File size: 7,279 Bytes
18fa92b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import random
from collections import deque
import heapq

# Neural Network for Deep Q-Learning
class QNetwork(nn.Module):
    def __init__(self, state_size, action_size, hidden_sizes=[256, 128, 64], dropout_rate=0.1):
        super(QNetwork, self).__init__()
        self.state_size = state_size
        self.action_size = action_size
        
        # Build a deeper network with configurable hidden layers
        layers = []
        prev_size = state_size
        for hidden_size in hidden_sizes:
            layers.append(nn.Linear(prev_size, hidden_size))
            layers.append(nn.BatchNorm1d(hidden_size))  # Add batch normalization
            layers.append(nn.ReLU())
            layers.append(nn.Dropout(dropout_rate))     # Add dropout for regularization
            prev_size = hidden_size
        layers.append(nn.Linear(prev_size, action_size))
        
        self.network = nn.Sequential(*layers)

    def forward(self, x):
        return self.network(x)

# Prioritized Experience Replay Memory (simplified)
class PriorityReplayMemory:
    def __init__(self, capacity, alpha=0.6, beta=0.4, beta_increment=0.001):
        self.capacity = capacity
        self.alpha = alpha  # Priority exponent
        self.beta = beta    # Importance sampling weight
        self.beta_increment = beta_increment
        self.memory = []    # Heap for priorities
        self.experiences = deque(maxlen=capacity)  # Store experiences
        self.max_priority = 1.0

    def add(self, experience, error=None):
        priority = error if error is not None else self.max_priority
        priority = (abs(priority) + 1e-5) ** self.alpha  # Small constant to avoid zero priority
        heapq.heappush(self.memory, (-priority, len(self.experiences)))  # Negative for max heap
        self.experiences.append(experience)

    def sample(self, batch_size):
        if len(self.experiences) < batch_size:
            return None, None, None
        
        # Calculate sampling probabilities
        priorities = np.array([-p for p, _ in self.memory[:len(self.experiences)]])
        probs = priorities / priorities.sum()
        
        # Sample indices
        indices = np.random.choice(len(self.experiences), batch_size, p=probs, replace=False)
        samples = [self.experiences[idx] for idx in indices]
        
        # Importance sampling weights
        weights = (len(self.experiences) * probs[indices]) ** (-self.beta)
        weights /= weights.max()  # Normalize
        
        self.beta = min(1.0, self.beta + self.beta_increment)  # Anneal beta
        return samples, indices, torch.FloatTensor(weights)

    def update_priorities(self, indices, errors):
        for idx, error in zip(indices, errors):
            priority = (abs(error) + 1e-5) ** self.alpha
            self.memory[idx] = (-priority, self.memory[idx][1])
            self.max_priority = max(self.max_priority, priority)
        heapq.heapify(self.memory)  # Re-heapify after updates

    def __len__(self):
        return len(self.experiences)

# Enhanced Reinforcement Learning Agent
class RLAgent:
    def __init__(self, state_size, action_size, 
                 lr=0.0005, gamma=0.99, epsilon=1.0, epsilon_decay=0.995, min_epsilon=0.01,
                 memory_capacity=10000, batch_size=64, target_update_freq=1000,
                 use_double_dqn=True, clip_grad_norm=1.0):
        self.state_size = state_size
        self.action_size = action_size
        self.gamma = gamma
        self.epsilon = epsilon
        self.epsilon_decay = epsilon_decay
        self.min_epsilon = min_epsilon
        self.batch_size = batch_size
        self.use_double_dqn = use_double_dqn
        self.clip_grad_norm = clip_grad_norm
        
        # Networks
        self.policy_net = QNetwork(state_size, action_size)
        self.target_net = QNetwork(state_size, action_size)
        self.target_net.load_state_dict(self.policy_net.state_dict())  # Copy weights
        self.target_net.eval()  # Target network doesn't train
        self.optimizer = optim.Adam(self.policy_net.parameters(), lr=lr)
        self.criterion = nn.SmoothL1Loss()  # Huber loss for stability
        
        # Memory
        self.memory = PriorityReplayMemory(memory_capacity)
        self.steps = 0
        self.target_update_freq = target_update_freq

    def remember(self, state, action, reward, next_state, done):
        # Initial error estimate (could be refined with TD error later)
        state_tensor = torch.FloatTensor(state).unsqueeze(0)
        next_state_tensor = torch.FloatTensor(next_state).unsqueeze(0)
        with torch.no_grad():
            q_value = self.policy_net(state_tensor)[action]
            next_q = self.target_net(next_state_tensor).max().item()
            target = reward + (1 - done) * self.gamma * next_q
            error = abs(q_value.item() - target)
        self.memory.add((state, action, reward, next_state, done), error)

    def act(self, state):
        self.steps += 1
        if random.random() < self.epsilon:
            return random.randint(0, self.action_size - 1)
        state = torch.FloatTensor(state).unsqueeze(0)
        with torch.no_grad():
            return torch.argmax(self.policy_net(state)).item()

    def train(self):
        if len(self.memory) < self.batch_size:
            return
        
        # Sample from memory
        batch, indices, weights = self.memory.sample(self.batch_size)
        if batch is None:
            return
        
        states, actions, rewards, next_states, dones = zip(*batch)
        states = torch.FloatTensor(states)
        actions = torch.LongTensor(actions)
        rewards = torch.FloatTensor(rewards)
        next_states = torch.FloatTensor(next_states)
        dones = torch.FloatTensor(dones)
        weights = weights.unsqueeze(1)
        
        # Compute Q-values
        q_values = self.policy_net(states).gather(1, actions.unsqueeze(1)).squeeze(1)
        
        # Double DQN or standard DQN
        if self.use_double_dqn:
            next_actions = self.policy_net(next_states).argmax(1)
            next_q_values = self.target_net(next_states).gather(1, next_actions.unsqueeze(1)).squeeze(1)
        else:
            next_q_values = self.target_net(next_states).max(1)[0]
        
        # Compute targets
        targets = rewards + self.gamma * next_q_values * (1 - dones)
        
        # Compute TD errors for priority update
        td_errors = (q_values - targets).detach().cpu().numpy()
        
        # Loss with importance sampling weights
        loss = (self.criterion(q_values, targets) * weights).mean()
        
        # Optimize
        self.optimizer.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(self.policy_net.parameters(), self.clip_grad_norm)
        self.optimizer.step()
        
        # Update priorities
        self.memory.update_priorities(indices, td_errors)
        
        # Update target network
        if self.steps % self.target_update_freq == 0:
            self.target_net.load_state_dict(self.policy_net.state_dict())
        
        # Decay epsilon
        self.epsilon = max(self.min_epsilon, self.epsilon * self.epsilon_decay)