File size: 3,114 Bytes
18fa92b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# ethical_guidelines.py

class EthicalStandards:
    def __init__(self):
        # Define the principles the system will follow
        self.standards = {
            'fairness_check': False,
            'data_protection': True,
            'clarity': True,
            'responsibility': True,
            'security': True,
            'acceptance': True
        }

    def check_output_fairness(self, output):
        """
        Ensures that the AI output adheres to fairness standards.
        This checks for biased or unfair responses.
        """
        # Example check for fairness: If the output contains terms flagged as unfair, it's flagged as unfair
        if 'unfair' in output:
            self.standards['fairness_check'] = False
        else:
            self.standards['fairness_check'] = True

    def protect_data(self, data):
        """
        Handle sensitive information appropriately, ensuring data protection.
        """
        if 'confidential' in data:
            return self.safeguard_information(data)
        return data

    def safeguard_information(self, data):
        """
        Safeguards sensitive information by masking or redacting it.
        """
        return {key: 'REDACTED' for key in data}

    def explain_decision(self, decision):
        """
        Clarify the reasoning behind the AI system's decisions.
        This helps in maintaining transparency.
        """
        if 'reason' in decision:
            return f"Decision made based on: {decision['reason']}"
        return "Decision explanation not available."

    def ensure_acceptance(self, text):
        """
        Make sure the generated text adheres to inclusive and positive language.
        """
        if 'exclude' in text:
            return "Let's focus on inclusive and positive language."
        return text

    def secure_output(self, output):
        """
        Ensures that the output does not contain harmful or unsafe content.
        """
        # Basic check for harmful content (no need for specific list)
        if 'harmful' in output or 'abusive' in output:
            return "Output contains harmful content and has been filtered."
        
        return output

    def log_standards(self):
        """
        Logs the current adherence status to each ethical standard.
        """
        for standard, status in self.standards.items():
            print(f"Standard - {standard}: {'Compliant' if status else 'Non-compliant'}")

    def enforce_all_standards(self, input_data):
        """
        Runs a series of checks to ensure all ethical standards are met.
        """
        self.check_output_fairness(input_data)
        self.protect_data(input_data)
        # Add further checks as needed

    def process_and_check_output(self, prompt):
        """
        Process the input prompt, apply ethical checks, and return the ethical output.
        """
        processed_output = self.secure_output(prompt)
        self.check_output_fairness(processed_output)
        processed_output = self.ensure_acceptance(processed_output)
        return processed_output