File size: 5,232 Bytes
3440f83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# --------------------------------------------------------
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442)
# Github source: https://github.com/microsoft/unilm/tree/master/beit3
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------'

import math
import torch
import torch.nn as nn
from timm.models.layers import trunc_normal_ as __call_trunc_normal_

from vlmo.torchscale.model.BEiT3 import BEiT3
from vlmo.torchscale.architecture.config import EncoderConfig


def trunc_normal_(tensor, mean=0.0, std=1.0):
    __call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std)


def _get_base_config(
    img_size=224,
    patch_size=16,
    drop_path_rate=0,
    checkpoint_activations=None,
    mlp_ratio=4,
    vocab_size=64010,
    encoder_layers=12,
    encoder_embed_dim=768,
    encoder_attention_heads=12,
    share_layer=False,
    share_attn=False,
    deepnorm=False,
    mask_ratio=0,
    max_text_len=52,
    one_attn=False,
    **kwargs
):
    return EncoderConfig(
        img_size=img_size,
        patch_size=patch_size,
        vocab_size=vocab_size,
        multiway=True,
        layernorm_embedding=False,
        normalize_output=True,
        no_output_layer=True,
        drop_path_rate=drop_path_rate,
        encoder_embed_dim=encoder_embed_dim,
        encoder_attention_heads=encoder_attention_heads,
        encoder_layers=encoder_layers,
        encoder_ffn_embed_dim=int(encoder_embed_dim * mlp_ratio),
        checkpoint_activations=checkpoint_activations,
        share_layer=share_layer,
        share_attn=share_attn,
        deepnorm=deepnorm,
        mask_ratio=mask_ratio,
        max_text_len=max_text_len,
        one_attn=one_attn,
    )


def _get_large_config(
    img_size=224,
    patch_size=16,
    drop_path_rate=0,
    checkpoint_activations=None,
    mlp_ratio=4,
    vocab_size=64010,
    encoder_layers=24,
    encoder_embed_dim=1024,
    encoder_attention_heads=16,
    share_layer=False,
    share_attn=False,
    deepnorm=False,
    mask_ratio=0,
    max_text_len=52,
    one_attn=False,
    **kwargs
):
    return EncoderConfig(
        img_size=img_size,
        patch_size=patch_size,
        vocab_size=vocab_size,
        multiway=True,
        layernorm_embedding=False,
        normalize_output=True,
        no_output_layer=True,
        drop_path_rate=drop_path_rate,
        encoder_embed_dim=encoder_embed_dim,
        encoder_attention_heads=encoder_attention_heads,
        encoder_layers=encoder_layers,
        encoder_ffn_embed_dim=int(encoder_embed_dim * mlp_ratio),
        checkpoint_activations=checkpoint_activations,
        share_layer=share_layer,
        share_attn=share_attn,
        deepnorm=deepnorm,
        mask_ratio=mask_ratio,
        max_text_len=max_text_len,
        one_attn=one_attn,
    )


def _get_huge_config(
    img_size=224,
    patch_size=16,
    drop_path_rate=0,
    checkpoint_activations=None,
    mlp_ratio=4,
    vocab_size=30522,
    encoder_layers=32,
    encoder_embed_dim=4096,
    encoder_attention_heads=32,
    share_layer=False,
    share_attn=False,
    deepnorm=False,
    mask_ratio=0,
    max_text_len=52,
    one_attn=False,
    **kwargs
):
    return EncoderConfig(
        img_size=img_size,
        patch_size=patch_size,
        vocab_size=vocab_size,
        multiway=True,
        layernorm_embedding=False,
        normalize_output=True,
        no_output_layer=True,
        drop_path_rate=drop_path_rate,
        encoder_embed_dim=encoder_embed_dim,
        encoder_attention_heads=encoder_attention_heads,
        encoder_layers=encoder_layers,
        encoder_ffn_embed_dim=int(encoder_embed_dim * mlp_ratio),
        checkpoint_activations=checkpoint_activations,
        share_layer=share_layer,
        share_attn=share_attn,
        deepnorm=deepnorm,
        mask_ratio=mask_ratio,
        max_text_len=max_text_len,
        one_attn=one_attn,
    )


class BEiT3Wrapper(nn.Module):
    def __init__(self, args, **kwargs):
        super().__init__()
        self.args = args
        self.beit3 = BEiT3(args)
        self.apply(self._init_weights)

    def fix_init_weight(self):
        def rescale(param, layer_id):
            param.div_(math.sqrt(2.0 * layer_id))

        for layer_id, layer in enumerate(self.blocks):
            rescale(layer.attn.proj.weight.data, layer_id + 1)
            rescale(layer.mlp.fc2.weight.data, layer_id + 1)

    def get_num_layers(self):
        return self.beit3.encoder.num_layers

    @torch.jit.ignore
    def no_weight_decay(self):
        return {
            "pos_embed",
            "cls_token",
            "beit3.encoder.embed_positions.A.weight",
            "beit3.vision_embed.cls_token",
            "logit_scale",
        }

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)