad))
            layer = checkpoint_wrapper(layer)
            # layer.ffn = checkpoint_wrapper(layer.ffn,)
        if args.fsdp:
            layer = wrap(layer)
        return layer

    def checkpointing_layers(self):
        for i, layer in enumerate(self.layers):
            rank_zero_info(f"Checkpointing wrapper EncoderLayers: {i}")
            self.layers[i] = checkpoint_wrapper(layer)

    def forward_embedding(
        self,
        src_tokens,
        token_embedding=None,
        positions=None,
    ):
        if token_embedding is None:
            token_embedding = self.embed_tokens(src_tokens)
        x = embed = self.embed_scale * token_embedding
        if self.embed_positions is not None:
            if src_tokens is not None:
                x = embed + self.embed_positions(src_tokens, positions=positions)
            else:
                x = embed + self.embed_positions(x, positions=positions)
        is_flip, ids_keep = 0, None
        if self.mask_ratio > 0:
            if x.shape[1] == self.vision_len + 1:
                x, ids_keep = self.random_masking(x, self.mask_ratio)
                is_flip = 1
            elif x.shape[1] == self.vision_len + self.max_text_len + 1:
                vision_tokens = x[:, : self.vision_len + 1, :]
                vision_tokens, ids_keep = self.random_masking(vision_tokens, self.mask_ratio)
                x = torch.cat(
                    [
                        vision_tokens,
                        x[
                            :,
                            self.vision_len + 1 :,
                        ],
                    ],
                    dim=1,
                )
                is_flip = 2
        if self.layernorm_embedding is not None:
            x = self.layernorm_embedding(x)
        x = self.dropout_module(x)
        return x, embed, ids_keep, is_flip

    def forward(
        self,
        src_tokens,
        encoder_padding_mask=None,
        attn_mask=None,
        return_all_hiddens=False,
        token_embeddings=None,
        multiway_split_position=None,
        features_only=False,
        incremental_state=None,
        positions=None,
        **kwargs
    ):
        assert src_tokens is not None or token_embeddings is not None

        if encoder_padding_mask is None:
            if src_tokens is not None:
                encoder_padding_mask = torch.zeros_like(src_tokens, device=src_tokens.device).bool()
            else:
                encoder_padding_mask = torch.zeros(
                    [token_embeddings.size(0), token_embeddings.size(1)],
                    device=token_embeddings.device,
                ).bool()

        if multiway_split_position is not None:
            assert self.args.multiway
            no_sync_module_apply(self, set_split_position(multiway_split_position))

        x, encoder_embedding, ids_keep, is_flip = self.forward_embedding(src_tokens, token_embeddings, positions)
        if is_flip > 0:
            if is_flip == 2:
                text_ids = (
                    torch.arange(
                        self.vision_len + 1, self.vision_len + 1 + self.max_text_len, device=x.device, dtype=torch.int64
                    )
                    .unsqueeze(0)
                    .repeat(ids_keep.shape[0], 1)
                )
                cls_ids = torch.zeros(ids_keep.shape[0], 1, device=x.device, dtype=torch.int64)
                ids_keep = torch.cat([cls_ids, ids_keep, text_ids], dim=1)
            elif is_flip == 1:
                cls_ids = torch.zeros(ids_keep.shape[0], 1, device=x.device, dtype=torch.int64)
                ids_keep = torch.cat([cls_ids, ids_keep], dim=1)
            if encoder_padding_mask is not None:
                encoder_padding_mask = torch.gather(encoder_padding_mask, dim=1, index=ids_keep)
            if attn_mask is not None:
                attn_mask = torch.gather(
                    attn_mask, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, attn_mask.shape[-1])
                )
                attn_mask = torch.gather(attn_mask, dim=2, index=ids_keep.unsqueeze(1).repeat(1, attn_mask.shape[1], 1))
            if multiway_split_position > 0:
                multiway_split_position = ids_keep.shape[1] - self.max_text_len
        x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x))

        encoder_states = []

        if return_all_hiddens:
            encoder_states.append(x)

        rel_pos_bias = None
        if self.relative_position is not None:
            rel_pos_bias = self.relative_position(batch_size=x.size(0), qlen=x.size(1), klen=x.size(1))

        l_aux = []
        for idx, layer in enumerate(self.layers):
            x, l_aux_i = layer(
                x,
                encoder_padding_mask=encoder_padding_mask if incremental_state is None else None,
                attn_mask=attn_mask,
                rel_pos=rel_pos_bias,
                multiway_split_position=multiway_split_position,
                incremental_state=incremental_state[idx] if incremental_state is not None else None,
            )
            if return_all_hiddens:
                assert encoder_states is not None
                encoder_states.append(x)
            l_aux.append(l_aux_i)

        if multiway_split_position is not None:
            assert self.args.multiway
            no_sync_module_apply(self, set_split_position(multiway_split_position))
        if self.layer_norm is not None:
            x = self.layer_norm(x)

        if not features_only and self.output_projection is not None:
            x = self.output_projection(x)

        return {
            "encoder_out": x,
            "encoder_embedding": encoder_embedding,
            "encoder_padding_mask": encoder_padding_mask,
            "encoder_states": encoder_states,
            "l_aux": l_aux,
            "multiway_split_position": multiway_split_position,
        }