--- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** `en` - **License:** mit - **Finetuned from model [optional]:** Qwen/Qwen2.5-14B-Instruct ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use ```python import transformers import torch from transformers.pipelines import PIPELINE_REGISTRY from transformers import ( pipeline, AutoModelForCausalLM, PreTrainedTokenizer ) from typing import ( Dict, Callable, Tuple, List, ) from src.pipelines.level_to_score_pipeline import LevelToScorePipeline from src.rank_dicts import SingleLabelRankDict from src.chat_templates import UNLITemplate model = transformers.AutoModelForCausalLM.from_pretrained( "Zhengping/conditional-probability-regression", torch_dtype="auto", attn_implementation="flash_attention_2", ) tokenizer = transformers.AutoTokenizer.from_pretrained( "Zhengping/conditional-probability-regression", ) rank_dict = SingleLabelRankDict.from_tokenizer(tokenizer) PIPELINE_REGISTRY.register_pipeline( "level-to-score", pipeline_class=LevelToScorePipeline, pt_model=AutoModelForCausalLM ) # This allows fine-grained labeling, the greedy decoding gives a coarse score, # one can also attach their own level-to-score function to the pipeline, e.g. using UNLI # label transformation to get it more binarized def _level_to_score_func( logits: Tuple[torch.FloatTensor], tokenizer: PreTrainedTokenizer ) -> Tuple[List[float], List[float]]: """ """ logits = logits[0] num_labels = len(rank_dict) considering_ids = tokenizer.convert_tokens_to_ids([f" <|label_level_{i}|>" for i in range(num_labels)]) selective_logits = torch.index_select(logits, 1, torch.tensor(considering_ids, device=logits.device)) step_size = 1 / num_labels expectation = torch.tensor([[i * step_size + 1 / 2 * step_size for i in range(num_labels)]], device=selective_logits.device) scores = torch.softmax(selective_logits, dim=-1) @ expectation.T scores = scores.squeeze(-1).tolist() return scores, selective_logits.tolist() pipe = pipeline( "level-to-score", model=model, max_new_tokens=2, tokenizer=tokenizer, device=0, level_to_score_func=_level_to_score_func, torch_dtype=torch.bfloat16, ) template = UNLITemplate() premise = "Sam is sleeping." hypothesis = "Sam is awake." inputs = template.get_prompt_template(premise=premise, hypothesis=hypothesis) +\ template.get_completion_template(is_completion=True) result = pipe(inputs) print(result) ``` See our code repo for the definition of the scoring pipeline and templates. ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]