File size: 4,608 Bytes
d9f3a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoModel, AutoConfig

class EnhancedMoE(nn.Module):
    def __init__(self, input_dim, num_experts=12, expert_dim=1024, dropout_rate=0.1):
        super(EnhancedMoE, self).__init__()
        self.num_experts = num_experts
        # More sophisticated experts with two layers
        self.experts = nn.ModuleList([
            nn.Sequential(
                nn.Linear(input_dim, expert_dim),
                nn.ReLU(),
                nn.Dropout(dropout_rate),
                nn.Linear(expert_dim, expert_dim)
            ) for _ in range(num_experts)
        ])
        # Improved gating with attention-like mechanism
        self.gating_network = nn.Sequential(
            nn.Linear(input_dim, expert_dim),
            nn.ReLU(),
            nn.Linear(expert_dim, num_experts)
        )
        self.layer_norm = nn.LayerNorm(expert_dim)

    def forward(self, x):
        gating_scores = F.softmax(self.gating_network(x), dim=-1)
        expert_outputs = torch.stack([expert(x) for expert in self.experts], dim=1)
        output = torch.sum(gating_scores.unsqueeze(-1) * expert_outputs, dim=1)
        return self.layer_norm(output)

class UltraSmarterModel(nn.Module):
    def __init__(
        self,
        text_model_name="bert-base-uncased",
        image_dim=2048,
        audio_dim=512,
        num_classes=None,
        hidden_dim=1024
    ):
        super(UltraSmarterModel, self).__init__()
        
        # Text processing
        self.text_config = AutoConfig.from_pretrained(text_model_name)
        self.text_encoder = AutoModel.from_pretrained(text_model_name)
        
        # Enhanced modality experts
        self.image_expert = EnhancedMoE(image_dim, expert_dim=hidden_dim)
        self.audio_expert = EnhancedMoE(audio_dim, expert_dim=hidden_dim)
        
        # Cross-attention between modalities
        self.cross_attention = nn.MultiheadAttention(
            embed_dim=hidden_dim,
            num_heads=8,
            batch_first=True
        )
        
        # Fusion and output
        fused_dim = hidden_dim * 3  # Text + Image + Audio
        self.fusion_layer = nn.Sequential(
            nn.Linear(fused_dim, hidden_dim),
            nn.ReLU(),
            nn.Dropout(0.1)
        )
        
        # Flexible output layer (classification or regression)
        self.output_dim = num_classes if num_classes else hidden_dim
        self.output_layer = nn.Linear(hidden_dim, self.output_dim)
        
        # Additional improvements
        self.layer_norm = nn.LayerNorm(hidden_dim)
        self.dropout = nn.Dropout(0.1)

    def forward(self, text_input, image_input, audio_input):
        # Text features from CLS token
        text_features = self.text_encoder(**text_input).last_hidden_state[:, 0, :]
        text_features = self.dropout(F.relu(text_features))
        
        # Process image and audio through enhanced MoE
        image_features = self.image_expert(image_input)
        audio_features = self.audio_expert(audio_input)
        
        # Reshape for cross-attention (batch_size, seq_len=1, embed_dim)
        text_features = text_features.unsqueeze(1)
        image_features = image_features.unsqueeze(1)
        audio_features = audio_features.unsqueeze(1)
        
        # Cross-attention between modalities
        modality_features = torch.cat([text_features, image_features, audio_features], dim=1)
        attn_output, _ = self.cross_attention(
            modality_features, modality_features, modality_features
        )
        
        # Fuse features
        fused_features = attn_output.reshape(attn_output.size(0), -1)
        fused_features = self.fusion_layer(fused_features)
        fused_features = self.layer_norm(fused_features)
        
        # Final output
        output = self.output_layer(fused_features)
        
        # Apply softmax/sigmoid if classification
        if self.output_dim > 1:
            return F.softmax(output, dim=-1)
        return output

# Example usage
if __name__ == "__main__":
    # Sample inputs
    batch_size = 4
    model = UltraSmarterModel(num_classes=10)  # For 10-class classification
    
    text_input = {
        "input_ids": torch.randint(0, 1000, (batch_size, 128)),
        "attention_mask": torch.ones(batch_size, 128)
    }
    image_input = torch.randn(batch_size, 2048)
    audio_input = torch.randn(batch_size, 512)
    
    # Forward pass
    output = model(text_input, image_input, audio_input)
    print(f"Output shape: {output.shape}")  # Should be [batch_size, 10]