File size: 5,232 Bytes
3440f83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
# --------------------------------------------------------
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442)
# Github source: https://github.com/microsoft/unilm/tree/master/beit3
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------'
import math
import torch
import torch.nn as nn
from timm.models.layers import trunc_normal_ as __call_trunc_normal_
from vlmo.torchscale.model.BEiT3 import BEiT3
from vlmo.torchscale.architecture.config import EncoderConfig
def trunc_normal_(tensor, mean=0.0, std=1.0):
__call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std)
def _get_base_config(
img_size=224,
patch_size=16,
drop_path_rate=0,
checkpoint_activations=None,
mlp_ratio=4,
vocab_size=64010,
encoder_layers=12,
encoder_embed_dim=768,
encoder_attention_heads=12,
share_layer=False,
share_attn=False,
deepnorm=False,
mask_ratio=0,
max_text_len=52,
one_attn=False,
**kwargs
):
return EncoderConfig(
img_size=img_size,
patch_size=patch_size,
vocab_size=vocab_size,
multiway=True,
layernorm_embedding=False,
normalize_output=True,
no_output_layer=True,
drop_path_rate=drop_path_rate,
encoder_embed_dim=encoder_embed_dim,
encoder_attention_heads=encoder_attention_heads,
encoder_layers=encoder_layers,
encoder_ffn_embed_dim=int(encoder_embed_dim * mlp_ratio),
checkpoint_activations=checkpoint_activations,
share_layer=share_layer,
share_attn=share_attn,
deepnorm=deepnorm,
mask_ratio=mask_ratio,
max_text_len=max_text_len,
one_attn=one_attn,
)
def _get_large_config(
img_size=224,
patch_size=16,
drop_path_rate=0,
checkpoint_activations=None,
mlp_ratio=4,
vocab_size=64010,
encoder_layers=24,
encoder_embed_dim=1024,
encoder_attention_heads=16,
share_layer=False,
share_attn=False,
deepnorm=False,
mask_ratio=0,
max_text_len=52,
one_attn=False,
**kwargs
):
return EncoderConfig(
img_size=img_size,
patch_size=patch_size,
vocab_size=vocab_size,
multiway=True,
layernorm_embedding=False,
normalize_output=True,
no_output_layer=True,
drop_path_rate=drop_path_rate,
encoder_embed_dim=encoder_embed_dim,
encoder_attention_heads=encoder_attention_heads,
encoder_layers=encoder_layers,
encoder_ffn_embed_dim=int(encoder_embed_dim * mlp_ratio),
checkpoint_activations=checkpoint_activations,
share_layer=share_layer,
share_attn=share_attn,
deepnorm=deepnorm,
mask_ratio=mask_ratio,
max_text_len=max_text_len,
one_attn=one_attn,
)
def _get_huge_config(
img_size=224,
patch_size=16,
drop_path_rate=0,
checkpoint_activations=None,
mlp_ratio=4,
vocab_size=30522,
encoder_layers=32,
encoder_embed_dim=4096,
encoder_attention_heads=32,
share_layer=False,
share_attn=False,
deepnorm=False,
mask_ratio=0,
max_text_len=52,
one_attn=False,
**kwargs
):
return EncoderConfig(
img_size=img_size,
patch_size=patch_size,
vocab_size=vocab_size,
multiway=True,
layernorm_embedding=False,
normalize_output=True,
no_output_layer=True,
drop_path_rate=drop_path_rate,
encoder_embed_dim=encoder_embed_dim,
encoder_attention_heads=encoder_attention_heads,
encoder_layers=encoder_layers,
encoder_ffn_embed_dim=int(encoder_embed_dim * mlp_ratio),
checkpoint_activations=checkpoint_activations,
share_layer=share_layer,
share_attn=share_attn,
deepnorm=deepnorm,
mask_ratio=mask_ratio,
max_text_len=max_text_len,
one_attn=one_attn,
)
class BEiT3Wrapper(nn.Module):
def __init__(self, args, **kwargs):
super().__init__()
self.args = args
self.beit3 = BEiT3(args)
self.apply(self._init_weights)
def fix_init_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
def get_num_layers(self):
return self.beit3.encoder.num_layers
@torch.jit.ignore
def no_weight_decay(self):
return {
"pos_embed",
"cls_token",
"beit3.encoder.embed_positions.A.weight",
"beit3.vision_embed.cls_token",
"logit_scale",
}
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
|